1
|
Liu B, Guan F, Zhao J, Niu Y, Jiang H. BHF177 Suppresses Diabetic Neuropathic Pain by Blocking PKC/CaMKII/ERK1/2/CREB Signaling Pathway through Activating GABA B Receptor. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4661519. [PMID: 36439691 PMCID: PMC9691330 DOI: 10.1155/2022/4661519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 01/15/2022] [Indexed: 02/03/2025]
Abstract
The gamma-aminobutyric acid type B (GABAB) receptor may participate in the development of diabetic neuropathic pain (DNP). BHF177 serves as a positive allosteric modulator of the GABAB receptor. In the current study, we sought to study the role of the BHF177-GABAB receptor in DNP and its underlying mechanism. Streptozotocin was adopted to induce a rat model of DNP, followed by determination of the paw withdrawal threshold (PWT), paw withdrawal latency (PWL), and glucose level. The effect of BHF177 on DNP by regulating the GABAB receptor in vivo was determined by the injection of BHF177 and/or CGP46381 (a GABAB receptor antagonist) into rat models of DNP. Hippocampal neuronal cells were isolated and cultured, and the neurons and DNP model rats were treated with activators of PKC (PMA), CaMKII (CaCl2), or ERK1/2 (EGF) to study the role of GABAB receptors in DNP via regulation of the NR2B-PKC-CaMKII-ERK-CREB pathway. BHF177 suppressed DNP symptoms by activating the GABAB receptors, as evidenced by increased PWT and PWL of DNP rats and the increased number of neurons expressing the GABAB receptor, but this effect was reversed by CGP46381 treatment. BHF177 treatment markedly repressed PKC, CaMKII, p-ERK1/2, and p-CREB expressions in the rat DNP model, but these suppressive effects were abrogated by treatments with PMA, CaCl2, or EGF treatment, respectively. To sum up, BHF177 suppresses DNP symptoms by blocking the PKC/CaMKII/ERK1/2/CREB signaling pathway to activate the GABAB receptors.
Collapse
Affiliation(s)
- Boyu Liu
- Department of Endocrine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China
| | - Fengxi Guan
- Department of Ultrasonography, Yanggu People's Hospital, Yanggu 252300, China
| | - Jiapeng Zhao
- Department of Neurosurgery, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China
| | - Yao Niu
- Department of Endocrine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China
| | - Hongbo Jiang
- Department of Nutrition, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China
| |
Collapse
|
2
|
Chang LL, Wang HC, Tseng KY, Su MP, Wang JY, Chuang YT, Wang YH, Cheng KI. Upregulation of miR-133a-3p in the Sciatic Nerve Contributes to Neuropathic Pain Development. Mol Neurobiol 2020; 57:3931-3942. [PMID: 32632603 DOI: 10.1007/s12035-020-01999-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022]
Abstract
The micro (mi)RNAs expressed in the sciatic nerve of streptozotocin (STZ)-induced diabetic rats were evaluated in terms of their therapeutic potential in patients with diabetic neuropathic pain (DNP). Relative miRNA expression in sciatic nerve with DNP was analyzed using next-generation sequencing and quantitative PCR. Potential downstream targets of miRNAs were predicted using Ingenuity Pathway Analysis and the TargetScan database. In vitro experiments were performed using miR-133a-3p-transfected RSC96 Schwann cells. We performed micro-Western and Western blotting and immunofluorescence analyses to verify the role of miR-133a-3p. In vivo, the association between miR-133a-3p with DNP was analyzed via AAV-miR-133a-3p intraneural (intra-epineural but extrafascicular) injection into the sciatic nerve of normal rats or injection of an miR-133a-3p antagomir into the sciatic nerve of diabetes mellitus (DM) rats. miR-133a-3p mimics transfected into RSC96 Schwann cells increased VEGFR-2, p38α MAPK, TRAF-6, and PIAS3 expression and reduced NFκB p50 and MKP3 expression. In normal rats, AAV-miR-133a-3p delivery via intraneural injection into the sciatic nerve induced mechanical allodynia and p-p38 MAPK activation. In DM rats, miR-133a-3p antagomir administration alleviated DNP and downregulated p-p38 phosphorylation. Overexpression of miR-133a-3p in the sciatic nerve induced such pain. We suggest that miR-133a-3p is a potential therapeutic target for DNP.
Collapse
Affiliation(s)
- Lin-Li Chang
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hung-Chen Wang
- Department of Neurosurgery, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kuang-Yi Tseng
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Miao-Pei Su
- Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Jaw-Yuan Wang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Surgery, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Biomarkers and Biotech Drugs, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Ta Chuang
- Physical Education Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Hsuan Wang
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kuang-I Cheng
- Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
3
|
Jia Q, Zhu R, Tian Y, Chen B, Li R, Li L, Wang L, Che Y, Zhao D, Mo F, Gao S, Zhang D. Salvia miltiorrhiza in diabetes: A review of its pharmacology, phytochemistry, and safety. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 58:152871. [PMID: 30851580 DOI: 10.1016/j.phymed.2019.152871] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 02/01/2019] [Accepted: 02/17/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND Salvia miltiorrhiza (SM), one of the frequently used herbs in traditional Chinese medicine (TCM), has now attracted rising interests for a possible alternative in the management of diabetes. This review is aimed to providing a comprehensive perspective of SM in phytochemical constituents, pharmacological activities against diabetes and its complications, and safety. METHODS A comprehensive search of published literatures was conducted to locate original publications pertaining to SM and diabetes till the end of 2017 using PubMed, China National Knowledge Infrastructure, National Science and Technology Library, China Science and Technology Journal Database, and Web of Science database. The main inquiry was used for the presence of the following keywords in various combinations in the titles and abstracts: Salvia miltiorrhiza, diabetes, obesity, phytochemistry, pharmacology, and safety. About 200 research papers and reviews were consulted. RESULTS SM exhibited anti-diabetic activities by treating macro- and micro-vascular diseases in preclinical experiments and clinical trials through an improvement of redox homeostasis and inhibition of apoptosis and inflammation via the regulation of Wnt/β-catenin, TSP-1/TGF-β1/STAT3, JNK/PI3K/Akt, kinin B2 receptor-Akt-GSK-3β, AMPKβ/PGC-1α/Sirt3, Akt/AMPK, TXNIP/NLRP3, TGF-β1/NF-κB, mineralocorticoid receptor/Na+/K+-ATPase, AGEs/RAGE, Nrf2/Keap1, CaMKKβ/AMPK, AMPK/ACC, IRS-1/PI3K signaling pathways, and modulation of K+-Ca2+ channels, as well as influence of VEGF, NOS, AGEs, PPAR expression and hIAPP aggregation. The antidiabetic effects of this herb may be related to its TCM characters of improving blood circulation and reliving blood stasis. The main ingredients of SM included salvianolic acids and diterpenoid tanshinones, which have been well studied in the diabetic animals. Acute and subacute toxicity studies supported the notion that SM is well tolerated. CONCLUSION SM may offer a new strategy for prevention and treatment of diabetes and its complications that stimulates extensive research into identifying potential anti-diabetic compounds and fractions as well as exploring the underlying mechanisms of this herb. Further scientific evidences are still required from well-designed preclinical experiments and clinical trials on its anti-diabetic effects and safety.
Collapse
Affiliation(s)
- Qiangqiang Jia
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ruyuan Zhu
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yimiao Tian
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Beibei Chen
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Rui Li
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lin Li
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lili Wang
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yiwen Che
- The Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Dandan Zhao
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Fangfang Mo
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Sihua Gao
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Dongwei Zhang
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
4
|
Effects of Dual Peroxisome Proliferator-Activated Receptors α and γ Activation in Two Rat Models of Neuropathic Pain. PPAR Res 2019; 2019:2630232. [PMID: 31139213 PMCID: PMC6500665 DOI: 10.1155/2019/2630232] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/02/2019] [Accepted: 04/10/2019] [Indexed: 02/07/2023] Open
Abstract
Neuropathic pain is a growing healthcare problem causing a global burden. Currently used analgesics such as opioids are associated with adverse effects; urging the need for safer alternatives. Here we aimed to investigate the potential analgesic effects of tesaglitazar; dual peroxisome proliferator-activated receptors α and γ (PPARα and γ) agonist in rat models of neuropathic pain. This study also aimed to investigate the modulation of the transient receptor potential vanilloid 1 (TRPV1) receptor activity by tesaglitazar which could provide a potential mechanism that underlie tesaglitazar antinociceptive effects. Von Frey filaments were used to determine the paw withdrawal threshold (PWT) in adult male Sprague Dawley rats (180-250g) following i.p. injection of streptozotocin (STZ) or cisplatin, which were used as models of neuropathic pain. Antinociceptive effects of tesaglitazar were determined 6 hours after drug administration. Cobalt influx assays in cultured dorsal root ganglia (DRG) neurons were used to study the effects of tesaglitazar preincubation on capsaicin-evoked cobalt influx. Both cisplatin and STZ produced a significant decrease in PWT. The higher dose of tesaglitazar (20μg/kg) significantly restored PWT in both neuropathic pain models (P<0.05). 10μM capsaicin produced a robust cobalt response in DRG neurons. Preincubation of DRG neurones with tesaglitazar 6 hours prior to stimulation with capsaicin significantly reduce capsaicin-evoked cobalt responses in a PPARα and PPARγ dependent fashion (P<0.05). In conclusion, tesaglitazar produced significant analgesic effects in STZ and cisplatin-induced neuropathy, possibly by modulating TRPV1 receptor activity. This may be of potential benefit in clinical practice dealing with peripheral neuropathy.
