1
|
Cohen SM, Bevan C, Gollapudi B, Klaunig JE. Evaluation of the carcinogenicity of carbon tetrachloride. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:342-370. [PMID: 37282619 DOI: 10.1080/10937404.2023.2220147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Carbon tetrachloride (CCl4) has been extensively used and reported to produce toxicity, most notably involving the liver. Carbon tetrachloride metabolism involves CYP450-mediated bioactivation to trichloromethyl and trichloromethyl peroxy radicals, which are capable of macromolecular interaction with cell components including lipids and proteins. Radical interaction with lipids produces lipid peroxidation which can mediate cellular damage leading to cell death. Chronic exposure with CCl4 a rodent hepatic carcinogen with a mode of action (MOA) exhibits the following key events: 1) metabolic activation; 2) hepatocellular toxicity and cell death; 3) consequent regenerative increased cell proliferation; and 4) hepatocellular proliferative lesions (foci, adenomas, carcinomas). The induction of rodent hepatic tumors is dependent upon the dose (concentration and exposure duration) of CCl4, with tumors only occurring at cytotoxic exposure levels. Adrenal benign pheochromocytomas were also increased in mice at high CCl4 exposures; however, these tumors are not of relevant importance to human cancer risk. Few epidemiology studies that have been performed on CCl4, do not provide credible evidence of enhanced risk of occurrence of liver or adrenal cancers, but these studies have serious flaws limiting their usefulness for risk assessment. This manuscript summarizes the toxicity and carcinogenicity attributed to CCl4, specifically addressing MOA, dose-response, and human relevance.
Collapse
Affiliation(s)
- Samuel M Cohen
- Department of Pathology and Microbiology and Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, US
| | | | | | - James E Klaunig
- Department of Environmental and Occupational Health, Indiana University School of Public Health, Bloomington, IN, US
| |
Collapse
|
2
|
Adelusi OB, Ramachandran A, Lemasters JJ, Jaeschke H. The role of Iron in lipid peroxidation and protein nitration during acetaminophen-induced liver injury in mice. Toxicol Appl Pharmacol 2022; 445:116043. [PMID: 35513057 PMCID: PMC9843742 DOI: 10.1016/j.taap.2022.116043] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 01/19/2023]
Abstract
Acetaminophen (APAP) hepatotoxicity, a leading cause of acute liver failure in western countries, is characterized by mitochondrial superoxide and peroxynitrite formation. However, the role of iron, especially as facilitator of lipid peroxidation (LPO), has been controversial. Our aim was to determine the mechanism by which iron promotes cell death in this context. Fasted male C57BL/6J mice were treated with the iron chelator deferoxamine, minocycline (inhibitor of the mitochondrial calcium uniporter) or vehicle 1 h before 300 mg/kg APAP. Deferoxamine and minocycline significantly attenuated APAP-induced elevations in serum alanine amino transferase levels and hepatic necrosis at 6 h. This protection correlated with reduced 3-nitro-tyrosine protein adducts; LPO (malondialdehyde, 4-hydroxynonenal) was not detected. Activation of c-jun N-terminal kinase (JNK) was not affected but mitochondrial release of intermembrane proteins was reduced suggesting that the effect of iron was at the level of mitochondria. Co-treatment of APAP with FeSO4 exacerbated liver injury and protein nitration and triggered significant LPO; all effects were reversed by deferoxamine. Thus, after APAP overdose, iron imported into mitochondria facilitates protein nitration by peroxynitrite triggering mitochondrial dysfunction and cell death. Under these conditions, endogenous defense mechanisms largely prevent LPO. However, after iron overload, protein nitration and LPO contribute to APAP hepatotoxicity.
Collapse
Affiliation(s)
- Olamide B Adelusi
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - John J Lemasters
- Center for Cell Death, Injury & Regeneration, Departments of Drug Discovery & Biomedical Sciences and Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
3
|
Reprint of: Oxygen Free Radicals and Iron in Relation to Biology and Medicine: Some Problems and Concepts. Arch Biochem Biophys 2022; 726:109246. [PMID: 35680438 DOI: 10.1016/j.abb.2022.109246] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Jaeschke H, Adelusi OB, Akakpo JY, Nguyen NT, Sanchez-Guerrero G, Umbaugh DS, Ding WX, Ramachandran A. Recommendations for the use of the acetaminophen hepatotoxicity model for mechanistic studies and how to avoid common pitfalls. Acta Pharm Sin B 2021; 11:3740-3755. [PMID: 35024303 PMCID: PMC8727921 DOI: 10.1016/j.apsb.2021.09.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/22/2021] [Accepted: 09/10/2021] [Indexed: 02/07/2023] Open
Abstract
Acetaminophen (APAP) is a widely used analgesic and antipyretic drug, which is safe at therapeutic doses but can cause severe liver injury and even liver failure after overdoses. The mouse model of APAP hepatotoxicity recapitulates closely the human pathophysiology. As a result, this clinically relevant model is frequently used to study mechanisms of drug-induced liver injury and even more so to test potential therapeutic interventions. However, the complexity of the model requires a thorough understanding of the pathophysiology to obtain valid results and mechanistic information that is translatable to the clinic. However, many studies using this model are flawed, which jeopardizes the scientific and clinical relevance. The purpose of this review is to provide a framework of the model where mechanistically sound and clinically relevant data can be obtained. The discussion provides insight into the injury mechanisms and how to study it including the critical roles of drug metabolism, mitochondrial dysfunction, necrotic cell death, autophagy and the sterile inflammatory response. In addition, the most frequently made mistakes when using this model are discussed. Thus, considering these recommendations when studying APAP hepatotoxicity will facilitate the discovery of more clinically relevant interventions.
Collapse
Key Words
- AIF, apoptosis-inducing factor
- AMPK, AMP-activated protein kinase
- APAP, acetaminophen
- ARE, antioxidant response element
- ATG, autophagy-related genes
- Acetaminophen hepatotoxicity
- Apoptosis
- Autophagy
- BSO, buthionine sulfoximine
- CAD, caspase-activated DNase
- CYP, cytochrome P450 enzymes
- DAMPs, damage-associated molecular patterns
- DMSO, dimethylsulfoxide
- Drug metabolism
- EndoG, endonuclease G
- FSP1, ferroptosis suppressing protein 1
- Ferroptosis
- GPX4, glutathione peroxidase 4
- GSH, glutathione
- GSSG, glutathione disulfide
- Gclc, glutamate–cysteine ligase catalytic subunit
- Gclm, glutamate–cysteine ligase modifier subunit
- HMGB1, high mobility group box protein 1
- HNE, 4-hydroxynonenal
- Innate immunity
- JNK, c-jun N-terminal kinase
- KEAP1, Kelch-like ECH-associated protein 1
- LAMP, lysosomal-associated membrane protein
- LC3, light chain 3
- LOOH, lipid hydroperoxides
- LPO, lipid peroxidation
- MAP kinase, mitogen activated protein kinase
- MCP-1, monocyte chemoattractant protein-1
- MDA, malondialdehyde
- MPT, mitochondrial permeability transition
- Mitochondria
- MnSOD, manganese superoxide dismutase
- NAC, N-acetylcysteine
- NAPQI, N-acetyl-p-benzoquinone imine
- NF-κB, nuclear factor κB
- NQO1, NAD(P)H:quinone oxidoreductase 1
- NRF2
- NRF2, nuclear factor erythroid 2-related factor 2
- PUFAs, polyunsaturated fatty acids
- ROS, reactive oxygen species
- SMAC/DIABLO, second mitochondria-derived activator of caspase/direct inhibitor of apoptosis-binding protein with low pI
- TLR, toll like receptor
- TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labeling
- UGT, UDP-glucuronosyltransferases
- mTORC1, mammalian target of rapamycin complex 1
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Olamide B. Adelusi
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jephte Y. Akakpo
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Nga T. Nguyen
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Giselle Sanchez-Guerrero
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - David S. Umbaugh
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
5
|
Ramachandran A, Jaeschke H. Oxidant Stress and Acetaminophen Hepatotoxicity: Mechanism-Based Drug Development. Antioxid Redox Signal 2021; 35:718-733. [PMID: 34232786 PMCID: PMC8558076 DOI: 10.1089/ars.2021.0102] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Acetaminophen (APAP) is one of the quantitively most consumed drugs worldwide. Although safe at therapeutic doses, intentional or unintentional overdosing occurs frequently causing severe liver injury and even liver failure. In the United States, 50% of all acute liver failure cases are caused by APAP overdose. However, only one antidote with a limited therapeutic window, N-acetylcysteine, is clinically approved. Thus, more effective therapeutic interventions are urgently needed. Recent Advances: Although APAP hepatotoxicity has been extensively studied for almost 50 years, particular progress has been made recently in two areas. First, there is now a detailed understanding of involvement of oxidative and nitrosative stress in the pathophysiology, with identification of the reactive species involved, their initial generation in mitochondria, amplification through the c-Jun N-terminal kinase pathway, and the mechanisms of cell death. Second, it was demonstrated in human hepatocytes and through biomarkers in vivo that the mechanisms of liver injury in animals accurately reflect the human pathophysiology, which allows the translation of therapeutic targets identified in animals to patients. Critical Issues: For progress, solid understanding of the pathophysiology of APAP hepatotoxicity and of a drug's targets is needed to identify promising new therapeutic intervention strategies and drugs, which may be applied to humans. Future Directions: In addition to further refine the mechanistic understanding of APAP hepatotoxicity and identify additional drugs with complementary mechanisms of action to prevent cell death, more insight into the mechanisms of regeneration and developing of drugs, which promote recovery, remains a future challenge. Antioxid. Redox Signal. 35, 718-733.
