1
|
Ortega Moreno L, Bagues A, Martínez V, Abalo R. New Pieces for an Old Puzzle: Approaching Parkinson's Disease from Translatable Animal Models, Gut Microbiota Modulation, and Lipidomics. Nutrients 2023; 15:2775. [PMID: 37375679 DOI: 10.3390/nu15122775] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Parkinson's disease (PD) is a severe neurodegenerative disease characterized by disabling motor alterations that are diagnosed at a relatively late stage in its development, and non-motor symptoms, including those affecting the gastrointestinal tract (mainly constipation), which start much earlier than the motor symptoms. Remarkably, current treatments only reduce motor symptoms, not without important drawbacks (relatively low efficiency and impactful side effects). Thus, new approaches are needed to halt PD progression and, possibly, to prevent its development, including new therapeutic strategies that target PD etiopathogeny and new biomarkers. Our aim was to review some of these new approaches. Although PD is complex and heterogeneous, compelling evidence suggests it might have a gastrointestinal origin, at least in a significant number of patients, and findings in recently developed animal models strongly support this hypothesis. Furthermore, the modulation of the gut microbiome, mainly through probiotics, is being tested to improve motor and non-motor symptoms and even to prevent PD. Finally, lipidomics has emerged as a useful tool to identify lipid biomarkers that may help analyze PD progression and treatment efficacy in a personalized manner, although, as of today, it has only scarcely been applied to monitor gut motility, dysbiosis, and probiotic effects in PD. Altogether, these new pieces should be helpful in solving the old puzzle of PD.
Collapse
Affiliation(s)
- Lorena Ortega Moreno
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
| | - Ana Bagues
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- Associated I+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), 28006 Madrid, Spain
- High Performance Research Group in Experimental Pharmacology (PHARMAKOM-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
| | - Vicente Martínez
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Neuroscience Institute, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28049 Madrid, Spain
| | - Raquel Abalo
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- Associated I+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), 28006 Madrid, Spain
- Working Group of Basic Sciences on Pain and Analgesia of the Spanish Pain Society, 28046 Madrid, Spain
- Working Group of Basic Sciences on Cannabinoids of the Spanish Pain Society, 28046 Madrid, Spain
| |
Collapse
|
2
|
Zanderigo F, Kang Y, Kumar D, Nikolopoulou A, Mozley PD, Kothari PJ, He B, Schlyer D, Rapoport SI, Oquendo MA, Vallabhajosula S, Mann JJ, Sublette ME. [ 11 C]arachidonic acid incorporation measurement in human brain: Optimization for clinical use. Synapse 2017; 72. [PMID: 29144569 DOI: 10.1002/syn.22018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 11/10/2017] [Accepted: 11/12/2017] [Indexed: 01/06/2023]
Abstract
Arachidonic acid (AA) is involved in signal transduction, neuroinflammation, and production of eicosanoid metabolites. The AA brain incorporation coefficient (K*) is quantifiable in vivo using [11 C]AA positron emission tomography, although repeatability remains undetermined. We evaluated K* estimates obtained with population-based metabolite correction (PBMC) and image-derived input function (IDIF) in comparison to arterial blood-based estimates, and compared repeatability. Eleven healthy volunteers underwent a [11 C]AA scan; five repeated the scan 6 weeks later, simulating a pre- and post-treatment study design. For all scans, arterial blood was sampled to measure [11 C]AA plasma radioactivity. Plasma [11 C]AA parent fraction was measured in 5 scans. K* was quantified using both blood data and IDIF, corrected for [11 C]AA parent fraction using both PBMC (from published values) and individually measured values (when available). K* repeatability was calculated in the test-retest subset. K* estimates based on blood and individual metabolites were highly correlated with estimates using PBMC with arterial input function (r = 0.943) or IDIF (r = 0.918) in the subset with measured metabolites. In the total dataset, using PBMC, IDIF-based estimates were moderately correlated with arterial input function-based estimates (r = 0.712). PBMC and IDIF-based K* estimates were ∼6.4% to ∼11.9% higher, on average, than blood-based estimates. Average K* test-retest absolute percent difference values obtained using blood data or IDIF, assuming PBMC for both, were between 6.7% and 13.9%, comparable to other radiotracers. Our results support the possibility of simplified [11 C]AA data acquisition through eliminating arterial blood sampling and metabolite analysis, while retaining comparable repeatability and validity.
