1
|
Brandel-Ankrapp KL, Arey RN. Uncovering novel regulators of memory using C. elegans genetic and genomic analysis. Biochem Soc Trans 2023; 51:161-171. [PMID: 36744642 PMCID: PMC10518207 DOI: 10.1042/bst20220455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/20/2022] [Accepted: 01/19/2023] [Indexed: 02/07/2023]
Abstract
How organisms learn and encode memory is an outstanding question in neuroscience research. Specifically, how memories are acquired and consolidated at the level of molecular and gene pathways remains unclear. In addition, memory is disrupted in a wide variety of neurological disorders; therefore, discovering molecular regulators of memory may reveal therapeutic targets for these disorders. C. elegans are an excellent model to uncover molecular and genetic regulators of memory. Indeed, the nematode's invariant neuronal lineage, fully mapped genome, and conserved associative behaviors have allowed the development of a breadth of genetic and genomic tools to examine learning and memory. In this mini-review, we discuss novel and exciting genetic and genomic techniques used to examine molecular and genetic underpinnings of memory from the level of the whole-worm to tissue-specific and cell-type specific approaches with high spatiotemporal resolution.
Collapse
Affiliation(s)
- Katie L. Brandel-Ankrapp
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, U.S.A
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, U.S.A
| | - Rachel N. Arey
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, U.S.A
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, U.S.A
| |
Collapse
|
2
|
Reyes-García SE, Gutiérrez-Vera B, Escobar ML. Calcineurin requirement for in vivo insular cortex LTD and CTA-extinction. Neurobiol Learn Mem 2022; 193:107647. [DOI: 10.1016/j.nlm.2022.107647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/28/2022] [Accepted: 06/03/2022] [Indexed: 10/18/2022]
|
3
|
Toyoda H, Katagiri A, Kato T, Sato H. Intranasal Administration of Rotenone Reduces GABAergic Inhibition in the Mouse Insular Cortex Leading to Impairment of LTD and Conditioned Taste Aversion Memory. Int J Mol Sci 2020; 22:ijms22010259. [PMID: 33383859 PMCID: PMC7795793 DOI: 10.3390/ijms22010259] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/18/2020] [Accepted: 12/27/2020] [Indexed: 12/21/2022] Open
Abstract
The pesticide rotenone inhibits mitochondrial complex I and is thought to cause neurological disorders such as Parkinson’s disease and cognitive disorders. However, little is known about the effects of rotenone on conditioned taste aversion memory. In the present study, we investigated whether intranasal administration of rotenone affects conditioned taste aversion memory in mice. We also examined how the intranasal administration of rotenone modulates synaptic transmission and plasticity in layer V pyramidal neurons of the mouse insular cortex that is critical for conditioned taste aversion memory. We found that the intranasal administration of rotenone impaired conditioned taste aversion memory to bitter taste. Regarding its cellular mechanisms, long-term depression (LTD) but not long-term potentiation (LTP) was impaired in rotenone-treated mice. Furthermore, spontaneous inhibitory synaptic currents and tonic GABA currents were decreased in layer V pyramidal neurons of rotenone-treated mice compared to the control mice. The impaired LTD observed in pyramidal neurons of rotenone-treated mice was restored by a GABAA receptor agonist muscimol. These results suggest that intranasal administration of rotenone decreases GABAergic synaptic transmission in layer V pyramidal neurons of the mouse insular cortex, the result of which leads to impairment of LTD and conditioned taste aversion memory.
Collapse
|
4
|
Abe K, Kuroda M, Narumi Y, Kobayashi Y, Itohara S, Furuichi T, Sano Y. Cortico-amygdala interaction determines the insular cortical neurons involved in taste memory retrieval. Mol Brain 2020; 13:107. [PMID: 32723372 PMCID: PMC7385890 DOI: 10.1186/s13041-020-00646-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/15/2020] [Indexed: 12/30/2022] Open
Abstract
The insular cortex (IC) is the primary gustatory cortex, and it is a critical structure for encoding and retrieving the conditioned taste aversion (CTA) memory. In the CTA, consumption of an appetitive tastant is associated with aversive experience such as visceral malaise, which results in avoidance of consuming a learned tastant. Previously, we showed that levels of the cyclic-AMP-response-element-binding protein (CREB) determine the insular cortical neurons that proceed to encode a conditioned taste memory. In the amygdala and hippocampus, it is shown that CREB and neuronal activity regulate memory allocation and the neuronal mechanism that determines the specific neurons in a neural network that will store a given memory. However, cellular mechanism of memory allocation in the insular cortex is not fully understood. In the current study, we manipulated the neuronal activity in a subset of insular cortical and/or basolateral amygdala (BLA) neurons in mice, at the time of learning; for this purpose, we used an hM3Dq designer receptor exclusively activated by a designer drug system (DREADD). Subsequently, we examined whether the neuronal population whose activity is increased during learning, is reactivated by memory retrieval, using the expression of immediate early gene c-fos. When an hM3Dq receptor was activated only in a subset of IC neurons, c-fos expression following memory retrieval was not significantly observed in hM3Dq-positive neurons. Interestingly, the probability of c-fos expression in hM3Dq-positive IC neurons after retrieval was significantly increased when the IC and BLA were co-activated during conditioning. Our findings suggest that functional interactions between the IC and BLA regulates CTA memory allocation in the insular cortex, which shed light on understanding the mechanism of memory allocation regulated by interaction between relevant brain areas.
Collapse
Affiliation(s)
- Konami Abe
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510 Japan
| | - Marin Kuroda
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510 Japan
| | - Yosuke Narumi
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510 Japan
| | - Yuki Kobayashi
- Laboratory for Behavioral Genetics, Center for Brain Science, Wako, Saitama 351-0198 Japan
- Present Address: Brain/MINDS, RIKEN Center for Brain Science, Wako, Saitama 351-0198 Japan
| | - Shigeyoshi Itohara
- Laboratory for Behavioral Genetics, Center for Brain Science, Wako, Saitama 351-0198 Japan
- Present Address: Brain/MINDS, RIKEN Center for Brain Science, Wako, Saitama 351-0198 Japan
| | - Teiichi Furuichi
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510 Japan
| | - Yoshitake Sano
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510 Japan
| |
Collapse
|
5
|
CB1 cannabinoid receptor-mediated plasticity of GABAergic synapses in the mouse insular cortex. Sci Rep 2020; 10:7187. [PMID: 32346039 PMCID: PMC7189234 DOI: 10.1038/s41598-020-64236-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 04/13/2020] [Indexed: 01/13/2023] Open
Abstract
The insular cortex plays pivotal roles in taste learning. As cellular mechanisms of taste learning, long-term potentiation (LTP) at glutamatergic synapses is well studied. However, little is known about long-term changes of synaptic efficacy at GABAergic synapses in the insular cortex. Here, we examined the synaptic mechanisms of long-term plasticity at GABAergic synapses in layer V pyramidal neurons of the mouse insular cortex. In response to a prolonged high-frequency stimulation (HFS), GABAergic synapses displayed endocannabinod (eCB)-mediated long-term depression (LTDGABA). When cannabinoid 1 receptors (CB1Rs) were blocked by a CB1R antagonist, the same stimuli caused LTP at GABAergic synapses (LTPGABA) which was mediated by production of nitric oxide (NO) via activation of NMDA receptors. Intriguingly, NO signaling was necessary for the induction of LTDGABA. In the presence of leptin which blocks CB1 signaling, the prolonged HFS caused LTPGABA which was mediated by NO signaling. These results indicate that long-term plasticity at GABAergic synapses in the insular cortex can be modulated by combined effects of eCB and NO signaling. These forms of GABAergic synaptic plasticity in the insular cortex may be crucial synaptic mechanisms in taste learning.
Collapse
|
6
|
Gil-Lievana E, Balderas I, Moreno-Castilla P, Luis-Islas J, McDevitt RA, Tecuapetla F, Gutierrez R, Bonci A, Bermúdez-Rattoni F. Glutamatergic basolateral amygdala to anterior insular cortex circuitry maintains rewarding contextual memory. Commun Biol 2020; 3:139. [PMID: 32198461 PMCID: PMC7083952 DOI: 10.1038/s42003-020-0862-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/24/2020] [Indexed: 12/21/2022] Open
Abstract
Findings have shown that anterior insular cortex (aIC) lesions disrupt the maintenance of drug addiction, while imaging studies suggest that connections between amygdala and aIC participate in drug-seeking. However, the role of the BLA → aIC pathway in rewarding contextual memory has not been assessed. Using a cre-recombinase under the tyrosine hydroxylase (TH+) promoter mouse model to induce a real-time conditioned place preference (rtCPP), we show that photoactivation of TH+ neurons induced electrophysiological responses in VTA neurons, dopamine release and neuronal modulation in the aIC. Conversely, memory retrieval induced a strong release of glutamate, dopamine, and norepinephrine in the aIC. Only intra-aIC blockade of the glutamatergic N-methyl-D-aspartate receptor accelerated rtCPP extinction. Finally, photoinhibition of glutamatergic BLA → aIC pathway produced disinhibition of local circuits in the aIC, accelerating rtCPP extinction and impairing reinstatement. Thus, activity of the glutamatergic projection from the BLA to the aIC is critical for maintenance of rewarding contextual memory.