Collapse
Affiliation(s)
- Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
6
|
Niu B, Lei X, Xu Q, Ju Y, Xu D, Mao L, Li J, Zheng Y, Sun N, Zhang X, Mao Y, Li X. Protecting mitochondria via inhibiting VDAC1 oligomerization alleviates ferroptosis in acetaminophen-induced acute liver injury. Cell Biol Toxicol 2021; 38:505-530. [PMID: 34401974 DOI: 10.1007/s10565-021-09624-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023]
Abstract
Acetaminophen (APAP) overdose is a common cause of drug-induced liver injury (DILI). Ferroptosis has been recently implicated in APAP-induced liver injury (AILI). However, the functional role and underlying mechanisms of mitochondria in APAP-induced ferroptosis are unclear. In this study, the voltage-dependent anion channel (VDAC) oligomerization inhibitor VBIT-12 and ferroptosis inhibitors were injected via tail vein in APAP-injured mice. Targeted metabolomics and untargeted lipidomic analyses were utilized to explore underlying mechanisms of APAP-induced mitochondrial dysfunction and subsequent ferroptosis. As a result, APAP overdose led to characteristic changes generally observed in ferroptosis. The use of ferroptosis inhibitor ferrostatin-1 (or UAMC3203) and iron chelator deferoxamine further confirmed that ferroptosis was responsible for AILI. Mitochondrial dysfunction, which is associated with the tricarboxylic acid cycle and fatty acid β-oxidation suppression, may drive APAP-induced ferroptosis in hepatocytes. APAP overdose induced VDAC1 oligomerization in hepatocytes, and protecting mitochondria via VBIT-12 alleviated APAP-induced ferroptosis. Ceramide and cardiolipin levels were increased via UAMC3203 or VBIT-12 in APAP-induced ferroptosis in hepatocytes. Knockdown of Smpd1 and Taz expression responsible for ceramide and cardiolipin synthesis, respectively, aggravated APAP-induced mitochondrial dysfunction and ferroptosis in hepatocytes, whereas Taz overexpression protected against these processes. By immunohistochemical staining, we found that levels of 4-hydroxynonenal (4-HNE) protein adducts were increased in the liver biopsy samples of patients with DILI compared to that in those of patients with autoimmune liver disease, chronic viral hepatitis B, and non-alcoholic fatty liver disease (NAFLD). In summary, protecting mitochondria via inhibiting VDAC1 oligomerization attenuated hepatocyte ferroptosis by restoring ceramide and cardiolipin content in AILI.
Collapse
Affiliation(s)
- Baolin Niu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 130 Dong'an Rd, Shanghai, 200032, China
| | - Xiaohong Lei
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, 145 mid-Shandong Rd, Shanghai, 200001, China
| | - Qingling Xu
- Department of Hepatology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Yi Ju
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 130 Dong'an Rd, Shanghai, 200032, China
| | - Dongke Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 130 Dong'an Rd, Shanghai, 200032, China
| | - Liya Mao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 130 Dong'an Rd, Shanghai, 200032, China
| | - Jing Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, 145 mid-Shandong Rd, Shanghai, 200001, China
| | - Yufan Zheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 130 Dong'an Rd, Shanghai, 200032, China
| | - Ning Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 130 Dong'an Rd, Shanghai, 200032, China
| | - Xin Zhang
- Department of Pathology, Fudan University Zhongshan Hospital, 180 Fenglin Road, Shanghai, 200032, China.
| | - Yimin Mao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, 145 mid-Shandong Rd, Shanghai, 200001, China.
| | - Xiaobo Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 130 Dong'an Rd, Shanghai, 200032, China.
| |
Collapse
|
7
|
Jaeschke H, Adelusi OB, Ramachandran A. Ferroptosis and Acetaminophen Hepatotoxicity: Are We Going Down Another Rabbit Hole? Gene Expr 2021; 20:169-178. [PMID: 33441220 PMCID: PMC8201653 DOI: 10.3727/105221621x16104581979144] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acetaminophen (APAP) hepatotoxicity is the most frequent cause of acute liver failure in the US. The mechanisms of APAP-induced liver injury have been under extensive investigations for decades, and many key events of this necrotic cell death are known today. Initially, two opposing hypotheses for cell death were proposed: reactive metabolite and protein adduct formation versus reactive oxygen and lipid peroxidation (LPO). In the end, both mechanisms were reconciled, and it is now generally accepted that the toxicity starts with formation of reactive metabolites that, after glutathione depletion, bind to cellular proteins, especially on mitochondria. This results in a mitochondrial oxidant stress, which requires amplification through a mitogen-activated protein kinase cascade, leading ultimately to enough reactive oxygen and peroxynitrite formation to trigger the mitochondrial membrane permeability transition and cell death. However, the earlier rejected LPO hypothesis seems to make a comeback recently under a different name: ferroptosis. Therefore, the objective of this review was to critically evaluate the available information about intracellular signaling mechanisms of APAP-induced cell death and those of ferroptosis. Under pathophysiologically relevant conditions, there is no evidence for quantitatively enough LPO to cause cell death, and thus APAP hepatotoxicity is not caused by ferroptosis. However, the role of mitochondria-localized minor LPO remains to be further investigated.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Olamide B. Adelusi
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
8
|
How do we fit ferroptosis in the family of regulated cell death? Cell Death Differ 2017; 24:1991-1998. [PMID: 28984871 DOI: 10.1038/cdd.2017.149] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/18/2017] [Accepted: 08/06/2017] [Indexed: 02/07/2023] Open
Abstract
In the last few years many new cell death modalities have been described. To classify different types of cell death, the term 'regulated cell death' was introduced to discriminate it from 'accidental cell death'. Regulated cell death involves the activation of genetically encoded molecular machinery that couples the presence of some signal to cell death. These forms of cell death, like apoptosis, necroptosis and pyroptosis have important physiological roles in development, tissue repair, and immunity. Accidental cell death occurs in response to physical or chemical insults and occurs independently of molecular signalling pathways. Ferroptosis, an emerging and recently (re)discovered type of regulated cell death occurs through Fe(II)-dependent lipid peroxidation when the reduction capacity of a cell is insufficient. Ferroptosis is coined after the requirement for free ferrous iron. Here, we will consider the extent to which ferroptosis is similar to other regulated cell deaths and explore emerging ideas about the physiological role of ferroptosis.
Collapse
|
9
|
Yin H, Cheng L, Holt M, Hail N, MacLaren R, Ju C. Lactoferrin protects against acetaminophen-induced liver injury in mice. Hepatology 2010; 51:1007-16. [PMID: 20099297 PMCID: PMC2908515 DOI: 10.1002/hep.23476] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
UNLABELLED Acetaminophen-induced liver injury (AILI) is a significant health problem and represents the most frequent cause of drug-induced liver failure in the United States. The development and implementation of successful therapeutic intervention strategies have been demanding, due to significant limitations associated with the current treatment for AILI. Lactoferrin (Lac), a glycoprotein present in milk, has been demonstrated to possess a multitude of biological functions. Our study demonstrated a profound protective effect of Lac in a murine model of AILI, which was not dependent on its iron-binding ability, inhibition of acetaminophen (APAP) metabolism, or a direct cytoprotective effect on hepatocytes. Instead, Lac treatment significantly attenuated APAP-induced liver sinusoidal endothelial cell dysfunction and ameliorated hepatic microcirculation disorder. This protective effect of Lac appeared to be dependent on hepatic resident macrophages (Kupffer cells [KCs]). CONCLUSION Collectively, our data indicate that Lac, through activation of KCs, inhibited APAP-induced liver sinusoidal endothelial cell damage and improved hepatic congestion, thereby protecting against AILI. These findings reveal the significant therapeutic potential of Lac during AILI and other types of liver diseases.
Collapse
Affiliation(s)
- Hao Yin
- Department of Pharmaceutical Sciences, University of Colorado Denver
| | - Linling Cheng
- Department of Pharmaceutical Sciences, University of Colorado Denver
| | - Michael Holt
- Department of Pharmaceutical Sciences, University of Colorado Denver
| | - Numsen Hail
- Department of Pharmaceutical Sciences, University of Colorado Denver
| | - Robert MacLaren
- Department of Clinical Pharmacy, University of Colorado Denver
| | - Cynthia Ju
- Department of Pharmaceutical Sciences, University of Colorado Denver, Integrated Department of Immunology, University of Colorado Denver,To whom correspondence should be addressed. Department of Pharmaceutical Sciences, University of Colorado Denver, Research Complex 2, P15-C238, 12700 East 19 Avenue, Aurora, CO 80045. Phone: (303) 724-4019. Fax: (303) 724-7266.
| |
Collapse
|
10
|
Ergul Y, Erkan T, Uzun H, Genc H, Altug T, Erginoz E. Effect of vitamin C on oxidative liver injury due to isoniazid in rats. Pediatr Int 2010; 52:69-74. [PMID: 19496975 DOI: 10.1111/j.1442-200x.2009.02891.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND The aim of the present study was to investigate the effect of different doses of vitamin C on oxidative liver injury due to isoniazid (INH) in rats. METHODS Rats were divided into four subgroups, each containing 10 rats. Group 1 was the control group; group 2, INH 50 mg/kg per day; group 3, INH 50 mg/kg per day + low-dose vitamin C (100 mg/kg per day); group 4, INH 50 mg/kg per day + high-dose vitamin C (1000 mg/kg per day). INH and vitamin C were administered into their stomachs through an oral tube. After 21 days, measurements were made in both serum and homogenized liver tissues. The levels of glutathione (GSH), superoxide dismutase (SOD) and other biochemical variables were measured. Malondialdehyde (MDA), glutathione peroxidase (GSH-px) and vitamin C were measured using commercial kits. RESULTS Aspartate amino transferase and alanine aminotransferase in group 2 were higher than those in groups 1, 3 and 4 (P < 0.008 for both). Serum and tissue levels of MDA in group 2 were higher than that in groups 1 and 3 (P < 0.008 for both). There was no difference in the SOD levels between the four groups (P= 0.095). Erythrocyte and tissue GSH in group 2 were higher than that in groups 1 and 3 (P < 0.008 for both). Interestingly, erythrocyte and tissue GSH in group 4 were lower than those in group 1 (P < 0.008 for both). Erythrocyte level of GSH-px in group 2 was higher than that in groups 1 and 3 (P < 0.008 for both). CONCLUSIONS INH-induced liver injury is associated with oxidative stress, and co-administration of low-dose vitamin C may reduce this damage effectively in a rat model. The antioxidant effect of high-dose vitamin C does not seem more potent compared to the low dose.
