1
|
Rakela S, Sortman BW, Gobin C, Hao S, Caceres-Brun D, Warren BL. Self-administration acquisition latency predicts locomotor sensitivity to cocaine in male rats. Behav Brain Res 2024; 473:115170. [PMID: 39084564 PMCID: PMC11956165 DOI: 10.1016/j.bbr.2024.115170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/19/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Individual differences in drug use emerge soon after initial exposure, and only a fraction of individuals who initiate drug use go on to develop a substance use disorder. Variability in vulnerability to establishing drug self-administration behavior is also evident in preclinical rodent models. Latent characteristics that underlie this variability and the relationship between early drug use patterns and later use remain unclear. Here, we attempt to determine whether propensity to establish cocaine self-administration is related to subsequent cocaine self-administration behavior in male Sprague-Dawley rats (n = 14). Prior to initiating training, we evaluated basal locomotor and anxiety-like behavior in a novel open field test. We then trained rats to self-administer cocaine in daily 3 h cocaine (0.75 mg/kg/infusion) self-administration sessions until acquisition criteria (≥30 active lever presses with ≥70 % responding on the active lever in one session) was met and divided rats into Early and Late groups by median-split analysis based on their latency to meet acquisition criteria. After each rat met acquisition criteria, we gave them 10 additional daily cocaine self-administration sessions. We then conducted a progressive ratio, cocaine-induced locomotor sensitivity test, and non-reinforced cocaine seeking test after two weeks of forced abstinence. Early Learners exhibited significantly less locomotion after an acute injection of cocaine, but the groups did not differ in any other behavioral parameter examined. These results indicate that cocaine self-administration acquisition latency is not predictive of subsequent drug-taking behavior, but may be linked to physiological factors like drug sensitivity that can predispose rats to learn the operant task.
Collapse
Affiliation(s)
- Samantha Rakela
- Department of Pharmacodynamics, University of Florida, 1345 Center Dr., Gainesville, FL 32610, United States
| | - Bo W Sortman
- Department of Pharmacodynamics, University of Florida, 1345 Center Dr., Gainesville, FL 32610, United States
| | - Christina Gobin
- Department of Pharmacodynamics, University of Florida, 1345 Center Dr., Gainesville, FL 32610, United States
| | - Sophie Hao
- Department of Pharmacodynamics, University of Florida, 1345 Center Dr., Gainesville, FL 32610, United States
| | - Delfina Caceres-Brun
- Department of Pharmacodynamics, University of Florida, 1345 Center Dr., Gainesville, FL 32610, United States.
| | - Brandon L Warren
- Department of Pharmacodynamics, University of Florida, 1345 Center Dr., Gainesville, FL 32610, United States
| |
Collapse
|
2
|
Speranza L, Filiz KD, Lippiello P, Ferraro MG, Pascarella S, Miniaci MC, Volpicelli F. Enduring Neurobiological Consequences of Early-Life Stress: Insights from Rodent Behavioral Paradigms. Biomedicines 2024; 12:1978. [PMID: 39335492 PMCID: PMC11429222 DOI: 10.3390/biomedicines12091978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Stress profoundly affects physical and mental health, particularly when experienced early in life. Early-life stress (ELS) encompasses adverse childhood experiences such as abuse, neglect, violence, or chronic poverty. These stressors can induce long-lasting changes in brain structure and function, impacting areas involved in emotion regulation, cognition, and stress response. Consequently, individuals exposed to high levels of ELS are at an increased risk for mental health disorders like depression, anxiety, and post-traumatic stress disorders, as well as physical health issues, including metabolic disorders, cardiovascular disease, and cancer. This review explores the biological and psychological consequences of early-life adversity paradigms in rodents, such as maternal separation or deprivation and limited bedding or nesting. The study of these experimental models have revealed that the organism's response to ELS is complex, involving genetic and epigenetic mechanisms, and is associated with the dysregulation of physiological systems like the nervous, neuroendocrine, and immune systems, in a sex-dependent fashion. Understanding the impact of ELS is crucial for developing effective interventions and preventive strategies in humans exposed to stressful or traumatic experiences in childhood.
Collapse
Affiliation(s)
- Luisa Speranza
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (L.S.); (K.D.F.); (P.L.); (S.P.)
| | - Kardelen Dalim Filiz
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (L.S.); (K.D.F.); (P.L.); (S.P.)
| | - Pellegrino Lippiello
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (L.S.); (K.D.F.); (P.L.); (S.P.)
| | - Maria Grazia Ferraro
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Silvia Pascarella
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (L.S.); (K.D.F.); (P.L.); (S.P.)
| | - Maria Concetta Miniaci
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (L.S.); (K.D.F.); (P.L.); (S.P.)
| | - Floriana Volpicelli
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (L.S.); (K.D.F.); (P.L.); (S.P.)
| |
Collapse
|
3
|
Harhen NC, Bornstein AM. Interval Timing as a Computational Pathway From Early Life Adversity to Affective Disorders. Top Cogn Sci 2024; 16:92-112. [PMID: 37824831 PMCID: PMC10842617 DOI: 10.1111/tops.12701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023]
Abstract
Adverse early life experiences can have remarkably enduring negative consequences on mental health, with numerous, varied psychiatric conditions sharing this developmental origin. Yet, the mechanisms linking adverse experiences to these conditions remain poorly understood. Here, we draw on a principled model of interval timing to propose that statistically optimal adaptation of temporal representations to an unpredictable early life environment can produce key characteristics of anhedonia, a transdiagnostic symptom associated with affective disorders like depression and anxiety. The core observation is that early temporal unpredictability produces broader, more imprecise temporal expectations. As a result, reward anticipation is diminished, and associative learning is slowed. When agents with such representations are later introduced to more stable environments, they demonstrate a negativity bias, responding more to the omission of reward than its receipt. Increased encoding of negative events has been proposed to contribute to disorders with anhedonia as a symptom. We then examined how unpredictability interacts with another form of adversity, low reward availability. We found that unpredictability's effect was most strongly felt in richer environments, potentially leading to categorically different phenotypic expressions. In sum, our formalization suggests a single mechanism can help to link early life adversity to a range of behaviors associated with anhedonia, and offers novel insights into the interactive impacts of multiple adversities.
Collapse
Affiliation(s)
- Nora C. Harhen
- Department of Cognitive Sciences, University of California, Irvine
| | - Aaron M. Bornstein
- Department of Cognitive Sciences, University of California, Irvine
- Center for the Neurobiology of Learning and Memory, University of California, Irvine
| |
Collapse
|
4
|
Alam N, Choudhary K. Neurochemical Effects of Methylphenidate and Modafinil in Ameliorating Stress-Induced Cognitive Deficits. ACS Pharmacol Transl Sci 2023; 6:1357-1372. [PMID: 37854618 PMCID: PMC10580386 DOI: 10.1021/acsptsci.3c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Indexed: 10/20/2023]
Abstract
PURPOSE Chronic stressful situations result in altered monoaminergic activity of neurotransmitters, resulting in various conditions characterized by deficits in learning, memory and attention. Stimulant effects can be visualized in terms of increased cognitive abilities through enhancement of dopamine (DA) release. METHOD This study examined cognitive responses and brain DA and 5-hydroxytryptamine (5HT) levels after prolonged methylphenidate (MPH) and modafinil administration, to demonstrate their effect on stress-induced cognitive deficits in rats. Effects on cognition were evaluated by passive avoidance and water maze tests. Furthermore brain levels of DA, homovanillic acid (HVA), dihydroxyphenylacetic acid (DOPAC), 5HT and 5-hydroxyindoleacetic acid (5HIAA) were analyzed by high-performance liquid chromatography coupled with electrochemical detection. RESULTS We found that both MPH and modafinil improved cognition in both restrained and unrestrained rats, as examined through water maze and passive avoidance tests. Furthermore, these substance were associated with increased brain DA and 5-HT levels. Notabily, we observed decrease in DOPAC and HVA levels, while 5-HIAA levels exhibited a slight increase. CONCLUSIONS The prevention of stress-induced cognitive deficits by MPH and modafinil could be elucidated through the interaction between 5HT and DA in regulating cognitive function.
Collapse
Affiliation(s)
- Nausheen Alam
- Federal Urdu University of Arts, Science
and Technology, Karachi 75300, Pakistan
| | - Kulsoom Choudhary
- Federal Urdu University of Arts, Science
and Technology, Karachi 75300, Pakistan
| |
Collapse
|
5
|
Karimi-Haghighi S, Chavoshinezhad S, Mozafari R, Noorbakhsh F, Borhani-Haghighi A, Haghparast A. Neuroinflammatory Response in Reward-Associated Psychostimulants and Opioids: A Review. Cell Mol Neurobiol 2023; 43:649-682. [PMID: 35461410 PMCID: PMC11415174 DOI: 10.1007/s10571-022-01223-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/26/2022] [Indexed: 11/03/2022]
Abstract
Substance abuse is one of the significant problems in social and public health worldwide. Vast numbers of evidence illustrate that motivational and reinforcing impacts of addictive drugs are primarily attributed to their ability to change dopamine signaling in the reward circuit. However, the roles of classic neurotransmitters, especially dopamine and neuromodulators, monoamines, and neuropeptides, in reinforcing characteristics of abused drugs have been extensively investigated. It has recently been revealed that central immune signaling includes cascades of chemokines and proinflammatory cytokines released by neurons and glia via downstream intracellular signaling pathways that play a crucial role in mediating rewarding behavioral effects of drugs. More interestingly, inflammatory responses in the central nervous system modulate the mesolimbic dopamine signaling and glutamate-dependent currents induced by addictive drugs. This review summarized researches in the alterations of inflammatory responses accompanied by rewarding and reinforcing properties of addictive drugs, including cocaine, methamphetamine, and opioids that were evaluated by conditioned place preference and self-administration procedures as highly common behavioral tests to investigate the motivational and reinforcing impacts of addictive drugs. The neuroinflammatory responses affect the rewarding properties of psychostimulants and opioids.
Collapse
Affiliation(s)
- Saeideh Karimi-Haghighi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 19615-1178, Tehran, Iran
| | - Sara Chavoshinezhad
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Roghayeh Mozafari
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 19615-1178, Tehran, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | | | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 19615-1178, Tehran, Iran.
| |
Collapse
|
6
|
Simmons SC, Grecco GG, Atwood BK, Nugent FS. Effects of prenatal opioid exposure on synaptic adaptations and behaviors across development. Neuropharmacology 2023; 222:109312. [PMID: 36334764 PMCID: PMC10314127 DOI: 10.1016/j.neuropharm.2022.109312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
In this review, we focus on prenatal opioid exposure (POE) given the significant concern for the mental health outcomes of children with parents affected by opioid use disorder (OUD) in the view of the current opioid crisis. We highlight some of the less explored interactions between developmental age and sex on synaptic plasticity and associated behavioral outcomes in preclinical POE research. We begin with an overview of the rich literature on hippocampal related behaviors and plasticity across POE exposure paradigms. We then discuss recent work on reward circuit dysregulation following POE. Additional risk factors such as early life stress (ELS) could further influence synaptic and behavioral outcomes of POE. Therefore, we include an overview on the use of preclinical ELS models where ELS exposure during key critical developmental periods confers considerable vulnerability to addiction and stress psychopathology. Here, we hope to highlight the similarity between POE and ELS on development and maintenance of opioid-induced plasticity and altered opioid-related behaviors where similar enduring plasticity in reward circuits may occur. We conclude the review with some of the limitations that should be considered in future investigations. This article is part of the Special Issue on 'Opioid-induced addiction'.