Collapse
|
5
|
Yang XD, Fang PF, Xiang DX, Yang YY. Topical treatments for diabetic neuropathic pain. Exp Ther Med 2019; 17:1963-1976. [PMID: 30783472 PMCID: PMC6364237 DOI: 10.3892/etm.2019.7173] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 11/22/2018] [Indexed: 12/14/2022] Open
Abstract
Diabetic neuropathic pain (DNP) has a huge impact on quality of life and can be difficult to treat. Oral treatment is the most frequently used method for DNP, but its use is often limited by systemic side effects. Topical use of drugs as an alternative option for DNP treatment is currently gaining interest. In the present review, a summary is provided of the available agents for topical use in patients with DNP, including lidocaine plasters or patches, capsaicin cream, gel or patches, amitriptyline cream, clonidine gel, ketamine cream, extracts from medicinal plants including nutmeg extracts and Citrullus colocynthis extract oil, and certain compounded topical analgesics. Furthermore, the potential efficacy of these treatments is addressed according to the available clinical research literature. It has been indicated that these topical drugs have the potential to be valuable additional options for the management of DNP, with adequate safety and continuous long-term treatment efficacy. Compounded topical agents are also effective and safe for patients with DNP and could be another area worthy of further investigation based on the strategy of using low-dose, complementary therapies for DNP. The findings indicate that developing topical drugs acting on different targets in the process of DNP is a valuable area of future research.
Collapse
Affiliation(s)
- Xi-Ding Yang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China.,Phase I Clinical Trial Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Ping-Fei Fang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China.,Phase I Clinical Trial Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Da-Xiong Xiang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China.,Hunan Provincial Engineering Research Center of Translational Medical and Innovative Drug, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Yong-Yu Yang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China.,Hunan Provincial Engineering Research Center of Translational Medical and Innovative Drug, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
6
|
Liu CH, Lan CT, Chen LY, Liao WC, Ko MH, Tseng TJ. Phosphorylation of extracellular signal-regulated kinase 1/2 in subepidermal nerve fibers mediates hyperalgesia following diabetic peripheral neuropathy. Neurotoxicology 2018; 71:60-74. [PMID: 30583000 DOI: 10.1016/j.neuro.2018.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 11/28/2022]
Abstract
Peripheral neuropathy, a chronic complication of diabetes mellitus (DM), is often accompanied by the onset of severe pain symptoms that affect quality of life. However, the underlying mechanisms remain elusive. In the present study, we used Sprague-Dawley rats to establish a rodent model of the human type 1 DM by a single intraperitoneal (i.p.) injection with streptozotocin (STZ) (60 mg/kg). Hypersensitivity, including hyperalgesia and allodynia, developed in the STZ-induced diabetic rats. Cutaneous innervation exhibited STZ-induced reductions of protein gene product 9.5-, peripherin-, and neurofilament 200-immunoreactivity (IR) subepidermal nerve fibers (SENFs). Moreover, the decreases of substance P (SP)- and calcitonin gene-related peptide (CGRP)-IR SENFs were distinct gathered from the results of extracellular signal-regulated kinase 1 and 2 (ERK1/2)- and phosphorylated ERK1/2 (pERK1/2)-IR SENFs in STZ-induced diabetic rats. Double immunofluorescence studies demonstrated that STZ-induced pERK1/2-IR was largely increased in SENFs where only a small portion was colocalized with SP- or CGRP-IR. By an intraplantar (i. pl.) injection with a MEK inhibitor, U0126 (1,4-Diamino-2,3-dicyano-1,4-bis[2-aminophenylthio]butadiene), hyperalgesia was attenuated in a dose-responsive manner. Botulinum toxin serotype A had dose-dependent analgesic effects on STZ-induced hyperalgesia and allodynia, which exhibited equivalent results as the efficacy of transient receptor potential vanilloid (TRPV) channel antagonists. Morphological evidence further confirmed that STZ-induced SP-, CGRP- and pERK1/2-IR were reduced in SENFs after pharmacological interventions. From the results obtained in this study, it is suggested that increases of pERK1/2 in SENFs may participate in the modulation of TRPV channel-mediated neurogenic inflammation that triggers hyperalgesia in STZ-induced diabetic rats. Therefore, ERK1/2 provides a potential therapeutic target and efficient pharmacological strategies to address hyperglycemia-induced neurotoxicity.
Collapse
Affiliation(s)
- Chiung-Hui Liu
- Department of Anatomy, Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; Department of Medical Education, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Chyn-Tair Lan
- Department of Anatomy, Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; Department of Medical Education, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Li-You Chen
- Department of Anatomy, Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; Department of Medical Education, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Wen-Chieh Liao
- Department of Anatomy, Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; Department of Medical Education, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Miau-Hwa Ko
- Department of Anatomy, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - To-Jung Tseng
- Department of Anatomy, Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; Department of Medical Education, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
| |
Collapse
|
7
|
van Beek M, Geurts JW, Slangen R, Schaper NC, Faber CG, Joosten EA, Dirksen CD, van Dongen RT, van Kuijk SMJ, van Kleef M. Severity of Neuropathy Is Associated With Long-term Spinal Cord Stimulation Outcome in Painful Diabetic Peripheral Neuropathy: Five-Year Follow-up of a Prospective Two-Center Clinical Trial. Diabetes Care 2018; 41:32-38. [PMID: 29109298 DOI: 10.2337/dc17-0983] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 09/25/2017] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Evidence from prospective studies for long-term treatment efficacy of spinal cord stimulation (SCS) in painful diabetic peripheral neuropathy (PDPN) is not available. We report prospective data on the effect of SCS on pain ratings, treatment success and failure, and complications during a 5-year follow-up in patients with PDPN. RESEARCH DESIGN AND METHODS Patients with PDPN (n = 48) were included in this prospective multicenter study. The Michigan Diabetic Neuropathy Score (MDNS) was used to assess the severity of neuropathy. Numerical rating scale (NRS) score for pain, Patient's Global Impression of Change (PGIC), and treatment success (50% reduction of NRS score or significant PGIC) during 5 years of follow-up were evaluated. Complications of SCS were reported, and associations between baseline characteristics and SCS trial success or failure during a 5-year follow-up were investigated by using survival analyses. RESULTS Treatment success was observed in 55% of patients after 5 years. Median duration of SCS treatment was 60 months (minimum 1 month, maximum 60 months), and 80% of patients with a permanent implant still used their SCS device after 5 years. Higher MDNS was associated with treatment failure during the 5-year follow-up (hazard ratio 3.9 [95% CI 1.3-11.6]; P = 0.014). CONCLUSIONS SCS is successful in reducing chronic pain symptoms in the lower extremities of patients with PDPN up to 5 years after initiation of treatment. Furthermore, 80% of patients with PDPN still use their SCS device after 5 years. Moreover, the severity of neuropathy is associated with a higher chance of long-term treatment failure during a 5-year follow-up.
Collapse
Affiliation(s)
- Maarten van Beek
- Department of Anesthesiology and Pain Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - José W Geurts
- Department of Anesthesiology and Pain Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands.,Department of Anesthesiology, Rijnstate Hospital, Arnhem, the Netherlands
| | - Rachel Slangen
- Department of Anesthesiology and Pain Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Nicolaas C Schaper
- Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Catharina G Faber
- Department of Neurology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Elbert A Joosten
- Department of Anesthesiology and Pain Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Carmen D Dirksen
- Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Centre+, Maastricht, the Netherlands.,Care and Public Health Research Institute School for Public Health and Primary Care, Maastricht University, Maastricht, the Netherlands
| | - Robert T van Dongen
- Department of Anesthesiology, Pain, and Palliative Care, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Sander M J van Kuijk
- Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Maarten van Kleef
- Department of Anesthesiology and Pain Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
| |
Collapse
|
8
|
van Beek M, van Kleef M, Linderoth B, van Kuijk SMJ, Honig WM, Joosten EA. Spinal cord stimulation in experimental chronic painful diabetic polyneuropathy: Delayed effect of High-frequency stimulation. Eur J Pain 2016; 21:795-803. [PMID: 27891705 PMCID: PMC5412908 DOI: 10.1002/ejp.981] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2016] [Indexed: 12/12/2022]
Abstract
Background Spinal cord stimulation (SCS) has been shown to provide pain relief in painful diabetic polyneuropathy (PDPN). As the vasculature system plays a great role in the pathophysiology of PDPN, a potential beneficial side‐effect of SCS is peripheral vasodilation, with high frequency (HF) SCS in particular. We hypothesize that HF‐SCS (500 Hz), compared with conventional (CON) or low frequency (LF)‐SCS will result in increased alleviation of mechanical hypersensitivity in chronic experimental PDPN. Methods Diabetes was induced in 8‐week‐old female Sprague–Dawley rats with an intraperitoneal injection of 65 mg/kg of streptozotocin (n = 44). Rats with a significant decrease in mechanical withdrawal response to von Frey filaments over a period of 20 weeks were implanted with SCS electrodes (n = 18). Rats were assigned to a cross‐over design with a random order of LF‐, CON‐, HF‐ and sham SCS and mechanical withdrawal thresholds were assessed with von Frey testing. Results Compared with sham treatment, the average 50% WT score for 5 Hz was 4.88 g higher during stimulation (p = 0.156), and 1.77 g higher post‐stimulation (p = 0.008). CON‐SCS resulted in 50% WT scores 5.7 g, and 2.51 g higher during (p = 0.064) and after stimulation (p < 0.004), respectively. HF‐SCS started out with an average difference in 50% WT score compared with sham of 1.87 g during stimulation (p = 0.279), and subsequently the steepest rise to a difference of 5.47 g post‐stimulation (p < 0.001). Conclusions We demonstrated a delayed effect of HF‐SCS on mechanical hypersensitivity in chronic PDPN animals compared with LF‐, or CON‐SCS. Significance This study evaluates the effect of SCS frequency (5–500 Hz) on mechanical hypersensitivity in the chronic phase of experimental PDPN. High frequency (500 Hz) – SCS resulted in a delayed effect‐ on pain‐related behavioural outcome in chronic PDPN.