Collapse
Affiliation(s)
- Yakup Ergul
- Department of Pediatrics, Cerrahpasa Medical School, Istanbul University, Istanbul, Turkey.
| | | | | | | | | | | |
Collapse
|
11
|
Ghio AJ, Dailey LA, Richards JH, Jang M. Acid and organic aerosol coatings on magnetic nanoparticles increase iron concentrations in human airway epithelial cells. Inhal Toxicol 2009; 21:659-67. [DOI: 10.1080/08958370802406282] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Olaleye MT, Rocha BJ. Acetaminophen-induced liver damage in mice: Effects of some medicinal plants on the oxidative defense system. ACTA ACUST UNITED AC 2008; 59:319-27. [DOI: 10.1016/j.etp.2007.10.003] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Accepted: 10/08/2007] [Indexed: 11/24/2022]
|
13
|
Manibusan MK, Odin M, Eastmond DA. Postulated carbon tetrachloride mode of action: a review. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2007; 25:185-209. [PMID: 17763046 DOI: 10.1080/10590500701569398] [Citation(s) in RCA: 272] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Under the 2005 U.S. EPA Guidelines for Carcinogen Risk Assessment (1), evaluations of carcinogens rely on mode of action data to better inform dose response assessments. A reassessment of carbon tetrachloride, a model hepatotoxicant and carcinogen, provides an opportunity to incorporate into the assessment biologically relevant mode of action data on its carcinogenesis. Mechanistic studies provide evidence that metabolism of carbon tetrachloride via CYP2E1 to highly reactive free radical metabolites plays a critical role in the postulated mode of action. The primary metabolites, trichloromethyl and trichloromethyl peroxy free radicals, are highly reactive and are capable of covalently binding locally to cellular macromolecules, with preference for fatty acids from membrane phospholipids. The free radicals initiate lipid peroxidation by attacking polyunsaturated fatty acids in membranes, setting off a free radical chain reaction sequence. Lipid peroxidation is known to cause membrane disruption, resulting in the loss of membrane integrity and leakage of microsomal enzymes. By-products of lipid peroxidation include reactive aldehydes that can form protein and DNA adducts and may contribute to hepatotoxicity and carcinogenicity, respectively. Natural antioxidants, including glutathione, are capable of quenching the lipid peroxidation reaction. When glutathione and other antioxidants are depleted, however, opportunities for lipid peroxidation are enhanced. Weakened cellular membranes allow sufficient leakage of calcium into the cytosol to disrupt intracellular calcium homeostasis. High calcium levels in the cytosol activate calcium-dependent proteases and phospholipases that further increase the breakdown of the membranes. Similarly, the increase in intracellular calcium can activate endonucleases that can cause chromosomal damage and also contribute to cell death. Sustained cell regeneration and proliferation following cell death may increase the likelihood of unrepaired spontaneous, lipid peroxidation- or endonuclease-derived mutations that can lead to cancer. Based on this body of scientific evidence, doses that do not cause sustained cytotoxicity and regenerative cell proliferation would subsequently be protective of liver tumors if this is the primary mode of action. To fulfill the mode of action framework, additional research may be necessary to determine alternative mode(s) of action for liver tumors formed via carbon tetrachloride exposure.
Collapse
Affiliation(s)
- Mary K Manibusan
- Office of Pesticide Programs, U.S. Environmental Protection Agency, Washington, DC 20460, United States.
| | | | | |
Collapse
|
14
|
Yang XJ, Liu J, Ye LB, Yang F, Ye L, Gao JR, Wu ZH. In vitro and in vivo protective effects of proteoglycan isolated from mycelia of Ganoderma lucidum on carbon tetrachloride-induced liver injury. World J Gastroenterol 2006; 12:1379-85. [PMID: 16552805 PMCID: PMC4124314 DOI: 10.3748/wjg.v12.i9.1379] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the possible mechanism of the protective effects of a bioactive fraction, Ganoderma lucidum proteoglycan (GLPG) isolated from Ganoderma lucidum mycelia, against carbon tetrachloride-induced liver injury.
METHODS: A liver injury model was induced by carbon tetrachloride. Cytotoxicity was measured by MTT assay. The activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were determined with an automatic multifunction-biochemical analyzer and the levels of superoxide dismutase (SOD) and TNF-α were determined following the instructions of SOD kit and TNF radioimmunoassay kit. Liver sections were stained with hematoxylin and eosin (H&E) for histological evaluation and examined under light microscope.
RESULTS: We found that GLPG can alleviate the L-02 liver cells injury induced by carbon tetrachloride (CCl4) through the measurements of ALT and AST activities and the administration of GLPG to L-02 cells did not display any toxicity. Furthermore, histological analysis of mice liver injury induced by CCl4 with or without GLPG pretreatment indicated that GLPG can significantly suppress the toxicity induced by CCl4 in mice liver. We also found that GLPG reduced TNF-α level induced by CCl4 in the plasma of mice, whereas increased SOD activity in the rat serum.
CONCLUSION: GLPG has hepatic protective activity against CCl4-induced injury both in vitro and in vivo. The possible anti-hepatotoxic mechanisms may be related to the suppression of TNF-α level and the free radical scavenging activity.
Collapse
Affiliation(s)
- Xiao-Jun Yang
- College of Life Sciences, Wuhan University, Wuhan 430072, Hubei Province, China
| | | | | | | | | | | | | |
Collapse
|
15
|
Campo GM, Avenoso A, Campo S, D'Ascola A, Ferlazzo AM, Calatroni A. The antioxidant and antifibrogenic effects of the glycosaminoglycans hyaluronic acid and chondroitin-4-sulphate in a subchronic rat model of carbon tetrachloride-induced liver fibrogenesis. Chem Biol Interact 2004; 148:125-38. [PMID: 15276869 DOI: 10.1016/j.cbi.2004.05.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2004] [Revised: 05/28/2004] [Accepted: 05/28/2004] [Indexed: 02/07/2023]
Abstract
Hepatic fibrosis involves the interplay of many factors including reactive oxygen species. Recent reports described antioxidant properties of glycosaminoglycans (GAGs). Since several findings have shown that hyaluronic acid (HYA) and chondroitin-4-sulphate (C4S) may act as antioxidant molecules, the aim of this research was to evaluate the antioxidant effects of HYA and C4S treatment in a rat model of liver fibrosis. The effect on tissue inhibitors of metalloproteinases (TIMPs) was also studied. Liver fibrosis was induced in rats by eight intraperitoneal injections of CCl4, twice a week for 6 weeks. HYA or C4S alone (25 mg/kg) or HYA and C4S in combination (12.5 + 12.5 mg/kg) were administered daily by the same route during the 6 weeks. At the end of the 6-week treatment period (24 h after the last dose of GAGs), the following parameters were evaluated: (1) serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities, as index of hepatic cell disruption; (2) hepatic conjugated dienes (CD), as index of lipid peroxidation; (3) hepatic TIMPs activity and expression; (4) hepatic superoxide dismutase (SOD) and glutathione peroxidase (GPx) activity, as index of endogenous defences; (5) hepatic hydroxyproline, as index of collagen deposition. CCl4-induced liver fibrosis enhanced lipid peroxidation and TIMPs activation, increased ALT and AST, depleted antioxidants SOD and GPx, and caused collagen deposition in liver tissue. Treatment with GAGs, especially when in combination, successfully reduced ALT and AST rise, lipid peroxidation by evaluating conjugated dienes, TIMPs activation and mRNA expression, partially restored SOD and GPx activities, and limited collagen deposition in the hepatic tissue. The data obtained showed that these molecules were able to limit hepatic injury induced by chronic CCl4 intoxication and especially limited liver fibrosis. They also confirm that HYA and C4S may exert antioxidant mechanism, while reduction of TIMPs expression suggests that GAGs may influence MMPs and TIMPs imbalance in liver fibrosis.
Collapse
Affiliation(s)
- Giuseppe M Campo
- Department of Biochemical, Physiological and Nutritional Sciences, School of Medicine, University of Messina, Policlinico Universitario, 98125, Italy.
| | | | | | | | | | | |
Collapse
|
16
|
Campo GM, Avenoso A, Campo S, Ferlazzo AM, Micali C, Zanghí L, Calatroni A. Hyaluronic acid and chondroitin-4-sulphate treatment reduces damage in carbon tetrachloride-induced acute rat liver injury. Life Sci 2004; 74:1289-305. [PMID: 14697411 DOI: 10.1016/j.lfs.2003.08.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oxidative stress is involved in the pathogenesis of chemically mediated liver injury. Since glycosaminoglycans possess antioxidant activity, the aim of this work was to assess the protective effects of hyaluronic acid and chondroitin-4-sulphate treatment in a model of carbon tetrachloride-induced liver injury. Liver damage was induced in male rats by an intraperitoneal injection of carbon tetrachloride (1 ml/kg in vegetal oil). Serum alanine aminotransferase and aspartate aminotransferase, hepatic malondialdehyde, plasma TNF-alpha, hepatic reduced glutathione and catalase, and myeloperoxidase, an index of polymorphonuclear infiltration in the jeopardised hepatic tissue, were evaluated 24 h after carbon tetrachloride administration. Carbon tetrachloride produced a marked increase in serum alanine aminotransferase and aspartate aminotransferase activities, primed lipid peroxidation, enhanced plasma TNF-alpha levels, induced a severe depletion of reduced glutathione and catalase, and promoted neutrophil accumulation. Intraperitoneal treatment of rats with hyaluronic acid (25 mg/kg) or chondroitin-4-sulphate (25 mg/kg) failed to exert any effect in the considered parameter, while the combination treatment with both glycosaminoglycans (12,5 + 12,5 mg/kg) decreased the serum levels of alanine aminotransferase and aspartate aminotransferase, inhibited lipid peroxidation by reducing hepatic malondialdehyde, reduced plasma TNF-alpha, restored the endogenous antioxidants, and finally decreased myeloperoxidase activity. These results suggest that hyaluronic acid and chondroitin-4-sulphate possess a different antioxidant mechanism and consequently the combined administration of both glycosaminoglycans exerts a synergistic effect with respect to the single treatment.