Collapse
Affiliation(s)
- Sarah C Simmons
- Department of Pharmacology and Molecular Therapeutics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Greg G Grecco
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA; Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Brady K Atwood
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Fereshteh S Nugent
- Department of Pharmacology and Molecular Therapeutics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
7
|
Duque-Quintero M, Hooijmans CR, Hurowitz A, Ahmed A, Barris B, Homberg JR, Hen R, Harris AZ, Balsam P, Atsak P. Enduring effects of early-life adversity on reward processes: A systematic review and meta-analysis of animal studies. Neurosci Biobehav Rev 2022; 142:104849. [PMID: 36116576 PMCID: PMC10729999 DOI: 10.1016/j.neubiorev.2022.104849] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 01/06/2023]
Abstract
Two-thirds of individuals experience adversity during childhood such as neglect, abuse or highly-stressful events. Early-life adversity (ELA) increases the life-long risk of developing mood and substance use disorders. Reward-related deficits has emerged as a key endophenotype of such psychiatric disorders. Animal models are invaluable for studying how ELA leads to reward deficits. However, the existing literature is heterogenous with difficult to reconcile findings. To create an overview, we conducted a systematic review containing multiple meta-analyses regarding the effects of ELA on reward processes overall and on specific aspects of reward processing in animal models. A comprehensive search identified 120 studies. Most studies omitted key details resulting in unclear risk of bias. Overall meta-analysis showed that ELA significantly reduced reward behaviors (SMD: -0.42 [-0.60; -0.24]). The magnitude of ELA effects significantly increased with longer exposure. When reward domains were analyzed separately, ELA only significantly dampened reward responsiveness (SMD: -0.525[-0.786; -0.264]) and social reward processing (SMD: -0.374 [-0.663; -0.084]), suggesting that ELA might lead to deficits in specific reward domains.
Collapse
Affiliation(s)
- Mariana Duque-Quintero
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands
| | - Carlijn R Hooijmans
- Systematic Review Centre for Laboratory animal Experimentation (SYRCLE), Department for Health Evidence, Radboud Institute for Health Sciences, Radboud university medical center, Nijmegen, The Netherlands; Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alexander Hurowitz
- Integrative Neuroscience, New York State Psychiatric Institute, New York 10032, USA
| | - Afsana Ahmed
- Integrative Neuroscience, New York State Psychiatric Institute, New York 10032, USA
| | - Ben Barris
- Integrative Neuroscience, New York State Psychiatric Institute, New York 10032, USA
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands
| | - Rene Hen
- Integrative Neuroscience, New York State Psychiatric Institute, New York 10032, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Alexander Z Harris
- Integrative Neuroscience, New York State Psychiatric Institute, New York 10032, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Peter Balsam
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Piray Atsak
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands; Integrative Neuroscience, New York State Psychiatric Institute, New York 10032, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
8
|
Levis SC, Baram TZ, Mahler SV. Neurodevelopmental origins of substance use disorders: Evidence from animal models of early-life adversity and addiction. Eur J Neurosci 2022; 55:2170-2195. [PMID: 33825217 PMCID: PMC8494863 DOI: 10.1111/ejn.15223] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/18/2021] [Accepted: 04/01/2021] [Indexed: 01/06/2023]
Abstract
Addiction is a chronic relapsing disorder with devastating personal, societal, and economic consequences. In humans, early-life adversity (ELA) such as trauma, neglect, and resource scarcity are linked with increased risk of later-life addiction, but the brain mechanisms underlying this link are still poorly understood. Here, we focus on data from rodent models of ELA and addiction, in which causal effects of ELA on later-life responses to drugs and the neurodevelopmental mechanisms by which ELA increases vulnerability to addiction can be determined. We first summarize evidence for a link between ELA and addiction in humans, then describe how ELA is commonly modeled in rodents. Since addiction is a heterogeneous disease with many individually varying behavioral aspects that may be impacted by ELA, we next discuss common rodent assays of addiction-like behaviors. We then summarize the specific addiction-relevant behavioral phenotypes caused by ELA in male and female rodents and discuss some of the underlying changes in brain reward and stress circuits that are likely responsible. By better understanding the behavioral and neural mechanisms by which ELA promotes addiction vulnerability, we hope to facilitate development of new approaches for preventing or treating addiction in those with a history of ELA.
Collapse
Affiliation(s)
- Sophia C. Levis
- Department of Anatomy & Neurobiology, University of California Irvine, Irvine, CA
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA
| | - Tallie Z. Baram
- Department of Anatomy & Neurobiology, University of California Irvine, Irvine, CA
- Department of Pediatrics, University of California Irvine, Irvine, CA
| | - Stephen V. Mahler
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA
| |
Collapse
|
9
|
Kirsch DE, Lippard ET. Early life stress and substance use disorders: The critical role of adolescent substance use. Pharmacol Biochem Behav 2022; 215:173360. [PMID: 35219756 PMCID: PMC8983562 DOI: 10.1016/j.pbb.2022.173360] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 12/06/2021] [Accepted: 02/20/2022] [Indexed: 12/12/2022]
Abstract
Early life stress (ELS) is a well-established risk factor for many psychiatric and medical disorders, including substance use disorders (SUDs). The relationship between ELS and SUDs is complex and there are likely multiple pathways from ELS to adverse substance use outcomes. The association between ELS and substance use emerges in adolescence. Adolescence is a critical period in development during which substance exposure markedly increases risk for SUDs. Therefore, this review focuses on the literature supporting the hypothesis that ELS increases risk for the development of SUDs through its influence on adolescent substance use. We discuss studies substantiating the role of ELS in adolescent substance use and explore how internalizing and externalizing psychopathology may be antecedents of substance use in adolescence. We examine clinical work suggesting ELS sculpts the Hypothalamic-Pituitary-Adrenal (HPA) Axis and developing brain-particularly subcortical brain regions that underlie stress response, mesocorticolimbic brain systems associated with reward sensitivity, and prefrontal regions that underlie executive control-in a way that increases risk for adolescent substance use and SUDs. We further explore how substance use during adolescence alters structure and function of these same systems, and how brain changes following ELS and adolescent substance use may independently, additively, or interactively contribute to risk for addiction. We conclude by discussing how the current literature can inform interventions aimed at reducing risk for SUDs in individuals with a history of ELS.
Collapse
|
10
|
Bakalar D, Sweat S, Drossel G, Jiang SZ, Samal BS, Stroth N, Xu W, Zhang L, Zhang H, Eiden LE. Relationships between constitutive and acute gene regulation, and physiological and behavioral responses, mediated by the neuropeptide PACAP. Psychoneuroendocrinology 2022; 135:105447. [PMID: 34741979 PMCID: PMC8900973 DOI: 10.1016/j.psyneuen.2021.105447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/10/2021] [Accepted: 10/08/2021] [Indexed: 01/03/2023]
Abstract
Since the advent of gene knock-out technology in 1987, insight into the role(s) of neuropeptides in centrally- and peripherally-mediated physiological regulation has been gleaned by examining altered physiological functioning in mammals, predominantly mice, after genetic editing to produce animals deficient in neuropeptides or their cognate G-protein coupled receptors (GPCRs). These results have complemented experiments involving infusion of neuropeptide agonists or antagonists systemically or into specific brain regions. Effects of gene loss are often interpreted as indicating that the peptide and its receptor(s) are required for the physiological or behavioral responses elicited in wild-type mice at the time of experimental examination. These interpretations presume that peptide/peptide receptor gene deletion affects only the expression of the peptide/receptor itself, and therefore impacts physiological events only at the time at which the experiment is conducted. A way to support 'real-time' interpretations of neuropeptide gene knock-out is to demonstrate that the wild-type transcriptome, except for the deliberately deleted gene(s), in tissues of interest, is preserved in the knock-out mouse. Here, we show that there is a cohort of genes (constitutively PACAP-Regulated Genes, or cPRGs) whose basal expression is affected by constitutive knock-out of the Adcyap1 gene in C57Bl6/N mice, and additional genes whose expression in response to physiological challenge, in adults, is altered or impaired in the absence of PACAP expression (acutely PACAP-Regulated Genes, or aPRGs). Distinguishing constitutive and acute transcriptomic effects of neuropeptide deficiency on physiological function and behavior in mice reveals alternative mechanisms of action, and changing functions of neuropeptides, throughout the lifespan.
