1
|
Watanabe A, Kotsuma M. Physiologically based pharmacokinetic modeling to predict the clinical effect of azole antifungal agents as CYP3A inhibitors on azelnidipine pharmacokinetics. Drug Metab Pharmacokinet 2024; 55:101000. [PMID: 38458122 DOI: 10.1016/j.dmpk.2024.101000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 12/19/2023] [Accepted: 01/17/2024] [Indexed: 03/10/2024]
Abstract
In this study, a physiologically based pharmacokinetic (PBPK) model of the cytochrome P450 3A (CYP3A) substrate azelnidipine was developed using in vitro and clinical data to predict the effects of azole antifungals on azelnidipine pharmacokinetics. Modeling and simulations were conducted using the Simcyp™ PBPK simulator. The azelnidipine model consisted of a full PBPK model and a first-order absorption model. CYP3A was assumed as the only azelnidipine elimination route, and CYP3A clearance was optimized using the pharmacokinetic profile of single-dose 5-mg azelnidipine in healthy participants. The model reproduced the results of a clinical drug-drug interaction study and met validation criteria. PBPK model simulations using azole antifungals (itraconazole, voriconazole, posaconazole, fluconazole, fosfluconazole) and azelnidipine or midazolam (CYP3A index substrate) were performed. Increases in the simulated area under the plasma concentration-time curve from time zero extrapolated to infinity with inhibitors were comparable between azelnidipine (range, 2.11-6.47) and midazolam (range, 2.26-9.22), demonstrating that azelnidipine is a sensitive CYP3A substrate. Increased azelnidipine plasma concentrations are expected when co-administered with azole antifungals, potentially affecting azelnidipine safety. These findings support the avoidance of azole antifungals in patients taking azelnidipine and demonstrate the utility of PBPK modeling to inform appropriate drug use.
Collapse
Affiliation(s)
- Akiko Watanabe
- Quantitative Clinical Pharmacology Department, Daiichi Sankyo, Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo, 140-8710, Japan.
| | - Masakatsu Kotsuma
- Quantitative Clinical Pharmacology Department, Daiichi Sankyo, Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo, 140-8710, Japan.
| |
Collapse
|
2
|
Salem F, Nimavardi A, Mudunuru J, Tompson D, Bloomer J, Turner DB, Taskar KS. Physiologically based pharmacokinetic modeling for development and applications of a virtual celiac disease population using felodipine as a model drug. CPT Pharmacometrics Syst Pharmacol 2023; 12:808-820. [PMID: 36855819 PMCID: PMC10272307 DOI: 10.1002/psp4.12954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 03/02/2023] Open
Abstract
In celiac disease (CeD), gastrointestinal CYP3A4 abundance and morphology is affected by the severity of disease. Therefore, exposure to CYP3A4 substrates and extent of drug interactions is altered. A physiologically-based pharmacokinetic (PBPK) population for different severities of CeD was developed. Gastrointestinal physiology parameters, such as luminal pH, transit times, morphology, P-gp, and CYP3A4 expression were included in development of the CeD population. Data on physiological difference between healthy and CeD subjects were incorporated into the model as the ratio of celiac to healthy. A PBPK model was developed and verified for felodipine extended-release tablet in healthy volunteers (HVs) and then utilized to verify the CeD populations. Plasma concentration-time profile and PK parameters were predicted and compared against those observed in both groups. Sensitivity analysis was carried out on key system parameters in CeD to understand their impact on drug exposure. For felodipine, the predicted mean concentration-time profiles and 5th and 95th percentile intervals captured the observed profile and variability in the HV and CeD populations. Predicted and observed clearance was 56.9 versus 56.1 (L/h) in HVs. Predicted versus observed mean ± SD area under the curve for extended release felodipine in different severities of CeD were values of 14.5 ± 9.6 versus 14.4 ± 2.1, 14.6 ± 9.0 versus 17.2 ± 2.8, and 28.1 ± 13.5 versus 25.7 ± 5.0 (ng.h/mL), respectively. Accounting for physiology differences in a CeD population accurately predicted the PK of felodipine. The developed CeD population can be applied for determining the drug concentration of CYP3A substrates in the gut as well as for systemic levels, and for application in drug-drug interaction studies.
