1
|
Bagheri SM, Allahtavakoli M, Hakimizadeh E. Neuroprotective effect of ischemic postconditioning against hyperperfusion and its mechanisms of neuroprotection. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2024; 29:31. [PMID: 39239075 PMCID: PMC11376715 DOI: 10.4103/jrms.jrms_341_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/13/2023] [Accepted: 06/27/2023] [Indexed: 09/07/2024]
Abstract
Background In recent years, stroke and ischemia-reperfusion injury has motivated researchers to find new ways to reduce the complications. Although reperfusion is essential for brain survival, it is like a double-edged sword that may cause further damage to the brain. Ischemic postconditioning (IPostC) refers to the control of blood flow in postischemia-reperfusion that can reduce ischemia-reperfusion injuries. Materials and Methods Articles were collected by searching for the terms: Ischemic postconditioning and neuroprotective and ischemic postconditioning and hyperperfusion. Suitable articles were collected from electronic databases, including ISI Web of Knowledge, Medline/PubMed, ScienceDirect, Embase, Scopus, Biological Abstract, Chemical Abstract, and Google Scholar. Results New investigations show that IPostC has protection against hyperperfusion by reducing the amount of blood flow during reperfusion and thus reducing infarction volume, preventing the blood-brain barrier damage, and reducing the rate of apoptosis through the activation of innate protective systems. Numerous mechanisms have been suggested for IPostC, which include reduction of free radical production, apoptosis, inflammatory factors, and activation of endogenous protective pathways. Conclusion It seems that postconditioning can prevent damage to the brain by reducing the flow and blood pressure caused by hyperperfusion. It can protect the brain against damages such as stroke and hyperperfusion by activating various endogenous protection systems. In the present review article, we tried to evaluate both useful aspects of IPostC, neuroprotective effects, and fight against hyperperfusion.
Collapse
Affiliation(s)
- Seyyed Majid Bagheri
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Allahtavakoli
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Elham Hakimizadeh
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
2
|
Kita K, Gawinowska M, Chełmińska M, Niedoszytko M. The Role of Exhaled Breath Condensate in Chronic Inflammatory and Neoplastic Diseases of the Respiratory Tract. Int J Mol Sci 2024; 25:7395. [PMID: 39000502 PMCID: PMC11242091 DOI: 10.3390/ijms25137395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are among the most common chronic respiratory diseases. Chronic inflammation of the airways leads to an increased production of inflammatory markers by the effector cells of the respiratory tract and lung tissue. These biomarkers allow the assessment of physiological and pathological processes and responses to therapeutic interventions. Lung cancer, which is characterized by high mortality, is one of the most frequently diagnosed cancers worldwide. Current screening methods and tissue biopsies have limitations that highlight the need for rapid diagnosis, patient differentiation, and effective management and monitoring. One promising non-invasive diagnostic method for respiratory diseases is the assessment of exhaled breath condensate (EBC). EBC contains a mixture of volatile and non-volatile biomarkers such as cytokines, leukotrienes, oxidative stress markers, and molecular biomarkers, providing significant information about inflammatory and neoplastic states in the lungs. This article summarizes the research on the application and development of EBC assessment in diagnosing and monitoring respiratory diseases, focusing on asthma, COPD, and lung cancer. The process of collecting condensate, potential issues, and selected groups of markers for detailed disease assessment in the future are discussed. Further research may contribute to the development of more precise and personalized diagnostic and treatment methods.
Collapse
Affiliation(s)
- Karolina Kita
- Department of Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Marika Gawinowska
- Department of Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Marta Chełmińska
- Department of Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Marek Niedoszytko
- Department of Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland
| |
Collapse
|
3
|
Cao M, Yang F, McClements DJ, Guo Y, Liu R, Chang M, Wei W, Jin J, Wang X. Impact of dietary n-6/n-3 fatty acid ratio of atherosclerosis risk: A review. Prog Lipid Res 2024; 95:101289. [PMID: 38986846 DOI: 10.1016/j.plipres.2024.101289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
Atherosclerosis is a causative factor associated with cardiovascular disease (CVD). Over the past few decades, extensive research has been carried out on the relationship between the n-6/n-3 fatty acid ratio of ingested lipids and the progression of atherosclerosis. However, there are still many uncertainties regarding the precise nature of this relationship, which has led to challenges in providing sound dietary advice to the general public. There is therefore a pressing need to review our current understanding of the relationship between the dietary n-6/n-3 fatty acid ratio and atherosclerosis, and to summarize the underlying factors contributing to the current uncertainties. Initially, this article reviews the association between the n-6/n-3 fatty acid ratio and CVDs in different countries. A summary of the current understanding of the molecular mechanisms of n-6/n-3 fatty acid ratio on atherosclerosis is then given, including inflammatory responses, lipid metabolism, low-density lipoprotein cholesterol oxidation, and vascular function. Possible reasons behind the current controversies on the relationship between the n-6/n-3 fatty acid ratio and atherosclerosis are then provided, including the precise molecular structures of the fatty acids, diet-gene interactions, the role of fat-soluble phytochemicals, and the impact of other nutritional factors. An important objective of this article is to highlight areas where further research is needed to clarify the role of n-6/n-3 fatty acid ratio on atherosclerosis.
Collapse
Affiliation(s)
- Minjie Cao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China; Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Fangwei Yang
- College of Light Industry and Food Engineering, Nanjing Forestry University, No.159 Longpan Road, Xuanwu District, Nanjing, China
| | | | - Yiwen Guo
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ruijie Liu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ming Chang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Wei
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jun Jin
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xingguo Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China.
| |
Collapse
|
4
|
Rehman S, Kumar S, Sarfraz MR, Shakoor S, Khan MT, Bano S. A case-control study investigating cardiovascular health in maintenance hemodialysis patients through oxidative stress biomarkers and carotid artery intima-media thickness. Folia Med (Plovdiv) 2024; 66:340-349. [PMID: 39365620 DOI: 10.3897/folmed.66.e111128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 06/04/2024] [Indexed: 10/05/2024] Open
Abstract
INTRODUCTION Chronic kidney disease (CKD) is a major risk factor for the development of cardiovascular disease (CVD), and it is the leading cause of morbidity and mortality in end-stage renal disease (ESRD) patients receiving maintenance hemodialysis (MHD).
Collapse
Affiliation(s)
- Sadia Rehman
- Bahria University Health Sciences, Karachi, Pakistan
| | | | | | | | | | - Saira Bano
- Bahria University Health Sciences, Karachi, Pakistan
| |
Collapse
|
5
|
Echrish J, Pasca MI, Cabrera D, Yang Y, Harper AGS. Developing a Biomimetic 3D Neointimal Layer as a Prothrombotic Substrate for a Humanized In Vitro Model of Atherothrombosis. Biomimetics (Basel) 2024; 9:372. [PMID: 38921252 PMCID: PMC11201422 DOI: 10.3390/biomimetics9060372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Acute cardiovascular events result from clots caused by the rupture and erosion of atherosclerotic plaques. This paper aimed to produce a functional biomimetic hydrogel of the neointimal layer of the atherosclerotic plaque that can support thrombogenesis upon exposure to human blood. A biomimetic hydrogel of the neointima was produced by culturing THP-1-derived foam cells within 3D collagen hydrogels in the presence or absence of atorvastatin. Prothrombin time and platelet aggregation onset were measured after exposure of the neointimal models to platelet-poor plasma and washed platelet suspensions prepared from blood of healthy, medication-free volunteers. Activity of the extrinsic coagulation pathway was measured using the fluorogenic substrate SN-17. Foam cell formation was observed following preincubation of the neointimal biomimetic hydrogels with oxidized LDL, and this was inhibited by pretreatment with atorvastatin. The neointimal biomimetic hydrogel was able to trigger platelet aggregation and blood coagulation upon exposure to human blood products. Atorvastatin pretreatment of the neointimal biomimetic layer significantly reduced its pro-aggregatory and pro-coagulant properties. In the future, this 3D neointimal biomimetic hydrogel can be incorporated as an additional layer within our current thrombus-on-a-chip model to permit the study of atherosclerosis development and the screening of anti-thrombotic drugs as an alternative to current animal models.
Collapse
Affiliation(s)
| | | | - David Cabrera
- School of Pharmacy and Bioengineering, Keele University, Keele ST5 5BG, UK; (D.C.); (Y.Y.)
| | - Ying Yang
- School of Pharmacy and Bioengineering, Keele University, Keele ST5 5BG, UK; (D.C.); (Y.Y.)
| | | |
Collapse
|
6
|
Giakoumaki M, Lambrou GI, Vlachodimitropoulos D, Tagka A, Vitsos A, Kyriazi M, Dimakopoulou A, Anagnostou V, Karasmani M, Deli H, Grigoropoulos A, Karalis E, Rallis MC, Black HS. Type I Diabetes Mellitus Suppresses Experimental Skin Carcinogenesis. Cancers (Basel) 2024; 16:1507. [PMID: 38672589 PMCID: PMC11048394 DOI: 10.3390/cancers16081507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
This study explores the previously uncharted territory of the effects of ultraviolet (UV) radiation on diabetic skin, compared to its well-documented impact on normal skin, particularly focusing on carcinogenesis and aging. Employing hairless SKH-hr2, Type 1 and 2 diabetic, and nondiabetic male mice, the research subjected these to UV radiation thrice weekly for eight months. The investigation included comprehensive assessments of photoaging and photocarcinogenesis in diabetic versus normal skin, measuring factors such as hydration, trans-epidermal water loss, elasticity, skin thickness, melanin, sebum content, stratum corneum exfoliation and body weight, alongside photo documentation. Additionally, oxidative stress and the presence of hydrophilic antioxidants (uric acid and glutathione) in the stratum corneum were evaluated. Histopathological examination post-sacrifice provided insights into the morphological changes. Findings reveal that under UV exposure, Type 1 diabetic skin showed heightened dehydration, thinning, and signs of accelerated aging. Remarkably, Type 1 diabetic mice did not develop squamous cell carcinoma or pigmented nevi, contrary to normal and Type 2 diabetic skin. This unexpected resistance to UV-induced skin cancers in Type 1 diabetic skin prompts a crucial need for further research to uncover the underlying mechanisms providing this resistance.
Collapse
Affiliation(s)
- Maria Giakoumaki
- Division of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece; (M.G.); (A.V.); (M.K.); (A.D.); (V.A.); (M.K.); (H.D.); (A.G.); (E.K.)
| | - George I. Lambrou
- Choremeio Research Laboratory, First Department of Pediatrics, School of Health Sciences, Medical School, National and Kapodistrian University of Athens, Thivon & Levaeias 8, Goudi, 11527 Athens, Greece;
- Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527 Athens, Greece
| | - Dimitrios Vlachodimitropoulos
- Department of Forensic Medicine and Toxicology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias Street, 11527 Athens, Greece;
| | - Anna Tagka
- First Department of Dermatology and Venereology, ‘Andreas Syggros” Hospital, School of Medicine, National and Kapodistrian University of Athens, Ionos Dragoumi 5, 11621 Athens, Greece;
| | - Andreas Vitsos
- Division of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece; (M.G.); (A.V.); (M.K.); (A.D.); (V.A.); (M.K.); (H.D.); (A.G.); (E.K.)
| | - Maria Kyriazi
- Division of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece; (M.G.); (A.V.); (M.K.); (A.D.); (V.A.); (M.K.); (H.D.); (A.G.); (E.K.)
| | - Aggeliki Dimakopoulou
- Division of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece; (M.G.); (A.V.); (M.K.); (A.D.); (V.A.); (M.K.); (H.D.); (A.G.); (E.K.)
| | - Vasiliki Anagnostou
- Division of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece; (M.G.); (A.V.); (M.K.); (A.D.); (V.A.); (M.K.); (H.D.); (A.G.); (E.K.)
| | - Marina Karasmani
- Division of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece; (M.G.); (A.V.); (M.K.); (A.D.); (V.A.); (M.K.); (H.D.); (A.G.); (E.K.)
| | - Heleni Deli
- Division of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece; (M.G.); (A.V.); (M.K.); (A.D.); (V.A.); (M.K.); (H.D.); (A.G.); (E.K.)
| | - Andreas Grigoropoulos
- Division of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece; (M.G.); (A.V.); (M.K.); (A.D.); (V.A.); (M.K.); (H.D.); (A.G.); (E.K.)
| | - Evangelos Karalis
- Division of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece; (M.G.); (A.V.); (M.K.); (A.D.); (V.A.); (M.K.); (H.D.); (A.G.); (E.K.)