Collapse
Affiliation(s)
- Elvi Gil-Lievana
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, México City, Mexico
| | - Israela Balderas
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, México City, Mexico
| | - Perla Moreno-Castilla
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, México City, Mexico.,Global Institutes on Addiction, 1221 Brickell Ave, Miami, FL33131, USA
| | - Jorge Luis-Islas
- Departamento de Farmacología, Centro de Estudios Avanzados, Instituto Politécnico Nacional, 07360, México City, Mexico
| | - Ross A McDevitt
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Fatuel Tecuapetla
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, México City, Mexico
| | - Ranier Gutierrez
- Departamento de Farmacología, Centro de Estudios Avanzados, Instituto Politécnico Nacional, 07360, México City, Mexico
| | - Antonello Bonci
- Global Institutes on Addiction, 1221 Brickell Ave, Miami, FL33131, USA
| | - Federico Bermúdez-Rattoni
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, México City, Mexico.
| |
Collapse
|
7
|
Chen Y, Barsegyan A, Nadif Kasri N, Roozendaal B. Basolateral amygdala noradrenergic activity is required for enhancement of object recognition memory by histone deacetylase inhibition in the anterior insular cortex. Neuropharmacology 2018; 141:32-41. [DOI: 10.1016/j.neuropharm.2018.08.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/13/2018] [Accepted: 08/17/2018] [Indexed: 12/13/2022]
|
8
|
NMDA Receptor Dependent Long-term Potentiation in Chronic Pain. Neurochem Res 2018; 44:531-538. [PMID: 30109556 PMCID: PMC6420414 DOI: 10.1007/s11064-018-2614-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/08/2018] [Accepted: 08/11/2018] [Indexed: 02/06/2023]
Abstract
Since the discovery of NMDA receptor (NMDAR) dependent long-term potentiation (LTP) in the hippocampus, many studies have demonstrated that NMDAR dependent LTP exists throughout central synapses, including those involved in sensory transmission and perception. NMDAR LTP has been reported in spinal cord dorsal horn synapses, anterior cingulate cortex and insular cortex. Behavioral, genetic and pharmacological studies show that inhibiting or reducing NMDAR LTP produced analgesic effects in animal models of chronic pain. Investigation of signalling mechanisms for NMDAR LTP may provide novel targets for future treatment of chronic pain.
Collapse
|
9
|
Juárez-Muñoz Y, Ramos-Languren LE, Escobar ML. CaMKII Requirement for in Vivo Insular Cortex LTP Maintenance and CTA Memory Persistence. Front Pharmacol 2017; 8:822. [PMID: 29184500 PMCID: PMC5694558 DOI: 10.3389/fphar.2017.00822] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/30/2017] [Indexed: 12/12/2022] Open
Abstract
Calcium-calmodulin/dependent protein kinase II (CaMKII) plays an essential role in LTP induction, but since it has the capacity to remain persistently activated even after the decay of external stimuli it has been proposed that it can also be necessary for LTP maintenance and therefore for memory persistence. It has been shown that basolateral amygdaloid nucleus (Bla) stimulation induces long-term potentiation (LTP) in the insular cortex (IC), a neocortical region implicated in the acquisition and retention of conditioned taste aversion (CTA). Our previous studies have demonstrated that induction of LTP in the Bla-IC pathway before CTA training increased the retention of this task. Although it is known that IC-LTP induction and CTA consolidation share similar molecular mechanisms, little is known about the molecular actors that underlie their maintenance. The purpose of the present study was to evaluate the role of CaMKII in the maintenance of in vivo Bla-IC LTP as well as in the persistence of CTA long-term memory (LTM). Our results show that acute microinfusion of myr-CaMKIINtide, a selective inhibitor of CaMKII, in the IC of adult rats during the late-phase of in vivo Bla-IC LTP blocked its maintenance. Moreover, the intracortical inhibition of CaMKII 24 h after CTA acquisition impairs CTA-LTM persistence. Together these results indicate that CaMKII is a central key component for the maintenance of neocortical synaptic plasticity as well as for persistence of CTA-LTM.
Collapse
Affiliation(s)
- Yectivani Juárez-Muñoz
- División de Investigación y Estudios de Posgrado, Facultad de Psicología, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Laura E Ramos-Languren
- División de Investigación y Estudios de Posgrado, Facultad de Psicología, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Martha L Escobar
- División de Investigación y Estudios de Posgrado, Facultad de Psicología, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| |
Collapse
|
10
|
Yiannakas A, Rosenblum K. The Insula and Taste Learning. Front Mol Neurosci 2017; 10:335. [PMID: 29163022 PMCID: PMC5676397 DOI: 10.3389/fnmol.2017.00335] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/03/2017] [Indexed: 12/29/2022] Open
Abstract
The sense of taste is a key component of the sensory machinery, enabling the evaluation of both the safety as well as forming associations regarding the nutritional value of ingestible substances. Indicative of the salience of the modality, taste conditioning can be achieved in rodents upon a single pairing of a tastant with a chemical stimulus inducing malaise. This robust associative learning paradigm has been heavily linked with activity within the insular cortex (IC), among other regions, such as the amygdala and medial prefrontal cortex. A number of studies have demonstrated taste memory formation to be dependent on protein synthesis at the IC and to correlate with the induction of signaling cascades involved in synaptic plasticity. Taste learning has been shown to require the differential involvement of dopaminergic GABAergic, glutamatergic, muscarinic neurotransmission across an extended taste learning circuit. The subsequent activation of downstream protein kinases (ERK, CaMKII), transcription factors (CREB, Elk-1) and immediate early genes (c-fos, Arc), has been implicated in the regulation of the different phases of taste learning. This review discusses the relevant neurotransmission, molecular signaling pathways and genetic markers involved in novel and aversive taste learning, with a particular focus on the IC. Imaging and other studies in humans have implicated the IC in the pathophysiology of a number of cognitive disorders. We conclude that the IC participates in circuit-wide computations that modulate the interception and encoding of sensory information, as well as the formation of subjective internal representations that control the expression of motivated behaviors.
Collapse
Affiliation(s)
- Adonis Yiannakas
- Sagol Department of Neuroscience, University of Haifa, Haifa, Israel
| | - Kobi Rosenblum
- Sagol Department of Neuroscience, University of Haifa, Haifa, Israel
- Center for Gene Manipulation in the Brain, University of Haifa, Haifa, Israel
| |
Collapse
|
11
|
Abstract
Cortical circuits are known to be plastic and adaptable, as shown by an impressive body of evidence demonstrating the ability of cortical circuits to adapt to changes in environmental stimuli, development, learning, and insults. In this review, we will discuss some of the features of cortical circuits that are thought to facilitate cortical circuit versatility and flexibility. Throughout life, cortical circuits can be extensively shaped and refined by experience while preserving their overall organization, suggesting that mechanisms are in place to favor change but also to stabilize some aspects of the circuit. First, we will describe the basic organization and some of the common features of cortical circuits. We will then discuss how this underlying cortical structure provides a substrate for the experience- and learning-dependent processes that contribute to cortical flexibility.
Collapse
Affiliation(s)
- Melissa S. Haley
- Department of Neurobiology and Behavior, SUNY–Stony Brook, Stony Brook, NY, USA
| | - Arianna Maffei
- Department of Neurobiology and Behavior, SUNY–Stony Brook, Stony Brook, NY, USA
| |
Collapse
|
12
|
Yamanaka M, Matsuura T, Pan H, Zhuo M. Calcium-stimulated adenylyl cyclase subtype 1 (AC1) contributes to LTP in the insular cortex of adult mice. Heliyon 2017; 3:e00338. [PMID: 28721398 PMCID: PMC5498404 DOI: 10.1016/j.heliyon.2017.e00338] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/11/2017] [Accepted: 06/22/2017] [Indexed: 12/27/2022] Open
Abstract
Long-term potentiation (LTP) of synaptic transmission in the central nervous system is a key form of cortical plasticity. The insular cortex (IC) is known to play important roles in pain perception, aversive memory and mood disorders. LTP has been recently reported in the IC, however, the signaling pathway for IC LTP remains unknown. Here, we investigated the synaptic mechanism of IC LTP. We found that IC LTP induced by the pairing protocol was N-methyl-D-aspartate receptors (NMDARs) dependent, and expressed postsynaptically, since paired-pulse ratio (PPR) was not affected. Postsynaptic calcium is important for the induction of post-LTP, since the postsynaptic application of BAPTA completely blocked the induction of LTP. Calcium-activated adenylyl cyclase subtype 1 (AC1) is required for potentiation. By contrast, AC8 is not required. Inhibition of Ca2+ permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (CP-AMPARs) or protein kinase M zeta (PKMζ) reduced the expression of LTP. Our results suggest that calcium-stimulated AC1, but not AC8, can be a trigger of the induction and maintenance of LTP in the IC.
Collapse
Affiliation(s)
- Manabu Yamanaka
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, Shanxi 710049, China.,Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.,Department of Orthopaedic Surgery, Wakayama Medical University, Wakayama, 641-8509, Japan
| | - Takanori Matsuura
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, Shanxi 710049, China.,Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Haili Pan
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, Shanxi 710049, China.,Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Min Zhuo
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, Shanxi 710049, China.,Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| |
Collapse
|
13
|
Li WG, Liu MG, Deng S, Liu YM, Shang L, Ding J, Hsu TT, Jiang Q, Li Y, Li F, Zhu MX, Xu TL. ASIC1a regulates insular long-term depression and is required for the extinction of conditioned taste aversion. Nat Commun 2016; 7:13770. [PMID: 27924869 PMCID: PMC5150990 DOI: 10.1038/ncomms13770] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 10/28/2016] [Indexed: 01/20/2023] Open
Abstract
Acid-sensing ion channel 1a (ASIC1a) has been shown to play important roles in synaptic plasticity, learning and memory. Here we identify a crucial role for ASIC1a in long-term depression (LTD) at mouse insular synapses. Genetic ablation and pharmacological inhibition of ASIC1a reduced the induction probability of LTD without affecting that of long-term potentiation in the insular cortex. The disruption of ASIC1a also attenuated the extinction of established taste aversion memory without altering the initial associative taste learning or its long-term retention. Extinction of taste aversive memory led to the reduced insular synaptic efficacy, which precluded further LTD induction. The impaired LTD and extinction learning in ASIC1a null mice were restored by virus-mediated expression of wild-type ASIC1a, but not its ion-impermeable mutant, in the insular cortices. Our data demonstrate the involvement of an ASIC1a-mediated insular synaptic depression mechanism in extinction learning, which raises the possibility of targeting ASIC1a to manage adaptive behaviours.