Collapse
Affiliation(s)
- Giuseppe M Campo
- Department of Biochemical, Physiological and Nutritional Sciences, School of Medicine, University of Messina, Policlinico Universitario, Torre Biologica, 5 piano, Via C. Valeria, 98100 - Messina, Italy.
| | | | | | | | | | | | | |
Collapse
|
17
|
Qiu Y, Benet LZ, Burlingame AL. Identification of hepatic protein targets of the reactive metabolites of the non-hepatotoxic regioisomer of acetaminophen, 3'-hydroxyacetanilide, in the mouse in vivo using two-dimensional gel electrophoresis and mass spectrometry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 500:663-73. [PMID: 11765013 DOI: 10.1007/978-1-4615-0667-6_99] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Y Qiu
- Department of Pharmaceutical Chemistry, University of California, San Francisco 94143-0446, USA
| | | | | |
Collapse
|
18
|
Ortega-Gutiérrez S, García JJ, Martínez-Ballarín E, Reiter RJ, Millán-Plano S, Robinson M, Acuña-Castroviejo D. Melatonin improves deferoxamine antioxidant activity in protecting against lipid peroxidation caused by hydrogen peroxide in rat brain homogenates. Neurosci Lett 2002; 323:55-9. [PMID: 11911989 DOI: 10.1016/s0304-3940(01)02530-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Deferoxamine (DF) is an antioxidant molecule because of its ability to chelate iron. This study compared the ability of DF alone or in combination with melatonin, 5-methoxytryptophol or pinoline in preventing lipid peroxidation due to hydrogen peroxide (H(2)O(2)) in rat brain homogenates. Malondialdehyde (MDA) and 4-hydroxyalkenals (4-HDA) in the homogenates were measured as indices of lipid peroxidation. Incubation of homogenates with DF reduced, in a dose-dependent manner, MDA+4-HDA formation due to H(2)O(2). When melatonin, 5-methoxytryptophol or pinoline were added to the incubation medium, the efficacy of DF in preventing lipid peroxidation was enhanced. These cooperative effects between DF, melatonin, and related pineal products may be important in protecting tissues from the oxidative stress due to iron overload.
Collapse
Affiliation(s)
- S Ortega-Gutiérrez
- Department of Pharmacology and Physiology, University of Zaragoza, Zaragoza, Spain
| | | | | | | | | | | | | |
Collapse
|
19
|
Kitteringham NR, Powell H, Clement YN, Dodd CC, Tettey JN, Pirmohamed M, Smith DA, McLellan LI, Kevin Park B. Hepatocellular response to chemical stress in CD-1 mice: induction of early genes and gamma-glutamylcysteine synthetase. Hepatology 2000; 32:321-33. [PMID: 10915739 DOI: 10.1053/jhep.2000.9602] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Exposure of cells to toxic chemical species can result in reduced glutathione (GSH) depletion, generation of free radicals, and/or binding to critical cell determinants. Chemical stress is usually followed by a concerted cellular response aimed at restoring homeostasis, although the precise initial stimulus for the response is unclear. We have focused on one component of this stress response, the up-regulation of gamma-glutamylcysteine synthetase (gamma-GCS) and the preceding molecular events involved in its regulation in an in vivo mouse model. Male CD-1 mice received buthionine sulphoximine (BSO; 7.2 mmol/kg), diethyl maleate (DEM; 4.2 mmol/kg), paracetamol (APAP; 3.5 and 1.0 mmol/kg), or carbon tetrachloride (CCl(4); 1.0 and 0.2 mmol/kg). Biochemical (serum transaminase and hepatic GSH levels) and molecular (c-jun and c-fos messenger RNA [mRNA] levels and activator protein 1 [AP-1] DNA binding activity) parameters were measured, as well as the consequent effects on gamma-GCS levels and activity. All compounds produced GSH depletion, but only the higher doses of APAP and CCl(4) caused liver damage. DEM, APAP, and CCl(4) increased c-jun and c-fos mRNA levels, together with an increase in AP-1 binding; BSO failed to induce AP-1 despite an increase in c-fos. Interestingly, the effects on gamma-GCS varied markedly according to the compound: BSO and DEM increased gamma-GCS enzyme activity, although only DEM, but not BSO, resulted in an increase in gamma-GCS(h) mRNA and protein. In contrast, APAP and CCl(4) both increased gamma-GCS(h) mRNA and protein; however, there was a marked dose-dependent decrease in gamma-GCS activity. These data indicate that the effect of chemical stress on the liver is compound specific and is not merely dependent on depletion of GSH.
Collapse
Affiliation(s)
- N R Kitteringham
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, Merseyside, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
AbstractReperfusion of tissues after interruption of their vascular supply causes free-radical generation that leads to tissue damage, a scenario referred to as “reperfusion injury.” Because sickle disease involves repeated transient ischemic episodes, we sought evidence for excessive free-radical generation in sickle transgenic mice. Compared with normal mice, sickle mice at ambient air had a higher ethane excretion (marker of lipid peroxidation) and greater conversion of salicylic acid to 2,3-dihydroxybenzoic acid (marker of hydroxyl radical generation). During hypoxia (11% O2), only sickle mice converted tissue xanthine dehydrogenase to oxidase. Only the sickle mice exhibited a further increase in ethane excretion during restitution of normal oxygen tension after 2 hours of hypoxia. Only the sickle mice showed abnormal activation of nuclear factor–κB after exposure to hypoxia-reoxygenation. Allopurinol, a potential therapeutic agent, decreased ethane excretion in the sickle mice. Thus, sickle transgenic mice exhibit biochemical footprints consistent with excessive free-radical generation even at ambient air and following a transient induction of enhanced sickling. We suggest that reperfusion injury physiology may contribute to the evolution of the chronic organ damage characteristic of sickle cell disease. If so, novel therapeutic approaches might be of value.
Collapse
|
21
|
Abstract
Reperfusion of tissues after interruption of their vascular supply causes free-radical generation that leads to tissue damage, a scenario referred to as “reperfusion injury.” Because sickle disease involves repeated transient ischemic episodes, we sought evidence for excessive free-radical generation in sickle transgenic mice. Compared with normal mice, sickle mice at ambient air had a higher ethane excretion (marker of lipid peroxidation) and greater conversion of salicylic acid to 2,3-dihydroxybenzoic acid (marker of hydroxyl radical generation). During hypoxia (11% O2), only sickle mice converted tissue xanthine dehydrogenase to oxidase. Only the sickle mice exhibited a further increase in ethane excretion during restitution of normal oxygen tension after 2 hours of hypoxia. Only the sickle mice showed abnormal activation of nuclear factor–κB after exposure to hypoxia-reoxygenation. Allopurinol, a potential therapeutic agent, decreased ethane excretion in the sickle mice. Thus, sickle transgenic mice exhibit biochemical footprints consistent with excessive free-radical generation even at ambient air and following a transient induction of enhanced sickling. We suggest that reperfusion injury physiology may contribute to the evolution of the chronic organ damage characteristic of sickle cell disease. If so, novel therapeutic approaches might be of value.
Collapse
|
22
|
Mansour MA. Protective effects of thymoquinone and desferrioxamine against hepatotoxicity of carbon tetrachloride in mice. Life Sci 2000; 66:2583-91. [PMID: 10883736 DOI: 10.1016/s0024-3205(00)00592-0] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The effects of thymoquinone (TQ) and desferrioxamine (DFO) against carbon tetrachloride (CCl4)-induced hepatotoxicity were investigated. A single dose of CCl4 (20 microl/kg, i.p.) induced hepatotoxicity, manifested biochemically by significant elevation of activities of serum enzymes, such as alanine transaminase (ALT, EC: 2.6.1.2) , aspartate transaminase (AST, EC: 2.6.1.1) and lactate dehydrogenase (LDH, EC: 1.1.1.27). Hepatotoxicity was further evidenced by significant decrease of total sulfhydryl (-SH) content, and catalase (EC: 1.11.1.6) activity in hepatic tissues and significant increase in hepatic lipid peroxidation measured as malondialdhyde (MDA). Pretreatment of mice with DFO (200 mg/kg i.p.) 1 h before CCl4 injection or administration of TQ (16 mg/kg/day, p.o.) in drinking water, starting 5 days before CCl4 injection and continuing during the experimental period, ameliorated the hepatotoxicity induced by CCl4, as evidenced by a significant reduction in the elevated levels of serum enzymes as well as a significant decrease in the hepatic MDA content and a significant increase in the total sulfhydryl content 24 h after CCl4 administration. In a separate in vitro assay, TQ and DFO inhibited the non-enzymatic lipid peroxidation of normal mice liver homogenate induced by Fe3+/ascorbate in a dose-dependent manner. These results indicate that TQ and DFO are efficient cytoprotective agents against CCl4-induced hepotoxicity, possibly through inhibition of the production of oxygen free radicals that cause lipid peroxidation.