| | - Michail Christou Rallis
- Division of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece; (M.G.); (A.V.); (M.K.); (A.D.); (V.A.); (M.K.); (H.D.); (A.G.); (E.K.)
| | - Homer S. Black
- Department of Dermatology, Baylor College of Medicine, Houston, TX 77030, USA;
| |
Collapse
|
7
|
Li Y, Zhao X, Wang J, Yu Q, Ren J, Jiang Z, Jiao L. Characterization and anti-aging activities of polysaccharide from Rana dybowskii Guenther. Front Pharmacol 2024; 15:1370631. [PMID: 38606177 PMCID: PMC11007062 DOI: 10.3389/fphar.2024.1370631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/14/2024] [Indexed: 04/13/2024] Open
Abstract
Introduction: Rana dybowskii Guenther (RDG), as a traditional Chinese medicine, has been shown to have antioxidant effects. However, studies on the anti-aging effect of RDG are still limited. Methods: In this study, we prepared polysaccharides from the skin of RDG (RDGP) by hot water extraction, alcohol precipitation, ion-exchange chromatography and gel chromatography. The proteins were removed using the Sevage method in combination with an enzymatic method. The structural features were analyzed using high-performance gel permeation chromatography, β-elimination reaction and Fourier transform infrared spectra. The anti-aging effect of RDGP was investigated by using D-Gal to establish an aging model in mice, and pathological changes in the hippocampus were observed under a microscope. Results: We obtained the crude polysaccharide DGP from the skin of RDG, with a yield of 61.8%. The free protein was then removed by the Sevage method to obtain DGPI and deproteinated by enzymatic hydrolysis combined with the Sevage method to further remove the bound protein to obtain the high-purity polysaccharide DGPII. Then, DGPIa (1.03 × 105 Da) and DGPIIa (8.42 × 104 Da) were obtained by gel chromatography, monosaccharide composition analysis showed that they were composed of Man, GlcA, GalNAc, Glc, Gal, Fuc with molar ratios of 1: 4.22 : 1.55: 0.18 : 8.05: 0.83 and 0.74 : 1.78: 1: 0.28: 5.37 : 0.36, respectively. The results of the β-elimination reaction indicated the presence of O-glycopeptide bonds in DGPIa. The Morris water maze test indicated that mice treated with DGPIIa exhibited a significantly shorter escape latency and increased time spent in the target quadrant as well as an increase in the number of times they traversed the platform. Pathologic damage to the hippocampus was alleviated in brain tissue stained with hematoxylin-eosin. In addition, DGPIIa enhanced the activities of SOD, CAT, and GSH-Px and inhibited the level of MDA in the serum and brain tissues of aging mice. Discussion: These results suggest that RDGP has potential as a natural antioxidant and provide useful scientific information for anti-aging research.
Collapse
Affiliation(s)
- Yiping Li
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xuyan Zhao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Jing Wang
- The Affiliated Hospital Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Qi Yu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Jing Ren
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Ziye Jiang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Lili Jiao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
8
|
Perez-Araluce M, Jüngst T, Sanmartin C, Prosper F, Plano D, Mazo MM. Biomaterials-Based Antioxidant Strategies for the Treatment of Oxidative Stress Diseases. Biomimetics (Basel) 2024; 9:23. [PMID: 38248597 PMCID: PMC10813727 DOI: 10.3390/biomimetics9010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/14/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Oxidative stress is characterized by an increase in reactive oxygen species or a decrease in antioxidants in the body. This imbalance leads to detrimental effects, including inflammation and multiple chronic diseases, ranging from impaired wound healing to highly impacting pathologies in the neural and cardiovascular systems, or the bone, amongst others. However, supplying compounds with antioxidant activity is hampered by their low bioavailability. The development of biomaterials with antioxidant capacity is poised to overcome this roadblock. Moreover, in the treatment of chronic inflammation, material-based strategies would allow the controlled and targeted release of antioxidants into the affected tissue. In this review, we revise the main causes and effects of oxidative stress, and survey antioxidant biomaterials used for the treatment of chronic wounds, neurodegenerative diseases, cardiovascular diseases (focusing on cardiac infarction, myocardial ischemia-reperfusion injury and atherosclerosis) and osteoporosis. We anticipate that these developments will lead to the emergence of new technologies for tissue engineering, control of oxidative stress and prevention of diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Maria Perez-Araluce
- Biomedical Engineering Program, Enabling Technologies Division, CIMA Universidad de Navarra, 31008 Pamplona, Spain;
| | - Tomasz Jüngst
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication, University of Würzburg, D-97070 Würzburg, Germany
- Bavarian Polymer Institute, University of Bayreuth, 95447 Bayreuth, Germany
| | - Carmen Sanmartin
- Department of Pharmaceutical Science, Universidad de Navarra, 31008 Pamplona, Spain;
| | - Felipe Prosper
- Hematology and Cell Therapy Area, Clínica Universidad de Navarra and Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC) CB16/12/00489, 28029 Madrid, Spain
- Hemato-Oncology Program, Cancer Division, CIMA Universidad de Navarra, 31008 Pamplona, Spain
| | - Daniel Plano
- Department of Pharmaceutical Science, Universidad de Navarra, 31008 Pamplona, Spain;
| | - Manuel M. Mazo
- Biomedical Engineering Program, Enabling Technologies Division, CIMA Universidad de Navarra, 31008 Pamplona, Spain;
- Hematology and Cell Therapy Area, Clínica Universidad de Navarra and Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| |
Collapse
|
9
|
Mondal R, Pal P, Biswas S, Chattopadhyay A, Bandyopadhyay A, Mukhopadhyay A, Mukhopadhyay PK. Attenuation of sodium arsenite mediated ovarian DNA damage, follicular atresia, and oxidative injury by combined application of vitamin E and C in post pubertal Wistar rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2701-2720. [PMID: 37129605 DOI: 10.1007/s00210-023-02491-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Arsenic being a toxic metalloid ubiquitously persists in environment and causes several health complications including female reproductive anomalies. Epidemiological studies documented birth anomalies due to arsenic exposure. Augmented reactive oxygen species (ROS) generation and quenched antioxidant pool are foremost consequences of arsenic threat. On the contrary, Vitamin E (VE) and C (VC) are persuasive antioxidants and conventionally used in toxicity management. Present study was designed to explore the extent of efficacy of combined VE and VC (VEC) against Sodium arsenite (NaAsO2) mediated ovarian damage. Thirty-six female Wistar rats were randomly divided into three groups (Grs) and treated for consecutive 30 days; Gr I (control) was vehicle fed, Gr II (treated) was gavaged with NaAsO2 (3 mg/kg/day), Gr III (supplement) was provided with VE (400 mg/kg/day) & VC (200 mg/kg/day) along with NaAsO2. Marked histological alterations were evidenced by disorganization in oocyte, granulosa cells and zona pellucida layers in treated group. Considerable reduction of different growing follicles along with increased atretic follicles was noted in treated group. Altered activities ofΔ5 3β-Hydroxysteroid dehydrogenase and 17β-Hydroxysteroid dehydrogenase accompanied by reduced luteinizing hormone, follicle-stimulating hormone and estradiol levels were observed in treated animals. Irregular estrous cyclicity pattern was also observed due to NaAsO2 threat. Surplus ROS production affected ovarian antioxidant strata as evidenced by altered oxidative stress markers. Provoked oxidative strain further affects DNA status of ovary. However, supplementation with VEC caused notable restoration from such disparaging effects of NaAsO2 toxicities. Antioxidant and antiapoptotic attributes of those vitamins might be liable for such restoration.
Collapse
Affiliation(s)
- Rubia Mondal
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Priyankar Pal
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Sagnik Biswas
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Alok Chattopadhyay
- Department of Physiology, Harimohan Ghose College, Affiliated to University of Calcutta, Kolkata, India
| | - Amit Bandyopadhyay
- Sports and Exercise Physiology Laboratory, Department of Physiology, University Colleges of Science & Technology, University of Calcutta, Kolkata, India
| | | | | |
Collapse
|
10
|
Ivanova AV, Markina MG. Portable Device for Potentiometric Determination of Antioxidant Capacity. SENSORS (BASEL, SWITZERLAND) 2023; 23:7845. [PMID: 37765901 PMCID: PMC10536404 DOI: 10.3390/s23187845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
For the first time, a prototype of a portable device for the potentiometric determination of antioxidant capacity based on a new measurement principle is proposed. A feature of the approach is the use of an electrochemical microcell with separated spaces and two identical electrodes with immobilized reagents. An antioxidant solution is introduced into one half-cell, and the antioxidants interact with the reagents. The other half-cell contains only reagents. The potential difference between the electrodes is due to the change in the ratio of the oxidized and reduced form of the reagents, which occurs as a result of the reaction with the antioxidants in one of the half-cells and is related to their concentration. The range of linearity of the microcell with immobilized reagents is 40-4000 μM-eq, and the limit of detection is 20 μM-eq. The device was successfully tested in the analysis of standard antioxidant solutions. The recoveries were (92-113)%, and the relative standard deviation did not exceed 15%. A good correlation was found between the data obtained by the approach and the potentiometric method in a macrocell for fruit juice analysis. Pearson's coefficient for the obtained experimental data was 0.9955. The proposed portable device is promising and can be used in field conditions.
Collapse
Affiliation(s)
- Alla V. Ivanova
- Chemical Technological Institute, Ural Federal University Named after the First President of Russia B. N. Yeltsin, 19, Mira Str., 620002 Ekaterinburg, Russia;
| | | |
Collapse
|
11
|
Gao Y, Zou Y, Wu G, Zheng L. Oxidative stress and mitochondrial dysfunction of granulosa cells in polycystic ovarian syndrome. Front Med (Lausanne) 2023; 10:1193749. [PMID: 37448805 PMCID: PMC10336225 DOI: 10.3389/fmed.2023.1193749] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Polycystic ovarian syndrome (PCOS) is one of the leading causes of anovulatory infertility in women, affecting 5%-15% of women of reproductive age worldwide. The clinical manifestations of patients include ovulation disorders, amenorrhea, hirsutism, and obesity. Life-threatening diseases, such as endometrial cancer, type 2 diabetes, hyperlipidaemia, hypertension, and cardiovascular disease, can be distant complications of PCOS. PCOS has diverse etiologies and oxidative stress (OS) plays an important role. Mitochondria, as the core organelles of energy production, are the main source of reactive oxygen species (ROS). The process of follicular growth and development is extremely complex, and the granulosa cells (GCs) are inextricably linked to follicular development. The abnormal function of GCs may directly affect follicular development and alter many symptoms of PCOS. Significantly higher levels of OS markers and abnormal mitochondrial function in GCs have been found in patients with PCOS compared to healthy subjects, suggesting that increased OS is associated with PCOS progression. Therefore, the aim of this review was to summarize and discuss the findings suggesting that OS and mitochondrial dysfunction in GCs impair ovarian function and induce PCOS.
Collapse
|
12
|
Metawea MR, Abdelrazek HMA, El-Hak HNG, Moghazee MM, Marie OM. Comparative effects of curcumin versus nano-curcumin on histological, immunohistochemical expression, histomorphometric, and biochemical changes to pancreatic beta cells and lipid profile of streptozocin induced diabetes in male Sprague-Dawley rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:62067-62079. [PMID: 36932309 PMCID: PMC10167140 DOI: 10.1007/s11356-023-26260-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/28/2023] [Indexed: 05/10/2023]
Abstract
Diabetes mellitus is a worldwide problem characterized by hyperglycemia as well as the damage of the microscopic structure of the beta cells of Langerhans pancreatic islets. In the present study, the histological, immunohistochemical, morphometric, and biochemical alterations to pancreatic beta cells in streptozocin (STZ)-induced diabetes were assessed in rats treated with curcumin (CU) (100 mg/kg/day) or nano-curcumin (nCU) (100 mg/kg/day) for 1 month. Twenty-four adult male Wistar albino rats were distributed into four groups: the nondiabetic control group, the diabetic untreated group, and two diabetic groups treated with CU or nCUR, respectively. Blood glucose, serum insulin levels, and lipid profile were measured. The pancreatic tissues were collected and processed into paraffin sections for histological and immunohistochemical examination, oxidative stress markers, and real-time PCR expression for pancreatic and duodenal homeobox 1 (PDX1). The insulin expression in beta cells was assessed using immunohistochemistry. Morphometrically, the percentage area of anti-insulin antibody reaction and the percentage area of islet cells were determined. STZ-induced deteriorating alteration in beta cells led to declines in the number of functioning beta cells and insulin immunoreactivity. In STZ-treated rats, CU and nCUR significantly reduced blood glucose concentration while increasing blood insulin level. It also caused a significant increase in the number of immunoreactive beta cells to the insulin expression and significant reduction of the immunoreactive beta cells to the caspase-3 expression. In conclusion, CU and nCUR could have a therapeutic role in the biochemical and microscopic changes in pancreatic beta cells in diabetes-induced rats through STZ administration with more bio-efficacy of nCUR.