The acid-sensing ion channel, ASIC1a, is known to play a role in synaptic transmission and plasticity. Here, the authors demonstrate a role for ASIC1a in regulating plasticity in the insular cortex and find that extinction of conditioned taste aversion memory is disrupted in the ASIC1a knockout mice.
Collapse
Affiliation(s)
- Wei-Guang Li
- Discipline of Neuroscience, Department of Anatomy, Histology and Embryology, and Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Department of Developmental and Behavioral Pediatrics, Shanghai Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200129, China
| | - Ming-Gang Liu
- Discipline of Neuroscience, Department of Anatomy, Histology and Embryology, and Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shining Deng
- Department of Developmental and Behavioral Pediatrics, Shanghai Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200129, China
| | - Yan-Mei Liu
- Discipline of Neuroscience, Department of Anatomy, Histology and Embryology, and Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Department of Developmental and Behavioral Pediatrics, Shanghai Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200129, China
| | - Lin Shang
- Department of Developmental and Behavioral Pediatrics, Shanghai Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200129, China
| | - Jing Ding
- Department of Developmental and Behavioral Pediatrics, Shanghai Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200129, China
| | - Tsan-Ting Hsu
- Institute of Neuroscience, National Yang-Ming University, 155, Section 2, Li-Nong Street, Taipei 112, Taiwan
| | - Qin Jiang
- Discipline of Neuroscience, Department of Anatomy, Histology and Embryology, and Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Department of Developmental and Behavioral Pediatrics, Shanghai Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200129, China
| | - Ying Li
- Discipline of Neuroscience, Department of Anatomy, Histology and Embryology, and Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Department of Developmental and Behavioral Pediatrics, Shanghai Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200129, China
| | - Fei Li
- Department of Developmental and Behavioral Pediatrics, Shanghai Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200129, China
| | - Michael Xi Zhu
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Tian-Le Xu
- Discipline of Neuroscience, Department of Anatomy, Histology and Embryology, and Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
14
|
Kang SJ, Kaang BK. Metabotropic glutamate receptor dependent long-term depression in the cortex. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2016; 20:557-564. [PMID: 27847432 PMCID: PMC5106389 DOI: 10.4196/kjpp.2016.20.6.557] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/23/2016] [Accepted: 08/23/2016] [Indexed: 02/07/2023]
Abstract
Metabotropic glutamate receptor (mGluR)-dependent long-term depression (LTD), a type of synaptic plasticity, is characterized by a reduction in the synaptic response, mainly at the excitatory synapses of the neurons. The hippocampus and the cerebellum have been the most extensively studied regions in mGluR-dependent LTD, and Group 1 mGluR has been reported to be mainly involved in this synaptic LTD at excitatory synapses. However, mGluR-dependent LTD in other brain regions may be involved in the specific behaviors or diseases. In this paper, we focus on five cortical regions and review the literature that implicates their contribution to the pathogenesis of several behaviors and specific conditions associated with mGluR-dependent LTD.
Collapse
Affiliation(s)
- Sukjae Joshua Kang
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| | - Bong-Kiun Kaang
- Center for Neuron and Disease, Frontier Institutes of Life Science and of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.; Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
15
|
Gallo M, Ballesteros M, Molero A, Morón I. Taste Aversion Learning as a Tool for the Study of Hippocampal and Non-Hippocampal Brain Memory Circuits Regulating Diet Selection. Nutr Neurosci 2016; 2:277-302. [DOI: 10.1080/1028415x.1999.11747284] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Parkes SL, Ferreira G, Coutureau E. Acquisition of specific response–outcome associations requires NMDA receptor activation in the basolateral amygdala but not in the insular cortex. Neurobiol Learn Mem 2016; 128:40-5. [DOI: 10.1016/j.nlm.2015.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/17/2015] [Accepted: 12/20/2015] [Indexed: 10/22/2022]
|
17
|
Differential role of insular cortex muscarinic and NMDA receptors in one-trial appetitive taste learning. Neurobiol Learn Mem 2014; 116:112-6. [DOI: 10.1016/j.nlm.2014.09.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/26/2014] [Accepted: 09/29/2014] [Indexed: 11/17/2022]
|
18
|
Jarome TJ, Helmstetter FJ. Protein degradation and protein synthesis in long-term memory formation. Front Mol Neurosci 2014; 7:61. [PMID: 25018696 PMCID: PMC4072070 DOI: 10.3389/fnmol.2014.00061] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/09/2014] [Indexed: 11/19/2022] Open
Abstract
Long-term memory (LTM) formation requires transient changes in the activity of intracellular signaling cascades that are thought to regulate new gene transcription and de novo protein synthesis in the brain. Consistent with this, protein synthesis inhibitors impair LTM for a variety of behavioral tasks when infused into the brain around the time of training or following memory retrieval, suggesting that protein synthesis is a critical step in LTM storage in the brain. However, evidence suggests that protein degradation mediated by the ubiquitin-proteasome system (UPS) may also be a critical regulator of LTM formation and stability following retrieval. This requirement for increased protein degradation has been shown in the same brain regions in which protein synthesis is required for LTM storage. Additionally, increases in the phosphorylation of proteins involved in translational control parallel increases in protein polyubiquitination and the increased demand for protein degradation is regulated by intracellular signaling molecules thought to regulate protein synthesis during LTM formation. In some cases inhibiting proteasome activity can rescue memory impairments that result from pharmacological blockade of protein synthesis, suggesting that protein degradation may control the requirement for protein synthesis during the memory storage process. Results such as these suggest that protein degradation and synthesis are both critical for LTM formation and may interact to properly “consolidate” and store memories in the brain. Here, we review the evidence implicating protein synthesis and degradation in LTM storage and highlight the areas of overlap between these two opposing processes. We also discuss evidence suggesting these two processes may interact to properly form and store memories. LTM storage likely requires a coordinated regulation between protein degradation and synthesis at multiple sites in the mammalian brain.
Collapse
Affiliation(s)
- Timothy J Jarome
- Department of Neurobiology, University of Alabama at Birmingham Birmingham, AL, USA ; Department of Psychology, University of Wisconsin-Milwaukee Milwaukee, WI, USA
| | - Fred J Helmstetter
- Department of Psychology, University of Wisconsin-Milwaukee Milwaukee, WI, USA
| |
Collapse
|
19
|
Bermudez-Rattoni F. The forgotten insular cortex: Its role on recognition memory formation. Neurobiol Learn Mem 2014; 109:207-16. [PMID: 24406466 DOI: 10.1016/j.nlm.2014.01.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 12/21/2013] [Accepted: 01/01/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Federico Bermudez-Rattoni
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, A.P. 70-253, México, DF 04510, Mexico.
| |
Collapse
|
20
|
Moraga-Amaro R, Cortés-Rojas A, Simon F, Stehberg J. Role of the insular cortex in taste familiarity. Neurobiol Learn Mem 2013; 109:37-45. [PMID: 24296461 DOI: 10.1016/j.nlm.2013.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 10/16/2013] [Accepted: 11/18/2013] [Indexed: 11/16/2022]
Abstract
Determining the role of the main gustatory cortical area within the insular cortex (IC), in conditioned taste aversion (CTA) has been elusive due to effective compensatory mechanisms that allow animals to learn in spite of lacking IC. IC lesions performed before CTA training induces mild if any memory impairments, while IC lesions done weeks after CTA produce amnesia. IC lesions before taste presentation have also been shown not to affect taste familiarity learning (attenuation of neophobia). This lack of effect could be either explained by compensation from other brain areas or by a lack of involvement of the IC in taste familiarity. To assess this issue, rats were bilaterally IC lesioned with ibotenic acid (200-300 nl.; 15 mg/ml) one week before or after taste familiarity, using either a preferred (0.1%) or a non-preferred (0.5%) saccharin solution. Rats lesioned before familiarity showed a decrease in neophobia to both solutions but no difference in their familiarity curve or their slope. When animals were familiarized and then IC lesioned, both IC lesioned groups treated the solutions as familiar, showing no differences from sham animals in their retention of familiarity. However, both lesioned groups showed increased latent inhibition (or impaired CTA) when CTA trained after repeated pre-exposures. The role of the IC in familiarity was also assessed using temporary inactivation of the IC, using bilateral micro-infusions of sodium channel blocker bupivacaine before each of 3 saccharin daily presentations. Intra-insular bupivacaine had no effects on familiarity acquisition, but did impair CTA learning in a different group of rats micro-infused before saccharin presentation in a CTA training protocol. Our data indicate that the IC is not essentially involved in acquisition or retention of taste familiarity, suggesting regional dissociation of areas involved in CTA and taste familiarity.