Collapse
Affiliation(s)
- Dana Bakalar
- Section on Molecular Neuroscience, National Institute of Mental Heath - Intramural Research Program, Bethesda, MD. NIH, USA
| | - Sean Sweat
- Section on Molecular Neuroscience, National Institute of Mental Heath - Intramural Research Program, Bethesda, MD. NIH, USA
| | - Gunner Drossel
- Section on Molecular Neuroscience, National Institute of Mental Heath - Intramural Research Program, Bethesda, MD. NIH, USA
| | - Sunny Z. Jiang
- Section on Molecular Neuroscience, National Institute of Mental Heath - Intramural Research Program, Bethesda, MD. NIH, USA
| | - Babru S. Samal
- Section on Molecular Neuroscience, National Institute of Mental Heath - Intramural Research Program, Bethesda, MD. NIH, USA
| | - Nikolas Stroth
- Section on Molecular Neuroscience, National Institute of Mental Heath - Intramural Research Program, Bethesda, MD. NIH, USA
| | - Wenqin Xu
- Section on Molecular Neuroscience, National Institute of Mental Heath - Intramural Research Program, Bethesda, MD. NIH, USA
| | - Limei Zhang
- Section on Molecular Neuroscience, National Institute of Mental Heath - Intramural Research Program, Bethesda, MD. NIH, USA,Department of Physiology, Autonomous National University of Mexico (UNAM) Medical School, Mexico City, Mexico
| | - Haiying Zhang
- Section on Molecular Neuroscience, National Institute of Mental Heath - Intramural Research Program, Bethesda, MD. NIH, USA
| | - Lee E. Eiden
- Section on Molecular Neuroscience, National Institute of Mental Heath - Intramural Research Program, Bethesda, MD. NIH, USA,Correspondence Lee E. Eiden, Ph.D., Section on Molecular Neuroscience, National Institute of Mental Heath – Intramural Research Program, Bethesda, MD. NIH, USA, Phone: +13014964110,
| |
Collapse
|
11
|
Nieto SJ, Haile CN, Quave CB, Harding MJ, Nielsen DA, Meisch RA, Kosten TA. Paternal alcohol exposure reduces acquisition of operant alcohol self-administration and affects Bdnf DNA methylation in male and female offspring. Addict Biol 2022; 27:e13078. [PMID: 34363290 PMCID: PMC8720057 DOI: 10.1111/adb.13078] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/25/2021] [Accepted: 07/12/2021] [Indexed: 01/03/2023]
Abstract
Familial transmission of alcohol use disorder reflects genetic and environmental factors. Paternal alcohol exposure may affect rodent offspring via epigenetic modifications transmitted through the male germ line. While such exposure alters alcohol sensitivity in mouse offspring, no studies examined if it impacts the development of operant alcohol self-administration in rats. We exposed male (sires) Wistar rats to chronic intermittent ethanol in vapour chambers (16 h/day; 5 days/week) or to air for 6 weeks. Eight weeks later, rats were mated with alcohol-naive females. Adult alcohol- and control-sired F1 offspring were assessed in acquisition of alcohol self-administration in which increasing alcohol concentrations (2.5%, 5% and 10%, v/v) were delivered after one lever press (fixed ratio 1 or FR1). Prior to alcohol sessions, rats were trained to lever press for food delivery under an FR1 schedule of reinforcement. DNA methylation levels of the brain derived neurotrophic factor (Bdnf) gene were measured in sperm, nucleus accumbens (NAc) and medial prefrontal cortex (mPFC) in sires and in offspring. Alcohol-exposed sires had lower Bdnf DNA methylation levels in NAc and greater methylation levels in mPFC. Although this pattern was not recapitulated in offspring, alcohol-sired offspring of both sexes did show aberrant Bdnf DNA methylation patterns compared to control-sired offspring. Alcohol-sired offspring self-administered less alcohol (5% and 10%) with no group differences in food responding. Results indicate that paternal alcohol exposure prior to conception protects against alcohol's initial reinforcing effects but the pattern of dysregulated Bdnf methylation in reward-related circuitry did not mimic changes seen in sires.
Collapse
Affiliation(s)
- Steven J Nieto
- Department of Psychology and Texas Institute for Measurement, Evaluation and Statistics (TIMES), University of Houston, Houston, Texas, USA
| | - Colin N Haile
- Department of Psychology and Texas Institute for Measurement, Evaluation and Statistics (TIMES), University of Houston, Houston, Texas, USA
| | - Cana B Quave
- Department of Psychology and Texas Institute for Measurement, Evaluation and Statistics (TIMES), University of Houston, Houston, Texas, USA
| | - Mark J Harding
- The Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - David A Nielsen
- The Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Richard A Meisch
- Department of Psychology and Texas Institute for Measurement, Evaluation and Statistics (TIMES), University of Houston, Houston, Texas, USA
| | - Therese A Kosten
- Department of Psychology and Texas Institute for Measurement, Evaluation and Statistics (TIMES), University of Houston, Houston, Texas, USA
| |
Collapse
|
12
|
Čater M, Majdič G. How early maternal deprivation changes the brain and behavior? Eur J Neurosci 2021; 55:2058-2075. [PMID: 33870558 DOI: 10.1111/ejn.15238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 01/30/2023]
Abstract
Early life stress can adversely influence brain development and reprogram brain function and consequently behavior in adult life. Adequate maternal care in early childhood is therefore particularly important for the normal brain development, and adverse early life experiences can lead to altered emotional, behavioral, and neuroendocrine stress responses in the adulthood. As a form of neonatal stress, maternal deprivation/separation is often used in behavioral studies to examine the effects of early life stress and for modeling the development of certain psychiatric disorders and brain pathologies in animal models. The temporary loss of maternal care during the critical postpartum periods remodels the offspring's brain and provokes long-term effects on learning and cognition, the development of mental disorders, aggression, and an increased tendency for the drug abuse. Early life stress through maternal deprivation affects neuroendocrine responses to stress in adolescence and adulthood by dysregulating the hypothalamic-pituitary-adrenal axis and permanently disrupts stress resilience. In this review, we focused on how improper maternal care during early postnatal life affects brain development resulting in modified behavior later in life.
Collapse
Affiliation(s)
- Maša Čater
- Veterinary Faculty, Laboratory for Animal Genomics, Institute for Preclinical Studies, University of Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
| | - Gregor Majdič
- Veterinary Faculty, Laboratory for Animal Genomics, Institute for Preclinical Studies, University of Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
| |
Collapse
|
13
|
Masrouri H, Azadi M, Semnanian S, Azizi H. Early life maternal deprivation attenuates morphine induced inhibition in lateral paragigantocellularis neurons in adult rats. Brain Res Bull 2021; 169:128-135. [PMID: 33482287 DOI: 10.1016/j.brainresbull.2021.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/29/2020] [Accepted: 01/15/2021] [Indexed: 02/04/2023]
Abstract
Early life stress can serve as one of the principle sources leading to individual differences in confronting challenges throughout the lifetime. Maternal deprivation (MD), a model of early life stress, can cause persistent alterations in brain function, and it may constitute a risk factor for later incidence of drug addiction. It is becoming more apparent that early life MD predisposes opiate abuse in adulthood. Although several behavioral and molecular studies have addressed this issue, changes in electrophysiological features of the neurons are yet to be understood. The lateral paragigantocellularis (LPGi) nucleus, which participates in the mediation of opiate dependence and withdrawal, may be susceptible to modifications following MD. This study sought to find whether early life MD can alter the discharge activity of LPGi neurons and their response to acute morphine administration in adult rats. Male Wistar rats experienced MD on postnatal days (PNDs) 1-14 for three h per day. Afterward, they were left undisturbed until PND 70, during which the extracellular activities of LPGi neurons were recorded in anesthetized animals at baseline and in response to acute morphine. In both MD and control groups, acute morphine administration induced heterogeneous (excitatory, inhibitory, and no effect) responses in LPGi neurons. At baseline recording, the interspike interval variability of the LPGi neurons was attenuated in both inhibitory and excitatory responses in animals with the history of MD. The extent of morphine-induced discharge inhibition was also lower in deprived animals compared to the control group. These findings suggest that early life MD induces long-term alterations in LPGi neuronal activity in response to acute administration of morphine. Therefore, the MD may alter the vulnerability to develop opiate abuse in adulthood.
Collapse
Affiliation(s)
- Hossein Masrouri
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Azadi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeed Semnanian
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Azizi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
14
|
Masrouri H, Azadi M, Semnanian S, Azizi H. Maternal deprivation induces persistent adaptations in putative dopamine neurons in rat ventral tegmental area: in vivo electrophysiological study. Exp Brain Res 2020; 238:2221-2228. [PMID: 32705295 DOI: 10.1007/s00221-020-05884-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/13/2020] [Indexed: 12/23/2022]
Abstract
Early life aversive experiences can trigger persistent deficits in neuronal signaling within the mesolimbic pathway, most notably in the dopamine (DA) neurons of the ventral tegmental area (VTA). The identity of such cellular mechanisms currently appears as an important issue. To address this concern, we investigated whether early life maternal deprivation (MD) would affect the electrical activity of VTA DA neurons, via in vivo extracellular single-unit recording. Male Wistar rats were deprived of their dams for 3 h per day from postnatal days (PND) 1-14. Thereafter, the adult animals (PND 70-80) were tested for the discharge activity of putative VTA DA neurons. The VTA DA neurons displayed a decrease in firing rate and an increase in the variability of baseline discharge activity in deprived animals. MD also caused a decrease in burst firing of VTA DA neurons compared to control subjects. In summary, early life MD induces a hypoactive VTA DA system, which may contribute to lifespan psychopathologies.
Collapse
Affiliation(s)
- Hossein Masrouri
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Azadi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeed Semnanian
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Azizi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
15
|
María-Ríos CE, Morrow JD. Mechanisms of Shared Vulnerability to Post-traumatic Stress Disorder and Substance Use Disorders. Front Behav Neurosci 2020; 14:6. [PMID: 32082127 PMCID: PMC7006033 DOI: 10.3389/fnbeh.2020.00006] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022] Open
Abstract
Psychoactive substance use is a nearly universal human behavior, but a significant minority of people who use addictive substances will go on to develop an addictive disorder. Similarly, though ~90% of people experience traumatic events in their lifetime, only ~10% ever develop post-traumatic stress disorder (PTSD). Substance use disorders (SUD) and PTSD are highly comorbid, occurring in the same individual far more often than would be predicted by chance given the respective prevalence of each disorder. Some possible reasons that have been proposed for the relationship between PTSD and SUD are self-medication of anxiety with drugs or alcohol, increased exposure to traumatic events due to activities involved in acquiring illegal substances, or addictive substances altering the brain's stress response systems to make users more vulnerable to PTSD. Yet another possibility is that some people have an intrinsic vulnerability that predisposes them to both PTSD and SUD. In this review, we integrate clinical and animal data to explore these possible etiological links between SUD and PTSD, with an emphasis on interactions between dopaminergic, adrenocorticotropic, GABAergic, and glutamatergic neurobehavioral mechanisms that underlie different emotional learning styles.
Collapse
Affiliation(s)
| | - Jonathan D. Morrow
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
16
|
al'Absi M. The influence of stress and early life adversity on addiction: Psychobiological mechanisms of risk and resilience. STRESS AND BRAIN HEALTH: IN CLINICAL CONDITIONS 2020; 152:71-100. [DOI: 10.1016/bs.irn.2020.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Early life stress and the propensity to develop addictive behaviors. Int J Dev Neurosci 2019; 78:156-169. [PMID: 31255718 DOI: 10.1016/j.ijdevneu.2019.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 06/03/2019] [Accepted: 06/13/2019] [Indexed: 12/14/2022] Open
Abstract
There is a vast literature on effects of early life manipulations in rodents much of which is aimed at investigating the long-term consequences related to emotion and cognition in adulthood. Less is known about how these manipulations affect responses reflective of alcohol (AUD) and substance (SUD) use disorders. The purpose of this paper is to review the literature of studies that employed early life manipulations and assessed behavioral responses to psychoactive substances, specifically alcohol, opiates, and stimulants, in rodents. While the findings with alcohol are more limited and mixed, studies with opiates and stimulants show strong support for the ability of these manipulations to enhance behavioral responsivity to these substances in line with epidemiological data. Some outcomes show sex differences. The mechanisms that influence these enduring changes may reflect epigenetic alterations. Several studies support a role for altered DNA methylation (and other epigenetic mechanisms) as biological responses to early environmental insults. The chemical changes induced by DNA methylation affect transcriptional activity of DNA and thus can have a long-term impact on the individual's phenotype. Such effects are particularly robust when they occur during sensitive periods of brain development (e.g., first postnatal weeks in rodents). We review this emerging literature as it relates to the known neurobiology of AUDs and SUDs and suggest new avenues of research. Such findings will have implications for the treatment and prevention of AUDs and SUDs and could provide insight into factors that support resiliency.