Collapse
Affiliation(s)
- Mohamed R Metawea
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Heba M A Abdelrazek
- Physiology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Heba Nageh Gad El-Hak
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Mona M Moghazee
- Genetics Department, Faculty of Agriculture, Ain Shams University, Cairo, 11241, Egypt
| | - Ohoud M Marie
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
13
|
Kucuk Baloglu F, Guldag Tas D, Yilmaz O, Severcan F. The recovery effect of Vitamin C on structural alterations due to Streptozotocin-Induced diabetes in rat testicular tissues. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 288:122149. [PMID: 36470089 DOI: 10.1016/j.saa.2022.122149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/31/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Type I Diabetes is a multisystem disease that causes alterations in carbohydrate, protein, and fat metabolisms due to hyperglycemia. It has an extensive pathology, especially the mechanism involving oxidative stress is still complex. Type I diabetes is correlated with increased formation of free radicals and decreased levels of antioxidant potential. Vitamin C (Vit C) is a powerful antioxidant that participates in antioxidant defense, protecting lipid membranes and proteins from oxidative damage by donating electrons to free radicals. The effect of type I diabetes and the recovery role of Vit C on the structure and composition of the biomolecular content of testicular tissue is still unknown. Therefore, the current study aimed to investigate the alterations in the biomolecules of rat testes due to Streptozotocin (STZ)-induced type I diabetes using Attenuated Total Reflectance (ATR)-Fourier Transform Infrared (FTIR) spectroscopy and histological staining. The results revealed that the biomolecular structure and composition of testicular tissue are highly affected due to the development of diabetes. We obtained decreased saturation levels and increased unsaturation index in the lipids indicating the presence of lipid peroxidation in the diabetic state. The elevated lipid peroxidation levels have been implicated in the pathogenesis of naturally occurring and chemically induced diabetes. On the other hand, the protein content of diabetic rat testicular tissue was shown to decrease considerably, indicating an increase in proteolysis processes. Supporting the ratio of protein structural and conformational change, protein secondary structural components were also found to alter substantially in the diabetic state. Diabetes was also shown to lead to a decrease in the content of nucleic acids compared to proteins. These diabetes-induced alterations were found to be substantially recovered with the administration of Vit C. Although different doses and administration types of Vit C have been reported in the literature, there is no consensus yet. Therefore, we used three different doses of Vit C in our study as high (100 mg/kg/day), medium (50 mg/kg/day) and low (15 mg/kg/day) doses intraperitoneally in the present study, and the medium dose was found to be the most effective in the recovery from the diabetes-induced structural damages on rat testicular tissue. Vit C may have a therapeutic effect to be used as a complementary therapy in the treatment of diabetes.
Collapse
Affiliation(s)
- Fatma Kucuk Baloglu
- Middle East Technical University, Department of Biological Sciences, Ankara, Turkey; Giresun University, Department of Biology, Giresun, Turkey
| | - Damla Guldag Tas
- Middle East Technical University, Department of Biological Sciences, Ankara, Turkey
| | - Okkes Yilmaz
- Firat University, Department of Biology, Elazig, Turkey
| | - Feride Severcan
- Middle East Technical University, Department of Biological Sciences, Ankara, Turkey; Altinbas University, Department of Biophysics, Faculty of Medicine, Istanbul, Turkey.
| |
Collapse
|
14
|
Vahalová P, Cifra M. Biological autoluminescence as a perturbance-free method for monitoring oxidation in biosystems. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 177:80-108. [PMID: 36336139 DOI: 10.1016/j.pbiomolbio.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Biological oxidation processes are in the core of life energetics, play an important role in cellular biophysics, physiological cell signaling or cellular pathophysiology. Understanding of biooxidation processes is also crucial for biotechnological applications. Therefore, a plethora of methods has been developed for monitoring oxidation so far, each with distinct advantages and disadvantages. We review here the available methods for monitoring oxidation and their basic characteristics and capabilities. Then we focus on a unique method - the only one that does not require input of additional external energy or chemicals - which employs detection of biological autoluminescence (BAL). We highlight the pros and cons of this method and provide an overview of how BAL can be used to report on various aspects of cellular oxidation processes starting from oxygen consumption to the generation of oxidation products such as carbonyls. This review highlights the application potential of this completely non-invasive and label-free biophotonic diagnostic method.
Collapse
Affiliation(s)
- Petra Vahalová
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague, 18200, Czech Republic
| | - Michal Cifra
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague, 18200, Czech Republic.
| |
Collapse
|
15
|
Patel D, Sakure A, Lodha D, Basaiawmoit B, Maurya R, Das S, Bishnoi M, Kondepudi KK, Hati S. Significance of Lactobacillus fermentum on Antioxidative and Anti-Inflammatory Activities and Ultrafiltration Peptide Fractions as Potential Sources of Antioxidative Peptides from Fermented Camel Milk (Indian Breed). JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2023; 42:75-84. [PMID: 34605750 DOI: 10.1080/07315724.2021.1983485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The present study aimed to assess the bio-functional analysis of camel milk viz. anti-oxidative, anti-inflammatory activities using potent Lactobacillus fermentum (KGL4) strain through fermentation and also to release the bioactive peptides during fermentation. METHOD The antioxidant and proteolytic activities of the fermented camel milk were studied followed by SDS-PAGE analysis and 2 D PAGE. The separations of the bioactive peptides of water-soluble extract (WSE) of 3 and 10 kDa (Permeates & Retentates) were achieved by RP-HPLC. The purified bioactive peptides were identified and characterized using RPLC/MS and the effect of WSE of camel milk fermented with KGL4 on lipopolysaccharide (LPS)/endotoxin-induced inflammation in RAW 264.7 macrophages were also studied. RESULTS The maximal activity was observed in ABTS assay (64.03%), then in hydroxyl free radical scavenging assay, and minimal activity was observed in superoxide free radical assay (57.75%). ABTS assay was significantly (P < 0.05) higher than other assays. MTT assay was performed on WSE of camel milk fermented with KGL4 using treated macrophage cells with different concentrations and found the decreasing range of cell viability at 0.25 mg/mL treatment which was non-significant. 7.80 mg/ml peptide production was found after 48 h of fermentation using the OPA method. Further, WSE of fermented camel milk was separated and analyzed their protein profiles using SDS-PAGE and 2 D-PAGE techniques. Here, many new peptides were found in camel milk when fermented with KGL4 strain. Each protein sequence was characterized through bioinformatic tools, including SWISS-PROT & PIR protein databases. Novel bioactive anti-oxidative peptides were found by searching in the BIOPEP database. CONCLUSIONS The present study suggests that the L. fermentum KGL4 strain could be explored to produce novel antioxidative peptides from fermented camel milk (Indian breed).
Collapse
Affiliation(s)
- Dharmisthaben Patel
- Department of Dairy Microbiology, Anand Agricultural University, Anand, Gujarat, India
| | - Amar Sakure
- Department of Agriculture Biotechnology, Anand Agricultural University, Anand, Gujarat, India
| | - Dikshita Lodha
- Department of Research and Development, Meril Life Science Pvt. Ltd, Vapi, Gujarat, India
| | - Bethsheba Basaiawmoit
- Department of Rural Development and Agricultural Production, North-Eastern Hill University, Tura Campus, Chasingre, Meghalaya, India
| | - Ruchika Maurya
- Regional Center for Biotechnology, Faridabad, Haryana, India.,Healthy Gut Research Group, Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Punjab, India
| | - Sujit Das
- Department of Rural Development and Agricultural Production, North-Eastern Hill University, Tura Campus, Chasingre, Meghalaya, India
| | - Mahendra Bishnoi
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Punjab, India
| | - Kanthi Kiran Kondepudi
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Punjab, India
| | - Subrota Hati
- Department of Dairy Microbiology, Anand Agricultural University, Anand, Gujarat, India
| |
Collapse
|
16
|
Li Z, Bi R, Sun S, Chen S, Chen J, Hu B, Jin H. The Role of Oxidative Stress in Acute Ischemic Stroke-Related Thrombosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8418820. [PMID: 36439687 PMCID: PMC9683973 DOI: 10.1155/2022/8418820] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/13/2022] [Accepted: 11/02/2022] [Indexed: 09/22/2023]
Abstract
Acute ischemic stroke is a serious life-threatening disease that affects almost 600 million people each year throughout the world with a mortality of more than 10%, while two-thirds of survivors remain disabled. However, the available treatments for ischemic stroke are still limited to thrombolysis and/or mechanical thrombectomy, and there is an urgent need for developing new therapeutic target. Recently, intravascular oxidative stress, derived from endothelial cells, platelets, and leukocytes, has been found to be tightly associated with stroke-related thrombosis. It not only promotes primary thrombus formation by damaging endothelial cells and platelets but also affects thrombus maturation and stability by modifying fibrin components. Thus, oxidative stress is expected to be a novel target for the prevention and treatment of ischemic stroke. In this review, we first discuss the mechanisms by which oxidative stress promotes stroke-related thrombosis, then summarize the oxidative stress biomarkers of stroke-related thrombosis, and finally put forward an antithrombotic therapy targeting oxidative stress in ischemic stroke.
Collapse
Affiliation(s)
- Zhifang Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Rentang Bi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuai Sun
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shengcai Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiefang Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Huijuan Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
17
|
ERDOĞAN Ü. Antioxidant Activities and Chemical Composition of Essential Oil of Rhizomes of Zingiber officinale (Ginger) and Curcuma longa L.(Turmeric). INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2022. [DOI: 10.21448/ijsm.993906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
18
|
Zhao Q, Ren X, Song SY, Yu RL, Li X, Zhang P, Shao CL, Wang CY. Deciphering the Underlying Mechanisms of Formula Le-Cao-Shi Against Liver Injuries by Integrating Network Pharmacology, Metabonomics, and Experimental Validation. Front Pharmacol 2022; 13:884480. [PMID: 35548342 PMCID: PMC9081656 DOI: 10.3389/fphar.2022.884480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/28/2022] [Indexed: 11/18/2022] Open
Abstract
Le-Cao-Shi (LCS) has long been used as a folk traditional Chinese medicine formula against liver injuries, whereas its pharmacological mechanisms remain elusive. Our study aims to investigate the underlying mechanism of LCS in treating liver injuries via integrated network pharmacology, metabonomics, and experimental validation. By network pharmacology, 57 compounds were screened as candidate compounds based on ADME parameters from the LCS compound bank (213 compounds collected from the literature of three single herbs). According to online compound–target databases, the aforementioned candidate compounds were predicted to target 87 potential targets related to liver injuries. More than 15 pathways connected with these potential targets were considered vital pathways in collectively modulating liver injuries, which were found to be relevant to cancer, xenobiotic metabolism by cytochrome P450 enzymes, bile secretion, inflammation, and antioxidation. Metabonomics analysis by using the supernatant of the rat liver homogenate with UPLC-Q-TOF/MS demonstrated that 18 potential biomarkers could be regulated by LCS, which was closely related to linoleic acid metabolism, glutathione metabolism, cysteine and methionine metabolism, and glycerophospholipid metabolism pathways. Linoleic acid metabolism and glutathione metabolism pathways were two key common pathways in both network pharmacology and metabonomics analysis. In ELISA experiments with the CCl4-induced rat liver injury model, LCS was found to significantly reduce the levels of inflammatory parameters, decrease liver malondialdehyde (MDA) levels, and enhance the activities of hepatic antioxidant enzymes, which validated that LCS could inhibit liver injuries through anti-inflammatory property and by suppressing lipid peroxidation and improving the antioxidant defense system. Our work could provide new insights into the underlying pharmacological mechanisms of LCS against liver injuries, which is beneficial for its further investigation and modernization.