Collapse
Affiliation(s)
- Rodrigo Moraga-Amaro
- Laboratorio de Neurobiologia, Centro de Investigaciones Biomédicas, Facultad de Ciencias Biologicas & Facultad de Medicina, Universidad Andres Bello, Chile
| | - Andrés Cortés-Rojas
- Laboratorio de Neurobiologia, Centro de Investigaciones Biomédicas, Facultad de Ciencias Biologicas & Facultad de Medicina, Universidad Andres Bello, Chile
| | - Felipe Simon
- Laboratorio de Fisiopatologia Integrativa, Departaemento de Ciencias Biologicas, Facultad de Ciencias Biologicas & Facultad de Medicina, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Jimmy Stehberg
- Laboratorio de Neurobiologia, Centro de Investigaciones Biomédicas, Facultad de Ciencias Biologicas & Facultad de Medicina, Universidad Andres Bello, Chile.
| |
Collapse
|
21
|
Li CL, Zhu N, Meng XL, Li YH, Sui N. Effects of inactivating the agranular or granular insular cortex on the acquisition of the morphine-induced conditioned place preference and naloxone-precipitated conditioned place aversion in rats. J Psychopharmacol 2013; 27:837-44. [PMID: 23784741 DOI: 10.1177/0269881113492028] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Recent studies have indicated that the insula underlies affective learning. Although affective learning is well-established in the development of opiate addiction, the role of insula in this context remains unclear. To elucidate the organization of opiate-related affective learning within the insular cortex, we reversibly inactivated each of two major subdivisions of the insula in rats and tested the effects of this inactivation on the acquisition of morphine-induced conditioned place preference (CPP) and conditioned place aversion (CPA) induced by naloxone-precipitated acute morphine withdrawal. Results showed that inactivation of the primary interoceptive posterior granular insula (GI), but not that of the high-order anterior agranular insula (AI), disrupted the acquisition of CPP and that both GI and AI inactivation impaired the acquisition of CPA. These data suggest that the insular cortex is involved in positive and negative affective learning related to opiate addiction. In particular, the GI appears to be critical for both forms of affective learning, whereas the AI is crucial for learning associated with negative affects induced by opiate withdrawal.
Collapse
Affiliation(s)
- Chun-Lu Li
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | | | | | | | | |
Collapse
|
22
|
Liu MG, Koga K, Guo YY, Kang SJ, Collingridge GL, Kaang BK, Zhao MG, Zhuo M. Long-term depression of synaptic transmission in the adult mouse insular cortex in vitro. Eur J Neurosci 2013; 38:3128-45. [PMID: 23930740 DOI: 10.1111/ejn.12330] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 07/01/2013] [Accepted: 07/08/2013] [Indexed: 12/25/2022]
Abstract
The insular cortex (IC) is known to play important roles in higher brain functions such as memory and pain. Activity-dependent long-term depression (LTD) is a major form of synaptic plasticity related to memory and chronic pain. Previous studies of LTD have mainly focused on the hippocampus, and no study in the IC has been reported. In this study, using a 64-channel recording system, we show for the first time that repetitive low-frequency stimulation (LFS) can elicit frequency-dependent LTD of glutamate receptor-mediated excitatory synaptic transmission in both superficial and deep layers of the IC of adult mice. The induction of LTD in the IC required activation of the N-methyl-d-aspartate (NMDA) receptor, metabotropic glutamate receptor (mGluR)5, and L-type voltage-gated calcium channel. Protein phosphatase 1/2A and endocannabinoid signaling are also critical for the induction of LTD. In contrast, inhibiting protein kinase C, protein kinase A, protein kinase Mζ or calcium/calmodulin-dependent protein kinase II did not affect LFS-evoked LTD in the IC. Bath application of the group I mGluR agonist (RS)-3,5-dihydroxyphenylglycine produced another form of LTD in the IC, which was NMDA receptor-independent and could not be occluded by LFS-induced LTD. Our studies have characterised the basic mechanisms of LTD in the IC at the network level, and suggest that two different forms of LTD may co-exist in the same population of IC synapses.
Collapse
Affiliation(s)
- Ming-Gang Liu
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea; Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Viemose I, Møller P, Laugesen JL, Schachtman TR, Manoharan T, Christoffersen GRJ. Appetitive long-term taste conditioning enhances human visually evoked EEG responses. Behav Brain Res 2013; 253:1-8. [PMID: 23827203 DOI: 10.1016/j.bbr.2013.06.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/24/2013] [Accepted: 06/27/2013] [Indexed: 11/29/2022]
Abstract
Long-term effects of learned associations between an image and a taste have not been studied with electromagnetic brain scanning techniques. The possibility that taste conditioning may change sensory image processing was investigated in young adult subjects. EEG-responses evoked by images were recorded before and after a training session using an image as conditioned stimulus and a pleasant taste as unconditioned stimulus. The results showed that in posterior electrodes placed over visual cortex areas, the following changes occurred after conditioning: (1) the amplitude and duration of the N2-P3 waves in the visual evoked potentials were enhanced; (2) the N2 and P3 peak delays were shortened; (3) power induced by image presentation was enhanced in the delta and theta frequency bands; (4) cross-hemispheric delta and theta coherences among the posterior electrodes were enhanced; (5) calculations of the underlying whole brain distribution of currents using swLORETA showed elevated current densities in posterior voxels. None of the above changes occurred in a sham-trained control group. In electrodes placed over the prefrontal cortex, delta and theta power also rose significantly. It is suggested that the appetitive taste conditioning potentiated synaptic activity in visual cortex networks and that this led to an increased speed of image processing.
Collapse
Affiliation(s)
- Ida Viemose
- Department of Food Science, University of Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
24
|
Goshadrou F, Kermani M, Ronaghi A, Sajjadi S. The effect of ghrelin on MK-801 induced memory impairment in rats. Peptides 2013; 44:60-5. [PMID: 23538209 DOI: 10.1016/j.peptides.2013.03.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 03/18/2013] [Accepted: 03/18/2013] [Indexed: 11/24/2022]
Abstract
Accumulating evidence indicates that the brain-gut peptide ghrelin which is expressed in hippocampus improves memory and learning processes. The MK-801, a noncompetitive NMDA receptor antagonist, has also shown amnesic properties in animal model. The current study was to find out whether intracerebroventricular administration of ghrelin can prevent amnesia induced by MK-801 in rats. A week after the surgery, during which cannuals were implanted in the lateral ventricular, the animals were trained and tested in a step-through type passive avoidance task. Memory retrieval was measured by step-through latency (STL) and total time in dark compartments (TDC). In the first series of experiments, we established a dose-response relationship for ghrelin on the passive avoidance paradigm. In the second set of experiments, animals were divided to two groups. In the first group, MK-801 (0.075, 0.15 and 0.3mg/kg) was injected intraperitoneally (i.p.) immediately after the acquisition session and in the second group MK-801 (same doses) was injected (i.p.) 30 min before the retention session. Analysis of data showed that in both groups, MK-801 impaired learning and memory. In the third set of experiments, administration of ghrelin (200 ng/rat) right after the acquisition session (i.e. before MK-801 injection) improved the MK-801 induced memory impairment, but administration of ghrelin before retrieval session did not affect the MK-801 induced memory impairment. These results show an interaction between ghrelin and glutamatergic system. A novel finding in this study is that ghrelin can prevent amnesia produced by NMDA antagonist in rats when injected in post-training phase.
Collapse
Affiliation(s)
- Fatemeh Goshadrou
- Physiology Department, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | | | | |
Collapse
|
25
|
Parkes SL, Balleine BW. Incentive memory: evidence the basolateral amygdala encodes and the insular cortex retrieves outcome values to guide choice between goal-directed actions. J Neurosci 2013; 33:8753-63. [PMID: 23678118 PMCID: PMC3717368 DOI: 10.1523/jneurosci.5071-12.2013] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 04/04/2013] [Accepted: 04/09/2013] [Indexed: 01/07/2023] Open
Abstract
Choice between goal-directed actions is determined by the relative value of their consequences. Such values are encoded during incentive learning and later retrieved to guide performance. Although the basolateral amygdala (BLA) and the gustatory region of insular cortex (IC) have been implicated in these processes, their relative contribution is still a matter of debate. Here we assessed whether these structures interact during incentive learning and retrieval to guide choice. In these experiments, rats were trained on two actions for distinct outcomes after which one of the two outcomes was devalued by specific satiety immediately before a choice extinction test. We first confirmed that, relative to appropriate controls, outcome devaluation recruited both the BLA and IC based on activation of the immediate early gene Arc; however, we found that infusion of the NMDAr antagonist ifenprodil into the BLA only abolished outcome devaluation when given before devaluation. In contrast, ifenprodil infusion into the IC was effective whether made before devaluation or test. We hypothesized that the BLA encodes and the IC retrieves incentive value for choice and, to test this, developed a novel sequential disconnection procedure. Blocking NMDAr activation unilaterally in the BLA before devaluation and then contralaterally in the IC before test abolished selective devaluation. In contrast, reversing the order of these infusions left devaluation intact. These results confirm that the BLA and IC form a circuit mediating the encoding and retrieval of outcome values, with the BLA encoding and the IC retrieving such values to guide choice.
Collapse
Affiliation(s)
- Shauna L. Parkes
- Brain and Mind Research Institute, University of Sydney, Camperdown, New South Wales 2050, Australia
| | - Bernard W. Balleine
- Brain and Mind Research Institute, University of Sydney, Camperdown, New South Wales 2050, Australia
| |
Collapse
|
26
|
Jarome TJ, Helmstetter FJ. The ubiquitin-proteasome system as a critical regulator of synaptic plasticity and long-term memory formation. Neurobiol Learn Mem 2013; 105:107-16. [PMID: 23623827 DOI: 10.1016/j.nlm.2013.03.009] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 03/25/2013] [Accepted: 03/26/2013] [Indexed: 02/01/2023]
Abstract
Numerous studies have supported the idea that de novo protein synthesis is critical for synaptic plasticity and normal long-term memory formation. This requirement for protein synthesis has been shown for several different types of fear memories, exists in multiple brain regions and circuits, and is necessary for different stages of memory creation and storage. However, evidence has recently begun to accumulate suggesting that protein degradation through the ubiquitin-proteasome system is an equally important regulator of memory formation. Here we review those recent findings on protein degradation and memory formation and stability and propose a model explaining how protein degradation may be contributing to various aspects of memory and synaptic plasticity. We conclude that protein degradation may be the major factor regulating many of the molecular processes that we know are important for fear memory formation and stability in the mammalian brain.