Collapse
Affiliation(s)
- M A Mansour
- Department of Pharmacology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
23
|
Schnellmann JG, Pumford NR, Kusewitt DF, Bucci TJ, Hinson JA. Deferoxamine delays the development of the hepatotoxicity of acetaminophen in mice. Toxicol Lett 1999; 106:79-88. [PMID: 10378453 DOI: 10.1016/s0378-4274(99)00021-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The hepatotoxicity of acetaminophen is conventionally ascribed to metabolism by CYP450 to N-acetyl-p-benzoquinone imine and covalent binding to proteins. We investigated a potential role for oxidative stress by determining the effect of the ferric chelator deferoxamine (Desferal) on acetaminophen (paracetamol)-induced hepatotoxicity in mice. Administration of deferoxamine (75 mg/kg) 1 h after a toxic dose of acetaminophen (300 mg/kg) significantly delayed the development of the toxicity without altering covalent binding. In saline-treated mice serum ALT was 18 +/- 2 IU/l. In acetaminophen-treated mice serum alanine aminotransferase (ALT) was 779 +/- 271 at 2 h, 7421 +/- 552 IU/l at 4 h, 5732 +/- 523 IU/l at 8 h, and 5984 +/- 497 IU/l at 24 h. In acetaminophen plus deferoxamine-treated mice, serum ALT was 80 +/- 10 at 2 h, 472 +/- 74 IU/l at 4 h, 2149 +/- 597 IU/l at 8 h, and 5766 +/- 388 at 24 h. Deferoxamine at 1 h after acetaminophen did not decrease serum ALT at 12 h; however, deferoxamine at 1 and 4 h, or deferoxamine at 1 h plus N-acetylcysteine at 4 h to replete hepatic glutathione, decreased the toxicity from 5625 +/- 310 IU/l to 3436 +/- 546 IU/l and 3003 +/- 282 IU/l, respectively. Deferoxamine plus N-acetylcysteine at 1.25 h after acetaminophen was more effective at decreasing the 24 h toxicity than N-acetylcysteine alone. In acetaminophen treated mice, higher doses of deferoxamine (150-300 mg/kg) at 1 h greatly increased the observed hepatotoxicity at 4 h in a dose responsive manner, but deferoxamine alone was nontoxic.
Collapse
Affiliation(s)
- J G Schnellmann
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock 72205, USA
| | | | | | | | | |
Collapse
|
24
|
Mak DH, Ko KM. Alterations in susceptibility to carbon tetrachloride toxicity and hepatic antioxidant/detoxification system in streptozotocin-induced short-term diabetic rats: effects of insulin and Schisandrin B treatment. Mol Cell Biochem 1997; 175:225-32. [PMID: 9350055 DOI: 10.1023/a:1006883919687] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The streptozotocin-induced short-term (2 week) diabetic rats showed an increase in susceptibility to carbon tetrachloride (CCl4)-induced hepatocellular damage. This diabetes-induced change was associated with a marked impairment in the hepatic glutathione antioxidant/detoxification response to CCl4 challenge, as indicated by the abrogation of the increases in hepatic reduced glutathione (GSH) level, glucose-6-phosphate dehydrogenase and microsomal glutathione S-transferases (GST) activities upon challenge with increasing doses of CCl4. While the hepatic GSH level was increased in diabetic rats, the hepatic mitochondrial GSH level and Se-glutathione peroxidase activity were significantly reduced. Insulin treatment could reverse most of the biochemical alterations induced by diabetes. Both insulin and schisandrin B (Sch B) pretreatments protected against the CCl4 hepatotoxicity in diabetic rats. The hepatoprotection was associated with improvement in hepatic glutathione redox status in both cytosolic and mitochondrial compartments, as well as the increases in hepatic ascorbic acid level and microsomal GST activity. The ensemble of results suggests that the diabetes-induced impairment in hepatic mitochondrial glutathione redox status may at least in part be attributed to the enhanced susceptibility to CCl4 hepatotoxicity. Sch B may be a useful hepatoprotective agent against xenobiotics-induced toxicity under the diabetic conditions.
Collapse
Affiliation(s)
- D H Mak
- Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | | |
Collapse
|
25
|
Sodhi CP, Rana SV, Mehta SK, Vaiphei K, Attari S, Mehta S. Study of oxidative-stress in isoniazid-rifampicin induced hepatic injury in young rats. Drug Chem Toxicol 1997; 20:255-69. [PMID: 9292280 DOI: 10.3109/01480549709003881] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The role of oxidative-stress as a mechanism of hepatotoxicity caused by combination of isoniazid (INH) and Rifampicin (RMP) was investigated in young growing rats. A successful model of hepatotoxicity was produced by giving 50 mg/kg/day each of INH and RMP in two weeks. Liver showed type II hepatocellular changes (microvesicular fat deposition) with mild portal triaditis. The glutathione and related thiols were significantly decreased in both blood and liver tissues with combination of INH and RMP treatment. Superoxide dismutase, glutathione peroxidase, catalase and glutathione-S-transferases with CDNB and DCNB as substrates were decreased in the combination treated group. Glutathione reductase, glutathione-S-transferase with ethacrynic acid as substrate and lipid peroxidation exhibited a significant increase with treatment. The altered profile of antioxidant enzymes with increased lipid peroxidation indicated the enhanced oxidative-stress in combination of INH and RMP treatment. All the findings are faithfully reflected in the blood tissue except superoxide dismutase which showed significant enhancement in this tissue. INH and RMP hepatotoxicity is thus appeared to be mediated through oxidative-stress.
Collapse
Affiliation(s)
- C P Sodhi
- Department of Gastroenterology and Pathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | | | | | | |
Collapse
|
26
|
Thomas MJ. The role of free radicals and antioxidants: how do we know that they are working? Crit Rev Food Sci Nutr 1995; 35:21-39. [PMID: 7748477 DOI: 10.1080/10408399509527683] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This review briefly discusses how free radicals are formed and the possible participation of free radicals in disease. The review describes the basic radical reactions and the types of products that are formed from the free-radical reactions of cellular constituents. In many cases, in vivo free-radical oxidation can be detected by measuring products that were derived from radical reactions. Since aerobic organisms generate oxygen-containing free radicals during oxygen metabolism, they carry chemicals and enzymes that reduce the threat posed by these radicals. The more common sources of in vivo free radicals are described in the article as well as the methods used by cells to protect themselves from free-radical damage. Generation of free radicals in vivo also may be the result of exposure to certain chemical agents present in the environment. Many of these agents cause pathologic changes to the exposed tissues and organs by initiating free-radical reactions.
Collapse
Affiliation(s)
- M J Thomas
- Department of Biochemistry, Wake Forest University Medical Center, Bowman Gray School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
27
|
Nelson SD. Mechanisms of the formation and disposition of reactive metabolites that can cause acute liver injury. Drug Metab Rev 1995; 27:147-77. [PMID: 7641574 DOI: 10.3109/03602539509029821] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Acetaminophen and pulegone are just two examples for many agents that can form reactive metabolites that can cause acute liver injury. Two other classic organic compounds that have been extensively studied are carbon tetrachloride (for a recent review see Ref. 159, and for other discussions see Refs. 8 and 9) and bromobenzene (for review see Ref. 160). Different kinds of protein adducts of reactive metabolites of bromobenzene have been partially characterized [161], and specific antibodies to these adducts are now being used to isolate and identify the proteins that are modified (162). In contrast, carbon tetrachloride and other agents, such as the herbicide diquat, may form radicals that bind to and/or oxidize lipids and proteins in causing liver injury (163, 164). Therefore, the recent development [165] of antibodies to detect oxidative damage to proteins will be important in the identification and characterization of macromolecules that do not form adducts with reactive metabolites but are damaged oxidatively. Thus, some major challenges in the coming years are to identify hepatocellular macromolecules that are modified by reactive metabolites, and then approach the more difficult task of integrating this information into a time course and sequence of events leading to lethal hepatocellular injury.
Collapse
Affiliation(s)
- S D Nelson
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle 98195, USA
| |
Collapse
|
28
|
Ozdemirler G, Aykaç G, Uysal M, Oz H. Liver lipid peroxidation and glutathione-related defence enzyme systems in mice treated with paracetamol. J Appl Toxicol 1994; 14:297-9. [PMID: 7963244 DOI: 10.1002/jat.2550140410] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Glutathione levels were found to be decreased while lipid peroxide levels were increased in total liver homogenates 6 h following paracetamol treatment (500 mg kg-1 i.p.). Furthermore, it has been determined that cytosolic glutathione S-transferase (GST) activity was decreased and glutathione peroxidase (GSH-Px) activity remained unchanged. On the other hand, a decrease in liver microsomal lipid peroxide levels and an increase in GST and GSH-Px activity has been observed. We concluded that decreased lipid peroxide levels in microsomes could be a consequence of increased GSH-Px and GST enzyme activities. In this way, these glutathione-related defence enzyme systems may play an important role in protecting microsomes from lipid peroxidation.
Collapse
Affiliation(s)
- G Ozdemirler
- Department of Biochemistry, Istanbul Faculty of Medicine, University of Istanbul, Capa, Turkey
| | | | | | | |
Collapse
|
29
|
Badr MZ. Controversial role of intracellular iron in the mechanisms of chemically-induced hepatotoxicity. JOURNAL OF BIOCHEMICAL TOXICOLOGY 1994; 9:25-9. [PMID: 8151629 DOI: 10.1002/jbt.2570090105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Hepatotoxicity induced by various therapeutic agents, industrial chemicals and environmental pollutants is a well-recognized phenomenon. These chemicals are known to cause liver damage that is localized to either periportal or centrilobular regions of the liver lobule (1-3). Depending on dose, duration, and route of exposure, the resultant liver injury may regress or progress and becomes irreversible (1). Mechanisms involved in this selective, localized toxicity have been the target of extensive research efforts, and many studies produced conflicting results. As depicted in Figure 1, although many investigators implicate iron and lipid peroxidation in this process (4-9), others dispute such assertions (10-12).