Collapse
Affiliation(s)
- Qing Zhao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xia Ren
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shu-Yue Song
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ri-Lei Yu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xin Li
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Peng Zhang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Chang-Lun Shao, ; Chang-Yun Wang,
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Chang-Lun Shao, ; Chang-Yun Wang,
| |
Collapse
|
19
|
Xu Y, Zhang Z, Wang B, He X, Tang J, Peng W, Zhou J, Wang Y. Flammulina velutipes Polysaccharides Modulate Gut Microbiota and Alleviate Carbon Tetrachloride-Induced Hepatic Oxidative Injury in Mice. Front Microbiol 2022; 13:847653. [PMID: 35401429 PMCID: PMC8986159 DOI: 10.3389/fmicb.2022.847653] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/02/2022] [Indexed: 12/20/2022] Open
Abstract
A carbon tetrachloride-induced acute liver injury mouse model is used to study the regulation of gut microbiota and hepatoprotective effect of polysaccharides from Flammulina velutipes (FVPs). The hepatoprotective effect of the FVPs leads to reduced levels of serum aspartate transaminase (AST), alanine aminotransferase (ALT), triglyceride (TG), total cholesterol (TC), total bile acid (TBA) content, and change in liver histopathology. Their anti-oxidant activity is exhibited by decreased levels of hepatic malonaldehyde (MDA) and protein carbonyl (PC) content and increased catalase (CAT) and superoxide dismutase (SOD) content. The anti-inflammatory ability of the FVPs is reflected in a decrease in pro-inflammatory cytokines (including IL-6, IL-1β, and TNF-α). 16S rRNA sequencing shows that the FVPs change the composition of the gut microbiota. A subsequent metabolomics analysis of the gut bacteria (UHPLC-MS/MS-based) revealed that fatty acid biosynthesis, tryptophan metabolism, and metabolism of xenobiotics by cytochrome P450 play important roles in the hepatoprotective effect. This study provides a potential way to modulate gut microbiota and manage liver diseases using natural products.
Collapse
Affiliation(s)
- Yingyin Xu
- Department of Preservation and Processing, Sichuan Institute of Edible Fungi, Chengdu, China
- National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, China
- Scientific Observing and Experimental Station of Agro-microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, China
| | - Zhiyuan Zhang
- Department of Preservation and Processing, Sichuan Institute of Edible Fungi, Chengdu, China
- National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, China
- Scientific Observing and Experimental Station of Agro-microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, China
| | - Bo Wang
- Department of Preservation and Processing, Sichuan Institute of Edible Fungi, Chengdu, China
- National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, China
- Scientific Observing and Experimental Station of Agro-microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, China
| | - Xiaolan He
- Department of Preservation and Processing, Sichuan Institute of Edible Fungi, Chengdu, China
- National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, China
- Scientific Observing and Experimental Station of Agro-microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, China
| | - Jie Tang
- Department of Preservation and Processing, Sichuan Institute of Edible Fungi, Chengdu, China
- National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, China
- Scientific Observing and Experimental Station of Agro-microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, China
| | - Weihong Peng
- Department of Preservation and Processing, Sichuan Institute of Edible Fungi, Chengdu, China
- National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, China
- Scientific Observing and Experimental Station of Agro-microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, China
| | - Jie Zhou
- Department of Preservation and Processing, Sichuan Institute of Edible Fungi, Chengdu, China
- National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, China
- Scientific Observing and Experimental Station of Agro-microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, China
| | - Yong Wang
- Department of Preservation and Processing, Sichuan Institute of Edible Fungi, Chengdu, China
- National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, China
- Scientific Observing and Experimental Station of Agro-microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, China
| |
Collapse
|
20
|
Pathological Role of Reactive Oxygen Species on Female Reproduction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1391:201-220. [PMID: 36472824 DOI: 10.1007/978-3-031-12966-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oxidative stress (OS), a clinical predicament characterized by a shift in homeostatic imbalance among prooxidant molecules embracing reactive oxygen species (ROS) and reactive nitrogen species (RNS), along with antioxidant defenses, has been established to play an indispensable part in the pathophysiology of subfertility in both human males and females. ROS are highly reactive oxidizing by-products generated during critical oxygen-consuming processes or aerobic metabolism. A healthy body system has its own course of action to maintain the equilibrium between prooxidants and antioxidants with an efficient defense system to fight against ROS. But when ROS production crosses its threshold, the disturbance in homeostatic balance results in OS. Besides their noxious effects, literature studies have depicted that controlled and adequate ROS concentrations exert physiologic functions, especially that gynecologic OS is an important mediator of conception in females. Yet the impact of ROS on oocytes and reproductive functions still needs a strong attestation for further analysis because the disruption in prooxidant and antioxidant balance leads to abrupt ROS generation initiating multiple reproductive diseases such as polycystic ovary syndrome (PCOS), endometriosis, and unexplained infertility in addition to other impediments in pregnancy such as recurrent pregnancy loss, spontaneous abortion, and preeclampsia. The current article elucidates the skeptical state of affairs created by ROS that influences female fertility.
Collapse
|
21
|
McWilliams S, Carter W, Cooper-Mullin C, DeMoranville K, Frawley A, Pierce B, Skrip M. How Birds During Migration Maintain (Oxidative) Balance. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.742642] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Animals dynamically adjust their physiology and behavior to survive in changing environments, and seasonal migration is one life stage that demonstrates these dynamic adjustments. As birds migrate between breeding and wintering areas, they incur physiological demands that challenge their antioxidant system. Migrating birds presumably respond to these oxidative challenges by up-regulating protective endogenous systems or accumulating dietary antioxidants at stopover sites, although our understanding of the pre-migration preparations and mid-migration responses of birds to such oxidative challenges is as yet incomplete. Here we review evidence from field and captive-bird studies that address the following questions: (1) Do migratory birds build antioxidant capacity as they build fat stores in preparation for long flights? (2) Is oxidative damage an inevitable consequence of oxidative challenges such as flight, and, if so, how is the extent of damage affected by factors such as the response of the antioxidant system, the level of energetic challenge, and the availability of dietary antioxidants? (3) Do migratory birds ‘recover’ from the oxidative damage accrued during long-duration flights, and, if so, does the pace of this rebalancing of oxidative status depend on the quality of the stopover site? The answer to all these questions is a qualified ‘yes’ although ecological factors (e.g., diet and habitat quality, geographic barriers to migration, and weather) affect how the antioxidant system responds. Furthermore, the pace of this dynamic physiological response remains an open question, despite its potential importance for shaping outcomes on timescales ranging from single flights to migratory journeys. In sum, the antioxidant system of birds during migration is impressively dynamic and responsive to environmental conditions, and thus provides ample opportunities to study how the physiology of migratory birds responds to a changing and challenging world.
Collapse
|
22
|
Dubey P, Reddy S, Boyd S, Bracamontes C, Sanchez S, Chattopadhyay M, Dwivedi A. Effect of Nutritional Supplementation on Oxidative Stress and Hormonal and Lipid Profiles in PCOS-Affected Females. Nutrients 2021; 13:nu13092938. [PMID: 34578816 PMCID: PMC8467908 DOI: 10.3390/nu13092938] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 12/19/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) affects several reproductive and endocrine features in females and has a poorly understood etiology. Treatment strategies for PCOS are limited and are based primarily on diet and nutrient supplementation. Recent studies have recommended some nutrients such as vitamins, minerals and vitamin-like nutrients for the therapy for PCOS. Therefore, it is claimed that the cause of PCOS could be vitamin or mineral deficiency. This review provides a narrative on the effect of nutritional supplementation on oxidative stress induced in PCOS. Oxidative stress plays a formative role in PCOS pathophysiology. This article reviews oxidative stress, its markers, nutritional supplementation and clinical studies. We also aim to show the effect of nutritional supplementation on genes affecting hormonal and glucose-mediated pathways.
Collapse
Affiliation(s)
- Pallavi Dubey
- Department of Obstetrics and Gynecology, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (S.R.); (S.B.); (C.B.); (S.S.)
- Correspondence:
| | - Sireesha Reddy
- Department of Obstetrics and Gynecology, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (S.R.); (S.B.); (C.B.); (S.S.)
| | - Sarah Boyd
- Department of Obstetrics and Gynecology, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (S.R.); (S.B.); (C.B.); (S.S.)
| | - Christina Bracamontes
- Department of Obstetrics and Gynecology, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (S.R.); (S.B.); (C.B.); (S.S.)
| | - Sheralyn Sanchez
- Department of Obstetrics and Gynecology, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (S.R.); (S.B.); (C.B.); (S.S.)
| | - Munmun Chattopadhyay
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA; (M.C.); (A.D.)
- Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Alok Dwivedi
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA; (M.C.); (A.D.)
- Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
- Division of Biostatistics & Epidemiology, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| |
Collapse
|
23
|
Phosphatidylserine synthase plays an essential role in glia and affects development, as well as the maintenance of neuronal function. iScience 2021; 24:102899. [PMID: 34401677 PMCID: PMC8358705 DOI: 10.1016/j.isci.2021.102899] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/14/2021] [Accepted: 07/21/2021] [Indexed: 01/05/2023] Open
Abstract
Phosphatidylserine (PS) is an integral component of eukaryotic cell membranes and organelles. The Drosophila genome contains a single PS synthase (PSS)-encoding gene (Pss) homologous to mammalian PSSs. Flies with Pss loss-of-function alleles show a reduced life span, increased bang sensitivity, locomotor defects, and vacuolated brain, which are the signs associated with neurodegeneration. We observed defective mitochondria in mutant adult brain, as well as elevated production of reactive oxygen species, and an increase in autophagy and apoptotic cell death. Intriguingly, glial-specific knockdown or overexpression of Pss alters synaptogenesis and axonal growth in the larval stage, causes developmental arrest in pupal stages, and neurodegeneration in adults. This is not observed with pan-neuronal up- or down-regulation. These findings suggest that precisely regulated expression of Pss in glia is essential for the development and maintenance of brain function. We propose a mechanism that underlies these neurodegenerative phenotypes triggered by defective PS metabolism. Loss of Pss leads to developmental defects and neurodegeneration Loss of Pss causes a mitochondrial defect, elevated ROS, and secondary necrosis Pss functions in glia are essential for synaptogenesis and neuronal maintenance Glial Pss expression level must be tightly regulated to maintain a healthy nervous system
Collapse
|
24
|
Rasgele PG, Gokalp FD, Kaya ST, Kekecoglu M, Acar MK. Investigation of genotoxic effects of rhododendron honey using three mammalian bioassays in vivo. Drug Chem Toxicol 2021; 45:2301-2310. [PMID: 34100323 DOI: 10.1080/01480545.2021.1935421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Rhododendron honey (RH) is obtained from the rhododendron plants are grown in many regions around the world, causes poisoning in humans due to the grayanotoxin (GTX) compound in its structure. It is used by the public as a therapeutic for some diseases. It was aimed to study the genotoxic and cytotoxic effects of RH in mouse bone-marrow and sperm cells by using three mammalian bioassays. 25, 50 and 75 mg kg-1 concentrations of RH given to male mice via gavage for 24 and 48 h treatment periods and its active ingredient Grayanatoxin (GTX-III) 0.01 mg kg-1 by i.p. injection. Chromosome aberrations (CA), polychromatic erythrocytes (PCE)/normochromatic erythrocytes (NCE), micronucleated polychromatic erythrocytes (MNPCE) and sperm abnormalities were investigated. The results demonstrated that all the tested concentrations of RH significantly induced total abnormal cell frequency including chromosomal breaks for two time periods. In the MN assay, 75 mg kg-1 RH and 0.01 mg kg-1 GTX-III significantly increased % MNPCE and significantly reduced PCE/NCE ratios after 24 and 48 h treatments on mice demonstrating potential genotoxic and cytotoxic effect. Although there was a concentration-related increase in the percentage of total sperm abnormalities, this increase was not statistically significant compared to control. As a result, microscopic genotoxicity and cytotoxicity marker tests showed that RH and its active ingredient GTX-III have potential genotoxic and cytotoxic effect on mice bone marrow cells. It is understood that RH that is used to treat some diseases by public, should be handled carefully and used in a controlled manner.HighlightsChromosome aberration, micronucleus and sperm morphology assays are recommended as reliable biological indicators.RH and its active ingredient GTX-III have potential genotoxic and cytotoxic effect on mice bone marrow cells.Significant changes were observed upon the treatment of 75 mg kg-1 MH for MN assay.