Collapse
Affiliation(s)
- Timothy J Jarome
- Department of Psychology, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201, USA
| | | |
Collapse
|
27
|
Inactivation of basolateral amygdala specifically eliminates palatability-related information in cortical sensory responses. J Neurosci 2012; 32:9981-91. [PMID: 22815512 DOI: 10.1523/jneurosci.0669-12.2012] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Evidence indirectly implicates the amygdala as the primary processor of emotional information used by cortex to drive appropriate behavioral responses to stimuli. Taste provides an ideal system with which to test this hypothesis directly, as neurons in both basolateral amygdala (BLA) and gustatory cortex (GC)-anatomically interconnected nodes of the gustatory system-code the emotional valence of taste stimuli (i.e., palatability), in firing rate responses that progress similarly through "epochs." The fact that palatability-related firing appears one epoch earlier in BLA than GC is broadly consistent with the hypothesis that such information may propagate from the former to the latter. Here, we provide evidence supporting this hypothesis, assaying taste responses in small GC single-neuron ensembles before, during, and after temporarily inactivating BLA in awake rats. BLA inactivation (BLAx) changed responses in 98% of taste-responsive GC neurons, altering the entirety of every taste response in many neurons. Most changes involved reductions in firing rate, but regardless of the direction of change, the effect of BLAx was epoch-specific: while firing rates were changed, the taste specificity of responses remained stable; information about taste palatability, however, which normally resides in the "Late" epoch, was reduced in magnitude across the entire GC sample and outright eliminated in most neurons. Only in the specific minority of neurons for which BLAx enhanced responses did palatability specificity survive undiminished. Our data therefore provide direct evidence that BLA is a necessary component of GC gustatory processing, and that cortical palatability processing in particular is, in part, a function of BLA activity.
Collapse
|
28
|
Gal-Ben-Ari S, Rosenblum K. Molecular mechanisms underlying memory consolidation of taste information in the cortex. Front Behav Neurosci 2012; 5:87. [PMID: 22319481 PMCID: PMC3251832 DOI: 10.3389/fnbeh.2011.00087] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 12/12/2011] [Indexed: 12/22/2022] Open
Abstract
The senses of taste and odor are both chemical senses. However, whereas an organism can detect an odor at a relatively long distance from its source, taste serves as the ultimate proximate gatekeeper of food intake: it helps in avoiding poisons and consuming beneficial substances. The automatic reaction to a given taste has been developed during evolution and is well adapted to conditions that may occur with high probability during the lifetime of an organism. However, in addition to this automatic reaction, animals can learn and remember tastes, together with their positive or negative values, with high precision and in light of minimal experience. This ability of mammalians to learn and remember tastes has been studied extensively in rodents through application of reasonably simple and well defined behavioral paradigms. The learning process follows a temporal continuum similar to those of other memories: acquisition, consolidation, retrieval, relearning, and reconsolidation. Moreover, inhibiting protein synthesis in the gustatory cortex (GC) specifically affects the consolidation phase of taste memory, i.e., the transformation of short- to long-term memory, in keeping with the general biochemical definition of memory consolidation. This review aims to present a general background of taste learning, and to focus on recent findings regarding the molecular mechanisms underlying taste–memory consolidation in the GC. Specifically, the roles of neurotransmitters, neuromodulators, immediate early genes, and translation regulation are addressed.
Collapse
|
29
|
Guzmán-Ramos K, Bermúdez-Rattoni F. Post-learning molecular reactivation underlies taste memory consolidation. Front Syst Neurosci 2011; 5:79. [PMID: 21991247 PMCID: PMC3181436 DOI: 10.3389/fnsys.2011.00079] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 08/31/2011] [Indexed: 11/21/2022] Open
Abstract
It is considered that memory consolidation is a progressive process that requires post-trial stabilization of the information. In this regard, it has been speculated that waves of receptors activation, expression of immediate early genes, and replenishment of receptor subunit pools occur to induce functional or morphological changes to maintain the information for longer periods. In this paper, we will review data related to neuronal changes in the post-acquisition stage of taste aversion learning that could be involved in further stabilization of the memory trace. In order to achieve such stabilization, evidence suggests that the functional integrity of the insular cortex (IC) and the amygdala (AMY) is required. Particularly the increase of extracellular levels of glutamate and activation of N-methyl-d-aspartate (NMDA) receptors within the IC shows a main role in the consolidation process. Additionally the modulatory actions of the dopaminergic system in the IC appear to be involved in the mechanisms that lead to taste aversion memory consolidation through the activation of pathways related to enhancement of protein synthesis such as the Protein Kinase A pathway. In summary, we suggest that post-acquisition molecular and neuronal changes underlying memory consolidation are dependent on the interactions between the AMY and the IC.
Collapse
|
30
|
Mizoguchi N, Fujita S, Koshikawa N, Kobayashi M. Spatiotemporal dynamics of long-term potentiation in rat insular cortex revealed by optical imaging. Neurobiol Learn Mem 2011; 96:468-78. [PMID: 21855644 DOI: 10.1016/j.nlm.2011.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 07/06/2011] [Accepted: 07/25/2011] [Indexed: 01/25/2023]
Abstract
Long-term potentiation (LTP) of the gustatory cortex (GC), a part of the insular cortex (IC) around the middle cerebral artery, is a key process of gustatory learning and memory, including conditioned taste aversion learning. The rostral (rGC) and caudal GC (cGC) process different tastes; the rGC responds to hedonic and the cGC responds to aversive tastes. However, plastic changes of spatial interaction of excitatory propagation between the rGC and cGC remain unknown. The present study aimed to elucidate spatiotemporal profiles of excitatory propagation, induced by electrical stimulation (five train pulses) of the rGC/cGC before and after LTP induction, using in vivo optical imaging with a voltage-sensitive dye. We demonstrated that tetanic stimulation of the cGC induced long-lasting expansion of the excitation responding to five train stimulation of the cGC, and an increase in amplitude of optical signals in the IC. Excitatory propagation after LTP induction spread preferentially toward the rostral IC: the length constant (λ) of excitation, obtained by fitting optical signals with a monoexponential curve, was increased to 121.9% in the rostral direction, whereas λ for the caudal, dorsal, and ventral directions were 48.9%, 44.2%, and 62.5%, respectively. LTP induction was prevented by pre-application of D-APV, an NMDA receptor antagonist, or atropine, a muscarinic receptor antagonist, to the cortical surface. In contrast, rGC stimulation induced only slight LTP without direction preference. Considering the different roles of the rGC and cGC in gustatory processing, these characteristic patterns of LTP in the GC may be involved in a mechanism underlying conversion of palatability.
Collapse
Affiliation(s)
- Naoko Mizoguchi
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | | | | | | |
Collapse
|
31
|
Conditioned taste aversion modifies persistently the subsequent induction of neocortical long-term potentiation in vivo. Neurobiol Learn Mem 2011; 95:519-26. [DOI: 10.1016/j.nlm.2011.03.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 02/24/2011] [Accepted: 03/21/2011] [Indexed: 12/21/2022]
|
32
|
Stehberg J, Moraga-Amaro R, Simon F. The role of the insular cortex in taste function. Neurobiol Learn Mem 2011; 96:130-5. [PMID: 21447397 DOI: 10.1016/j.nlm.2011.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 02/22/2011] [Accepted: 03/21/2011] [Indexed: 11/26/2022]
Abstract
In spite of over 30 years of research, the role of the Insular Cortex (IC) in taste memory still remains elusive. To study the role of the IC in taste memory, we used conditioned taste aversion (CTA) for two different concentrations of saccharin; 0.1% which is highly preferred, and 0.5% which is non-preferred. Rats that had been IC lesioned bilaterally with ibotenic acid (15 mg/ml) before CTA showed significant learning impairments for saccharin 0.1% but not for saccharin 0.5%. To test CTA memory retention, rats lesioned a week after CTA training became completely amnesic for saccharin 0.1% yet only mildly impaired for saccharin 0.5%. Interestingly, the resulting preference for either concentration matched that of IC lesioned animals when exposed to either saccharin solution for the first time, but not those of sham animals, implying that IC lesions after CTA for either saccharin solution rendered complete amnesia, irrespective of the original preference. Our data indicate that an intact IC is essential for CTA learning and retention, as well as for an early neophobic response, but not for taste preference itself. Our data supports a model where the IC is involved in general taste rejection.
Collapse
Affiliation(s)
- Jimmy Stehberg
- Laboratorio de Neurobiologia, Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas & Facultad de Medicina, Universidad Andres Bello, Santiago, Chile.
| | | | | |
Collapse
|
33
|
Oberbeck DL, McCormack S, Houpt TA. Intra-amygdalar okadaic acid enhances conditioned taste aversion learning and CREB phosphorylation in rats. Brain Res 2010; 1348:84-94. [PMID: 20599840 DOI: 10.1016/j.brainres.2010.06.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 06/09/2010] [Accepted: 06/10/2010] [Indexed: 11/26/2022]
Abstract
Protein phosphatases (PPs) regulate many substrates implicated in learning and memory. Conditioned taste aversion (CTA) learning, in which animals associate a novel taste paired with a toxin and subsequently avoid the taste, is dependent on several serine/threonine phosphatase substrates and the PP1-binding protein spinophilin. In order to examine the effects of PP1/2A blockade on CTA acquisition and extinction, rats received bilateral infusions of okadaic acid (OA) (100nM, 1microl/hemisphere) or vehicle (0.15M NaCl) into the amygdala either 5min prior to, or 5min after, a single pairing of sodium saccharin (0.125%, 10-min access) and LiCl or NaCl (0.15M, 3ml/kg i.p.). Two-bottle, 24-h preference tests were conducted for 13days to measure CTA expression and extinction. Rats conditioned with saccharin and LiCl showed a decreased preference for saccharin, and OA administered before (but not after) the pairing of saccharin and LiCl resulted in a significantly stronger CTA that did not extinguish over 13days. The enhancement of the CTA was not due to aversive effects of OA, because rats given OA and a pairing of saccharin and NaCl did not acquire a CTA. Finally, OA administration increased levels of phosphorylated CREB immunoreactivity following a CTA trial. Together, these results suggest a critical role for PP1/2A during normal CTA learning. Because CTA learning was enhanced only when OA was given prior to conditioning, phosphatase activity may be a constraint on learning during the taste-toxin interval but not during acquisition and consolidation processes that occur after toxin administration.