Collapse
Affiliation(s)
- Farzaneh Salem
- Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, R&DStevenageUK
| | | | - Jennypher Mudunuru
- Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, R&DCollegevillePAUSA
| | - Debra Tompson
- Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, R&DStevenageUK
| | - Jackie Bloomer
- Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, R&DStevenageUK
| | | | - Kunal S. Taskar
- Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, R&DStevenageUK
| |
Collapse
|
3
|
A Physiologically Based Pharmacokinetic and Pharmacodynamic Model of the CYP3A4 Substrate Felodipine for Drug-Drug Interaction Modeling. Pharmaceutics 2022; 14:pharmaceutics14071474. [PMID: 35890369 PMCID: PMC9322514 DOI: 10.3390/pharmaceutics14071474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 12/10/2022] Open
Abstract
The antihypertensive felodipine is a calcium channel blocker of the dihydropyridine type, and its pharmacodynamic effect directly correlates with its plasma concentration. As a sensitive substrate of cytochrome P450 (CYP) 3A4 with high first-pass metabolism, felodipine shows low oral bioavailability and is susceptible to drug–drug interactions (DDIs) with CYP3A4 perpetrators. This study aimed to develop a physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) parent–metabolite model of felodipine and its metabolite dehydrofelodipine for DDI predictions. The model was developed in PK-Sim® and MoBi® using 49 clinical studies (94 plasma concentration–time profiles in total) that investigated different doses (1–40 mg) of the intravenous and oral administration of felodipine. The final model describes the metabolism of felodipine to dehydrofelodipine by CYP3A4, sufficiently capturing the first-pass metabolism and the subsequent metabolism of dehydrofelodipine by CYP3A4. Diastolic blood pressure and heart rate PD models were included, using an Emax function to describe the felodipine concentration–effect relationship. The model was tested in DDI predictions with itraconazole, erythromycin, carbamazepine, and phenytoin as CYP3A4 perpetrators, with all predicted DDI AUClast and Cmax ratios within two-fold of the observed values. The model will be freely available in the Open Systems Pharmacology model repository and can be applied in DDI predictions as a CYP3A4 victim drug.
Collapse
|
4
|
Chretien ML, Bailey DG, Asher L, Parfitt J, Driman D, Gregor J, Dresser GK. Severity of coeliac disease and clinical management study when using a CYP3A4 metabolised medication: a phase I pharmacokinetic study. BMJ Open 2020; 10:e034086. [PMID: 32139488 PMCID: PMC7059485 DOI: 10.1136/bmjopen-2019-034086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE Severity of coeliac disease depends in part on the extent of small intestinal mucosa injury. Patients with the most abnormal pathology have loss of duodenal villi CYP3A4, a drug-metabolising enzyme that inactivates many drugs. These patients are hypothesised to have greater systemic concentrations of felodipine, a drug which normally has low oral bioavailability secondary to intestinal CYP3A4-mediated metabolism. It serves as a representative for a class containing many medications. DESIGN A phase I, open-label, single-dose, pharmacokinetic study. SETTING London, Ontario, Canada. PARTICIPANTS Patients with coeliac disease (n=47) with positive serology and healthy individuals (n=68). MAIN OUTCOME MEASURES Patients with coeliac disease-upper gastrointestinal endoscopy and oral felodipine pharmacokinetics study within a 3-week period. Healthy individuals-oral felodipine pharmacokinetics study with water and grapefruit juice. RESULTS Coeliac stratification categories: Group A (n=15, normal), B+C (n=16, intraepithelial lymphocytosis with/without mild villous blunting) and D (n=16, moderate/severe villous blunting). Groups A, B+C and D had linear trends of increasing felodipine AUC0-8; mean±SEM, 14.4±2.1, 17.6±2.8, 25.7±5.0; p<0.05) and Cmax (3.5±0.5, 4.0±0.6, 6.4±1.1; p<0.02), respectively. Healthy subjects receiving water had lower felodipine AUC0-8 (11.9±0.9 vs 26.9±0.9, p=0.0001) and Cmax (2.9±0.2 vs 7.7±0.2, p=0.0001) relative to those receiving grapefruit juice. CONCLUSIONS Increased felodipine concentrations in patients with coeliac disease were most probably secondary to decreased small intestinal CYP3A4 expression. Patients with severe coeliac disease and healthy individuals with grapefruit juice had equivalently enhanced effect. Thus, patients with severe coeliac disease would probably experience similarly altered drug response, including overdose toxicity, from many important medications known to be metabolised by CYP3A4. Patients with coeliac disease with severe disease should be considered for other clinical drug management, particularly when there is the potential for serious drug toxicity.