Collapse
|
18
|
Ganguly P, Honeycutt JA, Rowe JR, Demaestri C, Brenhouse HC. Effects of early life stress on cocaine conditioning and AMPA receptor composition are sex-specific and driven by TNF. Brain Behav Immun 2019; 78:41-51. [PMID: 30654007 PMCID: PMC6488364 DOI: 10.1016/j.bbi.2019.01.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/18/2018] [Accepted: 01/11/2019] [Indexed: 12/20/2022] Open
Abstract
Exposure to early life adversity can predispose adolescents to the formation of substance abuse disorders. In rodents, early stressors such as repeated maternal separation (MS) impact AMPAR activity in the prefrontal cortex (PFC) and nucleus accumbens (NAc), regions involved in drug-cue association after cocaine-induced conditioned place preference (CPP). Notably, previous reports suggest that the pro-inflammatory cytokine tumor necrosis factor (TNF) regulates AMPAR subunit composition; increased TNF levels are reported to reduce GluA2-positive AMPARs. Since MS can elevate adolescent TNF levels, the stressor may therefore alter AMPAR subunit composition via neuroimmune signaling, thereby affecting cocaine-induced CPP. We tested the specific role of soluble TNF in MS-induced GluA2 loss and cocaine-induced CPP with biologic disruption of TNF signaling. TNF gene and protein expression were elevated in both PFC and NAc of MS males, but not females. GluA2 expression was reduced in both regions in only male MS rats, and systemic treatment with either ibudilast - a phosphodiesterase inhibitor, or XPro1595 - a blood-brain barrier-permeable blocker of soluble TNF - reversed such loss. MS males also formed greater preference for a cocaine-paired environment, the expression of which returned to control levels after XPro1595 administration. These data suggest a sex-specific mechanistic link between TNF signaling and changes in GluA2 expression and drug-cue conditioning, thereby providing further evidence for a role of MS and neuro-immune activity in cortical and striatal AMPAR changes. Moreover, manipulation of the TNF signaling pathway represents a novel approach for influencing response to reinforcing effects of drug use.
Collapse
Affiliation(s)
- Prabarna Ganguly
- Department of Psychology, Developmental Neuropsychobiology Laboratory, Northeastern University, Boston, MA 02115, USA
| | - Jennifer A Honeycutt
- Department of Psychology, Developmental Neuropsychobiology Laboratory, Northeastern University, Boston, MA 02115, USA
| | - June R Rowe
- Department of Psychology, Developmental Neuropsychobiology Laboratory, Northeastern University, Boston, MA 02115, USA
| | - Camila Demaestri
- Department of Psychology, Developmental Neuropsychobiology Laboratory, Northeastern University, Boston, MA 02115, USA
| | - Heather C Brenhouse
- Department of Psychology, Developmental Neuropsychobiology Laboratory, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
19
|
Andersen SL. Stress, sensitive periods, and substance abuse. Neurobiol Stress 2019; 10:100140. [PMID: 30569003 PMCID: PMC6288983 DOI: 10.1016/j.ynstr.2018.100140] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/18/2018] [Accepted: 11/26/2018] [Indexed: 12/14/2022] Open
Abstract
Research on the inter-relationship between drug abuse and social stress has primarily focused on the role of stress exposure during adulthood and more recently, adolescence. Adolescence is a time of heightened reward sensitivity, but it is also a time when earlier life experiences are expressed. Exposure to stress early in postnatal life is associated with an accelerated age of onset for drug use. Lifelong addiction is significantly greater if drug use is initiated during early adolescence. Understanding how developmental changes following stress exposure interact with sensitive periods to unfold over the course of maturation is integral to reducing their later impact on substance use. Arousal levels, gender/sex, inflammation, and the timing of stress exposure play a role in the vulnerability of these circuits. The current review focuses on how early postnatal stress impacts brain development during a sensitive period to increase externalizing and internalizing behaviors in adolescence that include social interactions (aggression; sexual activity), working memory impairment, and depression. How stress effects the developmental trajectories of brain circuits that are associated with addiction are discussed for both clinical and preclinical studies.
Collapse
|
20
|
Mukhara D, Banks ML, Neigh GN. Stress as a Risk Factor for Substance Use Disorders: A Mini-Review of Molecular Mediators. Front Behav Neurosci 2018; 12:309. [PMID: 30622460 PMCID: PMC6308626 DOI: 10.3389/fnbeh.2018.00309] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/28/2018] [Indexed: 12/15/2022] Open
Abstract
The extant literature supports the role of stress in enhancing the susceptibility of drug abuse progressing to a substance use disorder diagnosis. However, the molecular mediators by which stress enhances the progression from cocaine abuse to cocaine use disorder via the mesolimbic pathway remain elusive. In this mini-review article, we highlight three mechanisms by which glucocorticoids (GCs) and the dopaminergic system interact. First, GCs upregulate tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine (DA) synthesis. Second, GCs downregulate monoamine-oxidase (MAO), an enzyme responsible for DA removal. Lastly, GCs are hypothesized to decrease DA reuptake, subsequently increasing synaptic DA. Based on these interactions, we review preclinical literature highlighting how stress modulates the mesolimbic pathway, including the ventral tegmental area (VTA) and nucleus accumbens (NAcs), to alter cocaine abuse-related effects. Taken together, stress enhances cocaine's abuse-related effects at multiple points along the VTA mesolimbic projection, and uniquely in the NAcs through a positive feedback type mechanism. Furthermore, we highlight future directions to elucidate the interaction between the prefrontal cortex (PFC) and key intermediaries including ΔFosB, cAMP response element binding protein (CREB) and cyclin-dependent kinase 5 (CDK5) to highlight possible mechanisms that underlie stress-induced acceleration of the progression to a cocaine use disorder diagnosis.
Collapse
Affiliation(s)
- Deepika Mukhara
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Matthew L. Banks
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Gretchen N. Neigh
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
21
|
Lazzaretti C, Kincheski GC, Pandolfo P, Krolow R, Toniazzo AP, Arcego DM, de Sá Couto-Pereira N, Zeidán-Chuliá F, de Oliveira BHN, Bertolini D, Breunig RL, Ferreira AK, Kolling J, Siebert C, Wyse AT, Souza TME, Dalmaz C. Neonatal handling impairs intradimensional shift and alters plasticity markers in the medial prefrontal cortex of adult rats. Physiol Behav 2018; 197:29-36. [PMID: 30266584 DOI: 10.1016/j.physbeh.2018.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 09/24/2018] [Accepted: 09/24/2018] [Indexed: 12/17/2022]
Abstract
Stress response can be modulated by neonatal/childhood events. Neonatal handling (NH) is an animal model in which the animals are subjected to brief separations from the dam during the first days of life, and it leads to lower emotionality and behavioral changes in adulthood. The aim of this study was to observe if early events, such as (NH), may program associative learning and behavioral flexibility in adult male rats and if these changes could be related to altered neurochemistry in the medial prefrontal cortex (mPFC). We evaluated proteins related to synaptic plasticity (brain-derived neurotrophic factor [BDNF] and synaptophysin [SYP]) as well as Na+/K+-ATPase activity. Additionally, we evaluated proteins related to the dopaminergic system (tyrosine hydroxylase [TH] and phosphorylated TH [pTH]), since this system appears to be affected in some neonatal interventions. Neonatally handled animals exhibited impairment in simple discrimination and intradimensional shift but not in reversal or compound discrimination; in addition, no alteration in switching from an egocentric spatial to a cued strategy was observed. These effects were accompanied by a decrease in SYP levels and Na+/K+-ATPase activity, suggesting reduced synaptic function. These results indicate that NH increases attention to irrelevant stimuli and/or impairs associative learning, and this is accompanied by neurochemical alterations in the (mPFC).
Collapse
Affiliation(s)
- Camilla Lazzaretti
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Centro Universitário Cenecista de Osório (UNICNEC), Osório, RS, Brazil.
| | | | - Pablo Pandolfo
- Universidade Federal Fluminense (UFF), Rio de Janeiro, RJ, Brazil
| | - Rachel Krolow
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Ana Paula Toniazzo
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | | | - Natividade de Sá Couto-Pereira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Fares Zeidán-Chuliá
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Ben-Hur Neves de Oliveira
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Diego Bertolini
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Raquel Luísa Breunig
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Andréa Kurek Ferreira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Janaína Kolling
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Cassiana Siebert
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Angela Teresinha Wyse
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Tadeu Mello E Souza
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Carla Dalmaz
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
22
|
Wakeford AG, Morin EL, Bramlett SN, Howell LL, Sanchez MM. A review of nonhuman primate models of early life stress and adolescent drug abuse. Neurobiol Stress 2018; 9:188-198. [PMID: 30450384 PMCID: PMC6236515 DOI: 10.1016/j.ynstr.2018.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/30/2018] [Accepted: 09/12/2018] [Indexed: 01/03/2023] Open
Abstract
Adolescence represents a developmental stage in which initiation of drug use typically occurs and is marked by dynamic neurobiological changes. These changes present a sensitive window during which perturbations to normative development lead to alterations in brain circuits critical for stress and emotional regulation as well as reward processing, potentially resulting in an increased susceptibility to psychopathologies. The occurrence of early life stress (ELS) is related to a greater risk for the development of substance use disorders (SUD) during adolescence. Studies using nonhuman primates (NHP) are ideally suited to examine how ELS may alter the development of neurobiological systems modulating the reinforcing effects of drugs, given their remarkable neurobiological, behavioral, and developmental homologies to humans. This review examines NHP models of ELS that have been used to characterize its effects on sensitivity to drug reinforcement, and proposes future directions using NHP models of ELS and drug abuse in an effort to develop more targeted intervention and prevention strategies for at risk clinical populations. ELS has long-lasting neurobiological and behavioral consequences. ELS is a major risk factor for the initiation of adolescent drug use. Sex differences are apparent in the consequences of ELS, including drug use. Nonhuman primate models of ELS are critical for understanding ELS effects on neurobiology and risk for adolescent drug use.