Collapse
Affiliation(s)
- M Z Badr
- Division of Pharmacology, University of Missouri-Kansas City 64108-2792
| |
Collapse
|
30
|
Brent JA, Rumack BH. Role of free radicals in toxic hepatic injury. II. Are free radicals the cause of toxin-induced liver injury? JOURNAL OF TOXICOLOGY. CLINICAL TOXICOLOGY 1993; 31:173-96. [PMID: 8433412 DOI: 10.3109/15563659309000384] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- J A Brent
- Rocky Mountain Poison and Drug Center, Denver, CO 80204
| | | |
Collapse
|
31
|
Stinson TJ, Jaw S, Jeffery EH, Plewa MJ. The relationship between nickel chloride-induced peroxidation and DNA strand breakage in rat liver. Toxicol Appl Pharmacol 1992; 117:98-103. [PMID: 1440619 DOI: 10.1016/0041-008x(92)90222-e] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Inorganic nickel chloride induces hepatic DNA strand breaks, chromosome aberrations, and lipid peroxidation under in vitro and in vivo conditions. The objective of this research was to determine if a relationship exists between NiCl2 genotoxicity and lipid peroxidation in vivo. Male Sprague-Dawley rats (210-250 g) were dosed with 0.56 or 0.75 mmol/kg NiCl2 subcutaneously and euthanized after specific time periods, ranging from 30 min to 24 hr. Livers were perfused and excised for the measurement of nickel content using atomic absorption spectrometry, lipid peroxidation using a thiobarbituric acid assay, and DNA strand breakage using single-stranded DNA extraction and the diaminobenzoic acid assay. The lower dose (0.56 mmol/kg) did not induce lipid peroxidation or strand breakage. The higher dose (0.75 mmol/kg) induced DNA strand breakage at 4 hr and lipid peroxidation at 12 hr in rat liver. Nickel was seen to accumulate in liver nuclei of rats receiving 0.75 mmol/kg. Deferoxamine (1 g/kg, ip, 15 min before the NiCl2 injection) completely inhibited DNA strand breakage at 4 hr but had no effect on lipid peroxidation. This suggests that lipid peroxidation is not causally related to genetic damage. NiCl2-induced DNA strand breakage may be caused by the induction of the Fenton reaction, generating hydroxyl radicals.
Collapse
Affiliation(s)
- T J Stinson
- Institute for Environmental Studies, University of Illinois, Urbana 61801
| | | | | | | |
Collapse
|
32
|
Jaeschke H, Benzick AE. Pathophysiological consequences of enhanced intracellular superoxide formation in isolated perfused rat liver. Chem Biol Interact 1992; 84:55-68. [PMID: 1327553 DOI: 10.1016/0009-2797(92)90120-a] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The potential toxicity of enhanced intracellular reactive oxygen formation was investigated in isolated perfused livers of male Fischer rats. The presence of the redox-cycling agent diquat in the perfusate (200 microM) increased the basal efflux of glutathione disulfide (GSSG) into bile (2.65 +/- 0.26 nmol GSH-equivalents/min per g liver wt.) and perfusate (0.55 +/- 0.15 nmol/min per g) approximately 10-fold. Since no evidence was found for degradation of GSSG in the biliary tract of these animals, it could be estimated that diquat induced a constant O2- generation of approximately 1000 nmol/min per g liver wt for 1 h. Thus, reactive oxygen formation under these conditions was 1-2 orders of magnitude higher than under various pathophysiological conditions. Only minor liver injury (release of lactate dehydrogenase activity) was observed. To increase the susceptibility of the liver to the oxidant stress, animals were pretreated in vivo with 200 mg/kg body wt. phorone, which caused a 90% depletion of the hepatic glutathione content, 100 mg/kg ferrous sulfate, a combination of phorone and ferrous sulfate, or 40 mg/kg BCNU, which caused a 60% inhibition of hepatic GSSG reductase. Only the combined treatment of phorone + ferrous sulfate or BCNU caused a significant increase of the diquat-induced liver injury. Our results demonstrated an extremely high resistance of the liver against intracellular reactive oxygen formation (even with impaired detoxification systems) and can serve as reference for the evaluation of potential contributions of reactive oxygen to liver injury in various disease states.
Collapse
Affiliation(s)
- H Jaeschke
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | | |
Collapse
|
33
|
LeBel CP, Ali SF, Bondy SC. Deferoxamine inhibits methyl mercury-induced increases in reactive oxygen species formation in rat brain. Toxicol Appl Pharmacol 1992; 112:161-5. [PMID: 1310167 DOI: 10.1016/0041-008x(92)90292-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
It has been suggested that methyl mercury may express its neurotoxicity by way of iron-mediated oxidative damage. Therefore, the effect of deferoxamine, a potent iron-chelator, on methyl mercury-induced increases in reactive oxygen species formation was studied in rat brain. The generation rate of reactive oxygen species was estimated in crude synaptosomal fractions using the probes 2',7'-dichlorofluorescin diacetate and dihydrorhodamine 123. The formation rate of the fluorescent oxidation products was used as the measure of reactive oxygen species generation. Seven days after a single injection of methyl mercury (5 mg/kg, ip), the formation rate of reactive oxygen species was significantly increased in the cerebellum. Pretreatment with deferoxamine (500 mg/kg, ip) completely prevented the methyl mercury-induced increase in cerebellar reactive oxygen species generation rates. The oxidative consequences of in vitro exposure to methyl mercury (20 microM) were also inhibited by deferoxamine (100 microM). The formation of the iron-saturated complex ferrioxamine was not affected by a 10-fold excess of methylmercuric chloride or mercuric chloride, suggesting that a deferoxamine-mercurial complex does not form. The findings in this study: (1) provide evidence that iron-catalyzed oxygen radical-producing reactions play a role in methyl mercury neurotoxicity, (2) demonstrate the potential of fluorescent probes as a measure of reactive oxygen species formation, and (3) provide support for iron-chelator therapy in protection against xenobiotic-induced oxidative damage.
Collapse
Affiliation(s)
- C P LeBel
- Department of Community and Environmental Medicine, University of California, Irvine 92717
| | | | | |
Collapse
|
34
|
Vermeulen NP, Bessems JG, Van de Straat R. Molecular aspects of paracetamol-induced hepatotoxicity and its mechanism-based prevention. Drug Metab Rev 1992; 24:367-407. [PMID: 1628537 DOI: 10.3109/03602539208996298] [Citation(s) in RCA: 179] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- N P Vermeulen
- Department of Pharmacochemistry, Faculty of Chemistry, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | |
Collapse
|
35
|
Jaeschke H, Kleinwaechter C, Wendel A. NADH-dependent reductive stress and ferritin-bound iron in allyl alcohol-induced lipid peroxidation in vivo: the protective effect of vitamin E. Chem Biol Interact 1992; 81:57-68. [PMID: 1730148 DOI: 10.1016/0009-2797(92)90026-h] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The role of iron in allyl alcohol-induced lipid peroxidation and hepatic necrosis was investigated in male NMRI mice in vivo. Ferrous sulfate (0.36 mmol/kg) or a low dose of ally alcohol (0.6 mmol/kg) itself caused only minor lipid peroxidation and injury to the liver within 1 h. When FeSO4 was administered before allyl alcohol, lipid peroxidation and liver injury were potentiated 50-100-fold. Pretreatment with DL-tocopherol acetate 5 h before allyl alcohol protected dose-dependently against allyl alcohol-induced lipid peroxidation and liver injury in vivo. Products of allyl alcohol metabolism, i.e. NADH and acrolein, both mobilized trace amounts of iron from ferritin in vitro. Catalytic concentrations of FMN greatly facilitated the NADH-induced reductive release of ferritin-bound iron. NADH effectively reduced ferric iron in solution. Consequently, a mixture of NADH and Fe3+ or NADH and ferritin induced lipid peroxidation in mouse liver microsomes in vitro. Our results suggest that the reductive stress (excessive NADH formation) during allyl alcohol metabolism can release ferrous iron from ferritin and can reduce chelated ferric iron. These findings provide a rationale for the strict iron-dependency of allyl alcohol-induced lipid peroxidation and hepatotoxicity in mice in vivo and document iron mobilization and reduction as one of several essential steps in the pathogenesis.
Collapse
Affiliation(s)
- H Jaeschke
- Institute of Physiological Chemistry, University of Tübingen, Germany
| | | | | |
Collapse
|
36
|
Videla LA, Simizu K, Barros SB, Junqueira VB. Mechanisms of lindane-induced hepatotoxicity: alterations of respiratory activity and sinusoidal glutathione efflux in the isolated perfused rat liver. Xenobiotica 1991; 21:1023-32. [PMID: 1723228 DOI: 10.3109/00498259109039542] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
1. Lindane (25-60 mg/kg) at 24 h after dosage induced a dose-dependent increase in oxygen consumption by perfused rat livers, an effect not observed at early times (2-6 h) after administration. About 60% of the increase in liver oxygen uptake is suppressed by the antioxidant, desferrioxamine, indicating enhanced free radical activity induced by the insecticide. 2. The hepatic content of total GSH equivalents (GSH + 2GSSG) decreased 4 h after lindane treatment (60 mg/kg), together with significant diminution in net and fractional rates of sinusoidal GSH efflux, that returned to control values 24 h after treatment. 3. These data indicate that lindane resulted in marked changes in hepatic oxidative capacity and glutathione metabolism, which condition the production of oxidative stress in the liver at different times of intoxication.