Collapse
Affiliation(s)
- Francesca Zanderigo
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, New York.,Department of Psychiatry, Columbia University, New York, New York
| | - Yeona Kang
- Department of Radiology, Weill Cornell Medicine, New York, New York
| | - Dileep Kumar
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, New York
| | | | - P David Mozley
- Department of Radiology, Weill Cornell Medicine, New York, New York
| | - Paresh J Kothari
- Department of Radiology, Weill Cornell Medicine, New York, New York
| | - Bin He
- Department of Radiology, Weill Cornell Medicine, New York, New York
| | - David Schlyer
- Department of Radiology, Weill Cornell Medicine, New York, New York
| | | | - Maria A Oquendo
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, New York.,Department of Psychiatry, Columbia University, New York, New York
| | | | - J John Mann
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, New York.,Department of Psychiatry, Columbia University, New York, New York.,Department of Radiology, Columbia University, New York, New York
| | - M Elizabeth Sublette
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, New York.,Department of Psychiatry, Columbia University, New York, New York
| |
Collapse
|
3
|
Farmer K, Smith CA, Hayley S, Smith J. Major Alterations of Phosphatidylcholine and Lysophosphotidylcholine Lipids in the Substantia Nigra Using an Early Stage Model of Parkinson's Disease. Int J Mol Sci 2015; 16:18865-77. [PMID: 26274953 PMCID: PMC4581276 DOI: 10.3390/ijms160818865] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/06/2015] [Accepted: 08/06/2015] [Indexed: 01/14/2023] Open
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disease affecting the nigrostriatal pathway, where patients do not manifest motor symptoms until >50% of neurons are lost. Thus, it is of great importance to determine early neuronal changes that may contribute to disease progression. Recent attention has focused on lipids and their role in pro- and anti-apoptotic processes. However, information regarding the lipid alterations in animal models of PD is lacking. In this study, we utilized high performance liquid chromatography electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) and novel HPLC solvent methodology to profile phosphatidylcholines and sphingolipids within the substantia nigra. The ipsilateral substantia nigra pars compacta was collected from rats 21 days after an infusion of 6-hydroxydopamine (6-OHDA), or vehicle into the anterior dorsal striatum. We identified 115 lipid species from their mass/charge ratio using the LMAPS Lipid MS Predict Database. Of these, 19 lipid species (from phosphatidylcholine and lysophosphotidylcholine lipid classes) were significantly altered by 6-OHDA, with most being down-regulated. The two lipid species that were up-regulated were LPC (16:0) and LPC (18:1), which are important for neuroinflammatory signalling. These findings provide a first step in the characterization of lipid changes in early stages of PD-like pathology and could provide novel targets for early interventions in PD.
Collapse
Affiliation(s)
- Kyle Farmer
- Carleton University Department of Neuroscience, 1125 Colonel By Drive, Life Sciences Research Building, Ottawa, ON K1S 5B6, Canada.
| | - Catherine A Smith
- Carleton University Department of Neuroscience, 1125 Colonel By Drive, Life Sciences Research Building, Ottawa, ON K1S 5B6, Canada.
| | - Shawn Hayley
- Carleton University Department of Neuroscience, 1125 Colonel By Drive, Life Sciences Research Building, Ottawa, ON K1S 5B6, Canada.
| | - Jeffrey Smith
- Carleton University Department of Chemistry and Institute of Biochemistry, 1125 Colonel By Drive, Steacie Building, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
4
|
Abstract
We developed a novel method to study dopaminergic neurotransmission using positron emission tomography (PET) with [1-(11)C]arachidonic acid ([1-(11)C]AA). Previous preclinical studies have shown the utility of [1-(11)C]AA as a marker of signal transduction coupled to cytosolic phospholipase A(2) (cPLA(2)). Using [1-(11)C]AA and [(15)O]water PET, we measured regional incorporation coefficients K(*) for AA and regional cerebral blood flow (rCBF), respectively, in healthy male volunteers given the D(1)/D(2) agonist (10 or 20 μg/kg subcutaneous) apomorphine. We confirmed a robust central dopaminergic response to apomorphine by observing significant increases in the serum concentration of growth hormone. We observed significant increases, as well as decreases in K(*) and increases in rCBF in response to apomorphine. These changes remained significant after covarying for handedness and apomorphine dosage. The magnitude of increases in K(*) was lower than those in our previous animal experiments, likely reflecting the smaller dose of apomorphine used in the current human study. Changes in K(*) may reflect neuronal signaling downstream of activated D(2)-like receptors coupled to cPLA(2). Changes in rCBF are consistent with previous studies showing net functional effects of D(1)/D(2) activation. [1-(11)C]AA PET may be useful for studying disturbances of dopaminergic neurotransmission in conditions such as Parkinson's disease and schizophrenia.