Collapse
Affiliation(s)
- Denesa L Oberbeck
- Department of Biological Science, Program in Neuroscience, The Florida State University, Tallahassee, FL 32306, USA
| | | | | |
Collapse
|
34
|
Associatively learned representations of taste outcomes activate taste-encoding neural ensembles in gustatory cortex. J Neurosci 2010; 29:15386-96. [PMID: 20007463 DOI: 10.1523/jneurosci.3233-09.2009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Through learning processes, cues associated with emotionally salient reinforcing outcomes can come to act as substitutes for the reinforcer itself. According to one account of this phenomenon, the predictive cue associatively elicits a representation of the expected outcome by reactivating cells responsible for encoding features of the primary reinforcer. We tested this hypothesis by examining the role of neural ensembles in gustatory cortex (GC) during receipt of gustatory stimuli (sucrose and water) and cues associated with those stimuli using the immediate early genes (IEGs) Arc and Homer1a. Because these plasticity-related IEGs are expressed in the neuronal nucleus 5 and 30 min, respectively, after salient events, we examined how individual neurons encoded these stimuli in two separate behavioral epochs. In experiment 1, we showed that tasting identical sucrose solutions, but not tasteless water, in the two epochs increased both IEG activity and the degree of overlap between neural ensembles in GC. In experiment 2, odor cues associated with sucrose, but not water, evoked potentiation of IEG activity in GC similar to sucrose itself. Surprisingly, lesions of the basolateral amygdala had minimal effects on associative encoding in GC. Finally, these associatively driven representations of sucrose appeared to be outcome specific, as neural ensembles that were activated by the sucrose-associated cue were also activated by sucrose itself. This degree of overlap between associative and primary taste activity at the ensemble level suggests that GC neurons encode important information about anticipated outcomes. Such representations may provide outcome-specific information for guiding goal-directed behavior.
Collapse
|
35
|
García-DeLaTorre P, Rodriguez-Ortiz CJ, Arreguin-Martinez JL, Cruz-Castañeda P, Bermúdez-Rattoni F. Simultaneous but not independent anisomycin infusions in insular cortex and amygdala hinder stabilization of taste memory when updated. Learn Mem 2009; 16:514-9. [PMID: 19706834 DOI: 10.1101/lm.1356509] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Reconsolidation has been described as a process where a consolidated memory returns to a labile state when retrieved. Growing evidence suggests that reconsolidation is, in fact, a destabilization/stabilization process that incorporates updated information to a previously consolidated memory. We used the conditioned taste aversion (CTA) task in order to test this theory. On the first trial, the conditioned stimulus (CS) (saccharin) was associated to the unconditioned stimulus (US) (LiCl injection), and as a result, aversion to saccharin was obtained. The following day, animals were injected with anisomycin in either the insular cortex (IC), central amygdala (CeA), basolateral amygdala (BLA), or simultaneously in IC and CeA or IC and BLA, and a second CTA trial was carried out in which updated information was acquired. Animals were tested 24 h later. When protein synthesis was inhibited in either the IC or CeA, consolidation was affected and previously consolidated memory was unimpaired. However, when both the IC and CeA were simultaneously anisomycin injected, the previously consolidated memory was affected. After repeated association trials, protein synthesis inhibition in the IC and CeA did not have an effect on taste memory. These results suggest that the IC and the CeA are necessary for taste-aversion consolidation, and that both share the previously consolidated memory trace. In addition, our data demonstrated that protein synthesis in either the IC or the CeA suffices to stabilize previously consolidated taste memory when destabilized by incorporation of updated information.
Collapse
Affiliation(s)
- Paola García-DeLaTorre
- Departamento de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México Distrito Federal, México
| | | | | | | | | |
Collapse
|
36
|
Fendt M, Schmid S, Thakker DR, Jacobson LH, Yamamoto R, Mitsukawa K, Maier R, Natt F, Hüsken D, Kelly PH, McAllister KH, Hoyer D, van der Putten H, Cryan JF, Flor PJ. mGluR7 facilitates extinction of aversive memories and controls amygdala plasticity. Mol Psychiatry 2008; 13:970-9. [PMID: 17712315 DOI: 10.1038/sj.mp.4002073] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Formation and extinction of aversive memories in the mammalian brain are insufficiently understood at the cellular and molecular levels. Using the novel metabotropic glutamate receptor 7 (mGluR7) agonist AMN082, we demonstrate that mGluR7 activation facilitates the extinction of aversive memories in two different amygdala-dependent tasks. Conversely, mGluR7 knockdown using short interfering RNA attenuated the extinction of learned aversion. mGluR7 activation also blocked the acquisition of Pavlovian fear learning and its electrophysiological correlate long-term potentiation in the amygdala. The finding that mGluR7 critically regulates extinction, in addition to acquisition of aversive memories, demonstrates that this receptor may be relevant for the manifestation and treatment of anxiety disorders.
Collapse
Affiliation(s)
- M Fendt
- Neuroscience Research, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Learning-related plasticity of temporal coding in simultaneously recorded amygdala-cortical ensembles. J Neurosci 2008; 28:2864-73. [PMID: 18337417 DOI: 10.1523/jneurosci.4063-07.2008] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Emotional learning requires the coordinated action of neural populations in limbic and cortical networks. Here, we performed simultaneous extracellular recordings from gustatory cortical (GC) and basolateral amygdalar (BLA) neural ensembles as awake, behaving rats learned to dislike the taste of saccharin [via conditioned taste aversion (CTA)]. Learning-related changes in single-neuron sensory responses were observed in both regions, but the nature of the changes was region specific. In GC, most changes were restricted to relatively late aspects of the response (starting approximately 1.0 s after stimulus administration), supporting our hypothesis that in this paradigm palatability-related information resides exclusively in later cortical responses. In contrast, and consistent with data suggesting the amygdala's primary role in judging stimulus palatability, CTA altered all components of BLA taste responses, including the earliest. Finally, learning caused dramatic increases in the functional connectivity (measured in terms of cross-correlation peak heights) between pairs of simultaneously recorded BLA and GC neurons, increases that were evident only during taste processing. Our simultaneous assays of the activity of single neurons in multiple relevant brain regions across learning suggest that the transmission of taste information through amygdala-cortical circuits plays a vital role in CTA memory formation.
Collapse
|
38
|
Traverso LM, Ruiz G, Camino G, De la Casa LG. Ketamine blocks the formation of a gustatory memory trace in rats. Pharmacol Biochem Behav 2008; 90:305-11. [PMID: 18433849 DOI: 10.1016/j.pbb.2008.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 03/03/2008] [Accepted: 03/05/2008] [Indexed: 11/30/2022]
Abstract
N-methyl-D-aspartate (NMDA) receptors appear to play a central role in learning and memory processes, as the administration of antagonistic substances of these receptors hinders learning acquisition by using different behavioral paradigms (e.g., Riedel G, Platt B, Micheau J. Glutamate receptor function in learning and memory. Behavioural Brain Research, 2003;140 (1-2):1-47.). In the specific case of conditioned taste aversion, the administration of ketamine seems to affect the acquisition of conditioning when the drugs are administered before the experimental treatment. In this paper we present three experiments designed to analyze the effect of different ketamine doses (25 mg/kg, 50 mg/kg, 75 mg/kg and 120 mg/kg), administered between exposure to a taste (the conditioned stimulus) and the administration of the unconditioned stimulus, on the acquisition of a taste aversion association. The results reveal that higher ketamine doses (75 mg/kg and 120 mg/kg) have a disruptive effect on conditioned taste aversion by impeding the formation of the gustatory trace.
Collapse
Affiliation(s)
- L M Traverso
- Department of Experimental Psychology, University of Seville, Spain
| | | | | | | |
Collapse
|
39
|
Nunnink M, Davenport RA, Ortega B, Houpt TA. D-Cycloserine enhances conditioned taste aversion learning in rats. Pharmacol Biochem Behav 2007; 87:321-30. [PMID: 17561237 PMCID: PMC2756720 DOI: 10.1016/j.pbb.2007.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 05/08/2007] [Accepted: 05/08/2007] [Indexed: 10/23/2022]
Abstract
Conditioned taste aversion (CTA) is a form of associative learning in which the pairing of a taste with a toxin causes an animal to avoid the taste. NMDA receptor mediated neurotransmission has been implicated in CTA, but the role of the NMDA receptor glycine-binding site has not been examined. To examine the effects on CTA of the glycinergic NMDA receptor agonist D-cycloserine, rats received D-cycloserine (15 mg/kg, i.p.) or vehicle 15 min before 10-min access to 0.125% saccharin, followed by a low dose of LiCl (19 mg/kg, i.p.). CTA was measured with 24-h, 2-bottle preference tests between water and saccharin. Vehicle-treated rats formed a mild CTA that rapidly extinguished, while d-cycloserine-treated rats formed a stronger CTA that extinguished slowly. The effect of d-cycloserine was specific to the NMDA receptor glycine-binding site, because pretreatment with HA-966 (6 mg/kg), a partial glycinergic agonist, blocked enhancement by D-cycloserine. Three follow-up experiments suggest that the enhancement of CTA was not due to an aversive effect of D-cycloserine. First, saccharin paired with D-cycloserine (15 mg/kg) alone did not induce a CTA, although a higher dose (30 mg/kg) did significantly lower saccharin preference. Second, pretreatment with D-cycloserine did not increase the duration of "lying-on-belly" behavior induced by LiCl. Third, pretreatment with D-cycloserine did not increase c-Fos induction by either LiCl or vehicle injection in central visceral relays (the nucleus of the solitary tract, the parabrachial nucleus, the central nucleus of the amygdala, the supraoptic nucleus, and the paraventricular nucleus). These results confirm the participation of NMDA receptor, and specifically the glycine-binding site of NMDA receptor, in CTA learning.