Collapse
Affiliation(s)
- M van Beek
- Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, The Netherlands.,Pain Management and Research Center, Department of Anesthesiology, MUMC+, Maastricht, The Netherlands
| | - M van Kleef
- Pain Management and Research Center, Department of Anesthesiology, MUMC+, Maastricht, The Netherlands
| | - B Linderoth
- Pain Management and Research Center, Department of Anesthesiology, MUMC+, Maastricht, The Netherlands.,Department of Clinical Neuroscience, (Functional Neurosurgery), Karolinska Institutet, Stockholm, Sweden
| | - S M J van Kuijk
- Department of Clinical Epidemiology and Medical Technology Assessment (KEMTA), MUMC+, Maastricht, The Netherlands
| | - W M Honig
- Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, The Netherlands
| | - E A Joosten
- Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, The Netherlands.,Pain Management and Research Center, Department of Anesthesiology, MUMC+, Maastricht, The Netherlands
| |
Collapse
|
9
|
Griggs RB, Donahue RR, Adkins BG, Anderson KL, Thibault O, Taylor BK. Pioglitazone Inhibits the Development of Hyperalgesia and Sensitization of Spinal Nociresponsive Neurons in Type 2 Diabetes. THE JOURNAL OF PAIN 2016; 17:359-73. [PMID: 26687453 PMCID: PMC4791042 DOI: 10.1016/j.jpain.2015.11.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/13/2015] [Accepted: 11/25/2015] [Indexed: 12/21/2022]
Abstract
UNLABELLED Thiazolidinedione drugs (TZDs) such as pioglitazone are approved by the U.S. Food and Drug Administration for the treatment of insulin resistance in type 2 diabetes. However, whether TZDs reduce painful diabetic neuropathy (PDN) remains unknown. Therefore, we tested the hypothesis that chronic administration of pioglitazone would reduce PDN in Zucker Diabetic Fatty (ZDF(fa/fa) [ZDF]) rats. Compared with Zucker Lean (ZL(fa/+)) controls, ZDF rats developed: (1) increased blood glucose, hemoglobin A1c, methylglyoxal, and insulin levels; (2) mechanical and thermal hyperalgesia in the hind paw; (3) increased avoidance of noxious mechanical probes in a mechanical conflict avoidance behavioral assay, to our knowledge, the first report of a measure of affective-motivational pain-like behavior in ZDF rats; and (4) exaggerated lumbar dorsal horn immunohistochemical expression of pressure-evoked phosphorylated extracellular signal-regulated kinase. Seven weeks of pioglitazone (30 mg/kg/d in food) reduced blood glucose, hemoglobin A1c, hyperalgesia, and phosphorylated extracellular signal-regulated kinase expression in ZDF. To our knowledge, this is the first report to reveal hyperalgesia and spinal sensitization in the same ZDF animals, both evoked by a noxious mechanical stimulus that reflects pressure pain frequently associated with clinical PDN. Because pioglitazone provides the combined benefit of reducing hyperglycemia, hyperalgesia, and central sensitization, we suggest that TZDs represent an attractive pharmacotherapy in patients with type 2 diabetes-associated pain. PERSPECTIVE To our knowledge, this is the first preclinical report to show that: (1) ZDF rats exhibit hyperalgesia and affective-motivational pain concurrent with central sensitization; and (2) pioglitazone reduces hyperalgesia and spinal sensitization to noxious mechanical stimulation within the same subjects. Further studies are needed to determine the anti-PDN effect of TZDs in humans.
Collapse
Affiliation(s)
- Ryan B Griggs
- Department of Physiology, College of Medicine, University of Kentucky Medical Center, Lexington, Kentucky
| | - Renee R Donahue
- Department of Physiology, College of Medicine, University of Kentucky Medical Center, Lexington, Kentucky
| | - Braxton G Adkins
- Department of Physiology, College of Medicine, University of Kentucky Medical Center, Lexington, Kentucky
| | - Katie L Anderson
- Department of Pharmacology and Nutritional Science, College of Medicine, University of Kentucky Medical Center, Lexington, Kentucky
| | - Olivier Thibault
- Department of Pharmacology and Nutritional Science, College of Medicine, University of Kentucky Medical Center, Lexington, Kentucky
| | - Bradley K Taylor
- Department of Physiology, College of Medicine, University of Kentucky Medical Center, Lexington, Kentucky.
| |
Collapse
|
10
|
Yin DEH, Liang XC, Zhao LI, Zhang H, Sun Q, Wang PY, Sun LQ. Jinmaitong decreases sciatic nerve DNA oxidative damage and apoptosis in a streptozotocin-induced diabetic rat model. Exp Ther Med 2015; 10:778-786. [PMID: 26622393 DOI: 10.3892/etm.2015.2543] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 02/16/2015] [Indexed: 01/17/2023] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a common chronic complication of diabetes. Jinmaitong (JMT), a Traditional Chinese Medicine, improves certain symptoms of DPN, such as limb pain and numbness. The aim of the present study was to investigate the effects of JMT on DNA oxidative damage and apoptosis in the sciatic nerve of diabetic rats. The rats were divided into a normal and a diabetic group. Diabetes was induced using streptozotocin (60 mg/kg). The diabetic model (DM) rats received vitamin C (0.05 g/kg/day) or JMT [low-dosage (L), 0.44 g/kg/day; medium-dosage (M), 0.88 g/kg/day or high-dosage (H), 1.75 g/kg/day]. After 16 weeks, the mechanical pain threshold of the rats was evaluated. The expression of 8-hydroxy-deoxyguanosine (8-OHdG), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase p22phox, B-cell lymphoma 2 (Bcl-2), caspase 3 and cleaved-poly(ADP-ribose) polymerase 1 (PARP-1) in the sciatic nerve tissues was measured using the reverse transcription-quantitative polymerase chain reaction, immunohistochemistry and western blotting. JMT had no effect on body weight and fasting blood glucose levels. Following treatment, the rats in the JMT groups had an improved pain threshold compared with the DM controls (JMT-L, 52.9±6.5 g; JMT-M, 74.7±9.3 g; and JMT-H, 61.7±2.0 g vs. DM control, 35.32±12.06 g; all P<0.01), while the threshold in the JMT-M rats was similar to that of normal controls (P>0.05). 8-OHdG and NADPH oxidase p22phox expression was significantly decreased in the three JMT groups compared with that in the DM controls (all P<0.05). Following JMT treatment, Bcl-2 levels were increased, while caspase 3 and cleaved-PARP-1 levels were decreased compared with those in the DM controls (all P<0.01). In conclusion, JMT may reduce DNA oxidative damage to the sciatic nerve in diabetic rats, as well as regulate genes involved in peripheral neuronal cell apoptosis, suggesting that JMT could be used to prevent or treat DPN in diabetic patients.
Collapse
Affiliation(s)
- DE-Hai Yin
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Beijing 100032, P.R. China
| | - Xiao-Chun Liang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Beijing 100032, P.R. China
| | - L I Zhao
- Department of Nephrology and Endocrinology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Hong Zhang
- Cell Resource Center, School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| | - Qing Sun
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Beijing 100032, P.R. China
| | - Pu-Yan Wang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Beijing 100032, P.R. China
| | - Lian-Qing Sun
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Beijing 100032, P.R. China
| |
Collapse
|
11
|
Schreiber AK, Nones CFM, Reis RC, Chichorro JG, Cunha JM. Diabetic neuropathic pain: Physiopathology and treatment. World J Diabetes 2015; 6:432-444. [PMID: 25897354 PMCID: PMC4398900 DOI: 10.4239/wjd.v6.i3.432] [Citation(s) in RCA: 261] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/26/2014] [Accepted: 02/09/2015] [Indexed: 02/05/2023] Open
Abstract
Diabetic neuropathy is a common complication of both type 1 and type 2 diabetes, which affects over 90% of the diabetic patients. Although pain is one of the main symptoms of diabetic neuropathy, its pathophysiological mechanisms are not yet fully known. It is widely accepted that the toxic effects of hyperglycemia play an important role in the development of this complication, but several other hypotheses have been postulated. The management of diabetic neuropathic pain consists basically in excluding other causes of painful peripheral neuropathy, improving glycemic control as a prophylactic therapy and using medications to alleviate pain. First line drugs for pain relief include anticonvulsants, such as pregabalin and gabapentin and antidepressants, especially those that act to inhibit the reuptake of serotonin and noradrenaline. In addition, there is experimental and clinical evidence that opioids can be helpful in pain control, mainly if associated with first line drugs. Other agents, including for topical application, such as capsaicin cream and lidocaine patches, have also been proposed to be useful as adjuvants in the control of diabetic neuropathic pain, but the clinical evidence is insufficient to support their use. In conclusion, a better understanding of the mechanisms underlying diabetic neuropathic pain will contribute to the search of new therapies, but also to the improvement of the guidelines to optimize pain control with the drugs currently available.
Collapse
|
12
|
Hasanein P, Riahi H. Antinociceptive and antihyperglycemic effects of Melissa officinalis essential oil in an experimental model of diabetes. Med Princ Pract 2015; 24:47-52. [PMID: 25402675 PMCID: PMC5588194 DOI: 10.1159/000368755] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 09/30/2014] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE The efficacy of oral administration of Melissa officinalis essential oil (MOEO) on hyperalgesia was investigated using the formalin test in streptozotocin (STZ)-induced diabetic rats. MATERIALS AND METHODS Animals were divided into control, MOEO-treated control (0.01, 0.02 and 0.04 mg/day), diabetic and MOEO-treated diabetic (0.01, 0.02 and 0.04 mg/day) groups. Nociceptive testing was performed on male adult Wistar rats 4 weeks after the onset of hyperglycemia. At the end of the experiment, all rats were weighed and plasma glucose measurements were performed. RESULTS Diabetes was associated with significant hyperalgesia during both phases of the formalin test. MOEO (0.04 mg/day) completely reversed hyperalgesia in diabetic rats, while MOEO (0.02 and 0.04 mg/day) caused less intensive nociceptive behaviors during both phases of the test in control rats. MOEO at both high doses restored euglycemia and reduced the body weight of treated diabetic animals compared to untreated diabetic animals. The 0.01-mg dose of MOEO did not alter pain responses in the control or diabetic groups compared to their respective controls. CONCLUSIONS This study shows that chronic administration of MOEO displays efficacy in an experimental model of diabetic hyperalgesia. MOEO may therefore show promise as a treatment for painful diabetic neuropathy.