Collapse
Affiliation(s)
- Marc L Chretien
- Medicine, London Health Sciences Centre, London, Ontario, Canada
| | - David G Bailey
- Medicine, London Health Sciences Centre, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| | - Linda Asher
- Medicine, London Health Sciences Centre, London, Ontario, Canada
| | - Jeremy Parfitt
- Pathology and Laboratory Medicine, London Health Sciences Centre, London, Ontario, Canada
| | - David Driman
- Pathology and Laboratory Medicine, London Health Sciences Centre, London, Ontario, Canada
| | - Jamie Gregor
- Medicine, London Health Sciences Centre, London, Ontario, Canada
| | - George K Dresser
- Medicine, London Health Sciences Centre, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| |
Collapse
|
5
|
Naidoo P, Chetty M. Progress in the Consideration of Possible Sex Differences in Drug Interaction Studies. Curr Drug Metab 2019; 20:114-123. [DOI: 10.2174/1389200220666181128160813] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 10/24/2018] [Accepted: 10/30/2018] [Indexed: 12/29/2022]
Abstract
Background:
Anecdotal evidence suggests that there may be sex differences in Drug-drug Interactions
(DDI) involving specific drugs. Regulators have provided general guidance for the inclusion of females in clinical
studies. Some clinical studies have reported sex differences in the Pharmacokinetics (PK) of CYP3A4 substrates,
suggesting that DDI involving CYP3A4 substrates could potentially show sex differences.
Objective:
The aim of this review was to investigate whether recent prospective DDI studies have included both
sexes and whether there was evidence for the presence or absence of sex differences with the DDIs.
Methods:
The relevant details from 156 drug interaction studies within 124 papers were extracted and evaluated.
Results:
Only eight studies (five papers) compared the outcome of the DDI between males and females. The majority
of the studies had only male volunteers. Five studies had females only while 60 had males only, with 7.7% of the
studies having an equal proportion of both sexes. Surprisingly, four studies did not specify the sex of the subjects.
:
Based on the limited number of studies comparing males and females, no specific trends or conclusions were evident.
Sex differences in the interaction were reported between ketoconazole and midazolam as well as clarithromycin and
midazolam. However, no sex difference was observed with the interaction between clarithromycin and triazolam or
erythromycin and triazolam. No sex-related PK differences were observed with the interaction between ketoconazole
and domperidone, although sex-related differences in QT prolongation were observed.
Conclusion:
This review has shown that only limited progress had been made with the inclusion of both sexes in
DDI studies.
Collapse
Affiliation(s)
- Panjasaram Naidoo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu Natal, KwaZulu Natal, South Africa
| | - Manoranjenni Chetty
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu Natal, KwaZulu Natal, South Africa
| |
Collapse
|
6
|
Dresser GK, Urquhart BL, Proniuk J, Tieu A, Freeman DJ, Arnold JM, Bailey DG. Coffee inhibition of CYP3A4 in vitro was not translated to a grapefruit-like pharmacokinetic interaction clinically. Pharmacol Res Perspect 2017; 5. [PMID: 28971609 PMCID: PMC5625156 DOI: 10.1002/prp2.346] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 07/24/2017] [Indexed: 11/10/2022] Open
Abstract
Grapefruit can augment oral medication bioavailability through irreversible (mechanism‐based) inhibition of intestinal CYP3A4. Supplementary data from our recent coffee–drug interaction clinical study showed some subjects had higher area under the plasma drug concentration ‐ time curve (AUC) and plasma peak drug concentration (Cmax) of the CYP3A4 probe felodipine compared to aqueous control. It was hypothesized that coffee might interact like grapefruit in responsive individuals. Beans from six geographical locations were consistently brewed into coffee that was separated chromatographically to a methanolic fraction for in vitro inhibition testing of CYP3A4 metabolism of felodipine at 1% coffee strength. The effect of simultaneous incubation and 10‐min preincubation with coffee fractions determined whether coffee had direct and mechanism‐based inhibitory activity. A subsequent five‐way randomized balanced controlled crossover clinical study evaluated the clinical pharmacokinetic interaction with single‐dose felodipine. Grapefruit juice, water, or three of the in vitro tested coffees were ingested at 300 mL alone 1 h before and then with felodipine. In vitro, all six coffees decreased felodipine metabolism for both simultaneous and preincubation exposure compared to corresponding control. Five coffees demonstrated mechanism‐based inhibition. Grapefruit increased felodipine AUC0–8 (25 vs. 13 ng.h/mL, P < 0.001) and Cmax (5.8 vs. 2.7 ng/mL, P < 0.001) and decreased dehydrofelodipine/felodipine AUC0–8 ratio (0.84 vs. 1.29, P < 0.001), while the three coffees caused no change in these parameters compared to water. Despite high in vitro potency of CYP3A4 inhibition, the coffees did not cause a clinical pharmacokinetic interaction possibly from insufficient amount of inhibitor(s) in coffee reaching intestinal CYP3A4 during the absorption phase of felodipine. The results of this study highlight the need for follow‐up clinical testing when in vitro results indicate the possibility of an interaction.