Collapse
Affiliation(s)
- Alison G.P. Wakeford
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd NE, Atlanta, GA, 30329, United States
- Department of Psychiatry & Behavioral Sciences, Emory University, 12 Executive Park Dr NE #200, Atlanta, GA, 30329, United States
- Corresponding author. Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd NE, Atlanta, GA, 30329, United States.
| | - Elyse L. Morin
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd NE, Atlanta, GA, 30329, United States
- Department of Psychiatry & Behavioral Sciences, Emory University, 12 Executive Park Dr NE #200, Atlanta, GA, 30329, United States
| | - Sara N. Bramlett
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd NE, Atlanta, GA, 30329, United States
- Department of Psychiatry & Behavioral Sciences, Emory University, 12 Executive Park Dr NE #200, Atlanta, GA, 30329, United States
| | - Leonard L. Howell
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd NE, Atlanta, GA, 30329, United States
- Department of Psychiatry & Behavioral Sciences, Emory University, 12 Executive Park Dr NE #200, Atlanta, GA, 30329, United States
| | - Mar M. Sanchez
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd NE, Atlanta, GA, 30329, United States
- Department of Psychiatry & Behavioral Sciences, Emory University, 12 Executive Park Dr NE #200, Atlanta, GA, 30329, United States
| |
Collapse
|
23
|
Montagud-Romero S, Blanco-Gandía MC, Reguilón MD, Ferrer-Pérez C, Ballestín R, Miñarro J, Rodríguez-Arias M. Social defeat stress: Mechanisms underlying the increase in rewarding effects of drugs of abuse. Eur J Neurosci 2018; 48:2948-2970. [PMID: 30144331 DOI: 10.1111/ejn.14127] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/11/2018] [Accepted: 08/14/2018] [Indexed: 12/27/2022]
Abstract
Social interaction is known to be the main source of stress in human beings, which explains the translational importance of this research in animals. Evidence reported over the last decade has revealed that, when exposed to social defeat experiences (brief episodes of social confrontations during adolescence and adulthood), the rodent brain undergoes remodeling and functional modifications, which in turn lead to an increase in the rewarding and reinstating effects of different drugs of abuse. The mechanisms by which social stress cause changes in the brain and behavior are unknown, and so the objective of this review is to contemplate how social defeat stress induces long-lasting consequences that modify the reward system. First of all, we will describe the most characteristic results of the short- and long-term consequences of social defeat stress on the rewarding effects of drugs of abuse such as psychostimulants and alcohol. Secondly, and throughout the review, we will carefully assess the neurobiological mechanisms underlying these effects, including changes in the dopaminergic system, corticotrophin releasing factor signaling, epigenetic modifications and the neuroinflammatory response. To conclude, we will consider the advantages and disadvantages and the translational value of the social defeat stress model, and will discuss challenges and future directions.
Collapse
Affiliation(s)
- Sandra Montagud-Romero
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| | | | - Marina D Reguilón
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| | - Carmen Ferrer-Pérez
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| | - Raul Ballestín
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| | - Jose Miñarro
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| | - Marta Rodríguez-Arias
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| |
Collapse
|
24
|
Baracz SJ, Everett NA, Cornish JL. The impact of early life stress on the central oxytocin system and susceptibility for drug addiction: Applicability of oxytocin as a pharmacotherapy. Neurosci Biobehav Rev 2018; 110:114-132. [PMID: 30172802 DOI: 10.1016/j.neubiorev.2018.08.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 08/23/2018] [Accepted: 08/27/2018] [Indexed: 12/14/2022]
Abstract
Early life trauma is strongly associated with an increased vulnerability to abuse illicit drugs and the impairment of neural development. This includes alterations to the development of the oxytocin system, which plays a pivotal role in the regulation of social behaviours and emotion. Dysregulation of this important system also contributes to increased susceptibility to develop drug addiction. In this review, we provide an overview of the animal models of early life stress that are widely used, and discuss the impact that early life stress has on drug-taking behaviour in adolescence and adulthood in both sexes. We link this to the changes that early life stress has on the endogenous oxytocin system, and how exogenously administered oxytocin may help to re-establish functioning of the system, and in turn, reduce drug-taking behaviour.
Collapse
Affiliation(s)
- Sarah J Baracz
- Department of Psychology, Macquarie University, North Ryde, NSW, 2109, Australia.
| | - Nicholas A Everett
- Department of Psychology, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Jennifer L Cornish
- Department of Psychology, Macquarie University, North Ryde, NSW, 2109, Australia
| |
Collapse
|
25
|
Vannan A, Powell GL, Scott SN, Pagni BA, Neisewander JL. Animal Models of the Impact of Social Stress on Cocaine Use Disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 140:131-169. [PMID: 30193703 DOI: 10.1016/bs.irn.2018.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cocaine use disorders are strongly influenced by the social conditions prior, during, and after exposure to cocaine. In this chapter, we discuss how social factors such as early life stress, social rank stress, and environmental stress impact vulnerability and resilience to cocaine. The discussion of each animal model begins with a brief review of examples from the human literature, which provide the psychosocial background these models attempt to capture. We then discuss preclinical findings from use of each model, with emphasis on how social factors influence cocaine-related behaviors and how sex and age influence the behaviors and neurobiology. Models discussed include (1) early life social stress, such as maternal separation and neonatal isolation, (2) social defeat stress, (3) social hierarchies, and (4) social isolation and environmental enrichment. The cocaine-related behaviors reviewed for each of these animal models include cocaine-induced conditioned place preference, behavioral sensitization, and self-administration. Together, our review suggests that the degree of psychosocial stress experienced yields robust effects on cocaine-related behaviors and neurobiology, and these preclinical findings have translational impact for the future of cocaine use disorder treatment.
Collapse
Affiliation(s)
- Annika Vannan
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Gregory L Powell
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Samantha N Scott
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Broc A Pagni
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Janet L Neisewander
- School of Life Sciences, Arizona State University, Tempe, AZ, United States.
| |
Collapse
|
26
|
Negative consequences of early-life adversity on substance use as mediated by corticotropin-releasing factor modulation of serotonin activity. Neurobiol Stress 2018; 9:29-39. [PMID: 30151419 PMCID: PMC6108067 DOI: 10.1016/j.ynstr.2018.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 07/11/2018] [Accepted: 08/05/2018] [Indexed: 01/01/2023] Open
Abstract
Early-life adversity is associated with increased risk for substance abuse in later life, with women more likely to report past and current stress as a mediating factor in their substance use and relapse as compared to men. Preclinical models of neonatal and peri-adolescent (early through late adolescence) stress all support a direct relationship between experiences of early-life adversity and adult substance-related behaviors, and provide valuable information regarding the underlying neurobiology. This review will provide an overview of these animal models and how these paradigms alter drug and alcohol consumption and/or seeking in male and female adults. An introduction to the corticotropin-releasing factor (CRF) and serotonin systems, their development and their interactions at the level of the dorsal raphe will be provided, illustrating how this particular stress system is sexually dimorphic, and is well positioned to be affected by stressors early in development and throughout maturation. A model for CRF-serotonin interactions in the dorsal raphe and how these influence dopaminergic activity within the nucleus accumbens and subsequent reward-associated behaviors will be provided, and alterations to the activity of this system following early-life adversity will be identified. Overall, converging findings suggest that early-life adversity has long-term effects on the functioning of the CRF-serotonin system, highlighting a potentially important and targetable mediator linking stress to addiction. Future work should focus on identifying the exact mechanisms that promote long-term changes to the expression and activity of CRF receptors in the dorsal raphe. Moreover, it is important to clarify whether similar neurobiological mechanisms exist for males and females, given the sexual dimorphism both in CRF receptors and serotonin indices in the dorsal raphe and in the behavioral outcomes of early-life adversity. Early life stress increases risk for substance abuse in adulthood. Stress and drugs increase CRF which alters serotonin release in the brain. CRF2 receptor expression in the dorsal raphe is altered by early life stress. Resultant changes to serotonin output facilitates dopamine in the accumbens. CRF2-sertotonin-dopamine interactions may link early life stress with substance abuse.
Collapse
Key Words
- 5-HIAA, 5–Hydroxyindoleacetic Acid
- BNST, Bed Nucleus of the Stria Terminalis
- CRF, Corticotropin-Releasing Factor
- CRF-BP, Corticotropin-Releasing Factor Binding Protein
- CeA, Central Nucleus of the Amygdala
- Corticotropin-releasing factor
- Dorsal raphe nucleus
- Drug reward
- Early-life stress
- LC, Locus Coeruleus
- MDMA, 3,4-Methylenedioxymethamphetamine
- NAc, Nucleus Accumbens
- NMDA, N-methyl-d-aspartate
- PND, Postnatal Day
- Serotonin
- Sex differences
- TPH2, Tryptophan Hydroxylase 2
- VTA, Ventral Tegmental Area
- dRN, Dorsal Raphe Nucleus
Collapse
|
27
|
Seo JY, Ko YH, Ma SX, Lee BR, Lee SY, Jang CG. Repeated restraint stress reduces the acquisition and relapse of methamphetamine-conditioned place preference but not behavioral sensitization. Brain Res Bull 2018; 139:99-104. [DOI: 10.1016/j.brainresbull.2018.01.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/26/2018] [Accepted: 01/31/2018] [Indexed: 01/01/2023]
|
28
|
Hankosky ER, Westbrook SR, Haake RM, Marinelli M, Gulley JM. Reduced sensitivity to reinforcement in adolescent compared to adult Sprague-Dawley rats of both sexes. Psychopharmacology (Berl) 2018; 235:861-871. [PMID: 29197983 PMCID: PMC5963930 DOI: 10.1007/s00213-017-4804-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/27/2017] [Indexed: 10/18/2022]
Abstract
RATIONALE Adolescence is a period of considerable development of brain and behavior and is the time during which most drug use is initiated. OBJECTIVE Age-dependent differences in motivated behaviors may be one of the factors that contribute to heightened vulnerability to developing substance use disorders, so we sought to compare age differences in methamphetamine (METH) and saccharin seeking. METHODS Beginning during adolescence or adulthood, male and female Sprague-Dawley rats were trained to self-administer 0.1% saccharin (via liquid dipper cup) or intravenous METH at one of three doses (0.02, 0.05, 0.08 mg/kg/inf) under increasing fixed ratio schedules of reinforcement. Subsequently, responding for METH (0.02, 0.05, 0.08, or 0.1 mg/kg/inf) under progressive ratio response requirements was assessed in rats that acquired METH self-administration at the highest dose (0.08 mg/kg/inf). RESULTS We found that adult-onset rats acquired METH self-administration more readily and exhibited higher motivation compared to adolescent-onset rats, although there were no differences in METH intake during acquisition. Adult rats also acquired saccharin self-administration more readily, but in contrast to METH, there were age and sex differences in saccharin intake driven by high levels of responding in adult females. CONCLUSIONS These findings challenge the prevailing notion that adolescents are hypersensitive to reward and instead raise questions about the potential role of methodological factors on which rodent studies often differ.