Collapse
Affiliation(s)
- Pinar Goc Rasgele
- Department of Biosystems Engineering, Faculty of Agriculture, Duzce University, Duzce, Turkey
| | - Fulya Dilek Gokalp
- Department of Biology, Faculty of Science, Trakya University, Edirne, Turkey
| | - Salih Tunc Kaya
- Department of Biology, Faculty of Science and Letters, Duzce University, Duzce, Turkey
| | - Meral Kekecoglu
- Department of Biology, Faculty of Science and Letters, Duzce University, Duzce, Turkey
| | | |
Collapse
|
25
|
Preliminary Protocol Development of a HPLC-TBARS-EVSC (Ex Vivo Stratum Corneum) Assay for Skin Research: Application in a Sunscreen System. Sci Pharm 2021. [DOI: 10.3390/scipharm89020017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Considering the importance of the cutaneous tissue investigation and the need for the development of new protocols to non-invasively establish the safety and efficacy of dermocosmetics and topical products, we aimed at developing an HPLC-TBARS-EVSC (high performance liquid chromatography–thiobarbituric acid reactive species–ex vivo stratum corneum) assay for the lipid peroxidation measurement on subjects’ stratum corneum (SC) obtained by tape stripping; additionally, we applied the HPLC-TBARS-EVSC assay in an emulsified sunscreen system containing ethylhexyl triazone and bemotrizinol as UV filters. HPLC analysis was performed in isocratic mode with 35% methanol/65% phosphate buffer (pH 7.0) as the mobile phase. The diode detector was set at 532 nm to quantify the malondialdehyde (MDA)-TBA adduct. An ex vivo tape stripping method was applied in 10 volunteers in three pre-defined regions of the volar forearms: the control; the irradiated; and the site containing the sunscreen (2.0 mg·cm−2). Ten adhesive tapes per region were used for SC removal. An exclusive ex vivo protocol to measure SC lipid peroxidation was preliminarily developed with linearity and selectivity. The protocol suggested the use of an artificial irradiation dose (5506 KJ·m−2) to improve the assay response from the SC. The sunscreen system had a significative decrease in SC lipoperoxidative damage compared to the control. Our protocol can aid in the efficacy establishment of anti-UV and antioxidant agents, for instance, in studies that aim at elucidating the level of SC lipid peroxidation and even in carrying out baseline investigations characterizing different ethnicities and genders.
Collapse
|
26
|
Rogulska J, Osowska S, Kunecki M, Sobocki J, Ładyżyński P, Giebułtowicz J. Antioxidant balance in plasma of patients on home parenteral nutrition: A pilot study comparing three different lipid emulsions. Clin Nutr 2021; 40:3950-3958. [PMID: 34139468 DOI: 10.1016/j.clnu.2021.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/23/2021] [Accepted: 04/03/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND & AIMS Parenteral nutrition (PN) can supply all essential nutrients to a patient with gastrointestinal insufficiency. However, the sensitivity to lipid peroxidation might increase in those receiving PN, especially home parenteral nutrition (HPN). This study aimed to investigate whether PN affects the antioxidant balance of plasma of HPN patients without comorbidities and whether this balance is influenced by comorbidities and according to the type of lipid emulsion included in the PN. METHODS Adult patients on HPN (n = 86) received one of three types of lipid emulsion (based on 1) soyabean oil, 2) olive and soyabean oil or 3) soyabean, coconut, olive and fish oil) in all-in-one mixtures; in addition healthy controls (n = 66) were studied as comparators. HPN patients were classified to the following subgroups: 1) patients without (n = 58) or with (n = 28) comorbidities 2) patients on Intralipid (GINTRA, n = 53), ClinOleic (GCLIN, n = 17) or SMOFlipid (GSMOFn = 16). The activities of total glutathione peroxidase (GSH-Px), selenium dependent glutathione peroxidase (Se-GSHPx) and glutathione S-transferase (GST) in plasma were determined spectrophotometrically. The antioxidant potential of plasma was determined using oxygen radical absorbance capacity (ORAC). The lipid peroxidation marker malondialdehyde (MDA) was analyzed with high performance liquid chromatography. RESULTS MDA concentration was the highest in GINTRA and the lowest in GSMOF (p < 0.05). GSMOF also had the highest activity of GSH-Px. No differences in Se-GSHPx, GST and ORAC were observed among GINTRA, GCLIN and GSMOF. Comparing with healthy controls, significantly lower GST (p = 0.0293) and ORAC (p < 0.0001) were observed in the HPN patients. Among all measured parameters only the concentration of MDA was significantly higher in patients with comorbidities compared to those without them. Comorbidities did not influence MDA level in GINTRA and GSMOF being still the lowest in GSMOF (p = 0.0033). In contrast, significantly higher MDA level was observed for GCLIN in those with vs. without comorbidities (p = 0.0262). CONCLUSIONS Patients on HPN have lower antioxidant defenses than healthy controls. The type of lipid emulsion used in HPN affects lipid peroxidation (even after taking into account comorbidities which often involve oxidative stress) being the highest in GINTRA and the lowest in GSMOF. Thus, to minimize the risk of oxidative stress, SMOFlipid can be considered in patients in HPN especially for those with comorbidities. ClinOleic can be considered in HPN patients without comorbidities. The observation should be confirmed in larger studies.
Collapse
Affiliation(s)
- Joanna Rogulska
- Department of Bioanalysis and Drugs Analysis, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warsaw, Poland.
| | - Sylwia Osowska
- Department of Clinical Pharmacy, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warsaw, Poland.
| | - Marek Kunecki
- Clinical Nutrition Center, Pirogov Hospital, 191/195 Wólczańska Street, 90-001 Łódź, Poland.
| | - Jacek Sobocki
- Department of Clinical Nutrition and Surgery, Medical Center of Postgraduate Medical Education, Prof. Orłowski Hospital, 231 Czerniakowska Street, 00-416 Warsaw, Poland.
| | - Paweł Ładyżyński
- Interdisciplinary PhD Studies, Polish Academy of Sciences, 5 Jana Kazimierza Street, 01-248 Warsaw, Poland.
| | - Joanna Giebułtowicz
- Department of Bioanalysis and Drugs Analysis, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warsaw, Poland.
| |
Collapse
|
27
|
Marques LS, Zborowski VA, Heck SO, Fulco BCW, Nogueira CW. 4,4'-Dichloro-diphenyl diselenide modulated oxidative stress that differently affected peripheral tissues in streptozotocin-exposed mice. Can J Physiol Pharmacol 2021; 99:943-951. [PMID: 33861646 DOI: 10.1139/cjpp-2020-0652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Streptozotocin (STZ) is a substance used experimentally to induce a diabetes model, a metabolic disease associated with oxidative tissue damage. This study evaluated if 4-4'-dichloro-diphenyl diselenide (p-ClPhSe)2 modulates oxidative stress in peripheral tissues of diabetic mice. Male Swiss mice received a single STZ injection (i.p.) at a dose of 200 mg/kg or its vehicle and were treated with (p-ClPhSe)2 (7 days, 5 mg/kg) or metformin (200 mg/kg, twice per day). After, the mice were euthanized to collect liver, kidney, and skeletal muscle samples. In the liver, (p-ClPhSe)2 reduced thiobarbituric acid reactive substances (TBARS) and protein carbonyl levels and normalized the superoxide dismutase activity in STZ-treated mice. In the kidney, (p-ClPhSe)2 reversed the increase in the reactive species levels but not the catalase (CAT) activity reduction in STZ-treated mice. There was no evidence of oxidative damage in the skeletal muscle of STZ-treated mice, but an increase in the CAT activity and a reduction in non-protein thiol levels were found. (p-ClPhSe)2 did not reverse a decrease in hepatic and renal δ-aminolevulinic acid dehydratase activity in STZ-treated mice. The results show that the liver and kidney of STZ-treated mice were more susceptible to oxidative stress. This study reveals that (p-ClPhSe)2 modulated oxidative stress, which differently affected peripheral tissues of diabetic mice.
Collapse
Affiliation(s)
- Luiza S Marques
- Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogens, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Vanessa A Zborowski
- Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogens, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Suélen O Heck
- Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogens, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Bruna C W Fulco
- Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogens, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Cristina W Nogueira
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, RS, Brazil
| |
Collapse
|
28
|
Iskender H, Yenice G, Terim Kapakin KA, Dokumacioglu E, Sevim C, Hayirli A, Altun S. Effects of high fructose diet on lipid metabolism and the hepatic NF-κB/ SIRT-1 pathway. Biotech Histochem 2021; 97:30-38. [PMID: 33629622 DOI: 10.1080/10520295.2021.1890214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The liver is the primary site for fructose metabolism; therefore, the liver is susceptible to fructose related metabolic disturbances including metabolic insulin dysfunction, dyslipidemia and inflammation. We investigated whether astaxanthin (ASX) can modify hepatic nuclear factor-kappa B (NF-κB)/sirtuin-1 (SIRT-1) expression to alter oxidative stress caused by ingestion of excess fructose in rats. The animals were divided randomly into two x two factorially arranged groups: two regimens were given either water (W) or 30% fructose in drinking water (F). These two groups were divided further into two subgroups each: two treatments, either orally with 0.2 ml olive oil (OO) or 1 mg ASX/kg/day in 0.2 ml olive oil (ASX). Fructose administration increased serum glucose, triglycerides and very low density lipoproteins, and decreased serum concentration of high density lipoproteins; fructose did not alter serum total cholesterol. Excess fructose decreased hepatic superoxide dismutase (SOD) and increased hepatic NF-κB and MDA levels. ASX treatment increased hepatic SIRT-1 and decreased hepatic NF-κB and malondialdehyde (MDA) levels. ASX treatment decreased hepatic NF-κB and increased SOD levels, but did not alter MDA level in rats fed high fructose. ASX administration ameliorated oxidative stress caused by excess fructose by increasing hepatic NF-κB and SIRT-1 expression.
Collapse
Affiliation(s)
- Hatice Iskender
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Artvin Coruh University, Artvin, Turkey
| | - Guler Yenice
- Department of Animal Nutrition and Nutritional Disorders, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | | | - Eda Dokumacioglu
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Artvin Coruh University, Artvin, Turkey
| | - Cigdem Sevim
- Department of Pharmacology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Armagan Hayirli
- Department of Animal Nutrition and Nutritional Disorders, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Serdar Altun
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| |
Collapse
|
29
|
Seyedsadjadi N, Grant R. The Potential Benefit of Monitoring Oxidative Stress and Inflammation in the Prevention of Non-Communicable Diseases (NCDs). Antioxidants (Basel) 2020; 10:E15. [PMID: 33375428 PMCID: PMC7824370 DOI: 10.3390/antiox10010015] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
The significant increase in worldwide morbidity and mortality from non-communicable diseases (NCDs) indicates that the efficacy of existing strategies addressing this crisis may need improvement. Early identification of the metabolic irregularities associated with the disease process may be a key to developing early intervention strategies. Unhealthy lifestyle behaviours are well established drivers of the development of several NCDs, but the impact of such behaviours on health can vary considerably between individuals. How can it be determined if an individual's unique set of lifestyle behaviours is producing disease? Accumulating evidence suggests that lifestyle-associated activation of oxidative and inflammatory processes is primary driver of the cell and tissue damage which underpins the development of NCDs. However, the benefit of monitoring subclinical inflammation and oxidative activity has not yet been established. After reviewing relevant studies in this context, we suggest that quantification of oxidative stress and inflammatory biomarkers during the disease-free prodromal stage of NCD development may have clinical relevance as a timely indicator of the presence of subclinical metabolic changes, in the individual, portending the development of disease. Monitoring markers of oxidative and inflammatory activity may therefore enable earlier and more efficient strategies to both prevent NCD development and/or monitor the effectiveness of treatment.
Collapse
Affiliation(s)
- Neda Seyedsadjadi
- Australasian Research Institute, Sydney Adventist Hospital, Sydney, NSW 2076, Australia;
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ross Grant
- Australasian Research Institute, Sydney Adventist Hospital, Sydney, NSW 2076, Australia;
- Department of Pharmacology, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
- Sydney Adventist Hospital Clinical School, University of Sydney, Sydney, NSW 2076, Australia
| |
Collapse
|
30
|
Ma J, Xie Y, Zhou Y, Wang D, Cao L, Zhou M, Wang X, Wang B, Chen W. Urinary copper, systemic inflammation, and blood lipid profiles: Wuhan-Zhuhai cohort study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115647. [PMID: 33254652 DOI: 10.1016/j.envpol.2020.115647] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 09/12/2020] [Accepted: 09/12/2020] [Indexed: 06/12/2023]
Abstract
Copper have been reported to be associated with metabolic diseases. However, results on copper exposure with blood lipid profiles are inconsistent, and the underlying mechanisms of this association remain unclear. This study focused on investigating associations between urinary copper and blood lipid profiles; and exploring the potential role of systemic inflammation in such relationships. Concentrations of urinary copper, plasma C-reactive protein (CRP), and four blood lipid parameters (e.g., Total cholesterol [TC], triglycerides [TG], low-density lipoprotein cholesterol [LDL-C], and high-density lipoprotein cholesterol [HDL-C]) were measured in the adult participants from Wuhan-Zhuhai cohort. The associations between copper, CRP, and four blood lipids were assessed by the multivariable linear regression models, and the 3D mesh graphs was used to examine the joint effects of copper exposure and CRP on four blood lipid parameters. In addition, we used mediation analysis to investigate the mediated effects of CRP in the relationships between copper exposure and blood lipid profiles. Each 1% increase in urinary copper was statistically significantly associated with a 5.32% (95% CI: 2.48%, 8.24%) increase in TG after adjusting for the confounders (P < 0.05). No significant associations were observed between urinary copper and the other three blood lipid parameters (all P > 0.05). In addition, urinary copper increased monotonically with plasma CRP elevation, which in turn, was positively associated with TC, TG, and LDL-C and negatively related to HDL-C (all P < 0.05). Results from 3D mesh graphs demonstrated that increased levels of plasma CRP with higher urinary copper corresponded to higher TC, TG, LDL-C, and lower HDL-C concentrations. Mediation analysis observed that CRP mediated 6.27% in the relationships of urinary copper and TG. These findings suggest that systemic inflammation partly mediated the association between copper exposure and abnormal blood lipid, and may contribute to the development of dyslipidemias.