Collapse
Affiliation(s)
- Parisa Hasanein
- *Assoc. Prof. Dr. Parisa Hasanein, Department of Biology, School of Basic Sciences, Bu-Ali Sina University, Hamedan 65178-33391 (Iran), E-Mail
| | | |
Collapse
|
13
|
Hasanein P, Fazeli F. Role of naringenin in protection against diabetic hyperalgesia and tactile allodynia in male Wistar rats. J Physiol Biochem 2014; 70:997-1006. [PMID: 25407136 DOI: 10.1007/s13105-014-0369-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 11/09/2014] [Indexed: 10/24/2022]
Abstract
Hyperalgesia and allodynia are among the common manifestations of painful diabetic neuropathy. Naringenin (NA) has some biological activities, including anti-inflammatory, analgesic, and antidiabetic effects. We investigated the effects of NA administration at different doses, 20, 50, and 100 mg/kg, on streptozotocin (STZ)-induced hyperalgesia and allodynia in rats. The animals received saline or NA (20, 50, and 100 mg/kg, p.o.; once daily) for 8 weeks. Hyperalgesia was assessed by tail flick (TF) and formalin tests. Von Frey filaments were used for tactile allodynia evaluation. At the end, all rats were weighed and underwent plasma glucose and superoxide dismutase measurement. Diabetes caused significant hyperalgesia and allodynia during the above tests. NA 50 and 100 mg/kg reversed chemical and thermal hyperalgesia in diabetic rats. There were no significant differences in pain responses between NA (50 and 100 mg/kg)-treated diabetic rats and pregabalin-treated diabetic animals. Administration of NA 20 mg/kg did not alter pain-related behaviors in control and diabetic groups compared to the respective control ones. NA 50 and 100 mg/kg restored hyperglycemia as well as the decreased levels of (superoxide dismutase) SOD activity in diabetic rats. The body weight of treated diabetic rats increased significantly compared to untreated diabetics. Prolonged oral administration of NA (50 and 100 mg/kg) ameliorated some aspects of diabetic neuropathy by causing hypoglycemia and increasing the levels of antioxidant enzyme SOD. Therefore, NA makes a good candidate for treatment of diabetic neuropathy in clinical studies.
Collapse
Affiliation(s)
- Parisa Hasanein
- Department of Biology, School of Basic Sciences, Bu-Ali Sina University, Hamedan, 6517833391, Iran,
| | | |
Collapse
|
14
|
Abstract
More than half of all patients with diabetes develop neuropathic disorders affecting the distal sensory and/or motor nerves, or autonomic or cranial nerve functions. Glycemic control can decrease the incidence of neuropathy but is not adequate alone to prevent or treat the disease. This chapter introduces diabetic neuropathy with a morphological description of the disease then describes our current understanding of metabolic and molecular mechanisms that contribute to neurovascular dysfunctions. Key mechanisms include glucose and lipid imbalances and insulin resistance that are interconnected via oxidative stress, inflammation, and altered gene expression. These complex interactions should be considered for the development of new treatment strategies against the onset or progression of neuropathy. Advances in understanding the combined metabolic stressors and the novel study of epigenetics suggest new therapeutic targets to combat this morbid and intractable disease affecting millions of patients with type 1 or type 2 diabetes.
Collapse
|
15
|
Piaulino CA, Carvalho FCB, Almeida BC, Chaves MH, Almeida FRC, Brito SMRC. The stem bark extracts of Cenostigma macrophyllum attenuates tactile allodynia in streptozotocin-induced diabetic rats. PHARMACEUTICAL BIOLOGY 2013; 51:1243-1248. [PMID: 23844576 DOI: 10.3109/13880209.2013.786096] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
UNLABELLED CONTEXT. Cenostigma macrophyllum Tul. var. acuminata Teles Freire (Leguminosae- Caesalpinioideae) is popularly known as "caneleiro". Previous studies showed antioxidant action and analgesic effects of the ethanol extract from the leaves of C. macrophyllum. The phytochemical evaluation of the stem bark revealed the presence of antinociceptive compounds. OBJECTIVE To investigate the antinociceptive actions of the ethanol extract and ethyl acetate fraction from C. macrophyllum stem bark in streptozotocin (STZ)-induced diabetic rats and the involvement of opioid and nitrergic mechanisms. MATERIALS AND METHODS STZ-rats received the ethanol extract (E.EtOH 200 and 300 mg/kg, p.o.) during 5 weeks. In acute experiments, untreated diabetic rats were treated with the ethyl acetate fraction (F.EtOAc 250 and 500 mg/kg, p.o.), on the 28th day of diabetes induction when the opioid and nitrergic mechanisms were investigated. The mechanical nociceptive threshold (MNT) was determined by application of von Frey filaments. RESULTS Data show that STZ-induced diabetic rats developed a significant tactile allodynia during 5 weeks. Diabetic rats that received E.EtOH (200 and 300 mg/kg) and F.EtOAc (250 and 500 mg/kg) had a pain threshold higher than those in the STZ-vehicle group. F.EtOAc effects were inhibited by pretreatment with naloxone and were not influenced by .-arginine. DISCUSSION AND CONCLUSION The results suggest that the ethanol extract and ethyl acetate fraction of C. macrophyllum presented antinociceptive activity. Thus, F.EtOAc may be exerting its effect by affecting the opioid system, but nitrergic mechanisms are not detectable. The observed activity may be due to its gallic acid, lupeol and bergenin content.
Collapse
Affiliation(s)
- Celyane Alves Piaulino
- Department of Biochemistry and Pharmacology, Federal University of Piaui, Teresina-PI, Brazil
| | | | | | | | | | | |
Collapse
|
16
|
Cheng KI, Wang HC, Chuang YT, Chou CW, Tu HP, Yu YC, Chang LL, Lai CS. Persistent mechanical allodynia positively correlates with an increase in activated microglia and increased P-p38 mitogen-activated protein kinase activation in streptozotocin-induced diabetic rats. Eur J Pain 2013; 18:162-73. [PMID: 23868758 DOI: 10.1002/j.1532-2149.2013.00356.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND In experimental early painful diabetic neuropathy, persistent hyperglycaemia induces dys-regulated sodium channel (Navs) expression in the dorsal root ganglion (DRG) and activates microglia in the spinal dorsal horn (SDH). However, information on diabetes-induced chronic neuropathic pain is limited. Therefore, we investigated abnormal Navs in the DRG and activated glial cells in the SDH of diabetic rats with chronic neuropathic pain. METHODS Sixty-six rats were divided into diabetic and control groups: control rats (n = 18; 1 mL of normal saline via the right femoral vein) and diabetic rats [n = 48; 60 mg/kg streptozotocin (STZ) via the right femoral vein]. Hindpaw behavioural tests, Navs expression in the DRG, activation of glial cells in the SDH and the number of neurons in the SDH were measured at 1 and 2 weeks, and 1, 2, 3 and 6 months following saline and STZ administration. RESULTS All diabetic rats exhibited hyperglycaemia from day 7 to 6 months. The diabetic rats decreased withdrawal threshold to mechanical stimuli but had blunted responses to thermal stimuli. Consistent up-regulation of Nav1.3 and down-regulation of Nav1.8 was observed. Microglial cells were activated early in the SDH and lasted for 6 months. A positive correlation between mechanical allodynia, Nav1.3 and microglial activation was observed. In addition, microglia activation in the SDH of STZ-induced diabetes was mediated, in part, by phosphorylation of p-38 mitogen-activated protein kinase. CONCLUSIONS Diabetic rats showed hindpaw mechanical allodynia for 6 months. Persistent mechanical allodynia was positively associated with sustained increased activation of Nav1.3 and increased p38 phosphorylation in activated microglia.
Collapse
Affiliation(s)
- K-I Cheng
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Taiwan; Department of Anesthesiology, Kaohsiung Medical University Hospital, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Skapare E, Konrade I, Liepinsh E, Strele I, Makrecka M, Bierhaus A, Lejnieks A, Pirags V, Dambrova M. Association of reduced glyoxalase 1 activity and painful peripheral diabetic neuropathy in type 1 and 2 diabetes mellitus patients. J Diabetes Complications 2013; 27:262-7. [PMID: 23351995 DOI: 10.1016/j.jdiacomp.2012.12.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 11/30/2012] [Accepted: 12/08/2012] [Indexed: 12/31/2022]
Abstract
AIMS The present study was undertaken to investigate the relationship between glyoxalase 1 (Glo1) enzyme activity and painful diabetic neuropathy (DN) in patients with diabetes mellitus. METHODS Glo1 activity and biochemical markers were determined in blood samples from 108 patients with type 1 diabetes, 109 patients with type 2 diabetes, and 132 individuals without diabetes as a control. Painful and painless peripheral DN was assessed and multivariate regression analysis was used to determine independent association of Glo1 activity with occurrence of painful DN. RESULTS In patients with type 1 and type 2 diabetes mellitus and painful DN compared to patients with painless DN, Glo1 activity was significantly reduced by 12 and 14%, respectively. The increase in Glo1 activity was significantly associated with reduced occurrence of painful DN after adjusting for confounders by multivariate analysis. CONCLUSIONS Our results demonstrate for the first time that Glo1 activity is lower in patients with both types of diabetes mellitus who were diagnosed with painful DN. These data support the hypothesis that Glo1 activity modulates the phenotype of DN and warrant further investigation into the role of Glo1 in DN.
Collapse
Affiliation(s)
- Elina Skapare
- Latvian Institute of Organic Synthesis, Laboratory of Pharmaceutical Pharmacology, Riga, Latvia.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Pluijms WA, van Kleef M, Honig WM, Janssen SP, Joosten EA. The effect of spinal cord stimulation frequency in experimental painful diabetic polyneuropathy. Eur J Pain 2013; 17:1338-46. [PMID: 23609991 DOI: 10.1002/j.1532-2149.2013.00318.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2013] [Indexed: 01/07/2023]
Abstract
BACKGROUND Spinal cord stimulation (SCS) has been shown to be an effective treatment for painful diabetic polyneuropathy (PDP). An increase of efficacy is needed since only 67% of patients benefit from SCS. This study aimed to develop an animal model for SCS in PDP and study the effect of various stimulation frequencies on the functional outcome. As the pathophysiology of PDP is complex, including vasoconstriction and nerve injury, the frequency of SCS may result in different outcomes. METHODS Diabetes mellitus was induced by an intraperitoneal injection of streptozotocin in 8-week-old female Sprague-Dawley rats (n=76; glucose >15 mmol/L; n=51). A SCS device was implanted at level Th13 4 weeks later. SCS of the dorsal columns was applied for 30 min and the effect on mechanical hypersensitivity was evaluated. RESULTS Mechanical hypersensitivity developed in 26 rats, which were included (low-frequency, n=6; mid-frequency, n=8; high frequency, n=9; and sham, n=3). SCS of the dorsal columns was applied for 40 min, and the effect on mechanical hypersensitivity was evaluated. In all treatment groups, SCS resulted in reversal of mechanical hypersensitivity and a clinically relevant reduction was achieved in 70% of animals. No differences in efficacy were found between the different treatment groups. CONCLUSIONS The pain-relieving effect of SCS in PDP was studied in an experimental model. Our study shows that SCS on mechanical hypersensitivity in PDP rats is equally effective when applied at low, mid and high frequency.