Collapse
Affiliation(s)
- L A Videla
- Departamento de Ciencias Biológicas, Facultad de Medicina, Universidad de Chile, Santiago
| | | | | | | |
Collapse
|
37
|
Abstract
Pharmacological experiments suggested that reactive oxygen species contribute to ischemia-reperfusion injury of the liver. Since there is no evidence that quantitatively sufficient amounts of reactive oxygen are generated intracellularly to overwhelm the strong antioxidant defense mechanisms in the liver and cause parenchymal cell injury, the role of reactive oxygen in the pathogenesis remains controversial. This paper reviews the data and conclusions obtained with pharmacological intervention studies in vivo, the sources of reactive oxygen in the liver as well as the growing evidence for the importance of liver macrophages (Kupffer cells) and infiltrating neutrophils in the pathogenesis. A comprehensive hypothesis is presented that focuses on the extracellular generation of reactive oxygen in the hepatic sinusoids, where Kupffer cell-derived reactive oxygen species seem to be involved in the initial vascular and parenchymal cell injury and indirectly also in the recruitment of neutrophils into the liver. Reactive oxygen species may also contribute to the subsequent neutrophil-dependent injury phase as one of the toxic mediators released by these inflammatory cells.
Collapse
Affiliation(s)
- H Jaeschke
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
38
|
Tse SY, Mak IT, Weglicki WB, Dickens BF. Chlorinated aliphatic hydrocarbons promote lipid peroxidation in vascular cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH 1990; 31:217-26. [PMID: 2231779 DOI: 10.1080/15287399009531450] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Chlorinated aliphatic hydrocarbons such as trichloroethylene and trichloroethane cause acute and chronic cardiotoxicities via mechanisms that are still obscure. Some of these toxic effects may result from free-radical-induced membrane damage to the vascular tissues. The pro-oxidant effects of carbon tetrachloride, trichloroethylene, 1,1,1-trichloroethane, 1,2-dichloroethane, and trans-1,2-dichloroethylene were assessed in cultured arterial endothelial and aortic smooth muscle cells. Exposure of the cells to the above chemicals alone did not increase the formation of thiobarbiturate reactive products above background levels. However, in the presence of low levels of iron (3.1-25 microM Fe3+ chelated by ADP), all five agents promoted lipid peroxidation up to 200% of control. The rank order of potency is carbon tetrachloride greater than or equal to trichloroethylene greater than 1,1,1-trichloroethane greater than trans-1,2-dichloroethylene greater than 1,2-dichloroethane. The synergistic interaction between iron and chlorinated hydrocarbons in promoting lipid peroxidation may contribute to the cardiotoxicities of these agents.
Collapse
Affiliation(s)
- S Y Tse
- Department of Medicine, George Washington University, Washington, D.C
| | | | | | | |
Collapse
|
39
|
Younes M, Wess A. The role of iron in t-butyl hydroperoxide-induced lipid peroxidation and hepatotoxicity in rats. J Appl Toxicol 1990; 10:313-7. [PMID: 2254581 DOI: 10.1002/jat.2550100502] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Treatment of rats with 100 mg kg-1 t-butyl hydroperoxide led to an enhanced ethane exhalation as a marker of in vivo lipid peroxidation, as well as a moderate hepatoxicity as evidenced by a rise in plasma activities of liver-specific enzymes (glutamate-pyruvate transaminase and sorbitol dehydrogenase) and an increase in hepatic calcium content. Furthermore, a depletion of hepatic glutathione by 17% was observed. Apart from the loss of glutathione, all these effects were antagonized by pretreatment of rats with the potent iron chelator deferrioxamine and potentiated by pretreatment with low concentrations of FeSO4 having no pro-oxidant activity per se; this was also the case in rats under conditions of iron overload (experimental haemochromatosis). These data indicate a close relationship between t-butyl hydroperoxide-induced lipid peroxidation and its hepatotoxicity, and point out the importance of iron in catalysing reinitiation (propagation) reactions of lipid peroxidation in vivo.
Collapse
Affiliation(s)
- M Younes
- Institute of Toxicology, Medical University of Lübeck, FRG
| | | |
Collapse
|
40
|
McGirr LG, Khan S, Lauriault V, O'Brien PJ. Molecular mechanisms for bromotrichloromethane cytotoxicity in isolated rat hepatocytes. Xenobiotica 1990; 20:933-43. [PMID: 2238712 DOI: 10.3109/00498259009046909] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
1. Bromotrichloromethane added to isolated rat hepatocytes resulted in increased cell death as determined by trypan blue uptake. Toxicity increased in a concentration-dependent fashion between 2.0-5.0 M bromotrichloromethane. 2. Lipid peroxidation (malondialdehyde) increased in a time-dependent fashion but in contrast to toxicity reached a maximum level at 2.0 mM bromotrichloromethane. 3. Hypoxia increased the toxicity of bromotrichloromethane three-fold but only decreased the amount of lipid peroxidation to a small degree. 4. In spite of this poor correlation between toxicity and lipid peroxidation, the antioxidant butylated hydroxyanisole and the iron chelator desferal protected the cells from toxicity under both aerobic and hypoxic conditions and prevented lipid peroxidation. 5. During treatment with bromotrichloromethane, cellular glutathione levels slowly decreased and oxidized glutathione appeared in the media. The addition of cystine to the incubation media prevented the formation of extracellular oxidized glutathione, indicating that cellular glutathione had leaked from the cell during treatment and was oxidized in the incubation media. Although this suggested that glutathione does not play a protective role against bromotrichloromethane toxicity, diethyl maleate-pretreatment of the cells to decrease glutathione levels markedly increased bromotrichloromethane toxicity. 6. The addition of ascorbic acid to the incubation media increased bromotrichloromethane toxicity. This was attributed to the reductive activation of bromotrichloromethane in an iron and oxygen-dependent reaction. 7. It was concluded that peroxidation of essential phospholipids contributes to bromotrichloromethane-induced hepatocyte cytotoxicity.
Collapse
Affiliation(s)
- L G McGirr
- Faculty of Pharmacy, University of Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
41
|
Preece NE, Evans PF, King LJ, Parke DV. Effects of glutathione depletion, chelation and diuresis on iron nitrilotriacetate-induced lipid peroxidation in rats and mice. Xenobiotica 1990; 20:879-86. [PMID: 2238709 DOI: 10.3109/00498259009046903] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
1. Rats and mice dosed with iron nitrilotriacetate (FeNTA) i.p. (2-12 mg Fe/kg) showed evidence of lipid peroxidation as indicated by increased exhalation of ethane and increased malondialdehyde formation in liver and kidney. 2. Buthionine sulphoximine (BSO) administered i.p. to rats and mice decreased the total glutathione (GSH) content of liver and kidney. When the rodents were pretreated i.p. with BSO prior to injection of FeNTA the increases in ethane exhalation, and in liver and kidney malondialdehyde production, were greater than with FeNTA alone, and the total GSH of liver and kidney were decreased. 3. Diuresis produced by i.p. administration of furosemide to mice substantially decreased the ethane exhalation resulting from FeNTA administration, had a lowering effect on kidney MDA, but had no significant effect on liver MDA production. 4. Similarly, desferrioxamine beta-mesylate administered i.p. to mice markedly decreased the ethane exhalation and kidney MDA production resulting from FeNTA administration.
Collapse
Affiliation(s)
- N E Preece
- Toxicology Unit, School of Pharmacy, London University, UK
| | | | | | | |
Collapse
|
42
|
Videla LA, Simizu K, Barros SB, Junqueira VB. Lindane-induced liver oxidative stress: respiratory alterations and the effect of desferrioxamine in the isolated perfused rat liver. Cell Biochem Funct 1989; 7:179-83. [PMID: 2477167 DOI: 10.1002/cbf.290070305] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The effects of lindane administration (25-60 mg kg-1 for 24 h) on hepatic oxygen consumption were studied in the isolated perfused rat liver, in the absence and presence of the iron-chelator free-radical scavenger desferrioxamine. Lindane elicits a dose-dependent enhancement of total oxygen uptake by the liver, which is largely inhibited by 0.55 mM desferrioxamine. Total desferrioxamine- sensitive oxygen consumption exhibits a maximal increase (213 per cent) at 60 mg of lindane kg-1 over control values and represents 21 per cent of the total oxygen consumption. At the different doses of lindane used, it was calculated that about 60 per cent of the total increase in oxygen uptake by the liver is accounted for by oxygen related to oxidative stress, probably utilized at different stages of the induced lipid peroxidative process.
Collapse
Affiliation(s)
- L A Videla
- Departamento de Ciencias Biológicas, Facultad de Medicina-División Occidente, Universidad de Chile, Santiago
| | | | | | | |
Collapse
|
43
|
Younes M, Eberhardt I, Lemoine R. Effect of iron overload on spontaneous and xenobiotic-induced lipid peroxidation in vivo. J Appl Toxicol 1989; 9:103-8. [PMID: 2715565 DOI: 10.1002/jat.2550090206] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
To study the effect of iron-overload on hepatic lipid peroxidation, two rat models of haemochromatosis were employed: in the first model resembling secondary haemochromatosis, repeated i.p. injections with Fe-dextran led to an accumulation of Fe in Kupffer cells, while in the second model resembling hereditary haemochromatosis, iron was located mainly in periportal hepatocytes after feeding on a diet containing 3.5% Fe-fumarate for 3 weeks. In both models, total hepatic iron content was elevated four- to fivefold over controls. In vivo lipid peroxidation (ethane exhalation) was enhanced only in the second model, indicating that the hepatocytes are the main targets of Fe-induced lipid peroxidation. Low hepatotoxicity was observed in the second model. Additional treatment of the rats with hepatotoxic agents led to different results: with ethanol and bromobenzene, lipid peroxidation was only evident in both models of iron-overload, while paracetamol-induced lipid peroxidation was seen only in Fe-fumarate-fed rats. CCl4-induced lipid peroxidation was strongly enhanced in both models of haemochromatosis. Hepatotoxicity was enhanced by iron overload only in the case of CCl4-treated, Fe-fumarate-fed rats. The activities of phase I and phase II enzymes of xenobiotic metabolism were not markedly altered in livers of iron-overloaded rats. This implies that neither the bioactivation nor the detoxification of the agents studied were affected in experimental haemochromatosis.