Collapse
Affiliation(s)
- Jixuan Ma
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yujia Xie
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yun Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Dongming Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Limin Cao
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Min Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xing Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Bin Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
31
|
Alharbi RM. Hydroclathrus clathratus as anti-damaging agent against lung injury in male albino rats. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2020. [DOI: 10.1186/s43088-020-00045-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The present investigation is designed to evaluate the antioxidant and protective efficacy of the brown alga, Hydroclathrus clathratus (C.Agardh) M. Howe, against copper-induced lung injury in male albino rats. The present study was carried out on 24 adult male albino rats, they were randomly divided into four groups (n = 6) (A group, control rats; B group, rats received 100 mg/kg body weight of H. clathratus ethanolic extract; C group, rats augmented with 100 mg/kg body weight of CuSO4; and D group, rats were supplemented with 100 mg/kg of CuSO4 and 100 mg/kg of H. clathratus ethanolic extract). All the experimental treatments were given orally and daily for 28 days.
Results
It was showing that Cu treatment was found to induce lung toxicity, histopathologically, Cu revealed severe degenerative and necrotic lesions in the lung. Also, Cu caused a significant decrease in glutathione-S-transferase (GST) count and glutathione (GSH); meanwhile, malondialdehyde (MDA) content was increased. Consistently, mRNA and protein expression levels of proapoptotic (caspase-3 and Bax) marker showed a significant upregulation, whereas the anti-apoptotic (Bcl-2) level was significantly downregulated in lung tissues of CuSO4-intubated groups. Moreover, H. clathratus plus CuSO4-treated group showed improvement in the histopathological changes of lung injury. The bronchi and bronchioles appeared like those of the control, where the alveoli showed thin septa in some parts and thickened septa in other parts.
Conclusion
Findings revealed that the natural antioxidant activity of H. clathratus could protect the lung tissue from the damage produced by CuSO4.
Collapse
|
32
|
Kaźmierczak-Barańska J, Boguszewska K, Karwowski BT. Nutrition Can Help DNA Repair in the Case of Aging. Nutrients 2020; 12:nu12113364. [PMID: 33139613 PMCID: PMC7692274 DOI: 10.3390/nu12113364] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 12/20/2022] Open
Abstract
Micronutrients such as vitamins and trace elements are crucial for maintaining the health of all organisms. Micronutrients are involved in every cellular/biochemical process. They play roles in proper heart and brain functioning, influence immunological responses, and antioxidant defense systems. Therefore, prolonged deficiency in one or more micronutrients leads to cardiovascular or neurodegenerative disorders. Keeping micronutrients at adequate levels is especially important for seniors. They are prone to deficiencies due to age-associated functional decline and often to a diet poor in nutrients. Moreover, lack of micronutrients has an indirect impact on the genome. Their low levels reduce the activity of antioxidant enzymes, and therefore inhibit the efficiency of defense against free radicals which can lead to the formation of DNA lesions. The more DNA damage in the genetic material, the faster aging at the cellular level and a higher risk of pathological processes (e.g., carcinogenesis). Supplementation of crucial antioxidative micronutrients such as selenium, zinc, vitamin C, and vitamin E seems to have the potential to positively influence the condition of an aging organism, including minimizing inflammation, enhancing antioxidative defense, and limiting the formation of DNA lesions. In consequence, it may lead to lowering the risk and incidence of age-related diseases such as cardiovascular diseases, neurodegenerative diseases, and malnutrition. In this article, we attempt to present the synergistic action of selected antioxidant micronutrients (vitamin C, vitamin E, selenium, and zinc) for inhibiting oxidative stress and DNA damage, which may impede the process of healthy aging.
Collapse
|
33
|
Ravandeh M, Kahlert H, Jablonowski H, Lackmann JW, Striesow J, Agmo Hernández V, Wende K. A combination of electrochemistry and mass spectrometry to monitor the interaction of reactive species with supported lipid bilayers. Sci Rep 2020; 10:18683. [PMID: 33122650 PMCID: PMC7596530 DOI: 10.1038/s41598-020-75514-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 10/15/2020] [Indexed: 01/21/2023] Open
Abstract
Reactive oxygen and nitrogen species (RONS), e.g. generated by cold physical plasma (CPP) or photodynamic therapy, interfere with redox signaling pathways of mammalian cells, inducing downstream consequences spanning from migratory impairment to apoptotic cell death. However, the more austere impact of RONS on cancer cells remains yet to be clarified. In the present study, a combination of electrochemistry and high-resolution mass spectrometry was developed to investigate the resilience of solid-supported lipid bilayers towards plasma-derived reactive species in dependence of their composition. A 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid bilayer was undisturbed by 200 µM H2O2 (control) but showed full permeability after CPP treatment and space-occupying oxidation products such as PoxnoPC, PAzePC, and POPC hydroperoxide were found. Electron paramagnetic resonance spectroscopy demonstrated the presence of hydroxyl radicals and superoxide anion/hydroperoxyl radicals during the treatment. In contrast, small amounts of the intramembrane antioxidant coenzyme Q10 protected the bilayer to 50% and LysoPC was the only POPC derivative found, confirming the membrane protective effect of Q10. Such, the lipid membrane composition including the presence of antioxidants determines the impact of pro-oxidant signals. Given the differences in membrane composition of cancer and healthy cells, this supports the application of cold physical plasma for cancer treatment. In addition, the developed model using the combination of electrochemistry and mass spectrometry could be a promising method to study the effect of reactive species or mixes thereof generated by chemical or physical sources.
Collapse
Affiliation(s)
- M Ravandeh
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
- Leibniz-Institute for Plasma Science and Technology, ZIK Plasmatis, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - H Kahlert
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - H Jablonowski
- Leibniz-Institute for Plasma Science and Technology, ZIK Plasmatis, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - J-W Lackmann
- Leibniz-Institute for Plasma Science and Technology, ZIK Plasmatis, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - J Striesow
- Leibniz-Institute for Plasma Science and Technology, ZIK Plasmatis, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - V Agmo Hernández
- Department of Chemistry-BMC, Uppsala University, Husargatan 3, 75123, Uppsala, Sweden
- Department of Pharmacy, Uppsala University, Husargatan 3, 75123, Uppsala, Sweden
| | - K Wende
- Leibniz-Institute for Plasma Science and Technology, ZIK Plasmatis, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany.
| |
Collapse
|
34
|
Nam SE, Haque MN, Lee JS, Park HS, Rhee JS. Prolonged exposure to hypoxia inhibits the growth of Pacific abalone by modulating innate immunity and oxidative status. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 227:105596. [PMID: 32827874 DOI: 10.1016/j.aquatox.2020.105596] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
In aquatic animals, hypoxia is associated with growth retardation, impaired immunity, susceptibility to pathogens, oxidative stress, and mortality. However, the relative long-term effects of hypoxia on bivalves, including abalone, are not well understood. In this study, we examined the effects of exposure to hypoxic (2.5 and 4 mg O2 L-1) and normoxic (8 mg O2 L-1) conditions on the growth, survival, and immune and antioxidant responses of the economically important Pacific abalone Haliotis discus hannai over a 4 month period. We observed that exposure to 2.5 mg O2 L-1 resulted in marked reductions in assessed shell parameters, average meat weight, and survival compared with exposure to 4 and 8 mg O2 L-1. There were also significant reductions in oxygen consumption and ammonia-N excretion in abalone exposed to 2.5 mg O2 L-1. We also detected initial immunosuppression in the 2.5 mg O2 L-1-treated abalone, as evidenced by a significant reduction in total hemocytes and inhibition of antibacterial and lysozyme activities. Furthermore, intracellular malondialdehyde concentrations were significantly elevated at 1 month in the 2.5 mg O2 L-1 treatment group, whereas there were reductions in the levels of glutathione and enzymatic activities of catalase and superoxide dismutase, thereby indicating potential hypoxia-induced oxidative stress and a depression of antioxidant capacity. After 4 months of treatment, severe hypoxia (2.5 mg O2 L-1) had significantly modulated all measured parameters, whereas exposure to 4 and 8 mg O2 L-1 had induced no significant effects. Collectively, our observations indicate that under long-term exposure to hypoxia, Pacific abalone failed to maintain an effective antioxidant defense system and adequate immunity, with the observed biochemical disruptions leading to a reduction in growth and survival.
Collapse
Affiliation(s)
- Sang-Eun Nam
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon, 22012, Republic of Korea
| | - Md Niamul Haque
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon, 22012, Republic of Korea; Research Institute of Basic Sciences, Incheon National University, Incheon, 22012, Republic of Korea
| | - Jung Sick Lee
- Department of Aqualife Medicine, Chonnam National University, Yeosu, 59626, Republic of Korea
| | - Hyoung Sook Park
- Department of Song-Do Bio-Environmental Engineering, Incheon Jaeneung University, Incheon, 22573, Republic of Korea.
| | - Jae-Sung Rhee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon, 22012, Republic of Korea; Research Institute of Basic Sciences, Incheon National University, Incheon, 22012, Republic of Korea; Institute of Green Environmental Research Center, Incheon, 21999, Republic of Korea.
| |
Collapse
|
35
|
Lin S, Qiao N, Chen H, Tang Z, Han Q, Mehmood K, Fazlani SA, Hameed S, Li Y, Zhang H. Integration of transcriptomic and metabolomic data reveals metabolic pathway alteration in mouse spermatogonia with the effect of copper exposure. CHEMOSPHERE 2020; 256:126974. [PMID: 32470726 DOI: 10.1016/j.chemosphere.2020.126974] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 05/15/2023]
Abstract
Copper is a widespread heavy metal in environment and has toxic effects when exposed. However, study of copper-induced male reproductive toxicity is still insufficient to report, and the underlying mechanisms are unknown. Keeping in view, RNA-Seq and metabolomic were performed to identify metabolic pathways that were distressed in mouse spermatogonia with the effect of copper sulfate, and the integrated analysis of the mechanism of copper administered GC-1 cells from metabolomic and transcriptomic data. Our results demonstrated that many genes and metabolites were regulated in the copper sulfate-treated cells. The differential metabolites analysis showed that 49 and 127 metabolites were significantly different in ESI+ and ESI- mode, respectively. Meanwhile, a total of 2813 genes were up-regulated and 2488 genes were down-regulated in the treatment groups compared to those in the control groups. Interestingly, ophthalmic acid and gamma glutamylleucine were markedly increased by copper treatment in two modes. By integrating with transcriptomic and metabolomic data, we revealed that 37 and 22 most related pathways were over-enriched in ESI+ and ESI- mode, respectively. Whereas, amino acid biosynthesis and metabolism play essential role in the potential relationship between DEGs and metabolites, which suggests that amino acid biosynthesis and metabolism may be the major metabolic pathways disturbed by copper in GC-1 cells. This study provides important clues and evidence for understanding the mechanisms responsible for copper-induced male spermatogenesis toxicity, and useful biomarkers indicative of copper exposure could be discovered from present study.