Collapse
Affiliation(s)
- W A Pluijms
- Pain Management and Research Center, Department of Anesthesiology, Maastricht University Hospital, The Netherlands
| | | | | | | | | |
Collapse
|
19
|
Nones CFM, Reis RC, Jesus CHA, Veronez DADL, Cunha JM, Chichorro JG. Orofacial sensory changes after streptozotocin-induced diabetes in rats. Brain Res 2013; 1501:56-67. [PMID: 23313875 DOI: 10.1016/j.brainres.2013.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 12/06/2012] [Accepted: 01/03/2013] [Indexed: 12/12/2022]
Abstract
Peripheral neuropathy is a common complication of diabetes and is often accompanied by episodes of pain. There is evidence that diabetic neuropathy may affect the trigeminal nerve, altering the transmission of orofacial sensory information. Structural changes in the trigeminal ganglia may be involved in the development of these sensory alterations. Herein, we evaluate the development of orofacial sensory changes after streptozotocin-induced diabetes in rats, and their sensitivity to pregabalin and morphine treatments. Furthermore, stereological analysis of the trigeminal ganglia was performed. Diabetic rats showed similar responses to 1% formalin applied into the upper lip compared to normoglycemic rats on weeks 1, 2 and 4 after streptozotocin. Additionally, there was no difference in the facial mechanical threshold of normoglycemic and diabetic rats, on weeks 1 up to 5 after streptozotocin, while the paw mechanical threshold of diabetic rats was significantly reduced. In contrast, diabetic rats developed long-lasting orofacial heat and cold hyperalgesia. Moreover, stereological analyses revealed significant neuronal loss in the trigeminal ganglia of diabetic compared to normoglycemic rats. Pregabalin treatment (30mg/kg, p.o.) of diabetic rats resulted in marked and prolonged (up to 6h) reduction of heat and cold orofacial hyperalgesia. Likewise, morphine treatment (2.5mg/kg, s.c.) abolished orofacial heat and cold hyperalgesia, but its effect was significant only up to 1h after the administration. In conclusion, the results of the present study demonstrated that streptozotocin-treated rats developed long-lasting orofacial heat and cold hyperalgesia, which is more amenable to reduction by pregabalin than morphine.
Collapse
|
20
|
Shi L, Zhang HH, Xiao Y, Hu J, Xu GY. Electroacupuncture suppresses mechanical allodynia and nuclear factor κ B signaling in streptozotocin-induced diabetic rats. CNS Neurosci Ther 2012; 19:83-90. [PMID: 23230847 DOI: 10.1111/cns.12035] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 10/21/2012] [Accepted: 10/22/2012] [Indexed: 11/27/2022] Open
Abstract
AIMS To investigate whether electroacupuncture (EA) produced analgesic effect and whether nuclear factor kappa B (NF-κB) and cystathionine β synthase (CBS) involved in EA-mediated analgesia in painful diabetic neuropathy in rats. METHODS Diabetes was induced by an intraperitoneal injection of streptozotocin (STZ) in adult female rats. Mechanical pain threshold was measured by von Frey filaments. EA was applied at acupoint Zu-San-Li (ST-36) in both hindlimbs. Western blot analysis was employed to detect changes in protein levels of NF-κB and CBS in spinal dorsal root ganglion (DRGs). RESULTS Mechanical allodynia was developed 2 weeks after STZ injection and lasted for another 4 weeks. STZ injection significantly enhanced expression of p65 and CBS in lumbar L4-6 DRGs when compared with age-matched controls. EA markedly attenuated mechanical allodynia. Importantly, EA treatment remarkably inhibited p65 and CBS expression in DRGs. Additionally, intrathecal injection of the p65 antagonist pyrrolidine dithiocarbamate attenuated mechanical allodynia and markedly inhibited CBS expression in DRGs in STZ rats. CONCLUSIONS These data indicate that EA produced an analgesic effect, which might be mediated at least in a part by inhibition of NF-κB signaling pathway in primary sensory neurons in rats with diabetes.
Collapse
Affiliation(s)
- Lei Shi
- Department of Endocrinology, the Second Affiliated Hospital, Soochow University, Suzhou, China
| | | | | | | | | |
Collapse
|
21
|
Acute augmentation of epoxygenated fatty acid levels rapidly reduces pain-related behavior in a rat model of type I diabetes. Proc Natl Acad Sci U S A 2012; 109:11390-5. [PMID: 22733772 DOI: 10.1073/pnas.1208708109] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The nerve damage occurring as a consequence of glucose toxicity in diabetes leads to neuropathic pain, among other problems. This pain dramatically reduces the quality of life in afflicted patients. The progressive damage to the peripheral nervous system is irreversible although strict control of hyperglycemia may prevent further damage. Current treatments include tricyclic antidepressants, anticonvulsants, and opioids, depending on the severity of the pain state. However, available therapeutics have drawbacks, arguing for the need to better understand the pathophysiology of neuropathic pain and develop novel treatments. Here we demonstrate that stabilization of a class of bioactive lipids, epoxygenated fatty acids (EpFAs), greatly reduces allodynia in rats caused by streptozocin-induced type I diabetes. Inhibitors of the soluble epoxide hydrolase (sEHI) elevated and stabilized the levels of plasma and spinal EpFAs, respectively, and generated dose-dependent antiallodynic effects more potently and efficaciously than gabapentin. In acute experiments, positive modulation of EpFAs did not display differences in insulin sensitivity, glucose tolerance, or insulin secretion, indicating the efficacy of sEHIs are not related to the glycemic status. Quantitative metabolomic analysis of a panel of 26 bioactive lipids demonstrated that sEHI-mediated antiallodynic effects coincided with a selective elevation of the levels of EpFAs in the plasma, and a decrease in degradation products coincided with the dihydroxy fatty acids in the spinal cord. Overall, these results argue that further efforts in understanding the spectrum of effects of EpFAs will yield novel opportunities in treating neuropathic pain.
Collapse
|
22
|
Transplantation of bone marrow-derived mononuclear cells improves mechanical hyperalgesia, cold allodynia and nerve function in diabetic neuropathy. PLoS One 2011; 6:e27458. [PMID: 22125614 PMCID: PMC3220696 DOI: 10.1371/journal.pone.0027458] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 10/17/2011] [Indexed: 01/19/2023] Open
Abstract
Relief from painful diabetic neuropathy is an important clinical issue. We have previously shown that the transplantation of cultured endothelial progenitor cells or mesenchymal stem cells ameliorated diabetic neuropathy in rats. In this study, we investigated whether transplantation of freshly isolated bone marrow-derived mononuclear cells (BM-MNCs) alleviates neuropathic pain in the early stage of streptozotocin-induced diabetic rats. Two weeks after STZ injection, BM-MNCs or vehicle saline were injected into the unilateral hind limb muscles. Mechanical hyperalgesia and cold allodynia in SD rats were measured as the number of foot withdrawals to von Frey hair stimulation and acetone application, respectively. Two weeks after the BM-MNC transplantation, sciatic motor nerve conduction velocity (MNCV), sensory nerve conduction velocity (SNCV), sciatic nerve blood flow (SNBF), mRNA expressions and histology were assessed. The BM-MNC transplantation significantly ameliorated mechanical hyperalgesia and cold allodynia in the BM-MNC-injected side. Furthermore, the slowed MNCV/SNCV and decreased SNBF in diabetic rats were improved in the BM-MNC-injected side. BM-MNC transplantation improved the decreased mRNA expression of NT-3 and number of microvessels in the hind limb muscles. There was no distinct effect of BM-MNC transplantation on the intraepidermal nerve fiber density. These results suggest that autologous transplantation of BM-MNCs could be a novel strategy for the treatment of painful diabetic neuropathy.
Collapse
|
23
|
Bishnoi M, Bosgraaf CA, Abooj M, Zhong L, Premkumar LS. Streptozotocin-induced early thermal hyperalgesia is independent of glycemic state of rats: role of transient receptor potential vanilloid 1(TRPV1) and inflammatory mediators. Mol Pain 2011; 7:52. [PMID: 21794120 PMCID: PMC3157448 DOI: 10.1186/1744-8069-7-52] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 07/27/2011] [Indexed: 12/23/2022] Open
Abstract
Background Streptozotocin (STZ) is used as a common tool to induce diabetes and to study diabetes-induced complications including diabetic peripheral neuropathy (DPN). Previously, we have reported that STZ induces a direct effect on neurons through expression and function of the Transient receptor potential vanilloid 1 (TRPV1) channel in sensory neurons resulting in thermal hyperalgesia, even in non-diabetic STZ-treated mice. In the present study, we investigated the role of expression and function of TRPV1 in the central sensory nerve terminals in the spinal cord in STZ-induced hyperalgesia in rats. Results We found that a proportion of STZ-treated rats were normoglycemic but still exhibited thermal hyperalgesia and mechanical allodynia. Immunohistochemical data show that STZ treatment, irrespective of glycemic state of the animal, caused microglial activation and increased expression of TRPV1 in spinal dorsal horn. Further, there was a significant increase in the levels of pro-inflammatory mediators (IL-1β, IL-6 and TNF-α) in spinal cord tissue, irrespective of the glycemic state. Capsaicin-stimulated release of calcitonin gene related peptide (CGRP) was significantly higher in the spinal cord of STZ-treated animals. Intrathecal administration of resiniferatoxin (RTX), a potent TRPV1 agonist, significantly attenuated STZ-induced thermal hyperalgesia, but not mechanical allodynia. RTX treatment also prevented the increase in TRPV1-mediated neuropeptide release in the spinal cord tissue. Conclusions From these results, it is concluded that TRPV1 is an integral component of initiating and maintaining inflammatory thermal hyperalgesia, which can be alleviated by intrathecal administration of RTX. Further, the results suggest that enhanced expression and inflammation-induced sensitization of TRPV1 at the spinal cord may play a role in central sensitization in STZ-induced neuropathy.