Collapse
Affiliation(s)
- Emily R. Hankosky
- Department of Psychology, University of Illinois, Urbana-Champaign, 603 E. Daniel St., Champaign, IL, 61820, USA
| | - Sara R. Westbrook
- Department of Psychology, University of Illinois, Urbana-Champaign, 603 E. Daniel St., Champaign, IL, 61820, USA
| | - Rachel M. Haake
- Department of Psychology, University of Illinois, Urbana-Champaign, 603 E. Daniel St., Champaign, IL, 61820, USA
| | - Michela Marinelli
- College of Pharmacy, University of Texas at Austin, 107 W. Dean Keeton Street Stop C0800, Austin, TX, 78712
| | - Joshua M. Gulley
- Department of Psychology, University of Illinois, Urbana-Champaign, 603 E. Daniel St., Champaign, IL, 61820, USA,Neuroscience Program, University of Illinois, Urbana-Champaign, 505 S. Goodwin Avenue, Urbana, IL, 61801, USA
| |
Collapse
|
29
|
Battaglia M, Khan WU. Reappraising Preclinical Models of Separation Anxiety Disorder, Panic Disorder, and CO 2 Sensitivity: Implications for Methodology and Translation into New Treatments. Curr Top Behav Neurosci 2018; 40:195-217. [PMID: 29696603 DOI: 10.1007/7854_2018_42] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Separation anxiety applies to multiple forms of distress responses seen in mammals during postnatal development, including separation from a caregiver. Childhood separation anxiety disorder is an important risk factor for developing panic disorder in early adulthood, and both conditions display an increased sensitivity to elevated CO2 concentrations inhaled from the air. By interfacing epidemiological, genetic, and physiological knowledge with preclinical animal research models, it is possible to decipher the mechanisms that are central to separation anxiety and panic disorders while also suggesting possible therapies. Preclinical research models allow for environmentally controlled studies of early interferences with parental care. These models have shown that different forms of early maternal separation in mice and rats induce elevated CO2 respiratory sensitivity, an important biomarker of separation anxiety and panic disorders. In mice, this is likely due to gene-environment interactions that affect multiple behavioural and physical phenotypes after exposure to this early adversity. Although several questions regarding the causal mechanism of separation anxiety and panic disorder remain unanswered, the identification and improved understanding of biomarkers that link these mental health conditions under the guise of preclinical research models in conjunction with human longitudinal cohort studies can help resolve these issues.
Collapse
Affiliation(s)
- Marco Battaglia
- Division of Child, Youth and Emerging Adulthood Psychiatry, Centre for Addiction & Mental Health, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| | - Waqas Ullah Khan
- Division of Child, Youth and Emerging Adulthood Psychiatry, Centre for Addiction & Mental Health, Toronto, ON, Canada
- School of Medicine, Faculty of Health Sciences, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
30
|
Early life adversity influences stress response association with smoking relapse. Psychopharmacology (Berl) 2017; 234:3375-3384. [PMID: 28875309 PMCID: PMC5660945 DOI: 10.1007/s00213-017-4724-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 08/14/2017] [Indexed: 01/30/2023]
Abstract
RATIONALE We examined the hypothesis that stress-related blunting of cortisol in smokers is particularly pronounced in those with a history of severe life adversity. OBJECTIVES The two aims of this study were first to examine hormonal, craving, and withdrawal symptoms during ad libitum smoking and after the first 24 h of abstinence in smokers who experienced high or low levels of adversity. Second, we sought to examine the relationship between adversity and hypothalamic-pituitary-adrenal (HPA) hormones to predict relapse during the first month of a smoking cessation attempt. METHODS Hormonal and self-report measures were collected from 103 smokers (49 women) during ad libitum smoking and after the first 24 h of abstinence. HPA hormones were measured during baseline rest and in response to acute stress in both conditions. All smokers were interested in smoking cessation, and we prospectively used stress response measures to predict relapse during the first 4 weeks of the smoking cessation attempt. RESULTS The results showed that high adversity was associated with higher distress and smoking withdrawal symptoms. High level of early life adversity was associated with elevated HPA activity, which was found in both salivary and plasma cortisol. Enhanced adrenocorticotropic hormone (ACTH) stress response was evident in high-adversity but not in low-adversity relapsers. CONCLUSIONS This study demonstrated that early life adversity is associated with stress-related HPA responses. The study also demonstrated that, among smokers who experienced a high level of life adversity, heightened ACTH and cortisol responses were linked with increased risk for smoking relapse.
Collapse
|
31
|
Wang J, Fang Q, Yang C. Effects of paternal deprivation on cocaine-induced behavioral response and hypothalamic oxytocin immunoreactivity and serum oxytocin level in female mandarin voles. Behav Brain Res 2017; 334:135-141. [PMID: 28756211 DOI: 10.1016/j.bbr.2017.07.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 10/19/2022]
Abstract
Early paternal behavior plays a critical role in behavioral development in monogamous species. The vast majority of laboratory studies investigating the influence of parental behavior on cocaine vulnerability focus on the effects of early maternal separation. However, comparable studies on whether early paternal deprivation influences cocaine-induced behavioral response are substantially lacking. Mandarin vole (Microtus mandarinus) is a monogamous rodent with high levels of paternal care. After mandarin vole pups were subjected to early paternal deprivation, acute cocaine- induced locomotion, anxiety- like behavior and social behavior were examined in 45day old female pups, while hypothalamic oxytocin immunoreactivity and serum oxytocin level were also assessed. We found that cocaine increased locomotion and decreased social investigation, contact behavior and serum oxytocin level regardless of paternal care. Cocaine increased anxiety levels and decreased oxytocin immunoreactive neurons of the paraventricular nuclei and supraoptic nuclei in the bi-parental care group, whilst there were no specific effects in the paternal deprivation group. These results indicate that paternal deprivation results in different behavioral response to acute cocaine exposure in adolescents, which may be in part associated with the alterations in oxytocin immunoreactivity and peripheral OT level.
Collapse
Affiliation(s)
- Jianli Wang
- College of Biological Sciences and Engineering, Beifang University of Nationalities, Yinchuan, Ningxia 750021, China.
| | - Qianqian Fang
- College of Biological Sciences and Engineering, Beifang University of Nationalities, Yinchuan, Ningxia 750021, China; College of Life Sciences, Shaanxi Normal University, Xian, Shaanxi 710062, China
| | - Chenxi Yang
- College of Biological Sciences and Engineering, Beifang University of Nationalities, Yinchuan, Ningxia 750021, China
| |
Collapse
|
32
|
Zellner MR, Ranaldi R. Separation, Motivation, And Depression: Neonatal Isolation Reduces Food-Rewarded Operant Responding in Hats. PSYCHOLOGICAL RECORD 2017. [DOI: 10.1007/bf03395556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Reconsidering depression as a risk factor for substance use disorder: Insights from rodent models. Neurosci Biobehav Rev 2017; 77:303-316. [DOI: 10.1016/j.neubiorev.2017.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/25/2017] [Accepted: 04/01/2017] [Indexed: 12/21/2022]
|
34
|
Blacktop JM, Todd RP, Sorg BA. Role of perineuronal nets in the anterior dorsal lateral hypothalamic area in the acquisition of cocaine-induced conditioned place preference and self-administration. Neuropharmacology 2017; 118:124-136. [PMID: 28322980 PMCID: PMC5492967 DOI: 10.1016/j.neuropharm.2017.03.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 02/28/2017] [Accepted: 03/15/2017] [Indexed: 01/20/2023]
Abstract
Addiction involves drug-induced neuroplasticity in the circuitry of motivated behavior, which includes the medial forebrain bundle and the lateral hypothalamic area. Emerging at the forefront of neuroplasticity regulation are specialized extracellular matrix (ECM) structures that form perineuronal nets (PNNs) around certain neurons, mainly parvalbumin positive (PV+), fast-spiking interneurons (FSINs), making them a promising target for the regulation of drug-induced neuroplasticity. Despite the emerging significance of PNNs in drug-induced neuroplasticity and the well-established role of the lateral hypothalamic area (LHA) in reward, reinforcement, and motivation, very little is known about how PNN-expressing neurons control drug-seeking behavior. We found that a discrete region of the anterior dorsal LHA (LHAad) exhibited robust PNN and dense ECM expression. Approximately 87% of parvalbumin positive (PV+) neurons co-expressed the PNN marker Wisteria floribunda agglutinin (WFA), while 62% of WFA positive (WFA+) neurons co-expressed PV in the LHAad of drug naïve rats. Removal of PNNs within this brain region via chrondroitinase ABC (Ch-ABC) administration abolished acquisition of cocaine-induced CPP and significantly attenuated the acquisition of cocaine self-administration (SA). Removal of LHAad PNNs did not affect locomotor activity, sucrose intake, sucrose-induced CPP, or acquisition of sucrose SA in separate groups of cocaine naïve animals. These data suggest that PNN-dependent neuroplasticity within the LHAad is critical for the acquisition of both cocaine-induced CPP and SA but is not general to all rewards, and that PNN degradation may have utility for the management of drug-associated behavioral plasticity and memory in cocaine addicts.
Collapse
Affiliation(s)
- Jordan M Blacktop
- Department of Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA, United States.
| | - Ryan P Todd
- Department of Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA, United States
| | - Barbara A Sorg
- Department of Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA, United States
| |
Collapse
|
35
|
Dönmez RA, Candansayar S, Derinöz O, Gülbahar Ö, Bolay H. Adulthood behavioral and neurodevelopmental effects of being raised byan ambivalent mother in rats: what does not kill you makes you stronger. Turk J Med Sci 2016; 46:1546-1560. [PMID: 27966328 DOI: 10.3906/sag-1502-39] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 12/13/2015] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND/AIM This study aimed to investigate the effects of early adverse life events and being raised by an ambivalent mother on rats. MATERIALS AND METHODS The rats were separated into four groups: 1) the control group (n = 12), which was raised under standard care; 2) the early handling (EH) group, which was raised using an EH model (n = 16); 3) the early deprivation (ED) group, which was raised using an ED model (n = 13), and 4) the ambivalent mother (AM) group, which spent 3 h/day with a "fake mother" (n = 17). When they became adults, their anxiety levels, depressive-like behaviors, and memory functions were measured using the elevated plus maze test, the forced swim test, and the novel object recognition test, respectively. Their neurodevelopment was evaluated by measuring the brain-derived neurotrophic factor (BDNF) levels in the prefrontal cortex, the dentate gyrus, and the cerebellum via ELISA. RESULTS The rats in the ED and AM groups exhibited less anxiety and depressive-like behavior than those in the control and EH groups, particularly in females. There was no significant difference between the groups in memory function or brain BDNF levels. CONCLUSION Severe and ambivalent early adverse life events may decrease anxiety and depressive-like behavior in adult rats.
Collapse
Affiliation(s)
| | | | - Okşan Derinöz
- Department of Pediatric Emergency, Gazi University Hospital, Ankara, Turkey
| | - Özlem Gülbahar
- Department of Medical Biochemistry, Gazi University Hospital, Ankara, Turkey
| | - Hayrunnisa Bolay
- Department of Neurology, Gazi University Hospital, Ankara, Turkey
| |
Collapse
|
36
|
Jordan CJ, Andersen SL. Sensitive periods of substance abuse: Early risk for the transition to dependence. Dev Cogn Neurosci 2016; 25:29-44. [PMID: 27840157 PMCID: PMC5410194 DOI: 10.1016/j.dcn.2016.10.004] [Citation(s) in RCA: 218] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 10/10/2016] [Indexed: 12/20/2022] Open
Abstract
Early substance use dramatically increases the risk of substance use disorder (SUD). Although many try drugs, only a small percentage transition to SUD. High reactivity of reward, habit, and stress systems increase risk. Identification of early risk enables targeted, preventative interventions for SUD. Prevention must start before the sensitive adolescent period to maximize resilience.