Collapse
Affiliation(s)
- Shuai Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Department of Histology and Embryology, Anhui Medicial University, Hefei, 230032, China
| | - Na Qiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Hanming Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Qingyue Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Khalid Mehmood
- University College of Veterinary & Animal Sciences, Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Sarfaraz Ali Fazlani
- Lasbela University of Agriculture Water & Marine Sciences, Uthal Balochistan Pakistan, Pakistan
| | - Sajid Hameed
- University College of Veterinary & Animal Sciences, Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
36
|
Amiri F, Dahaj MM, Siasi NH, Deyhim MR. Treatment of platelet concentrates with the L-carnitine modulates platelets oxidative stress and platelet apoptosis due to mitochondrial reactive oxygen species reduction and reducing cytochrome C release during storage. J Thromb Thrombolysis 2020; 51:277-285. [PMID: 32794131 DOI: 10.1007/s11239-020-02241-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Platelet concentrate (PC) transfusion is administrated to reduce the hemostatic complications in patients with thrombocytopenia. Strength platelet against oxidative stress conditions lead to decrease in platelet storage lesion (PSL). This study was aimed to evaluate L-carnitine (LC) effects on platelet oxidative stress and platelet apoptosis during storage time. PC bags were randomly selected and each bag was divided into two equal parts. L-carnitine was added to test groups. Normal saline was added to control groups. Platelets count, mean platelet volume (MPV), pH, Platelet aggregation, nitric oxide metabolism (nitric/nitrate), total antioxidant capacity (TAC), malondealdehyde concentration (MDA), lactate dehydrogenase (LDH) enzyme activity, mitochondrial reactive oxygen species (ROS) and cytochrome C releasing were assayed by standard methods in 1, 3, 5 and 7 days of platelet storage. LDH enzyme activity was increased during storage but it had lower level in L-carnitine-treated platelets. LC treatment led to reduction in MDA concentration (3.35 ± 0.98 vs 5.3 ± 1.32, p = 0.003 and 6.52 ± 1.88 vs 5.67 ± 1.25, p = 0.005 for day 5 and day 7 respectively). Increased level of TAC was detected in LC-treated platelets in comparison to control (0.29 ± 0.06 vs 0.21 ± 0.05, p = 0.008 and 0.22 ± 0.03 vs 0.16 ± 0.03, p = 0.003 for day 5 and day 7 respectively). Interestingly, mitochondrial ROS and cytochrome C releasing was significantly lower in LC-treated versus control group during platelet storage. L-carnitine not only decreases mitochondrial ROS but also reduces cytochrome C releasing in PCs during storage. It might be considered as safe additive to decrease PSL in the future.
Collapse
Affiliation(s)
- Fatemeh Amiri
- Department of Medical Laboratory Sciences, School of Para Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Malihe Mohammadi Dahaj
- Iranian Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization (IBTO), Hemmat Exp. way, Next To the Milad Tower, Tehran, Iran
| | - Nooshin Helmi Siasi
- Iranian Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization (IBTO), Hemmat Exp. way, Next To the Milad Tower, Tehran, Iran
| | - Mohammad Reza Deyhim
- Iranian Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization (IBTO), Hemmat Exp. way, Next To the Milad Tower, Tehran, Iran.
| |
Collapse
|
37
|
Rahman T, Faisal ARM, Khanam T, Shekhar HU. Recurrent Indoor Environmental Pollution and Its Impact on Health and Oxidative Stress of the Textile Workers in Bangladesh. ENVIRONMENTAL HEALTH INSIGHTS 2020; 14:1178630220938393. [PMID: 32843838 PMCID: PMC7418231 DOI: 10.1177/1178630220938393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Perennial indoor environmental pollution in the textile industrial area is a potential health hazard for workers engaged in this line of work, resulting in mental aberration to severe health risks. This study was designed to investigate the indoor environmental quality of textile industries and correlate its effect on the occupational health and well-being of the textile workers by measuring plasma oxidative stress status in textile workers and healthy control subjects. Environmental samples were collected from 15 textile industries located in Dhaka division, and 30 volunteer textile workers and 30 volunteer office workers (control) aged 18 to 57 years participated in the study. The concentration of plasma ascorbic acid (P-ASC), plasma malondialdehyde (P-MDA), and plasma conjugated diene (P-CD) was measured in both groups. The noise level (78.0 ± 0.68 dB) and the formaldehyde level (141.80 ± 4.47 µg/m3) were found to be significantly higher in the indoor environmental area compared with those in the control area (70.17 ± 0.25 dB and 108.0 ± 0.76 µg/m3, respectively). Furthermore, the daily average concentration of suspended particulate matters (PMs), that is, PM2.5 (322.2 ± 13.46 µg/m3) and PM10 (411.0 ± 17.57 µg/m3), was also found to be significantly higher in the indoor environmental air compared with that in the control area (78.59 ± 1.66 and 174.0 ± 2.33 µg/m3, respectively). The levels of P-MDA (0.37 ± 0.03 nmol/L) and P-CD (14.74 ± 0.61 nmol/L) were significantly increased, whereas the level of P-ASC level (0.46 ± 0.04 mg/dL) was markedly decreased in the textile workers compared with the healthy control subjects (0.18 ± 0.01 nmol/L of P-MDA, 10.04 ± 0.44 nmol/L of P-CD, and 1.29 ± 0.06 mg/dL of P-ASC). The textile plants were found to have significantly elevated levels of indoor environmental pollutants compared with those in the control area, and the textile workers were significantly exposed to oxidative stresses compared with the control subjects. The use of noise pads and high-efficiency air filters is perhaps highly instrumental to put an end to this prevailing situation. Moreover, to overcome the oxidative stresses among workers, supplementation of antioxidant vitamins (ie, ascorbic acid and/or vitamin E) may be beneficial. In addition, to prevent serious health-related issues, proper precautions should be taken to protect the occupational health of the textile workers.
Collapse
Affiliation(s)
- Tania Rahman
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Dhaka, Dhaka, Bangladesh
| | - Ar-Rafi Md. Faisal
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Dhaka, Dhaka, Bangladesh
| | - Tahura Khanam
- Qtex Solutions Limited, 1st ISO 17020:2012 Accredited Environmental inspection body in Bangladesh
| | - Hossain Uddin Shekhar
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
38
|
Identification and Detection of Bioactive Peptides in Milk and Dairy Products: Remarks about Agro-Foods. Molecules 2020; 25:molecules25153328. [PMID: 32707993 PMCID: PMC7435915 DOI: 10.3390/molecules25153328] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023] Open
Abstract
Food-based components represent major sources of functional bioactive compounds. Milk is a rich source of multiple bioactive peptides that not only help to fulfill consumers 'nutritional requirements but also play a significant role in preventing several health disorders. Understanding the chemical composition of milk and its products is critical for producing consistent and high-quality dairy products and functional dairy ingredients. Over the last two decades, peptides have gained significant attention by scientific evidence for its beneficial health impacts besides their established nutrient value. Increasing awareness of essential milk proteins has facilitated the development of novel milk protein products that are progressively required for nutritional benefits. The need to better understand the beneficial effects of milk-protein derived peptides has, therefore, led to the development of analytical approaches for the isolation, separation and identification of bioactive peptides in complex dairy products. Continuous emphasis is on the biological function and nutritional characteristics of milk constituents using several powerful techniques, namely omics, model cell lines, gut microbiome analysis and imaging techniques. This review briefly describes the state-of-the-art approach of peptidomics and lipidomics profiling approaches for the identification and detection of milk-derived bioactive peptides while taking into account recent progress in their analysis and emphasizing the difficulty of analysis of these functional and endogenous peptides.
Collapse
|
39
|
Song X, Ren Z, Wang X, Jia L, Zhang C. Antioxidant, anti-inflammatory and renoprotective effects of acidic-hydrolytic polysaccharides by spent mushroom compost (Lentinula edodes) on LPS-induced kidney injury. Int J Biol Macromol 2020; 151:1267-1276. [DOI: 10.1016/j.ijbiomac.2019.10.173] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 10/09/2019] [Accepted: 10/21/2019] [Indexed: 01/24/2023]
|
40
|
Effects of dietary vitamin E on growth, immunity and oxidation resistance related to the Nrf2/Keap1 signalling pathway in juvenile Sillago sihama. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114403] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Ye P, Lu J, Li M, Zhang H, Chen Y, Wei F. Comprehensive analysis of the compound profiles of Folium Camelliae Nitidissimae extract by ultrafast liquid chromatography with quadrupole-time-of-flight mass spectrometry and hepatoprotective effect against CCl 4 -induced liver injury in mice. Biomed Chromatogr 2020; 34:e4817. [PMID: 32112425 DOI: 10.1002/bmc.4817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/15/2020] [Accepted: 02/25/2020] [Indexed: 11/08/2022]
Abstract
Folium Camelliae Nitidissimae (jinhuacha in Chinese, JHC) is a kind of caffeine-less tea with antioxidant, antitumor and antibacterial effects. Studies on the chemical profiles and hepatoprotective effects of JHC extracts have not been systematically conducted so far. This study comprehensively investigated the compound profiles of JHC extract by ultrafast liquid chromatography with quadrupole time-of-flight tandem mass spectrometry. We also determined JHC's hepatoprotective effects against CCl4 -induced liver injury in mice. A JHC extract was administered orally to mice at 1.95 and 7.80 g/kg body weight once daily for 14 consecutive days prior to CCl4 treatment. Eighty-four compounds including flavonoids, organic acids, catechins, coumarins, phenylpropanol, amino acids, anthraquinones, saponins and nucleosides in JHC extract were authentically identified or tentatively identified by comparing MS information and retention times with those of authentic standards or available references. JHC administration significantly decreased elevated levels of aspartate aminotransferase and alanine aminotransferase in mouse serum, inhibited hepatic malondialdehyde formation and enhanced glutathione and superoxide dismutase activities in the liver of CCl4 -treated mice. The histological observations also further supported the results. These results demonstrate that JHC contains various chemical compounds and its hepatoprotective effects against CCl4 -induced liver injury correlated with decreasing lipid oxidation are significant.
Collapse
Affiliation(s)
- Peiwen Ye
- College of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jingya Lu
- College of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Meichang Li
- College of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Hongwei Zhang
- College of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yuyao Chen
- College of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Fenghuan Wei
- College of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
42
|
Hu X, Dong D, Xia M, Yang Y, Wang J, Su J, Sun L, Yu H. Oxidative stress and antioxidant capacity: development and prospects. NEW J CHEM 2020. [DOI: 10.1039/d0nj02041a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Signaling pathways regulating redox reactions are activated to balance the redox status and maintain the normal function of cells.
Collapse
Affiliation(s)
- Xiaoqing Hu
- Key Laboratory of Pathobiology
- Ministry of Education
- Department of Pathophysiology
- College of Basic Medical Sciences
- Jilin University
| | - Delu Dong
- Key Laboratory of Pathobiology
- Ministry of Education
- Department of Pathophysiology
- College of Basic Medical Sciences
- Jilin University
| | - Meihui Xia
- The First Hospital of Jilin University
- Changchun 130021
- P. R. China
| | - Yimeng Yang
- Key Laboratory of Pathobiology
- Ministry of Education
- Department of Pathophysiology
- College of Basic Medical Sciences
- Jilin University
| | - Jiabin Wang
- Key Laboratory of Pathobiology
- Ministry of Education
- Department of Pathophysiology
- College of Basic Medical Sciences
- Jilin University
| | - Jing Su
- Key Laboratory of Pathobiology
- Ministry of Education
- Department of Pathophysiology
- College of Basic Medical Sciences
- Jilin University
| | - Liankun Sun
- Key Laboratory of Pathobiology
- Ministry of Education
- Department of Pathophysiology
- College of Basic Medical Sciences
- Jilin University
| | - Huimei Yu
- Key Laboratory of Pathobiology
- Ministry of Education
- Department of Pathophysiology
- College of Basic Medical Sciences
- Jilin University
| |
Collapse
|
43
|
Xiong YW, Ju XY, Li XW, Gong Y, Xu MJ, Zhang CM, Yuan B, Lv ZP, Qin S. Fermentation conditions optimization, purification, and antioxidant activity of exopolysaccharides obtained from the plant growth-promoting endophytic actinobacterium Glutamicibacter halophytocola KLBMP 5180. Int J Biol Macromol 2019; 153:1176-1185. [PMID: 31756484 DOI: 10.1016/j.ijbiomac.2019.10.247] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 10/26/2019] [Accepted: 10/26/2019] [Indexed: 01/05/2023]
Abstract
In this study, an endophytic actinobacterium Glutamicibacter halophytocola KLBMP 5180, was investigated for the production and antioxidant activity of exopolysaccharides (EPSs). First, the suitable fermentation time, temperature, inoculation volume, pH value, and the carbon and nitrogen sources for EPSs production were obtained using the one variable at a time method (OVAT). Then, a central composition design was used for fermentation conditions optimization to obtain the maximum EPS yield. The optimal medium and condition were as follows: 100 mL broth in 250 mL Erlenmeyer flasks, including 3.65 g/L maltose, 9.88 g/L malt extract, 3.40 g/L yeast extract, 1.41 g/L MnCl2, pH 7.5, culture temperature 28 °C, and 200 rpm for 7 days, which increased the yield of EPSs to 2.89 g/L. Two purified EPSs, 5180EPS-1 (MW 58.9 kDa) and 5180EPS-2 (10.5 kDa), comprising rhamnose, galacturonic acid, glucose, glucuronic acid, xylose, and arabinose, were obtained for chemical analysis and antioxidant evaluation. The scavenging ability and reducing power of the superoxide anion and hydroxyl radicals demonstrated the moderate in vitro antioxidant activities of the two EPSs, thus indicating their potential to be a new source of natural antioxidants. However, further structure elucidation and functional studies need to be continued.