Collapse
Affiliation(s)
- Mahendra Bishnoi
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, 62702, USA
| | | | | | | | | |
Collapse
|
24
|
Nirogi R, Jabaris SL, Jayarajan P, Abraham R, Shanmuganathan D, Rasheed MA, Royapalley PK, Goura V. Antinociceptive activity of α4β2* neuronal nicotinic receptor agonist A-366833 in experimental models of neuropathic and inflammatory pain. Eur J Pharmacol 2011; 668:155-62. [PMID: 21756895 DOI: 10.1016/j.ejphar.2011.06.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 06/02/2011] [Accepted: 06/15/2011] [Indexed: 01/12/2023]
Abstract
Nerve injury, diabetes and cancer therapies are often associated with painful neuropathy. The mechanism underlying neuropathic pain remains poorly understood. The current therapies have limited efficacy and are associated with dose-limiting side effects. Compounds which act at nicotinic acetylcholine receptors have also been reported to show antinociceptive activity. Among those, tebanicline (ABT-594) a potent nicotinic acetylcholine receptor agonist demonstrated analgesic effects across a broad range of preclinical models of nociceptive and neuropathic pain. Another nicotinic acetylcholine receptor agonist, 5-[(1R,5S)-3,6-Diazabicyclo[3.2.0]heptan-6-yl]nicotinonitrile (A-366833) from the same group produced significant antinociceptive effects in writhing pain (abdominal constriction), acute thermal pain (hot box), persistent chemical pain (formalin induced) and neuropathic pain. In the present study, we have demonstrated the efficacy of A-366833 in rat models of chronic constriction injury, partial sciatic nerve ligation, spinal nerve ligation, diabetes, chemotherapy induced neuropathic pain and complete Freund's adjuvant induced inflammatory pain. A-366833 (1, 3 and 6 mg/kg) produced significant antihyperalgesic effects in partial sciatic nerve ligation, chronic constriction injury and spinal nerve ligation models. In the diabetic and chemotherapy induced neuropathic models compound exerted antinociceptive activity and reduction in the mechanical hyperalgesia was observed. A-366833 dose dependently attenuated mechanical hyperalgesia in complete Freund's adjuvant induced inflammatory pain model. These results demonstrated broad-spectrum antinociceptive properties of A-366833 in both neuropathic and inflammatory pain models.
Collapse
Affiliation(s)
- Ramakrishna Nirogi
- Department of Pharmacology, Discovery Research, Suven Life Sciences Ltd, Serene Chambers, Road No 5, Avenue-7, Banjara Hills, Hyderabad, 500034, India.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Otto KJ, Wyse BD, Cabot PJ, Smith MT. Insulin Implants Prevent the Temporal Development of Mechanical Allodynia and Opioid Hyposensitivity for 24-Wks in Streptozotocin (STZ)-Diabetic Wistar Rats. PAIN MEDICINE 2011; 12:782-93. [DOI: 10.1111/j.1526-4637.2011.01102.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Fuchs D, Birklein F, Reeh PW, Sauer SK. Sensitized peripheral nociception in experimental diabetes of the rat. Pain 2010; 151:496-505. [PMID: 20832942 DOI: 10.1016/j.pain.2010.08.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 07/07/2010] [Accepted: 08/07/2010] [Indexed: 12/13/2022]
Abstract
Painful neuropathy is a common complication of diabetes. Particularly in the early stage of diabetic neuropathy, patients are characterized by burning feet, hyperalgesia to heat, and mechanical stimuli, as if residual nociceptors were sensitized. Such symptoms are barely explained by common pathophysiological concepts of diabetic neuropathy. Diabetes was induced in Wistar rats by streptozotocin (STZ). After 4 weeks behavioral testing (Plantar test, Randall-Selitto) was conducted. Basal and stimulated release of calcitonin gene-related peptide (CGRP), Substance P (SP) and prostaglandin E(2) (PGE(2)) from isolated skin and sciatic nerve were assessed by enzyme immunoassays. Electrophysiological properties of identified nociceptors under hyperglycemic, hypoxic, and acidotic conditions were investigated using the skin-nerve preparation. The diabetic rats showed hyperalgesia to heat and pressure stimulation. The basal CGRP/SP release was reduced, but chemical stimulation with bradykinin induced greater release of SP, CGRP and PGE(2) than in control animals. In contrast, capsaicin-stimulated CGRP release was reduced in sciatic nerves. Hypoxia per se lowered von Frey thresholds of most C-nociceptors to half. Hyperglycemic hypoxia induced ongoing discharge in all diabetic but not control C-fibers which was further enhanced under acidosis. Sensory and neurosecretory nociceptor functions are sensitized in diabetes. Diabetic C-fibers show exaggerated sensitivity to hyperglycemic hypoxia with and without additional acidosis, conditions that are thought to mimic ischemic episodes in diabetic nerves. Ongoing C-fiber discharge is known to induce spinal sensitization. Together with altered receptor and ion channel expressions this may contribute to painful episodes in diabetic neuropathy.
Collapse
Affiliation(s)
- D Fuchs
- Department of Physiology & Pathophysiology, University of Erlangen/Nürnberg, Universitätsstr. 17, D-91054 Erlangen, Germany Department of Neurology, University Medical Centre Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | | | | | | |
Collapse
|
27
|
Obrosova IG. Diabetic painful and insensate neuropathy: pathogenesis and potential treatments. Neurotherapeutics 2009; 6:638-47. [PMID: 19789069 PMCID: PMC5084286 DOI: 10.1016/j.nurt.2009.07.004] [Citation(s) in RCA: 203] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2009] [Accepted: 07/09/2009] [Indexed: 12/31/2022] Open
Abstract
Advanced peripheral diabetic neuropathy (PDN) is associated with elevated vibration and thermal perception thresholds that progress to sensory loss and degeneration of all fiber types in peripheral nerve. A considerable proportion of diabetic patients also describe abnormal sensations such as paresthesias, allodynia, hyperalgesia, and spontaneous pain. One or several manifestations of abnormal sensation and pain are described in all the diabetic rat and mouse models studied so far (i.e., streptozotocin-diabetic rats and mice, type 1 insulinopenic BB/Wor and type 2 hyperinsulinemic diabetic BBZDR/Wor rats, Zucker diabetic fatty rats, and nonobese diabetic, Akita, leptin- and leptin-receptor-deficient, and high-fat diet-fed mice). Such manifestations are 1) thermal hyperalgesia, an equivalent of a clinical phenomenon described in early PDN; 2) thermal hypoalgesia, typically present in advanced PDN; 3) mechanical hyperalgesia, an equivalent of pain on pressure in early PDN; 4) mechanical hypoalgesia, an equivalent to the loss of sensitivity to mechanical noxious stimuli in advanced PDN; 5) tactile allodynia, a painful perception of a light touch; and 5) formalin-induced hyperalgesia. Rats with short-term diabetes develop painful neuropathy, whereas those with longer-term diabetes and diabetic mice typically display manifestations of both painful and insensate neuropathy, or insensate neuropathy only. Animal studies using pharmacological and genetic approaches revealed important roles of increased aldose reductase, protein kinase C, and poly(ADP-ribose) polymerase activities, advanced glycation end-products and their receptors, oxidative-nitrosative stress, growth factor imbalances, and C-peptide deficiency in both painful and insensate neuropathy. This review describes recent achievements in studying the pathogenesis of diabetic neuropathic pain and sensory disorders in diabetic animal models and developing potential pathogenetic treatments.
Collapse
Affiliation(s)
- Irina G Obrosova
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana 70808, USA.
| |
Collapse
|
28
|
Cunha JM, Funez MI, Cunha FQ, Parada CA, Ferreira SH. Streptozotocin-induced mechanical hypernociception is not dependent on hyperglycemia. Braz J Med Biol Res 2009; 42:197-206. [PMID: 19274348 DOI: 10.1590/s0100-879x2009000200008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Accepted: 12/08/2008] [Indexed: 11/22/2022] Open
Abstract
Since streptozotocin (STZ)-induced diabetes is a widely used model of painful diabetic neuropathy, the aim of the present study was to design a rational protocol to investigate whether the development of mechanical hypernociception induced by STZ depends exclusively on hyperglycemia. Male Wistar rats (180-200 g; N = 6-7 per group) received a single intravenous injection of STZ at three different doses (10, 20, or 40 mg/kg). Only the higher dose (40 mg/kg) induced a significant increase in blood glucose levels, glucose tolerance and deficiency in weight gain. However, all STZ-treated rats (hyperglycemic or not) developed persistent (for at least 20 days) and indistinguishable bilateral mechanical hypernociception that was not prevented by daily insulin treatment (2 IU twice a day, sc). Systemic morphine (2 mg/kg) but not local (intraplantar) morphine treatment (8 microg/paw) significantly inhibited the mechanical hypernociception induced by STZ (10 or 40 mg/kg). In addition, intraplantar injection of STZ at doses that did not cause hyperglycemia (30, 100 or 300 microg/paw) induced ipsilateral mechanical hypernociception for at least 8 h that was inhibited by local and systemic morphine treatment (8 microg/paw or 2 mg/kg, respectively), but not by dexamethasone (1 mg/kg, sc). The results of this study demonstrate that systemic administration of STZ induces mechanical hypernociception that does not depend on hyperglycemia and intraplantar STZ induces mechanical sensitization of primary sensory neurons responsive to local morphine treatment.