Early adolescent substance use dramatically increases the risk of lifelong substance use disorder (SUD). An adolescent sensitive period evolved to allow the development of risk-taking traits that aid in survival; today these may manifest as a vulnerability to drugs of abuse. Early substance use interferes with ongoing neurodevelopment to induce neurobiological changes that further augment SUD risk. Although many individuals use drugs recreationally, only a small percentage transition to SUD. Current theories on the etiology of addiction can lend insights into the risk factors that increase vulnerability from early recreational use to addiction. Building on the work of others, we suggest individual risk for SUD emerges from an immature PFC combined with hyper-reactivity of reward salience, habit, and stress systems. Early identification of risk factors is critical to reducing the occurrence of SUD. We suggest preventative interventions for SUD that can be either tailored to individual risk profiles and/or implemented broadly, prior to the sensitive adolescent period, to maximize resilience to developing substance dependence. Recommendations for future research include a focus on the juvenile and adolescent periods as well as on sex differences to better understand early risk and identify the most efficacious preventions for SUD.
Collapse
Affiliation(s)
- Chloe J Jordan
- Department of Psychiatry, Mclean Hospital/Harvard Medical School, Belmont, MA 02478, United States.
| | - Susan L Andersen
- Department of Psychiatry, Mclean Hospital/Harvard Medical School, Belmont, MA 02478, United States
| |
Collapse
|
37
|
Insight from animal models of environmentally driven epigenetic changes in the developing and adult brain. Dev Psychopathol 2016; 28:1229-1243. [PMID: 27687803 DOI: 10.1017/s095457941600081x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The efforts of many neuroscientists are directed toward understanding the appreciable plasticity of the brain and behavior. In recent years, epigenetics has become a core of this focus as a prime mechanistic candidate for behavioral modifications. Animal models have been instrumental in advancing our understanding of environmentally driven changes to the epigenome in the developing and adult brain. This review focuses mainly on such discoveries driven by adverse environments along with their associated behavioral outcomes. While much of the evidence discussed focuses on epigenetics within the central nervous system, several peripheral studies in humans who have experienced significant adversity are also highlighted. As we continue to unravel the link between epigenetics and phenotype, discerning the complexity and specificity of epigenetic changes induced by environments is an important step toward understanding optimal development and how to prevent or ameliorate behavioral deficits bred by disruptive environments.
Collapse
|
38
|
Nobre MJ. Environmental enrichment may protect against neural and behavioural damage caused by withdrawal from chronic alcohol intake. Int J Dev Neurosci 2016; 55:15-27. [PMID: 27616301 DOI: 10.1016/j.ijdevneu.2016.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 09/06/2016] [Accepted: 09/07/2016] [Indexed: 11/18/2022] Open
Abstract
Exposure to stress and prolonged exposure to alcohol leads to neuronal damages in several brain regions, being the medial prefrontal cortex (mPFC) one of the most affected. These changes presumably reduce the ability of the organism to cope with these stimuli and may underlie a series of maladaptive behaviours among which include drug addiction and withdrawal. Drug-addicted individuals show a pattern of behavior similar to patients with lesions of the mPFC. This impairment in the decision-making could be one of the mechanisms responsible for the transition from the casual to compulsive drug use. The environmental enrichment (EE) has a protective effect on the neural and cognitive impairments induced by psychoactive drugs, including ethyl alcohol. The present study aims to determine the influence of withdrawal from intermittent long-term alcohol exposure on alcohol preference, emotional reactivity and neural aspects of early isolated or grouped reared rats kept under standard or complex environments and the influence of social isolation on these measures, as well. Our results point out new insights on this matter showing that the EE can attenuate the adverse effects of withdrawal and social isolation on rat's behavior. This effect is probably due to its protective action on the mPFC integrity, including the cingulate area 1 (Cg1), and the prelimbic (PrL) and infralimbic cortex (IL), what could account for the absence of changes in the emotional reactivity in EE alcohol withdrawal rats. We argue that morphological changes at these cortical levels can afford the emotional, cognitive and behavioural dysregulations verified following withdrawal from chronic alcohol intake.
Collapse
Affiliation(s)
- Manoel Jorge Nobre
- Departamento de Psicologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto Universidade de São Paulo (USP), 14040-901 Ribeirão Preto, SP, Brazil; Departamento de Psicologia, Uni-FACEF, 14401-135, Franca, SP, Brazil; Instituto de Neurociências e Comportamento-INeC, Campus USP, 14040-901 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
39
|
Womersley JS, Mpeta B, Dimatelis JJ, Kellaway LA, Stein DJ, Russell VA. Developmental stress elicits preference for methamphetamine in the spontaneously hypertensive rat model of attention-deficit/hyperactivity disorder. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2016; 12:18. [PMID: 27317355 PMCID: PMC4912802 DOI: 10.1186/s12993-016-0102-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/09/2016] [Indexed: 11/25/2022]
Abstract
BACKGROUND Developmental stress has been hypothesised to interact with genetic predisposition to increase the risk of developing substance use disorders. Here we have investigated the effects of maternal separation-induced developmental stress using a behavioural proxy of methamphetamine preference in an animal model of attention-deficit/hyperactivity disorder, the spontaneously hypertensive rat, versus Wistar Kyoto and Sprague-Dawley comparator strains. RESULTS Analysis of results obtained using a conditioned place preference paradigm revealed a significant strain × stress interaction with maternal separation inducing preference for the methamphetamine-associated compartment in spontaneously hypertensive rats. Maternal separation increased behavioural sensitization to the locomotor-stimulatory effects of methamphetamine in both spontaneously hypertensive and Sprague-Dawley strains but not in Wistar Kyoto rats. CONCLUSIONS Our findings indicate that developmental stress in a genetic rat model of attention-deficit/hyperactivity disorder may foster a vulnerability to the development of substance use disorders.
Collapse
Affiliation(s)
- Jacqueline S. Womersley
- />Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925 South Africa
| | - Bafokeng Mpeta
- />Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925 South Africa
| | - Jacqueline J. Dimatelis
- />Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925 South Africa
| | - Lauriston A. Kellaway
- />Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925 South Africa
| | - Dan J. Stein
- />Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Groote Schuur Hospital, Observatory, Cape Town, 7925 South Africa
| | - Vivienne A. Russell
- />Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925 South Africa
| |
Collapse
|
40
|
Lutfy K, Zaveri NT. The Nociceptin Receptor as an Emerging Molecular Target for Cocaine Addiction. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 137:149-81. [PMID: 26810001 DOI: 10.1016/bs.pmbts.2015.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cocaine addiction is a global public health and socioeconomic issue that requires pharmacological and cognitive therapies. Currently there are no FDA-approved medications to treat cocaine addiction. However, in preclinical studies, interventions ranging from herbal medicine to deep-brain stimulation have shown promise for the therapy of cocaine addiction. Recent developments in molecular biology, pharmacology, and medicinal chemistry have enabled scientists to identify novel molecular targets along the pathways involved in drug addiction. In 1994, a receptor that showed a great deal of homology to the traditional opioid receptors was characterized. However, endogenous and exogenous opioids failed to bind to this receptor, which led scientists to name it opioid receptor-like receptor, now referred to as the nociceptin receptor. The endogenous ligand of NOPr was identified a year later and named orphanin FQ/nociceptin. Nociceptin and NOPr are widely distributed throughout the CNS and are involved in many physiological responses, such as food intake, nociceptive processing, neurotransmitter release, etc. Furthermore, exogenous nociceptin has been shown to regulate the activity of mesolimbic dopaminergic neurons, glutamate, and opioid systems, and the stress circuit. Importantly, exogenous nociceptin has been shown to reduce the rewarding and addictive actions of a number of drugs of abuse, such as psychostimulants, alcohol, and opioids. This paper reviews the existing literature on the role of endogenous nociceptin in the rewarding and addictive actions of cocaine. The effect of exogenous nociceptin on these processes is also reviewed. Furthermore, the effects of novel small-molecule NOPr ligands on these actions of cocaine are discussed. Overall, a review of the literature suggests that NOPr could be an emerging target for cocaine addiction pharmacotherapy.
Collapse
Affiliation(s)
- Kabirullah Lutfy
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, USA.
| | | |
Collapse
|
41
|
Sitzer DL, Stockwell AB. The art of wellness: A 14-week art therapy program for at-risk youth. ARTS IN PSYCHOTHERAPY 2015. [DOI: 10.1016/j.aip.2015.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
42
|
Enhancing glutamatergic transmission during adolescence reverses early-life stress-induced deficits in the rewarding effects of cocaine in rats. Neuropharmacology 2015; 99:168-76. [PMID: 26187394 DOI: 10.1016/j.neuropharm.2015.07.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 07/06/2015] [Accepted: 07/11/2015] [Indexed: 12/20/2022]
Abstract
Adolescence marks a critical time when the brain is highly susceptible to pathological insult yet also uniquely amenable to therapeutic intervention. It is during adolescence that the onset of the majority of psychiatric disorders, including substance use disorder (SUDs), occurs. It has been well established that stress, particularly during early development, can contribute to the pathological changes which contribute to the development of SUDs. Glutamate as the main excitatory neurotransmitter in the mammalian CNS plays a key role in various physiological processes, including reward function, and in mediating the effects of psychological stress. We hypothesised impairing glutamatergic signalling during the key adolescent period would attenuate early-life stress induced impaired reward function. To test this, we induced early-life stress in male rats using the maternal-separation procedure. During the critical adolescent period (PND25-46) animals were treated with the glutamate transporter activator, riluzole, or the NMDA receptor antagonist, memantine. Adult reward function was assessed using voluntary cocaine intake measured via intravenous self-administration. We found that early-life stress in the form of maternal-separation impaired reward function, reducing the number of successful cocaine-infusions achieved during the intravenous self-administration procedure as well impairing drug-induced reinstatement of cocaine-taking behaviour. Interestingly, riluzole and memantine treatment reversed this stress-induced impairment. These data suggest that reducing glutamatergic signalling may be a viable therapeutic strategy for treating vulnerable individuals at risk of developing SUDs including certain adolescent populations, particularly those which may have experienced trauma during early-life.