Collapse
Affiliation(s)
- You-Wei Xiong
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province (KLBMP), School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| | - Xiu-Yun Ju
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province (KLBMP), School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| | - Xue-Wei Li
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province (KLBMP), School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| | - Yuan Gong
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province (KLBMP), School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| | - Ming-Jie Xu
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province (KLBMP), School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| | - Chun-Mei Zhang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province (KLBMP), School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| | - Bo Yuan
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province (KLBMP), School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| | - Zuo-Peng Lv
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province (KLBMP), School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| | - Sheng Qin
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province (KLBMP), School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China.
| |
Collapse
|
44
|
Bioprospecting for Bioactive Peptide Production by Lactic Acid Bacteria Isolated from Fermented Dairy Food. FERMENTATION-BASEL 2019. [DOI: 10.3390/fermentation5040096] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
With rapidly ageing populations, the world is experiencing unsustainable healthcare from chronic diseases such as metabolic, cardiovascular, neurodegenerative, and cancer disorders. Healthy diet and lifestyle might contribute to prevent these diseases and potentially enhance health outcomes in patients during and after therapy. Fermented dairy foods (FDFs) found their origin concurrently with human civilization for increasing milk shelf-life and enhancing sensorial attributes. Although the probiotic concept has been developed more recently, FDFs, such as milks and yoghurt, have been unconsciously associated with health-promoting effects since ancient times. These health benefits rely not only on the occurrence of fermentation-associated live microbes (mainly lactic acid bacteria; LAB), but also on the pro-health molecules (PHMs) mostly derived from microbial conversion of food compounds. Therefore, there is a renaissance of interest toward traditional fermented food as a reservoir of novel microbes producing PHMs, and “hyperfoods” can be tailored to deliver these healthy molecules to humans. In FDFs, the main PHMs are bioactive peptides (BPs) released from milk proteins by microbial proteolysis. BPs display a pattern of biofunctions such as anti-hypertensive, antioxidant, immuno-modulatory, and anti-microbial activities. Here, we summarized the BPs most frequently encountered in dairy food and their biological activities; we reviewed the main studies exploring the potential of dairy microbiota to release BPs; and delineated the main effectors of the proteolytic LAB systems responsible for BPs release.
Collapse
|
45
|
Isfari D, Gemilang Lara U. Cheese whey as potential resource for antimicrobial edible film and active packaging production. FOODS AND RAW MATERIALS 2019. [DOI: 10.21603/2308-4057-2019-2-229-239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Many cheese manufacturers still have not utilized cheese whey that damages to the environment as it is directly been drained into waters. Cheese whey can be used as active packaging material to prolong the shelf-life of food products. Fermented cheese whey contains bioactive peptides which are able to improve the functional properties of cheese whey as an antimicrobial agent. The combination of cheese whey with polysaccharides, lipid, and other additional ingredients can improve the physical characteristics of the active packaging in the form of edible film. Around 20-45% of plasticizer will expose the film formed. Cheese whey with agro-industrial waste starch-based formulation can be used as an alternative way to produce an antimicrobial edible film as an active packaging. The film has shown acceptable physical characteristics and high antimicrobial activity, which makes it possible to extend the shelf life of food products. An advanced process, for example, the use of transglutaminase enzyme and Candida tropicalis mutant, is also effective. The result of that is the formation of the essential compound which can improve the active packaging quality. The utilisation of cheese whey and agro-industrial waste based on starch contributes significantly to the environmental conservation.
Collapse
|
46
|
Isfari D, Isfari D, Gemilang Lara U, Gemilang Lara U. Cheese whey as potential resource for antimicrobial edible film and active packaging production. FOODS AND RAW MATERIALS 2019. [DOI: 10.21603/2308-4057-2019-1-229-239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Many cheese manufacturers still have not utilized cheese whey that damages to the environment as it is directly been drained into waters. Cheese whey can be used as active packaging material to prolong the shelf-life of food products. Fermented cheese whey contains bioactive peptides which are able to improve the functional properties of cheese whey as an antimicrobial agent. The combination of cheese whey with polysaccharides, lipid, and other additional ingredients can improve the physical characteristics of the active packaging in the form of edible film. Around 20-45% of plasticizer will expose the film formed. Cheese whey with agro-industrial waste starch-based formulation can be used as an alternative way to produce an antimicrobial edible film as an active packaging. The film has shown acceptable physical characteristics and high antimicrobial activity, which makes it possible to extend the shelf life of food products. An advanced process, for example, the use of transglutaminase enzyme and Candida tropicalis mutant, is also effective. The result of that is the formation of the essential compound which can improve the active packaging quality. The utilisation of cheese whey and agro-industrial waste based on starch contributes significantly to the environmental conservation.
Collapse
|
47
|
Liu C, Cui Y, Pi F, Guo Y, Cheng Y, Qian H. Torularhodin Ameliorates Oxidative Activity in Vitro and d-Galactose-Induced Liver Injury via the Nrf2/HO-1 Signaling Pathway in Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10059-10068. [PMID: 31431007 DOI: 10.1021/acs.jafc.9b03847] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Torularhodin is a natural product extracted from Sporidiobolus pararoseus and has a similar chemical structure to β-carotene. The antioxidative effects of torularhodin were investigated using DPPH, ABTS, a cell oxidative damage model in vitro, and a d-galactose-induced liver-injured mouse model in vivo. Cell experiments demonstrated that torularhodin had a powerful effect on oxidative damage caused by H2O2 to AML12 cells. Torularhodin significantly reduced inflammatory cytokines and increased the activity of antioxidant enzymes both in mouse serum and the liver. The inhibition of d-galactose-induced oxidative damage in the liver was correlated with the torularhodin-mediated effects on improving the activity of Nrf2/HO-1, reducing the expression of Bax and NF-κB p65 by western blot analysis. RT-PCR results demonstrated torularhodin upregulated the antioxidative mRNA expression of Nrf2, NQO1, and HO-1 in the liver. In summary, torularhodin significantly scavenged free radicals and prevented oxidative damage in vitro and reduced d-galactose-induced liver oxidation via promotion of the Nrf2/HO-1 pathways in vivo.
Collapse
Affiliation(s)
| | - Yan Cui
- Institute of Agricultural Products Processing, Key Laboratory of Preservation Engineering of Agricultural Products , Ningbo Academy of Agricultural Sciences , Ningbo 315040 , China
| | | | | | | | | |
Collapse
|
48
|
Antioxidant and Hypolipidemic Activities of Acid-Depolymerised Exopolysaccharides by Termitomyces albuminosus. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8915272. [PMID: 31583046 PMCID: PMC6754963 DOI: 10.1155/2019/8915272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/21/2019] [Accepted: 05/29/2019] [Indexed: 12/14/2022]
Abstract
The acid-depolymerised exopolysaccharides (ADES) of Termitomyces albuminosus were obtained, and the major fraction of ADES1 was isolated and purified by DEAE-52 cellulose anion-exchange column chromatography. Physicochemical characterizations showed that ADES1 was an α- and a β-configuration with the molecular weight of 2.43 kDa, containing (1→3, 4)-linked-Glcp, (1→4)-linked-D-Glcp, (1→3)-linked-D-Xylp, (1→4)-linked-D-Manp, T-Glcp, (1→6)-linked-D-Galp, and (1→4)-linked-L-Arap. The in vivo assays showed that ADES1 could reduce lipid levels in the serum and liver, decrease serum enzyme activities, and improve antioxidant enzyme activities and p-AMPKα expressions in hyperlipidemic mice, which were also confirmed by histopathological observations. These data indicated that ADES1 might be considered as a novel substance to treat and prevent hyperlipidemia and as a hepatoprotective agent.
Collapse
|
49
|
Song P, Gao J, Li X, Zhang C, Zhu L, Wang J, Wang J. Phthalate induced oxidative stress and DNA damage in earthworms (Eisenia fetida). ENVIRONMENT INTERNATIONAL 2019; 129:10-17. [PMID: 31102950 DOI: 10.1016/j.envint.2019.04.074] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
Phthalates (phthalic acid esters) have been widely applied as plasticizers. They are ubiquitous contaminants in soils, thereby posing a threat to human health. In this study, ecotoxicological effects of three typical PAEs (dimethyl phthalate-DMP, di-n-octyl phthalate-DOP and butyl benzyl phthalate-BBP) were investigated. As a biological indicator, earthworms (Eisenia fetida) were exposed to phthalates at various doses (0, 0.1, 1, 10 and 50 mg/kg) for different times (7, 14, 21, and 28 d). We evaluated the effects of phthalates on reactive oxygen species (ROS) generation, antioxidant enzymes (superoxide dismutase-SOD, peroxidase-POD and catalase-CAT) activities, glutathione S-transferase enzyme (GST) activity, malondialdehyde (MDA) content and DNA damage. Results showed that ROS content increased with increasing phthalates, whereas ROS content generally increased and then decreased with exposure time. However, antioxidant enzymes activities in earthworms displayed different trends. The GST activity in high-dose treatment group was significantly activated. For DMP and DOP, lipid peroxidation mainly occurred between 14 and 28 d, while for BBP, it primarily existed after 7 d and then disappeared after 28 d. Besides, comet assay indicated that there was a dose-response relationship between the DNA damage and phthalate dose, following DMP > DOP > BBP. Given their toxicity, it is important to understand the mechanisms associated with their eco-toxicity and to reduce their adverse impacts on the environment.
Collapse
Affiliation(s)
- Peipei Song
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, PR China
| | - Jianpeng Gao
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, PR China
| | - Xianxu Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, PR China
| | - Cui Zhang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, PR China
| | - Lusheng Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, PR China
| | - Jinhua Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, PR China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, PR China.
| |
Collapse
|
50
|
Morais GDS, Vieira TB, Santos GS, Baika LM, Cestari MM, Grassi MT, Navarro da Silva MA. Biological, biochemical and genotoxic effects of Sb in the midge Chironomus sancticaroli Strixino and Strixino, 1981 (Diptera: Chironomidae). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 176:196-203. [PMID: 30928891 DOI: 10.1016/j.ecoenv.2019.03.080] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 03/13/2019] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
In aquatic systems, antimony (Sb) is found in the water column and associated with sediment particles being bioavailable to organisms. Consequently, toxic effects have been detected in benthic invertebrates, but the toxicity after Sb exposure in Chironomidae have not been investigated. Were investigated DNA damage, activities of cholinesterase (ChE), alpha and beta esterase (EST-α, EST-β), glutathione S-transferase (GST), catalase (CAT), and superoxide dismutase (SOD) and lipid peroxidation after acute (48 h) and subchronic exposure (8 d). We also investigated the effects of subchronic (8 d) on development of larvae and chronic (25 d) Sb exposure on emergence and size of adults of Chironomus sancticaroli. Were analyze Sb nominal concentrations ranged from 0.5 to 800 μg.L-1. Genotoxic effects occurred at higher concentrations upon acute (50, 800 μg.L-1) and subchronic exposure (50 μg.L-1). Acute exposure increased ChE, EST-α, EST-β, and GST activities. Subchronic Sb exposure increased EST-α activity at 0.2 μg.L-1 and GST activity at 5 μg.L-1. CAT activity increased at all concentrations while increasing lipid peroxidation levels were observed (1 μg.L-1, 5 μg.L-1 and 50 μg.L-1), indicating oxidative stress. All concentrations of Sb delayed larval development and decreased the number of emerging adults. At high concentrations (50, 500, 800 μg.L-1), the emerging adults were smaller. In conclusion, these varying genotoxic, biochemical and biological effects of Sb make a notable impact on the reproduction and population dynamics of C. sancticaroli.
Collapse
Affiliation(s)
| | | | | | - Loana M Baika
- Department of Chemistry, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | - Marco Tadeu Grassi
- Department of Chemistry, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | |
Collapse
|