Collapse
Affiliation(s)
- J M Cunha
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | | | | | | | | |
Collapse
|
29
|
Guidance of block needle insertion by electrical nerve stimulation: a pilot study of the resulting distribution of injected solution in dogs. Anesthesiology 2008; 109:473-8. [PMID: 18719445 DOI: 10.1097/aln.0b013e318182af0b] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Little is known regarding the final needle tip location when various intensities of nerve stimulation are used to guide block needle insertion. Therefore, in control and hyperglycemic dogs, the authors examined whether lower-intensity stimulation results in injection closer to the sciatic nerve than higher-threshold stimulation. METHODS During anesthesia, the sciatic nerve was approached with an insulated nerve block needle emitting either 1 mA (high-current group, n = 9) or 0.5 mA (low-current group, n = 9 in control dogs and n = 6 in hyperglycemic dogs). After positioning to obtain a distal motor response, the lowest current producing a response was identified, and ink (0.5 ml) was injected. Frozen sections of the tissue revealed whether the ink was in contact with the epineurium of the nerve, distant to it, or within it. RESULTS In control dogs, the patterns of distribution using high-threshold (final current 0.99 +/- 0.03 mA, mean +/- SD) and low-threshold (final current 0.33 +/- 0.08 mA) stimulation equally showed ink that was in contact with the epineurium or distant to it. One needle placement in the high-threshold group resulted in intraneural injection. In hyperglycemic dogs, all needle insertions used a low-threshold technique (n = 6, final threshold 0.35 +/- 0.08 mA), and all resulted in intraneural injections. CONCLUSIONS In normal dogs, current stimulation levels in the range of 0.33-1.0 mA result in needle placement comparably close to the sciatic nerve but do not correlate with distance from the target nerve. In this experimental design, low-threshold electrical stimulation does not offer satisfactory protection against intraneural injection in the presence of hyperglycemia.
Collapse
|
30
|
Liu HR, Tang XY, Dai DZ, Dai Y. Ethanol extracts of Rehmannia complex (Di Huang) containing no Corni fructus improve early diabetic nephropathy by combining suppression on the ET-ROS axis with modulate hypoglycemic effect in rats. JOURNAL OF ETHNOPHARMACOLOGY 2008; 118:466-472. [PMID: 18585879 DOI: 10.1016/j.jep.2008.05.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 04/21/2008] [Accepted: 05/16/2008] [Indexed: 05/26/2023]
Abstract
AIM Liuwei Dihuang (Rehmannia complex, RC) decoction, a classic prescription of Traditional Chinese Medicine (TCM), has been used in treating diabetic nephropathy (DN). Among the 6 crude medicines which contains Corni fructus is recognized as the active fraction for its effectiveness. We aimed to investigate, first, if without Corni fructus a modified RC could be still effective, second, if the ethanol extracts could be better than that of water extract and third, the beneficial effect is mainly stemmed from suppressing the endothelin (ET-1) pathway associated with a moderate hypoglycemic effect. METHODS AND MATERIALS Diabetes for 8 weeks was induced by a single dose of streptozotocin (STZ, 65 mg/kg, i.p.) in rats and treated with RC extracts in either 95%, 70% ethanol or water separately during 5-8th week. The efficacy of extracts was compared with aminoguanidine (AMG). RESULTS An increase in albumin and creatinine in 24h urine, blood urea nitrogen (BUN) was found in STZ rats. Oxidative stress was found in renal cortex in association with upregulated plasma ET-1 and mRNA of ETA, decreased MMP 2,9 (matrix matelloproteinases) and increased hydroxyproline. CONCLUSIONS The RC without Corni fructus was very effective in alleviating DN and ethanol extracts provided greater effects against water extracts. The efficacy in alleviating DN is attributed to normalizing the activated ET system, oxidative stress and MMP 2,9 in combination with a moderate hypoglycemic activity.
Collapse
Affiliation(s)
- Hao-Ran Liu
- Research Division of Pharmacology, China Pharmaceutical University, Nanjing, China
| | | | | | | |
Collapse
|
31
|
Abstract
Neurons have a constantly high glucose demand, and unlike muscle cells they cannot accommodate episodic glucose uptake under the influence of insulin. Neuronal glucose uptake depends on the extracellular concentration of glucose, and cellular damage can ensue after persistent episodes of hyperglycaemia--a phenomenon referred to as glucose neurotoxicity. This article reviews the pathophysiological manifestation of raised glucose in neurons and how this can explain the major components of diabetic neuropathy.
Collapse
Affiliation(s)
- David R Tomlinson
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| | | |
Collapse
|
32
|
Bujalska M, Tatarkiewicz J, Gumułka SW. Effect of Bradykinin Receptor Antagonists on Vincristine- and Streptozotocin-Induced Hyperalgesia in a Rat Model of Chemotherapy-Induced and Diabetic Neuropathy. Pharmacology 2007; 81:158-63. [DOI: 10.1159/000110788] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Accepted: 08/06/2007] [Indexed: 11/19/2022]
|
33
|
Bujalska M, Tatarkiewicz J, de Cordé A, Gumułka SW. Effect of Cyclooxygenase and Nitric Oxide Synthase Inhibitors on Streptozotocin-Induced Hyperalgesia in Rats. Pharmacology 2007; 81:151-7. [DOI: 10.1159/000110787] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Accepted: 06/29/2007] [Indexed: 01/11/2023]
|
34
|
Dobretsov M, Ghaleb AH, Romanovsky D, Pablo CS, Stimers JR. Impaired insulin signaling as a potential trigger of pain in diabetes and prediabetes. Int Anesthesiol Clin 2007; 45:95-105. [PMID: 17426511 DOI: 10.1097/aia.0b013e31803419c3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Maxim Dobretsov
- Department of Anesthesiology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA.
| | | | | | | | | |
Collapse
|
35
|
Abstract
Peripheral neuropathy, and specifically distal peripheral neuropathy (DPN), is one of the most frequent and troublesome complications of diabetes mellitus. It is the major reason for morbidity and mortality among diabetic patients. It is also frequently associated with debilitating pain. Unfortunately, our knowledge of the natural history and pathogenesis of this disease remains limited. For a long time hyperglycemia was viewed as a major, if not the sole factor, responsible for all symptomatic presentations of DPN. Multiple clinical observations and animal studies supported this view. The control of blood glucose as an obligatory step of therapy to delay or reverse DPN is no longer an arguable issue. However, while supporting evidence for the glycemic hypothesis has accumulated, multiple controversies accumulated as well. It is obvious now that DPN cannot be fully understood without considering factors besides hyperglycemia. Some symptoms of DPN may develop with little, if any, correlation with the glycemic status of a patient. It is also clear that identification of these putative non-glycemic mechanisms of DPN is of utmost importance for our understanding of failures with existing treatments and for the development of new approaches for diagnosis and therapy of DPN. In this work we will review the strengths and weaknesses of the glycemic hypothesis, focusing on clinical and animal data and on the pathogenesis of early stages and triggers of DPN other than hyperglycemia.
Collapse
Affiliation(s)
- Maxim Dobretsov
- Department of Anesthesiology, Slot 515, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, United States.
| | | | | |
Collapse
|
36
|
Torres-López JE, Juárez-Rojop IE, Granados-Soto V, Diaz-Zagoya JC, Flores-Murrieta FJ, Ortíz-López JUS, Cruz-Vera J. Peripheral participation of cholecystokinin in the morphine-induced peripheral antinociceptive effect in non-diabetic and diabetic rats. Neuropharmacology 2006; 52:788-95. [PMID: 17157334 DOI: 10.1016/j.neuropharm.2006.09.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 09/12/2006] [Accepted: 09/25/2006] [Indexed: 10/23/2022]
Abstract
The effects of cholecystokinin (CCK-8) and the CCK receptor antagonist proglumide, on antinociception induced by local peripheral (subcutaneous) injected morphine in non-diabetic (ND) and streptozotocin-induced diabetic (D) rats, were examined by means of the formalin test. Morphine induced dose-dependent antinociception both in ND and D rats. However, in D rats, antinociceptive morphine potency was about twofold less than in ND rats. Pre-treatment with CCK-8 abolished the antinociceptive effect of morphine in a dose-dependent manner in both groups of rats. Additionally, proglumide enhanced the antinociceptive effect induced by all doses of morphine tested. Both CCK-8 and proglumide had no effect on flinching behaviour when given alone to ND rats. Unlike ND rats, in D rats proglumide produced dose-dependent antinociception and CCK-8 enhanced formalin-evoked flinches, as observed during the second phase of the test. In conclusion, our data show a decrease in peripheral antinociceptive potency of morphine when diabetes was present. Additionally, peripheral CCK plays an antagonic role to the peripheral antinociceptive effect of morphine, additional to the well known CCK/morphine interaction at spinal and supraspinal level.
Collapse
Affiliation(s)
- Jorge E Torres-López
- Laboratorio Mecanismos del Dolor, Centro de Investigación y Posgrado, División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico.
| | | | | | | | | | | | | |
Collapse
|
37
|
Romanovsky D, Cruz NF, Dienel GA, Dobretsov M. Mechanical hyperalgesia correlates with insulin deficiency in normoglycemic streptozotocin-treated rats. Neurobiol Dis 2006; 24:384-94. [PMID: 16935517 DOI: 10.1016/j.nbd.2006.07.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 07/20/2006] [Accepted: 07/21/2006] [Indexed: 11/29/2022] Open
Abstract
The triggers and pathogenesis of peripheral diabetic neuropathy are poorly understood, and this study evaluated the role of insulinopenia in nociceptive abnormalities in the streptozotocin (STZ) rat model of diabetes to test the hypothesis that, in addition to hyperglycemia, impairment of insulin signaling may be involved in progression of neuropathy. We measured blood glucose, plasma insulin, and sciatic nerve glucose and sorbitol levels, and withdrawal thresholds for hind limb pressure pain and heat pain in STZ-injected rats that developed hyperglycemia or remained normoglycemic. The pressure pain threshold did not change in vehicle-injected controls, but during the 2 weeks after STZ, it decreased by 25-40% in STZ-hyperglycemic and STZ-normoglycemic animals (P<0.05). Mean heat pain threshold did not change in STZ-normoglycemic rats, but increased by about 1.5 degrees C in STZ-hyperglycemic rats (P<0.05). These pain thresholds did not correlate with blood or nerve glucose or sorbitol levels, but both correlated with plasma insulin level in STZ-normoglycemic rats, and low-dose insulin replacement normalized the pressure threshold without affecting blood glucose level. Thus, at least one of early signs of diabetic neuropathy in STZ-treated rats, mechanical hyperalgesia, can be triggered by moderate insulinopenia, irrespective of glycemic status of the animals.