Collapse
|
5
|
Basselin M, Ramadan E, Rapoport SI. Imaging brain signal transduction and metabolism via arachidonic and docosahexaenoic acid in animals and humans. Brain Res Bull 2012; 87:154-71. [PMID: 22178644 PMCID: PMC3274571 DOI: 10.1016/j.brainresbull.2011.12.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/01/2011] [Accepted: 12/02/2011] [Indexed: 02/05/2023]
Abstract
The polyunsaturated fatty acids (PUFAs), arachidonic acid (AA, 20:4n-6) and docosahexaenoic acid (DHA, 22:6n-3), important second messengers in brain, are released from membrane phospholipid following receptor-mediated activation of specific phospholipase A(2) (PLA(2)) enzymes. We developed an in vivo method in rodents using quantitative autoradiography to image PUFA incorporation into brain from plasma, and showed that their incorporation rates equal their rates of metabolic consumption by brain. Thus, quantitative imaging of unesterified plasma AA or DHA incorporation into brain can be used as a biomarker of brain PUFA metabolism and neurotransmission. We have employed our method to image and quantify effects of mood stabilizers on brain AA/DHA incorporation during neurotransmission by muscarinic M(1,3,5), serotonergic 5-HT(2A/2C), dopaminergic D(2)-like (D(2), D(3), D(4)) or glutamatergic N-methyl-d-aspartic acid (NMDA) receptors, and effects of inhibition of acetylcholinesterase, of selective serotonin and dopamine reuptake transporter inhibitors, of neuroinflammation (HIV-1 and lipopolysaccharide) and excitotoxicity, and in genetically modified rodents. The method has been extended for the use with positron emission tomography (PET), and can be employed to determine how human brain AA/DHA signaling and consumption are influenced by diet, aging, disease and genetics.
Collapse
Affiliation(s)
- Mireille Basselin
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Epolia Ramadan
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Stanley I. Rapoport
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
6
|
Lee HJ, Bazinet RP, Rapoport SI, Bhattacharjee AK. Brain arachidonic acid cascade enzymes are upregulated in a rat model of unilateral Parkinson disease. Neurochem Res 2009; 35:613-9. [PMID: 19997776 DOI: 10.1007/s11064-009-0106-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2009] [Indexed: 10/20/2022]
Abstract
Arachidonic acid (AA) signaling is upregulated in the caudate-putamen and frontal cortex of unilaterally 6-hydroxydopamine (6-OHDA) lesioned rats, a model for asymmetrical Parkinson disease. AA signaling can be coupled to D(2)-like receptor initiated AA hydrolysis from phospholipids by cytosolic phospholipase A(2) (cPLA(2)) and subsequent metabolism by cyclooxygenase (COX)-2. In unilaterally 6-OHDA- and sham-lesioned rats, we measured brain expression of cPLA(2), other PLA(2) enzymes, and COX-2. Activity and protein levels of cPLA(2) were significantly higher as was COX-2-protein in caudate-putamen, frontal cortex and remaining brain on the lesioned compared to intact side of the 6-OHDA lesioned rats, and compared to sham brain. Secretory sPLA(2) and Ca(2+)-independent iPLA(2) expression did not differ between sides or groups. Thus, the tonically increased ipsilateral AA signal in the lesioned rat corresponds to upregulated cPLA(2) and COX-2 expression within the AA metabolic cascade, which may contribute to symptoms and pathology in Parkinson disease.