Collapse
Affiliation(s)
- M Younes
- Institute of Toxicology, Medical University of Lübeck, FRG
| | | | | |
Collapse
|
44
|
Younes M, Eberhardt I, Lemoine R. Spontaneous and xenobiotic-induced in vivo-lipid peroxidation in iron-overloaded rats. ARCHIVES OF TOXICOLOGY. SUPPLEMENT. = ARCHIV FUR TOXIKOLOGIE. SUPPLEMENT 1989; 13:282-6. [PMID: 2774945 DOI: 10.1007/978-3-642-74117-3_50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- M Younes
- Institute of Toxicology, Medical University of Lübeck, FRG
| | | | | |
Collapse
|
45
|
Abstract
Three models of free radical-induced cell injury are presented in this review. Each model is described by the mechanism of action of few prototype toxic molecules. Carbon tetrachloride and monobromotrichloromethane were selected as model molecules for alkylating agents that do not induce GSH depletion. Bromobenzene and allyl alcohol were selected as prototypes of GSH depleting agents. Paraquat and menadione were presented as prototypes of redox cycling compounds. All these groups of toxins are converted, during their intracellular metabolism, to active species which can be radical species or electrophilic intermediates. In most cases the activation is catalyzed by the microsomal mixed function oxidase system, while in other cases (e.g. allyl alcohol) cytosolic enzymes are responsible for the activation. Radical species can bind covalently to cellular macromolecules and can promote lipid peroxidation in cellular membranes. Of course both phenomena produce cell damage as in the case of CCl4 or BrCCl3 intoxication. However, the covalent binding is likely to produce damage at the molecular site where it occurs; lipid peroxidation, on the other hand, besides causing loss of membrane structure, also gives rise to toxic products such as 4-hydroxyalkenals and other aldehydes which in principle can move from the site of origin and produce effects at distant sites. Electrophilic intermediates readily reacts with cellular nucleophiles, primarily with GSH. The result is a severe GSH depletion as in the case of bromobenzene or allyl alcohol intoxication. When the depletion reaches some threshold values lipid peroxidation develops abruptly and in an extensive way. This event is accompanied by cellular death. The reason for which lipid peroxidation develops in a cell severely depleted of GSH remains to be clarified. Probably the loss of the defense systems against a constitutive oxidative stress is not compatible with cellular life. Some free radicals generated by one-electron reduction can react with oxygen to give superoxide anions which can be converted to other more dangerous reactive oxygen species. This is the case of paraquat and menadione. Damage to cellular macromolecules is due to the direct action of these oxygen radicals and, at least in the menadione-induced cytotoxicity, lipid peroxidation is not involved. All these initial events affect the protein sulfhydryl groups in the membranes. Since some protein thiols are essential components of the molecular arrangement responsible for the Ca2+ transport across cellular membranes, loss of such thiols can affect the calcium sequestration activity of subcellular compartments, that is the capacity of mitochondria and microsomes to regulate the cytosolic calcium level.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- M Comporti
- Istituto di Patologia Generale dell'Università di Siena, Italy
| |
Collapse
|
46
|
Affiliation(s)
- R O Recknagel
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | | | | | | |
Collapse
|
47
|
van de Straat R, Bijloo GJ, Vermeulen NP. Paracetamol, 3-monoalkyl- and 3,5-dialkyl-substituted derivatives. Antioxidant activity and relationship between lipid peroxidation and cytotoxicity. Biochem Pharmacol 1988; 37:3473-6. [PMID: 3421998 DOI: 10.1016/0006-2952(88)90699-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The analgesic drug paracetamol is known to cause lipid peroxidation and hepatotoxicity after overdosage. In this paper, the relationship between lipid peroxidation and toxicity in freshly isolated hepatocytes was studied using paracetamol and three 3-monoalkyl-substituted derivatives of paracetamol. Paracetamol was found to induce both toxicity and lipid peroxidation in the hepatocytes. 3-Monoalkyl substitution of paracetamol (R = CH3, C2H5 and iso-C3H7) did not influence its cytotoxicity but, in contrast, inhibited the lipid peroxidation. This effect may be caused by the antioxidant activity of the substituted derivatives. Apart from 3-monoalkyl substitution, 3,5-dialkyl substitution of paracetamol was also found to potentiate the antioxidant activity of paracetamol. The antioxidant activity of paracetamol and its alkyl derivatives was found to be highly correlated to their lipophilicity.
Collapse
Affiliation(s)
- R van de Straat
- Department of Pharmacochemistry, Molecular Toxicology, Free University, Amsterdam, The Netherlands
| | | | | |
Collapse
|
48
|
Younes M, Sause C, Siegers CP, Lemoine R. Effect of deferrioxamine and diethyldithiocarbamate on paracetamol-induced hepato- and nephrotoxicity. The role of lipid peroxidation. J Appl Toxicol 1988; 8:261-5. [PMID: 2846674 DOI: 10.1002/jat.2550080407] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In mice subjected to glutathione depletion by pretreatment with phorone (diisopropylidene acetone, 200 mg/kg i.p. in 10 ml/kg olive oil) paracetamol (acetaminophen, 300 mg/kg p.o. in 10 ml/kg tylose 2 h later) led to a marked hepatotoxicity as evidenced by increased plasma activities of the liver-specific enzymes sorbitol dehydrogenase (SDH) and glutamate-pyruvate-transaminase (GPT) 3 and 24 h after treatment. Nephrotoxicity was also indicated at both timepoints by an increased creatinine concentration in plasma, while neither the urine volume nor its content in gamma-glutamyl transpeptitase over 20 h were affected. Hepato- and nephrotoxicity were also assessed histomorphologically. In vivo lipid peroxidation (LPO), as measured by ethane exhalation over 3 h, was clearly enhanced by paracetamol. Malondialdehyde content was increased and glutathione concentration diminished in the liver, but not in the kidney. Diethyldithiocarbamate (DTC, 200 mg/kg i.p.) or deferrioxamine (DFO, 500 mg/kg i.p.) both given 30 min before PA, inhibited in vivo LPO. However, only DTC was capable of antagonizing the hepato- and nephrotoxic effects of paracetamol, while DFO only delayed the onset of nephrotoxicity but left the hepatotoxicity unaffected. Both agents inhibited the rise in hepatic malondialdehyde-content, but only DTC prevented paracetamol-induced glutathione depletion. These results indicate that LPO is not mainly responsible for paracetamol toxicity towards liver or kidney.
Collapse
Affiliation(s)
- M Younes
- Institute of Toxicology, Medical University of Lübeck, FRG
| | | | | | | |
Collapse
|
49
|
Younes M, Heger B, Wilhelm KP, Siegers CP. Enhanced in vivo-lipid peroxidation associated with halothane hepatotoxicity in rats. PHARMACOLOGY & TOXICOLOGY 1988; 63:52-6. [PMID: 2840650 DOI: 10.1111/j.1600-0773.1988.tb00909.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
To study the role of lipid peroxidation in halothane-induced hepatic damage, ethane exhalation by rats exposed to 1% halothane for 1 hour was determined under normoxic (21% O2) and hypoxic (6% O2) conditions. The effects of microsomal enzyme induction by phenobarbital and/or glutathione depletion on this parameter of in vivo lipid peroxidation were studied. To assess the degree of liver damage, serum activities of liver specific enzymes (glutamate-pyruvate-transaminase, GPT, and sorbitol dehydrogenase, SDH) were measured 3 hrs after the end of exposure. Besides, liver content of thiobarbituric acid-reactive material was estimated as a further parameter of lipid peroxidation. Enhanced rates of lipid peroxidation over basal levels were only seen under conditions leading to hepatic damage, i.e. phenobarbital induction and hypoxia. The highest rate of lipid peroxidation was observed after depletion of hepatic glutathione in addition to microsomal enzyme induction and hypoxia. Deferrioxamine, diethyldithiocarbamate and (+)-catechin inhibited in vivo lipid peroxidation, but only (+)-catechin suppressed halothane-hepatoxicity. These results indicate that halothane-induced hepatic damage is associated with an enhanced rate of lipid peroxidation, but this might not be the only mechanism of halothane toxicity.
Collapse
Affiliation(s)
- M Younes
- Institute of Toxicology, School of Medicine, University of Lübeck, FRG
| | | | | | | |
Collapse
|
50
|
Siegers CP, Steffen B, Younes M. Antidotal effects of deferrioxamine in experimental liver injury--role of lipid peroxidation. PHARMACOLOGICAL RESEARCH COMMUNICATIONS 1988; 20:337-43. [PMID: 3387462 DOI: 10.1016/s0031-6989(88)80070-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Pretreatment with deferrioxamine (DFO, 125-500 mg/kg i.p.) protected male mice against CCl4- or CBrCl3-induced hepatotoxicity which is closely related to an inhibition of iron-dependent lipid peroxidation monitored by ethane exhalation. For allyl alcohol, 1,1-dichloroethylene, dimethylnitrosamine, thioacetamide, bromobenzene and paracetamol no hepatoprotection was achieved with DFO indicating that lipid peroxidation is not involved as a primary mechanism of toxicity. In the case of bromobenzene a marked in vivo lipid peroxidation was observed, which was unaffected by DFO and appears therefore to be iron-dependent.
Collapse
Affiliation(s)
- C P Siegers
- Institute of Toxicology, Medical University of Lübeck, Federal Republic of Germany
| | | | | |
Collapse
|