Collapse
Affiliation(s)
- Dmitry Romanovsky
- Department of Anesthesiology, University of Arkansas for Medical Sciences, 4301 West Markham St., Little Rock, AR 72205, USA
| | | | | | | |
Collapse
|
38
|
Hasanein P, Parviz M, Keshavarz M, Javanmardi K, Mansoori M, Soltani N. Oral magnesium administration prevents thermal hyperalgesia induced by diabetes in rats. Diabetes Res Clin Pract 2006; 73:17-22. [PMID: 16417942 DOI: 10.1016/j.diabres.2005.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2005] [Accepted: 12/05/2005] [Indexed: 12/15/2022]
Abstract
BACKGROUND Peripheral neuropathy is a common complication of diabetes mellitus. It has been shown that hyperglycemia may contribute to its development but the exact pathophysiology underlying this complication is not fully understood. Since oral magnesium supplementation can normalize hyperglycemia induced by diabetes in rats, this study was designed to examine the effect of oral magnesium administration on thermal hyperalgesia in streptozocin-induced diabetic rats. MATERIAL AND METHODS Twenty-four male adult wistar rats were divided equally into control, magnesium-treated control, diabetic and magnesium-treated diabetic groups. In magnesium-treated diabetic rats, magnesium sulfate (10g/l) was added into the drinking water once diabetes was established (10 days after STZ injection) and continued for 8 weeks. Mg-treated control animals received magnesium sulfate in the same dose and over the same time period. The other two groups; control and diabetic animals, only received tap water. At the end of the 8 weeks, thermal pain threshold was assessed by tail flick test and magnesium and glucose plasma levels were measured in all groups. RESULT A significant decrease (p<0.001) in thermal pain threshold and plasma magnesium levels and an increase in plasma glucose levels (p<0.001) were seen in diabetic rats 8 weeks after diabetes induction. After 8 weeks of oral magnesium, thermal hyperalgesia was normalized and plasma magnesium and glucose levels were restored towards normal. CONCLUSION It is concluded that oral magnesium administration given at the time of diabetes induction may be able to restore thermal hyperalgesia, magnesium deficiency and hyperglycemia and in diabetic rats.
Collapse
Affiliation(s)
- Parisa Hasanein
- Department of Biology, Bu-Ali Sina University, Hamadan, Iran
| | | | | | | | | | | |
Collapse
|
39
|
Gabra BH, Benrezzak O, Pheng LH, Duta D, Daull P, Sirois P, Nantel F, Battistini B. Inhibition of Type 1 Diabetic Hyperalgesia in Streptozotocin-Induced Wistar versus Spontaneous Gene-Prone BB/Worchester Rats: Efficacy of a Selective Bradykinin B1Receptor Antagonist. J Neuropathol Exp Neurol 2005; 64:782-9. [PMID: 16141788 DOI: 10.1097/01.jnen.0000178448.79713.5f] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Insulin-dependent type 1 diabetes (T1D) is linked to a series of complications, including painful diabetic neuropathy (PDN). Several neurovascular systems are activated in T1D, including the inducible bradykinin (BK) B1 receptor (BKB1-R) subtype. We assessed and compared the efficacy profile of a selective BKB1-R antagonist on hyperalgesia in 2 models of T1D: streptozotocin (STZ) chemically induced diabetic Wistar rats and spontaneous BioBreeding/Worchester diabetic-prone (BB/Wor-DP) rats. Nociception was measured using the hot plate test to determine thermal hyperalgesia. STZ diabetic rats developed maximal hyperalgesia (35% decrease in their hot plate reaction time) within a week and remained in such condition and degree for up to 4 weeks postinjection. BB/Wor-DP rats also developed hyperalgesia over time that preceded hyperglycemia, starting at the age of 6 weeks (9% decrease in the hot plate reaction time) and stabilizing over the age of 16 to 24 weeks to a maximum (60% decrease in the hot plate reaction time). Single, acute subcutaneous administration of the selective BKB1-R antagonist induced significant time- and dose-dependent attenuation of hyperalgesia in both STZ diabetic and BB/Wor-DP rats. Thus, selective antagonism of the inducible BKB1-R subtype may constitute a novel and potential therapeutic approach for the treatment of PDN.
Collapse
Affiliation(s)
- Bichoy H Gabra
- Department of Pharmacology, Faculty of Medicine, University of Sherbrooke, Canada
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Romanovsky D, Hastings SL, Stimers JR, Dobretsov M. Relevance of hyperglycemia to early mechanical hyperalgesia in streptozotocin-induced diabetes. J Peripher Nerv Syst 2004; 9:62-9. [PMID: 15104693 DOI: 10.1111/j.1085-9489.2004.009204.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A modified von Frey filament test and an algesiometer paw pressure test were used to measure mechanical nociceptive withdrawal thresholds of the hind limb of control rats and rats injected with streptozotocin (STZ, 50 mg/kg). STZ treatment induced hyperglycemia (HG rats) in about 40% of treated animals. The rest of the STZ-treated and control rats remained normoglycemic (NG rats) throughout the entire experiment. No indications of mechanical hyperalgesia were observed in control groups of animals injected with physiological buffer only. However, both the behavioral tests used detected a 15-30% decrease in the mechanical nociceptive threshold of rats treated with STZ. Furthermore, mechanical nociceptive threshold changes were statistically indistinguishable between NG and HG rats. Glucose tolerance test did not reveal abnormalities of glucose metabolism in NG rats (compared to control animals). However, 1 week after STZ injection, the serum insulin level of NG rats was significantly lower than that of age-matched control rats (0.81 +/- 0.16 vs. 3.5 +/- 0.4 ng/mL; p < 0.01). These data strongly argue that systemic hyperglycemia is not the only factor triggering the development of mechanical hyperalgesia in the STZ rat model of diabetes. Other than hyperglycemia, consequences of insulinemia or insulinemia itself may play an important role in early impairment of mechanical nociception in this animal model.
Collapse
Affiliation(s)
- Dmitry Romanovsky
- Department of Anesthesiology, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7101, USA
| | | | | | | |
Collapse
|
41
|
Calcutt NA, Freshwater JD, Mizisin AP. Prevention of sensory disorders in diabetic Sprague-Dawley rats by aldose reductase inhibition or treatment with ciliary neurotrophic factor. Diabetologia 2004; 47:718-24. [PMID: 15298349 DOI: 10.1007/s00125-004-1354-2] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
AIMS/HYPOTHESIS Sensory neuropathy in diabetic patients frequently presents itself as progressive loss of thermal perception, while some patients describe concurrent spontaneous pain, allodynia or hyperalgesia. Diabetic rats develop thermal hypoalgesia and tactile allodynia by unknown mechanisms. We investigated whether sensory disorders in rats were related to glucose metabolism by aldose reductase. We also explored the therapeutic potential of exogenous neurotrophic factors. METHODS Behavioural assessments of thermal and tactile sensitivity were performed in normal rats and in rats with streptozotocin-induced diabetes. Some of the rats were treated with insulin, aldose reductase inhibitors, ciliary neurotrophic factor or brain-derived neurotrophic factor. RESULTS Thermal hypoalgesia was present after 8 weeks of diabetes and was prevented by insulin treatment, which maintained normoglycaemia, by the aldose reductase inhibitor Statil or by ciliary neurotrophic factor. Brain-derived neurotrophic factor did not have an effect. When diabetic rats were tested after shorter durations of diabetes, they showed transient thermal hyperalgesia after 4 weeks which progressed to thermal hypoalgesia after 8 weeks. The aldose reductase inhibitor IDD 676 (Lidorestat), given from the onset of diabetes, prevented the development of thermal hyperalgesia and also stopped progression to thermal hypoalgesia when delivered in the last 4 weeks of an 8-week period of diabetes. Tactile allodynia was not prevented by neurotrophic factor or aldose reductase inhibitor treatment. CONCLUSIONS/INTERPRETATION Transient thermal hyperalgesia and subsequent progressive thermal hypoalgesia occur in diabetic rats secondary to exaggerated flux through the polyol pathway. A depletion of ciliary neurotrophic factor mediated by the polyol pathway may be involved in the aetiology of thermal hypoalgesia.
Collapse
Affiliation(s)
- N A Calcutt
- Department of Pathology, University of California, San Diego, La Jolla 92093-0612, USA.
| | | | | |
Collapse
|
42
|
Matsuka Y, Spigelman I. Hyperosmolar Solutions Selectively Block Action Potentials in Rat Myelinated Sensory Fibers: Implications for Diabetic Neuropathy. J Neurophysiol 2004; 91:48-56. [PMID: 13679399 DOI: 10.1152/jn.00689.2003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Diabetic neuropathy is a common complication of diabetes mellitus patients. It is a wide range of abnormalities affecting proximal and distal peripheral sensory and motor nerves. Although plasma hyperosmolality is a common finding in diabetes mellitus, the effects of hyperosmolality on conduction of various sensory signal components have not been addressed in detail. Here we show that in rat dorsal root ganglion (DRG) preparations from normal rats, hyperosmolar solutions (360 mmol/kg, containing increased glucose, sucrose, NaCl, or mannitol) produce a selective block of signal propagation in myelinated sensory A-fibers. In compound action potential (CAP) recordings with suction electrodes, peak A-fiber CAP amplitude was selectively decreased (20%), while the C-fiber peak remained intact or was slightly increased. Hyperosmolar solutions had smaller effects on conduction velocity (CV) of both A- and C-fibers (approximately 5% decrease). Hyperosmolality-induced CAP changes could not be observed during recordings from isolated spinal nerves but were evident during recordings from desheathed spinal nerves. In intracellular recordings, hyperosmolar solutions produced a block of spinal nerve-evoked action potential invasion into the somata of some A-fiber neurons. Removal of extracellular calcium completely prevented the hyperosmolality-induced CAP decreases. Based on these data, we propose that the decreased CAP amplitudes recorded in human patients and in animal models of diabetes are in part due to the effects of hyperosmolality and would depend on the extracellular osmolality at the time of sensory testing. We also hypothesize that hyperosmolality may contribute to both the sensory abnormalities (paresthesias) and the chronic pain symptoms of diabetic neuropathy.
Collapse
Affiliation(s)
- Yoshizo Matsuka
- Division of Oral Biology and Medicine, UCLA School of Dentistry, University of California, Los Angeles, California 90095, USA
| | | |
Collapse
|
43
|
|