Collapse
Affiliation(s)
- Ho-Joo Lee
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
7
|
Imaging apomorphine stimulation of brain arachidonic acid signaling via D2-like receptors in unanesthetized rats. Psychopharmacology (Berl) 2008; 197:557-66. [PMID: 18274730 DOI: 10.1007/s00213-008-1073-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Accepted: 01/02/2008] [Indexed: 10/22/2022]
Abstract
RATIONALE AND OBJECTIVE Because of the important role of dopamine in neurotransmission, it would be useful to be able to image brain dopamine receptor-mediated signal transduction in animals and humans. Administering the D1-D2 receptor agonist apomorphine may allow us to do this, as the D2-like receptor is reported to be coupled to cytosolic phospholipase A2 activation and arachidonic acid (AA) release from membrane phospholipid. METHODS Unanesthetized adult rats were given intraperitoneally apomorphine (0.5 mg/kg) or saline, with or without pretreatment with 6 mg/kg intravenous raclopride, a D2/D3 receptor antagonist. [1-14C]AA was injected intravenously, then AA incorporation coefficients k*--brain radioactivity divided by integrated plasma radioactivity--markers of AA signaling, were measured using quantitative autoradiography in 62 brain regions. RESULTS Apomorphine significantly elevated k* in 26 brain regions, including the frontal cortex, motor and somatosensory cortex, caudate-putamen, thalamic nuclei, and nucleus accumbens. Raclopride alone did not change baseline values of k*, but raclopride pretreatment prevented the apomorphine-induced increments in k*. CONCLUSIONS A mixed D1-D2 receptor agonist, apomorphine, increased the AA signal by activating only D2-like receptors in brain circuits containing regions with high D2-like receptor densities. Thus, apomorphine might be used with positron emission tomography to image brain D2-like receptor-mediated AA signaling in humans in health and disease.
Collapse
|
8
|
Bhattacharjee AK, Chang L, White L, Bazinet RP, Rapoport SI. D-Amphetamine stimulates D2 dopamine receptor-mediated brain signaling involving arachidonic acid in unanesthetized rats. J Cereb Blood Flow Metab 2006; 26:1378-88. [PMID: 16511499 DOI: 10.1038/sj.jcbfm.9600290] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In rat brain, dopaminergic D(2)-like but not D(1)-like receptors can be coupled to phospholipase A(2) (PLA(2)) activation, to release the second messenger, arachidonic acid (AA, 20:4n-6), from membrane phospholipids. In this study, we hypothesized that D-amphetamine, a dopamine-releasing agent, could initiate such AA signaling. The incorporation coefficient, k* (brain radioactivity/integrated plasma radioactivity) for AA, a marker of the signal, was determined in 62 brain regions of unanesthetized rats that were administered i.p. saline, D-amphetamine (2.5 or 0.5 mg/kg i.p.), or the D(2)-like receptor antagonist raclopride (6 mg/kg, i.v.) before saline or 2.5 mg/kg D-amphetamine. After injecting [1-(14)C]AA intravenously, k* was measured by quantitative autoradiography. Compared to saline-treated controls, D-amphetamine 2.5 mg/kg i.p. increased k* significantly in 27 brain areas rich in D(2)-like receptors. Significant increases were evident in neocortical, extrapyramidal, and limbic regions. Pretreatment with raclopride blocked the increments, but raclopride alone did not alter baseline values of k*. In independent experiments, D-amphetamine 0.5 mg/kg i.p. increased k* significantly in only seven regions, including the nucleus accumbens and layer IV neocortical regions. These results indicate that D-amphetamine can indirectly activate brain PLA(2) in the unanesthetized rat, and that activation is initiated entirely at D(2)-like receptors. D-Amphetamine's low-dose effects are consistent with other evidence that the nucleus accumbens, considered a reward center, is particularly sensitive to the drug.
Collapse
Affiliation(s)
- Abesh K Bhattacharjee
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | |
Collapse
|
9
|
Bhattacharjee AK, Chang L, Lee HJ, Bazinet RP, Seemann R, Rapoport SI. D2 but not D1 dopamine receptor stimulation augments brain signaling involving arachidonic acid in unanesthetized rats. Psychopharmacology (Berl) 2005; 180:735-42. [PMID: 16163535 DOI: 10.1007/s00213-005-2208-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Accepted: 01/18/2005] [Indexed: 11/26/2022]
Abstract
RATIONALE AND OBJECTIVES Signal transduction involving the activation of phospholipase A2 (PLA2) to release arachidonic acid (AA) from membrane phospholipids, when coupled to dopamine D1- and D2-type receptors, can be imaged in rats having a chronic unilateral lesion of the substantia nigra. It is not known, however, if the signaling responses occur in the absence of a lesion. To determine this, we used our in vivo fatty acid method to measure signaling in response to D1 and D2 receptor agonists given acutely to unanesthetized rats. METHODS [1-(14)C]AA was injected intravenously in unanesthetized rats, and incorporation coefficients k* for AA (brain radioactivity/integrated plasma radioactivity) were measured using quantitative autoradiography in 61 brain regions. The animals were administered i.v. the D2 receptor agonist, quinpirole (1 mg kg(-1), i.v.), the D1 receptor agonist SKF-38393 (5 mg kg(-1), i.v.), or vehicle/saline. RESULTS Quinpirole increased k* significantly in multiple brain regions rich in D2-type receptors, whereas SKF-38393 did not change k* significantly in any of the 61 regions examined. CONCLUSIONS In the intact rat brain, D2 but not D1 receptors are coupled to the activation of PLA2 and the release of AA.