Collapse
|
43
|
Cross D, Crow T, Powers A, Bradley B. Childhood trauma, PTSD, and problematic alcohol and substance use in low-income, African-American men and women. CHILD ABUSE & NEGLECT 2015; 44:26-35. [PMID: 25680654 PMCID: PMC4461539 DOI: 10.1016/j.chiabu.2015.01.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 01/03/2015] [Accepted: 01/05/2015] [Indexed: 05/07/2023]
Abstract
Previous studies demonstrate that PTSD mediates the relationship between childhood trauma and alcohol and substance use disorders and that PTSD and alcohol/substance use comorbidity is greater in men than in women. We sought to replicate and extend these findings in a predominantly low-income, African-American sample recruited from a public hospital. We administered measures of childhood trauma, PTSD symptoms, problematic alcohol use, and problematic substance use to 803 men and 2084 women. We examined rates of comorbidity in men and women. Next, two bootstrap analyses were used to test whether PTSD is a mediator between childhood trauma and problematic alcohol use and between childhood trauma and problematic substance use. Finally, two bootstrap analyses were used to test whether gender would moderate the indirect effect of PTSD in both the alcohol and substance use models. Results showed that although men and women reported similar overall PTSD symptom frequency, men were more likely than women to report PTSD comorbid with alcohol and/or substance use problems. In addition, PTSD partially mediated the relationship between childhood trauma and problematic alcohol use and between childhood trauma and problematic substance use. The indirect effects of PTSD on the relationship between childhood trauma and problematic alcohol use and between childhood trauma and problematic substance use were greater in men. This study demonstrates the important interplay of gender, childhood trauma, PTSD, and alcohol and substance use. Mental health providers should consider childhood trauma histories and diagnostic comorbidities when treatment planning.
Collapse
Affiliation(s)
- Dorthie Cross
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine
| | - Thomas Crow
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine
| | - Abigail Powers
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine
| | - Bekh Bradley
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine
- Atlanta VA Medical Center
| |
Collapse
|
44
|
Crofton EJ, Zhang Y, Green TA. Inoculation stress hypothesis of environmental enrichment. Neurosci Biobehav Rev 2015; 49:19-31. [PMID: 25449533 PMCID: PMC4305384 DOI: 10.1016/j.neubiorev.2014.11.017] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 10/28/2014] [Accepted: 11/21/2014] [Indexed: 01/28/2023]
Abstract
One hallmark of psychiatric conditions is the vast continuum of individual differences in susceptibility vs. resilience resulting from the interaction of genetic and environmental factors. The environmental enrichment paradigm is an animal model that is useful for studying a range of psychiatric conditions, including protective phenotypes in addiction and depression models. The major question is how environmental enrichment, a non-drug and non-surgical manipulation, can produce such robust individual differences in such a wide range of behaviors. This paper draws from a variety of published sources to outline a coherent hypothesis of inoculation stress as a factor producing the protective enrichment phenotypes. The basic tenet suggests that chronic mild stress from living in a complex environment and interacting non-aggressively with conspecifics can inoculate enriched rats against subsequent stressors and/or drugs of abuse. This paper reviews the enrichment phenotypes, mulls the fundamental nature of environmental enrichment vs. isolation, discusses the most appropriate control for environmental enrichment, and challenges the idea that cortisol/corticosterone equals stress. The intent of the inoculation stress hypothesis of environmental enrichment is to provide a scaffold with which to build testable hypotheses for the elucidation of the molecular mechanisms underlying these protective phenotypes and thus provide new therapeutic targets to treat psychiatric/neurological conditions.
Collapse
Affiliation(s)
- Elizabeth J Crofton
- Center for Addiction Research, Mitchell Center for Neurodegenerative Diseases, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, United States
| | - Yafang Zhang
- Center for Addiction Research, Mitchell Center for Neurodegenerative Diseases, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, United States
| | - Thomas A Green
- Center for Addiction Research, Mitchell Center for Neurodegenerative Diseases, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, United States.
| |
Collapse
|
45
|
Prenatal stress and adult drug-seeking behavior: interactions with genes and relation to nondrug-related behavior. ADVANCES IN NEUROBIOLOGY 2015; 10:75-100. [PMID: 25287537 DOI: 10.1007/978-1-4939-1372-5_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Addiction inflicts large personal, social, and economic burdens, yet its etiology is poorly defined and effective treatments are lacking. As with other neuropsychiatric disorders, addiction is characterized by a core set of symptoms and behaviors that are believed to be influenced by complex gene-environment interactions. Our group focuses on the interaction between early stress and genetic background in determining addiction vulnerability. Prior work by our group and others has indicated that a history of prenatal stress (PNS) in rodents elevates adult drug seeking in a number of behavioral paradigms. The focus of the present chapter is to summarize work in the area of PNS and addiction models as well as our recent studies of PNS on drug seeking in different strains of mice as a strategy to dissect gene-environment interactions underlying cocaine addiction vulnerability. These studies indicate that ability of PNS to elevate adult cocaine seeking is strain dependent. Further, PNS also alters other nondrug behaviors in a fashion that is dependent on different strains and independent from the strain dependence of drug seeking. Thus, it appears that the ability of PNS to alter behavior related to different psychiatric conditions is orthogonal, with similar nonspecific susceptibility to prenatal stress across genetic backgrounds but with the genetic background determining the specific nature of the PNS effects. Finally, the advent of recombinant inbred mouse strains is allowing us to determine the genetic bases of these gene-environment interactions. Understanding these effects will have broad implications to determining the nature of vulnerability to addiction and perhaps other disorders.
Collapse
|
46
|
Hensleigh E, Pritchard LM. Maternal separation increases methamphetamine-induced damage in the striatum in male, but not female rats. Behav Brain Res 2014; 295:3-8. [PMID: 25535855 DOI: 10.1016/j.bbr.2014.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/13/2014] [Accepted: 12/02/2014] [Indexed: 11/25/2022]
Abstract
Methamphetamine abuse impacts the global economy through costs associated with drug enforcement, emergency room visits, and treatment. Previous research has demonstrated early life stress, such as childhood abuse, increases the likelihood of developing a substance abuse disorder. However, the effects of early life stress on neuronal damage induced by binge methamphetamine administration are unknown. We aimed to elucidate the effects of early life stress on methamphetamine induced dopamine damage in the striatum. Pups were separated from dams for 3h per day during the first two weeks of development or 15 min for control. In adulthood, rats received either subcutaneous 0.9% saline or 5.0mg/kg METH injections every 2h for a total of four injections. Rectal temperatures were taken before the first injection and 1h after each subsequent injection. Seven days after treatment, rats were euthanized and striatum was collected for quantification of tyrosine hydroxylase (TH) and dopamine transporters (DAT) content by Western blot. Methamphetamine significantly elevated core body temperature in males and decreased striatal DAT and TH content, and this effect was potentiated by early life stress. Females did not exhibit elevated core body temperatures or changes in DAT or TH in either condition. Results indicate maternal separation increases methamphetamine induced damage, and females are less susceptible to methamphetamine induced damage.
Collapse
Affiliation(s)
- Emily Hensleigh
- Department of Psychology, University of Nevada Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154, United States
| | - Laurel M Pritchard
- Department of Psychology, University of Nevada Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154, United States.
| |
Collapse
|
47
|
Polter AM, Kauer JA. Stress and VTA synapses: implications for addiction and depression. Eur J Neurosci 2014; 39:1179-88. [PMID: 24712997 DOI: 10.1111/ejn.12490] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/18/2013] [Accepted: 12/22/2013] [Indexed: 02/06/2023]
Abstract
While stressful experiences are a part of everyone's life, they can also exact a major toll on health. Stressful life experiences are associated with increased substance abuse, and there exists significant co-morbidity between mental illness and substance use disorders [N.D. Volkow & T.K. Li (2004) Nat. Rev. Neurosci., 5, 963-970; G. Koob & M.J. Kreek (2007) Am. J. Psych., 164, 1149-1159; R. Sinha (2008) Annals N.Y. Acad. Sci., 1141, 105-130]. The risk for development of mood or anxiety disorders after stress is positively associated with the risk for substance use disorders [R. Sinha (2008) Annals N.Y. Acad. Sci., 1141, 105-130], suggesting that there are common substrates for vulnerability to addictive and affective disorders. Understanding the molecular and physiological substrates of stress may lead to improved therapeutic interventions for the treatment of substance use disorders and mental illnesses.
Collapse
Affiliation(s)
- Abigail M Polter
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI, 02912, USA
| | | |
Collapse
|
48
|
Abstract
Glia are starting to be accepted as the equal of neurons. Their impact on intelligence, environmental enrichment, and cerebral dominance forms the basis for understanding the role of glia in stress. Along with neurons, astrocytes, microglia, NG2 cells, and oligodendrocytes all contribute. Glia can even be protective against drug abuse. Glial effects on depression, mood disorders and schizophrenia are reviewed.
Collapse
|
49
|
Predisposing effects of neonatal visceral pain on abuse-related effects of morphine in adult male Sprague Dawley rats. Psychopharmacology (Berl) 2014; 231:4281-9. [PMID: 24756764 PMCID: PMC5384261 DOI: 10.1007/s00213-014-3574-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 04/04/2014] [Indexed: 12/23/2022]
Abstract
RATIONALE Adverse early life experiences are risk factors for drug abuse and addiction. Changes in brain opioid systems have been demonstrated in response to neonatal visceral pain (NVP), but the impact of these changes on abuse-related effects of morphine are unknown. The NVP procedure used models chronic visceral hyperalgesia persisting across development. OBJECTIVES Intravenous self-administration, drug discrimination, and locomotor activity were used to compare the abuse-related effects of morphine in NVP and control rats. METHODS Rats self-administered 0.3 mg/kg/inj morphine under an FR1 schedule, and dose-effect functions for morphine were then established. Separate rats were trained to discriminate 3.2 mg/kg morphine from saline under an FR20 schedule, and morphine dose-effect functions were then determined in the absence and presence of 0.1 mg/kg naltrexone. A third group of rats was tested with a range of morphine doses in an assay of locomotor activity, then injected daily with 10 mg/kg morphine to assess locomotor sensitization. RESULTS NVP rats self-administered more morphine than controls at reinforcing doses. Discriminative stimulus effects of morphine were similar between groups, but in the presence of naltrexone, the ED50 for morphine was more than 12× greater in control rats than in NVP animals. Morphine did not stimulate locomotor activity at any tested dose in NVP rats, although significant effects were observed in controls. Finally, significant locomotor sensitization was observed only in NVP rats. CONCLUSIONS NVP-induced changes in brain opioid systems have persistent pharmacological consequences into adulthood and may increase sensitivity to abuse-related effects of opioids across development.
Collapse
|
50
|
Battaglia M, Ogliari A, D’Amato F, Kinkead R. Early-life risk factors for panic and separation anxiety disorder: Insights and outstanding questions arising from human and animal studies of CO2 sensitivity. Neurosci Biobehav Rev 2014; 46 Pt 3:455-64. [DOI: 10.1016/j.neubiorev.2014.04.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 03/20/2014] [Accepted: 04/10/2014] [Indexed: 10/25/2022]
|