Collapse
Affiliation(s)
- Melissa Nunnink
- Department of Biological Sciences, Program in Neuroscience, BRF 252 MC 4340, The Florida State University, Tallahassee, FL 32306, USA
| | | | | | | |
Collapse
|
40
|
Castillo DV, Figueroa-Guzmán Y, Escobar ML. Brain-derived neurotrophic factor enhances conditioned taste aversion retention. Brain Res 2006; 1067:250-5. [PMID: 16364259 DOI: 10.1016/j.brainres.2005.10.085] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Revised: 10/20/2005] [Accepted: 10/21/2005] [Indexed: 11/29/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) has recently emerged as one of the most potent molecular mediators of not only central synaptic plasticity, but also behavioral interactions between an organism and its environment. Our previous studies on the insular cortex (IC), a region of the temporal cortex implicated in the acquisition and storage of conditioned taste aversion (CTA), have demonstrated that induction of long-term potentiation (LTP) in the projection from the basolateral nucleus of the amygdala (Bla) to the IC, previous to CTA training, enhances the retention of this task. Recently, we found that intracortical microinfusion of BDNF induces a lasting potentiation of synaptic efficacy in the Bla-IC projection of adult rats in vivo. In this work, we present experimental data showing that intracortical microinfusion of BDNF previous to CTA training enhances the retention of this task. These findings support the concept that BDNF may contribute to memory-related functions performed by a neocortical area, playing a critical role in long-term synaptic plasticity.
Collapse
Affiliation(s)
- Diana V Castillo
- División de Investigación y Estudios de Posgrado, Facultad de Psicología, Universidad Nacional Autónoma de México, 04510 México D.F., México
| | | | | |
Collapse
|
41
|
Vales K, Zach P, Bielavska E. Metabotropic glutamate receptor antagonists but not NMDA antagonists affect conditioned taste aversion acquisition in the parabrachial nucleus of rats. Exp Brain Res 2005; 169:50-7. [PMID: 16273405 DOI: 10.1007/s00221-005-0127-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Accepted: 07/06/2005] [Indexed: 11/29/2022]
Abstract
The effect of glutamate receptor antagonists on conditioned taste aversion (CTA) was studied in rats. The association of the short-term memory of a gustatory conditioned stimulus (CS) with visceral malaise (unconditioned stimulus, US) in the CTA paradigm takes place in the parabrachial nuclei (PBN) of the brainstem. The first direct evidence of participation of glutamatergic neurotransmission in the PBN during CTA demonstrated that the extracellular level of glutamate rises during saccharin drinking (Bielavska et al. in Brain Res 887:413-417, 2000). Our results show an effect of microdialysis administration of selective GluR antagonists into the PBN on the formation of CTA engram. We used four glutamate receptor (GluR) antagonists of different types (D-AP5, MK-801 as antagonists of ionotropic GluR and L-AP3, MSPG as antagonists of metabotropic GluR). The disruptive effect of MK-801 on CTA formation in the PBN is concentration-dependent, with the greatest inhibition under the higher concentrations eliciting significant disruption. The application of D-AP5 (0.1, 1, 5 mM) did not elicit a statistically significant blockade of CTA acquisition. This indicates that the association of the US-CS in the PBN is not dependent on NMDA receptors. On the contrary, application of L-AP3 (0.1, 1, 5 mM) blocked the CS-US association.
Collapse
Affiliation(s)
- Karel Vales
- Institute of Physiology, Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic.
| | | | | |
Collapse
|
42
|
Ferreira G, Miranda MI, De la Cruz V, Rodríguez-Ortiz CJ, Bermúdez-Rattoni F. Basolateral amygdala glutamatergic activation enhances taste aversion through NMDA receptor activation in the insular cortex. Eur J Neurosci 2005; 22:2596-604. [PMID: 16307602 DOI: 10.1111/j.1460-9568.2005.04440.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In conditioned taste aversion (CTA), a subject learns to associate a novel taste with visceral malaise. Brainstem, limbic and neocortical structures have been implicated in CTA memory formation. Nevertheless, the role of interactions between forebrain structures during these processes is still unknown. The present experiment was aimed at investigating the possible interaction between the basolateral nucleus of the amygdala (BLA) and the insular cortex (IC) during CTA memory formation. Injection of a low dose of lithium chloride (30 mg/kg, i.p.) 30 min after novel taste consumption (saccharin 0.1%) induces a weak CTA. Unilateral BLA injection of glutamate (2 microg in 0.5 microL) just before low lithium induces a stronger CTA. Unilateral injection of an N-methyl-d-aspartate (NMDA) receptor antagonist (AP5, 5 microg in 0.5 microL) in IC has no effect. However, AP5 treatment in IC at the same time or 1 h after the ipsilateral BLA injection reverses the glutamate-induced CTA enhancement. Injection of AP5 in IC 3 h after BLA injection does not interfere with the glutamate effect. Moreover, the CTA-enhancing effect of glutamate was also blocked by contralateral IC injection of AP5 at the same time. These results provide strong evidence that NMDA receptor activation in the IC is essential to enable CTA enhancement induced by glutamate infusion in the BLA during a limited time period that extends to 1 but not to 3 hours. These findings indicate that BLA-IC interactions regulate the strength of CTA. The bilateral nature of these amygdalo-cortical interactions is discussed.
Collapse
Affiliation(s)
- G Ferreira
- Laboratoire de Comportement Animal, UMR 6175 INRA-CNRS-Université de Tours-Haras Nationaux, 37380 Nouzilly, France.
| | | | | | | | | |
Collapse
|
43
|
Abstract
In recent years, the amygdala has emerged as a critical site of plasticity for the acquisition of various forms of Pavlovian learning, either aversive or appetitive. In most of these models, the critical site of plasticity has been localized to the basolateral complex of the amygdala (BLA). In contrast, the central nucleus of the amygdala has emerged as a passive relay of potentiated BLA outputs toward downstream effectors. At odds with this view, however, recent studies suggest that the central nucleus may also be a site of plasticity and play an active role in some forms of Pavlovian learning. The present review summarizes the evidence supporting this possibility.
Collapse
Affiliation(s)
- Rachel D Samson
- Center for Molecular & Behavioral Neuroscience, Rutgers State University, Newark, NJ 07102, USA
| | | | | |
Collapse
|
44
|
Fresquet N, Angst MJ, Sandner G. Insular cortex lesions alter conditioned taste avoidance in rats differentially when using two methods of sucrose delivery. Behav Brain Res 2004; 153:357-65. [PMID: 15265630 DOI: 10.1016/j.bbr.2003.12.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2003] [Revised: 12/11/2003] [Accepted: 12/12/2003] [Indexed: 11/16/2022]
Abstract
The insular gustatory cortex may be essential for the evaluation of saliency and representation of the incentive values of tastes. Gustatory cortex lesions should interfere with conditioned taste avoidance according to these factors, which depend on the conditioned taste avoidance protocol used. The present study was aimed at investigating the effects of bilateral lesions of the gustatory cortex-focusing on electrolytic and excitotoxic lesions. Lesioned and sham-operated male Long-Evans rats were intoxicated using LiCl after drinking sucrose from a tube (SD) or having the same amount of sucrose fed directly into their mouths through a chronically implanted intra-oral (IO) cannula. Every aspect of the experiment was carefully counterbalanced between the experimental groups. In the control groups, the acquired avoidance towards sucrose was strongly preserved over eight extinction test days in SD rats but not in IO rats, in which a progressive decline was recorded. Electrolytic gustatory cortex lesions impaired but did not suppress conditioned taste avoidance in both protocols. Excitotoxic lesions tend to impair CTA also, but differentially according to the SD or IO protocols. Extinction of CTA was selectively impaired in the SD protocol by small lesions destroying the anterior insular cortex.