Collapse
Affiliation(s)
- Abesh Kumar Bhattacharjee
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bldg. 9, Room 1S128, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Giovacchini G, Chang MCJ, Channing MA, Toczek M, Mason A, Bokde ALW, Connolly C, Vuong BK, Ma Y, Der MG, Doudet DJ, Herscovitch P, Eckelman WC, Rapoport SI, Carson RE. Brain incorporation of [11C]arachidonic acid in young healthy humans measured with positron emission tomography. J Cereb Blood Flow Metab 2002; 22:1453-62. [PMID: 12468890 DOI: 10.1097/01.wcb.0000033209.60867.7a] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Arachidonic acid (AA) is an important second messenger involved in signal transduction mediated by phospholipase A2. The goal of this study was to establish an in vivo quantitative method to examine the role of AA in this signaling process in the human brain. A simple irreversible uptake model was derived from rat studies and modified for positron emission tomography (PET) to quantify the incorporation rate K* of [11C]AA into brain. Dynamic 60-minute three-dimensional scans and arterial input functions were acquired in 8 young healthy adults studied at rest. Brain radioactivity was corrected for uptake of the metabolite [11C]CO2. K* and cerebral blood volume (Vb) were estimated pixel-by-pixel and were calculated in regions of interest. K* equaled 5.6+/-1.2 and 2.6+/-0.5 microL x min(-1) x mL(-1) in gray and white matter, respectively. K* and Vb values were found to be unchanged with data analysis periods from 20 to 60 minutes. Thus, PET can be used to obtain quantitative images of the incorporation rate K* of [11C]AA in the human brain. As brain incorporation of labeled AA has been shown in awake rats to be increased by pharmacological activation associated with phospholipase A2-signaling, PET and [11C]AA may be useful to measure signal transduction in the human brain.
Collapse
Affiliation(s)
- Giampiero Giovacchini
- Brain Physiology and Metabolism Section, National Institute on Aging, Bethesda, Maryland, U.S.A
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ross BM, Moszczynska A, Peretti FJ, Adams V, Schmunk GA, Kalasinsky KS, Ang L, Mamalias N, Turenne SD, Kish SJ. Decreased activity of brain phospholipid metabolic enzymes in human users of cocaine and methamphetamine. Drug Alcohol Depend 2002; 67:73-9. [PMID: 12062780 DOI: 10.1016/s0376-8716(02)00022-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phospholipids are essential components of cell membranes which may also function to mediate some of the behavioural effects of dopamine receptor stimulation caused by psychostimulant drugs. Neuroimaging and pharmacological data suggest that abnormal brain metabolism of phospholipids might explain some of the consequences of chronic exposure to drugs of abuse including drug craving. We previously reported decreased activity of calcium-stimulated phospholipase A(2) (Ca-PLA(2)) in autopsied putamen of human cocaine users. To establish the specificity of this change in phospholipid metabolism and whether decreased Ca-PLA(2) might be a general feature of all abused drugs which enhance dopaminergic neurotransmission, we measured activity of 11 major phospholipid metabolic enzymes in dopamine-rich (putamen) and poor brain areas of chronic users of cocaine and of methamphetamine. Enzyme changes were restricted to the putamen which showed decreased (-21%, as compared with the control subjects) Ca-PLA(2) activity in users of methamphetamine and reduced (-31%) activity of phosphocholine cytidylyltransferase (PCCT), the rate-limiting enzyme of phosphatidylcholine synthesis, in the cocaine users. We suggest that chronic exposure to psychostimulant drugs might cause a compensatory downregulation of Ca-PLA(2) in dopamine-rich brain areas due to excessive dopamine-related stimulation of the enzyme. Decreased striatal Ca-PLA(2) and/or PCCT activity in cocaine users might also help to explain why CDP choline, which enhances phospholipid synthesis, reduces craving in some users of the drug cocaine.
Collapse
Affiliation(s)
- Brian M Ross
- Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ont, Canada M5T 1R8
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Tyrosine is unable to cross the blood-brain barrier and is therefore unable to improve the status of brain dopamine (DA) and to provide relief for patients with Parkinson's disease (PD) or other DA-insufficient disorders. We report the creation of an amide bond molecule [N-(alpha-linolenoyl)tyrosine (NLT)] that combines tyrosine with a fatty acid mixture. NLT significantly improves the rotational behavior of rats [following unilateral striatal lesions (as a model for Parkinson's)] and overcomes the exaggerated eye-blinking induced by a potent DA-depleting agent (as a model for essential blepharospasm). These results are supported by the finding that NLT's mode of action, in striatum, is the same as the mode of action of D-amphetamine. They both induce an increase in the DA level, DA turnover and release.
Collapse
Affiliation(s)
- Shlomo Yehuda
- Psychopharmacology Laboratory, Department of Psychology, Bar Ilan University, Ramat Gan, 52900, Israel.
| |
Collapse
|
13
|
Ross BM, Mamalias N, Moszczynska A, Rajput AH, Kish SJ. Elevated activity of phospholipid biosynthetic enzymes in substantia nigra of patients with Parkinson's disease. Neuroscience 2001; 102:899-904. [PMID: 11182251 DOI: 10.1016/s0306-4522(00)00501-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We reported that the activities of phospholipase A2, phosphocholine cytidylyltransferase and phosphoethanolamine cytidylyltransferase, key phospholipid metabolic enzymes, are low in substantia nigra of normal human brain and that this might reduce the ability of nigral neurons to repair damage to cell membranes. To determine whether adaptive changes in nigral phospholipid metabolism can occur in idiopathic Parkinson's disease we compared activities of 11 catabolic and anabolic enzymes in autopsied brain of 10 patients with Parkinson's disease to those in control subjects. Nigral activity of the catabolic enzyme phospholipase A2 was normal in the Parkinson's disease group, whereas that of the biosynthetic enzymes phosphoethanolamine cytidylyltransferase, phosphocholine cytidylyltransferase, and phosphatidylserine synthase were elevated 193, 48 and 38%, respectively, possibly representing a compensatory response to repair membrane phospholipids. Enzyme activities were normal in all other brain areas with the exception of increased (+26%) activity of calcium-stimulated phospholipase A2 in putamen, a change which could be consequent to either decreased dopaminergic striatal input or to a dopamine nerve terminal degenerative process. Our data indicate that the normally low rate of membrane phospholipid synthesis in the substantia nigra, the primary area of neurodegeneration in Parkinson's disease, is increased during the course of the disorder. We suggest that pharmacotherapies which augment this compensatory response might have utility as a treatment for Parkinson's disease.
Collapse
Affiliation(s)
- B M Ross
- Centre for Addiction and Mental Health, University of Toronto, Ontario, Toronto, Canada.
| | | | | | | | | |
Collapse
|
14
|
Myers CS, Contreras MA, Chang MC, Rapoport SI, Appel NM. Haloperidol downregulates phospholipase A(2) signaling in rat basal ganglia circuits. Brain Res 2001; 896:96-101. [PMID: 11277978 DOI: 10.1016/s0006-8993(01)02014-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Our laboratory has developed an in vivo method to quantitatively evaluate phospholipase A(2) (PLA(2))-mediated signal transduction in brain regions of rodents. In this method, quantitative autoradiography is used to identify brain uptake of intravenously injected, radiolabeled arachidonic acid ([3H]AA). Dopamine D(2) receptors are coupled to G-proteins that activate PLA(2), releasing AA from the stereospecifically numbered (sn) 2 position of phospholipids, and regional [3H]AA uptake is proportional to the rate of release. In the present experiment, the D(2) antagonist haloperidol (1.0 mg/kg i.p.) or the drug vehicle was administered to male adult rats for 21 days. Rats were infused 3 days later with 1.75 mCi/kg [3H]AA (i.v.), anesthetized and decapitated 20 min after infusion onset, and brains were processed for quantitative autoradiography. Chronic haloperidol significantly decreased [3H]AA incorporation in two primary dopaminergic basal ganglia-frontal cortex circuits, the mesocorticolimbic and nigrostriatal systems, while insignificant changes in AA incorporation were noted in other brain regions. These results suggest that one mechanism by which haloperidol exerts its effect is by downregulating D(2)-mediated PLA(2) signaling involving AA release in basal ganglia-frontal cortex circuitry.