Collapse
|
45
|
Mickley GA, Kenmuir CL, McMullen CA, Snyder A, Yocom AM, Likins-Fowler D, Valentine EL, Weber B, Biada JM. Long-term age-dependent behavioral changes following a single episode of fetal N-methyl-D-Aspartate (NMDA) receptor blockade. BMC Pharmacol 2004; 4:28. [PMID: 15509306 PMCID: PMC528728 DOI: 10.1186/1471-2210-4-28] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Accepted: 10/28/2004] [Indexed: 11/21/2022] Open
Abstract
Background Administration of the N-methyl-D-aspartate (NMDA) antagonist ketamine during the perinatal period can produce a variety of behavioral and neuroanatomical changes. Our laboratory has reported reliable changes in learning and memory following a single dose of ketamine administered late in gestation. However, the nature of the drug-induced changes depends on the point during embryonic development when ketamine is administered. Embryonic day 18 (E18) rat fetuses pre-treated with ketamine (100 mg/kg, i.p. through the maternal circulation) and taught a conditioned taste aversion (CTA) learn and remember the CTA, whereas E19 fetuses do not. The current study sought to determine if long-term behavioral effects could be detected in animals that received ketamine or a saline control injection on either E18 or E19. Rat behavior was evaluated on two different measures: spontaneous locomotion and water maze learning. Measurements were collected during 2 periods: Juvenile test period [pre-pubertal locomotor test: Postnatal Day 11 (P11); pre-pubertal water maze test: P18] or Young-adult test period [post-pubertal locomotor test: P60; post-pubertal water maze test: P81]. Results Water maze performance of ketamine-treated rats was similar to that of controls when tested on P18. Likewise, the age of the animal at the time of ketamine/saline treatment did not influence learning of the maze. However, the young-adult water maze test (P81) revealed reliable benefits of prenatal ketamine exposure – especially during the initial re-training trial. On the first trial of the young adult test, rats treated with ketamine on E18 reached the hidden platform faster than any other group – including rats treated with ketamine on E19. Swim speeds of experimental and control rats were not significantly different. Spontaneous horizontal locomotion measured during juvenile testing indicated that ketamine-treated rats were less active than controls. However, later in development, rats treated with ketamine on E18 were more active than rats that received the drug on E19. Conclusion These data suggest that both the day in fetal development when ketamine is administered and the timing of post-natal behavioral testing interact to influence behavioral outcomes. The data also indicate that the paradoxical age-dependent effects of early ketamine treatment on learning, previously described in fetuses and neonates, may also be detected later in young adult rats.
Collapse
Affiliation(s)
- G Andrew Mickley
- Department of Psychology and the Neuroscience Program, Baldwin-Wallace College, 275 Eastland Road, Berea, OH 44017-2088, USA
| | - Cynthia L Kenmuir
- Department of Psychology and the Neuroscience Program, Baldwin-Wallace College, 275 Eastland Road, Berea, OH 44017-2088, USA
| | - Colleen A McMullen
- Department of Psychology and the Neuroscience Program, Baldwin-Wallace College, 275 Eastland Road, Berea, OH 44017-2088, USA
| | - Alicia Snyder
- Department of Psychology and the Neuroscience Program, Baldwin-Wallace College, 275 Eastland Road, Berea, OH 44017-2088, USA
| | - Anna M Yocom
- Department of Psychology and the Neuroscience Program, Baldwin-Wallace College, 275 Eastland Road, Berea, OH 44017-2088, USA
| | - Deborah Likins-Fowler
- Department of Psychology and the Neuroscience Program, Baldwin-Wallace College, 275 Eastland Road, Berea, OH 44017-2088, USA
| | - Elizabeth L Valentine
- Department of Psychology and the Neuroscience Program, Baldwin-Wallace College, 275 Eastland Road, Berea, OH 44017-2088, USA
| | - Bettina Weber
- Department of Psychology and the Neuroscience Program, Baldwin-Wallace College, 275 Eastland Road, Berea, OH 44017-2088, USA
| | - Jaclyn M Biada
- Department of Psychology and the Neuroscience Program, Baldwin-Wallace College, 275 Eastland Road, Berea, OH 44017-2088, USA
| |
Collapse
|
46
|
Bahar A, Dorfman N, Dudai Y. Amygdalar circuits required for either consolidation or extinction of taste aversion memory are not required for reconsolidation. Eur J Neurosci 2004; 19:1115-8. [PMID: 15009160 DOI: 10.1111/j.0953-816x.2004.03215.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent reports have revitalized the debate on whether, for each item in memory, consolidation occurs just once, or whether, upon their activation in retrieval, items in memory undergo reconsolidation. Further, it has been recently reported that following retrieval in the absence of reinforcer, the activated memory can either reconsolidate or extinguish, depending on the training history. This raises the question whether consolidation, extinction and reconsolidation share neuronal mechanisms, and moreover, whether reconsolidation recapitulates consolidation. In conditioned taste aversion (CTA), consolidation depends on protein synthesis in the central nucleus of the amygdala, whereas extinction depends on protein synthesis in the basolateral nuclei of the amygdala. Here we show that inhibition of protein synthesis in either of these nuclei has no effect on CTA memory under conditions that initiate reconsolidation. This implies that reconsolidation does not recapitulate consolidation, and that consolidation, reconsolidation and extinction are different processes.
Collapse
Affiliation(s)
- Amir Bahar
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
47
|
Bermúdez-Rattoni F, Ramírez-Lugo L, Gutiérrez R, Miranda MI. Molecular signals into the insular cortex and amygdala during aversive gustatory memory formation. Cell Mol Neurobiol 2004; 24:25-36. [PMID: 15049508 DOI: 10.1023/b:cemn.0000012722.45805.c8] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In this paper, we will provide evidence of the putative molecular signals and biochemical events that mediate the formation of long-lasting gustatory memory trace. When an animal drinks a novel taste (the conditioned stimulus; CS) and it is later associated with malaise (unconditioned stimulus; US), the animal will reject it in the next presentation, developing a long-lasting taste aversion, i.e., the taste cue becomes an aversive signal, and this is referred to as conditioning taste aversion. Different evidence indicates that the novel stimulus (taste) induces a rapid and strong cortical acetylcholine activity that decreases when the stimulus becomes familiar after several presentations. Cholinergic activation via muscarinic receptors initiates a series of intracellular events leading to plastic changes that could be related to short- and/or long-term memory gustatory trace. Such plastic changes facilitate the incoming US signals carried out by, in part, the glutamate release induced by the US. Altogether, these events could produce the cellular changes related to the switch from safe to aversive taste memory trace. A proposed working model to explain the biochemical sequence of signals during taste memory formation will be discussed.
Collapse
Affiliation(s)
- Federico Bermúdez-Rattoni
- Department of Neurosciences, Institute of Cellular Physiology, Universidad Nacional Autónoma de México, Apartado Postal 70-253, 04510 México DF, México.
| | | | | | | |
Collapse
|
48
|
Escobar ML, Figueroa-Guzmán Y, Gómez-Palacio-Schjetnan A. In vivo insular cortex LTP induced by brain-derived neurotrophic factor. Brain Res 2003; 991:274-9. [PMID: 14575905 DOI: 10.1016/j.brainres.2003.08.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recent studies suggest that brain-derived neurotrophic factor (BDNF) plays a critical role in long-term synaptic plasticity in the adult brain. Previous studies on the insular cortex (IC), a region of the temporal cortex implicated in the acquisition and storage of different aversive learning tasks, have demonstrated that tetanic stimulation of the basolateral nucleus of the amygdala (Bla) induces an N-methyl-D-aspartate (NMDA)-dependent form of long-term potentiation (LTP) in the IC of adult rats in vivo. Here, we show that acute intracortical microinfusion of BDNF induces a lasting potentiation of synaptic efficacy in the Bla-IC projection of anesthetized adult rats. This constitutes an in vivo demonstration of neurotrophin-induced potentiation of synaptic transmission in the neocortex. These findings support the concept that BDNF could be a synaptic messenger involved in activity-dependent synaptic plasticity.
Collapse
Affiliation(s)
- Martha L Escobar
- División de Investigación y Estudios de Posgrado, Facultad de Psicología, Universidad Nacional Autónoma de México, Cub 4 y 5, 1er Piso, Edif. D, C P 04510 México D.F., Mexico.
| | | | | |
Collapse
|
49
|
Does cAMP response element-binding protein have a pivotal role in hippocampal synaptic plasticity and hippocampus-dependent memory? J Neurosci 2003. [PMID: 12867515 DOI: 10.1523/jneurosci.23-15-06304.2003] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Previous studies addressing the role of the transcription factor cAMP response element-binding protein (CREB) in mammalian long-term synaptic plasticity and memory by gene targeting were compromised by incomplete deletion of the CREB isoforms. Therefore, we generated conditional knock-out strains with a marked reduction or complete deletion of all CREB isoforms in the hippocampus. In these strains, no deficits could be detected in lasting forms of hippocampal long-term potentiation (LTP) and long-term depression (LTD). When tested for hippocampus-dependent learning, mutants showed normal context-dependent fear conditioning. Water maze learning was impaired during the early stages, but many mutants showed satisfactory scores in probe trials thought to measure hippocampus-dependent spatial memory. However, conditioned taste aversion learning, a putatively hippocampus-independent memory test, was markedly impaired. Our data indicate that in the adult mouse brain, loss of CREB neither prevents learning nor substantially affects performance in some hippocampus-dependent tasks. Furthermore, it spares LTP and LTD in paradigms that are sensitive enough to detect deficits in other mutants. This implies either a species-specific or regionally restricted role of CREB in the brain and/or a compensatory upregulation of the cAMP response element modulator (CREM) and other as yet unidentified transcription factors.
Collapse
|
50
|
Martin SJ, Morris RGM. New life in an old idea: the synaptic plasticity and memory hypothesis revisited. Hippocampus 2003; 12:609-36. [PMID: 12440577 DOI: 10.1002/hipo.10107] [Citation(s) in RCA: 293] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The notion that changes in synaptic efficacy underlie learning and memory processes is now widely accepted, although definitive proof of the synaptic plasticity and memory hypothesis is still lacking. This article reviews recent evidence relevant to the hypothesis, with particular emphasis on studies of experience-dependent plasticity in the neocortex and hippocampus. In our view, there is now compelling evidence that changes in synaptic strength occur as a consequence of certain forms of learning. A major challenge will be to determine whether such changes constitute the memory trace itself or play a less specific supporting role in the information processing that accompanies memory formation.
Collapse
|