Collapse
Affiliation(s)
- C S Myers
- Section on Brain Physiology and Metabolism, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | |
Collapse
|
15
|
Lester DS, Pine PS, Delnomdedieu M, Johannessen JN, Johnson GA. Virtual neuropathology: three-dimensional visualization of lesions due to toxic insult. Toxicol Pathol 2000; 28:100-4. [PMID: 10668995 DOI: 10.1177/019262330002800112] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A first-pass approach incorporating high-field magnetic resonance imaging (MRI) was used for rapid detection of neuropathologic lesions in fixed rat brains. This inherently 3-dimensional and nondestructive technique provides high-resolution, high-contrast images of fixed neuronal tissue in the absence of sectioning or staining. This technique, magnetic resonance microscopy (MRM), was used to identify diverse lesions in 2 well-established rat neurotoxicity models. The intrinsic contrast in the images delineated lesions that were identified using a battery of histologic stains, some of which would not be used in routine screening. Furthermore, the MRM images provided the locations of lesions, which were verified upon subsequent sectioning and staining of the same samples. The inherent contrast generated by water properties is exploited in MRM by choosing suitable pulse sequences, or proton stains. This approach provides the potential for a comprehensive initial MRM screen for neurotoxicity in preclinical models with the capability for extrapolation to clinical analyses using classical MRI.
Collapse
Affiliation(s)
- D S Lester
- Division of Applied Pharmacology Research, Center for Drug Evaluation and Research, Food and Drug Administration, Laurel, Maryland 20708, USA.
| | | | | | | | | |
Collapse
|
16
|
Rapoport SI. In vivo fatty acid incorporation into brain phospholipids in relation to signal transduction and membrane remodeling. Neurochem Res 1999; 24:1403-15. [PMID: 10555781 DOI: 10.1023/a:1022584707352] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A method and model are described to quantify in vivo turnover rates and half-lives of fatty acids within brain phospholipids. These "kinetic" parameters can be calculated by operational equations from measured rates of incorporation of intravenously injected fatty acid radiotracers into brain phospholipids. To do this, it is necessary to determine a "dilution factor" lambda, which estimates the contribution to the brain precursor acyl-CoA pool of fatty acids released from phospholipids through the action of PLA1 or PLA2. Some calculated fatty acid half-lives are minutes to hours, consistent with active participation of phospholipids in brain function and structure. The fatty acid method can be used to identify enzyme targets of drugs acting on phospholipid metabolism. For example, a reduced brain turnover of arachidonate by chronic lithium, demonstrated in rats by the fatty acid method, suggests that this agent, which is used to treat bipolar disorder, has for its target an arachidonate-specific PLA2. In another context, when combined with in vivo imaging by quantitative autoradiography in rodents or positron emission tomography in macaques or humans, the fatty acid method can localize and quantify normal and modified PLA2-mediated signal transduction in brain.
Collapse
Affiliation(s)
- S I Rapoport
- Laboratory of Neurosciences National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
17
|
Horrobin DF, Bennett CN. New gene targets related to schizophrenia and other psychiatric disorders: enzymes, binding proteins and transport proteins involved in phospholipid and fatty acid metabolism. Prostaglandins Leukot Essent Fatty Acids 1999; 60:141-67. [PMID: 10359017 DOI: 10.1054/plef.1999.0027] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Phospholipids make up about 60% of the brain's dry weight. In spite of this, phospholipid metabolism has received relatively little attention from those seeking genetic factors involved in psychiatric and neurological disorders. However, there is now increasing evidence from many quarters that abnormal phospholipid and related fatty acid metabolism may contribute to illnesses such as schizophrenia, bipolar disorder, depression and attention deficit hyperactivity disorder. To date the possible specific proteins and genes involved have been relatively ill-defined. This paper reviews the main pathways of phospholipid metabolism, emphasizing the roles of phospholipases of the A2 and C series in signal transduction processes. It identifies some likely protein candidates for involvement in psychiatric and neurological disorders. It also reviews the chromosomal locations of regions likely to be involved in these disorders, and relates these to the known locations of genes directly or indirectly involved in phospholipid and fatty acid metabolism.
Collapse
Affiliation(s)
- D F Horrobin
- Laxdale Research, Kings Park House, Laurelhill Business Park, Stirling, UK
| | | |
Collapse
|