Collapse
Affiliation(s)
- George K Dresser
- Lawson Health Research Institute, London Health Sciences Centre, Western University, London, Ontario, Canada.,Department of Medicine, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Brad L Urquhart
- Department of Physiology & Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Julianne Proniuk
- Department of Physiology & Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Alvin Tieu
- Department of Physiology & Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - David J Freeman
- Department of Medicine, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada.,Department of Physiology & Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - John Malcolm Arnold
- Department of Medicine, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - David G Bailey
- Lawson Health Research Institute, London Health Sciences Centre, Western University, London, Ontario, Canada.,Department of Medicine, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
7
|
Mishima E, Maruyama K, Nakazawa T, Abe T, Ito S. Acute Kidney Injury from Excessive Potentiation of Calcium-channel Blocker via Synergistic CYP3A4 Inhibition by Clarithromycin Plus Voriconazole. Intern Med 2017; 56:1687-1690. [PMID: 28674358 PMCID: PMC5519471 DOI: 10.2169/internalmedicine.56.8313] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CYP3A4-inhibitors can potentiate the hypotensive effect of calcium-channel blockers. However, insufficient attention to such drug interactions may result in serious adverse reactions. A 71-year-old hypertensive man prescribed nifedipine was hospitalized for infectious endophthalmitis. Antimicrobial therapy with voriconazole lowered the blood pressure, and then clarithromycin further lowered it through the excessively elevated nifedipine concentration, leading to ischemic acute kidney injury. After the discontinuation of clarithromycin and voriconazole, the blood pressure and renal function were recovered. The combination of CYP3A4-inhibitors such as clarithromycin plus voriconazole can synergistically potentiate calcium-channel blockers. Co-prescription of multiple CYP3A4-inhibitors with calcium-channel blockers increases the risk of hypotension and acute kidney injury.
Collapse
Affiliation(s)
- Eikan Mishima
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Japan
| | - Kazuichi Maruyama
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Japan
| | - Takaaki Abe
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Japan
- Division of Medical Science, Tohoku University Graduate School of Biomedical Engineering, Japan
| | - Sadayoshi Ito
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Japan
| |
Collapse
|
8
|
Hohmann N, Haefeli WE, Mikus G. CYP3A activity: towards dose adaptation to the individual. Expert Opin Drug Metab Toxicol 2016; 12:479-97. [PMID: 26950050 DOI: 10.1517/17425255.2016.1163337] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Co-medication, gene polymorphisms and co-morbidity are main causes for high variability in expression and function of the CYP3A isoenzymes. Pharmacokinetic variability is a major source of interindividual variability of drug effect and response of CYP3A substrates. While CYP3A genotyping is of limited use, direct testing of enzyme function ('phenotyping') may be more promising to achieve individualized dosing of CYP3A substrates. AREAS COVERED We will discuss available phenotyping strategies for CYP3A isoenzymes and causes of intra- and interindividual variability of CYP3A. The impact of phenotyping on the dose selection and pharmacokinetics of CYP3A substrates (docetaxel, irinotecan, tyrosine kinase inhibitors, ciclosporin, tacrolimus) are reviewed. Pubmed searches were conducted during March-November 2015 to retrieve articles related to CYP3A enzyme, phenotyping, drug interactions with CYP3A probe substrates, and phenotyping-guided dosing algorithms. EXPERT OPINION While ample data is available on the choice appropriate phenotyping drugs (midazolam, alfentanil, aplrazolam, buspirone, triazolam), less clinical trial data is available concerning strategies to usefully guide dosing in the clinical practice. Implementation into the clinical routine necessitates further research to identify (1) an easy-to-use and cheap test for CYP3A activity that (2) adequately predicts drug exposure to (3) allow a sound decision on dose adaptation and hence (4) improve clinical outcome and/or reduce the intensity or frequency of adverse drug effects.
Collapse
Affiliation(s)
- Nicolas Hohmann
- a Department of Clinical Pharmacology and Pharmacoepidemiology , University Hospital Heidelberg , Heidelberg , Germany
| | - Walter E Haefeli
- a Department of Clinical Pharmacology and Pharmacoepidemiology , University Hospital Heidelberg , Heidelberg , Germany
| | - Gerd Mikus
- a Department of Clinical Pharmacology and Pharmacoepidemiology , University Hospital Heidelberg , Heidelberg , Germany
| |
Collapse
|
9
|
Takagi M, Sakamoto M, Itoh T, Fujiwara R. Underlying mechanism of drug–drug interaction between pioglitazone and gemfibrozil: Gemfibrozil acyl-glucuronide is a mechanism-based inhibitor of CYP2C8. Drug Metab Pharmacokinet 2015. [DOI: 10.1016/j.dmpk.2015.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
An G, Mukker JK, Derendorf H, Frye RF. Enzyme- and transporter-mediated beverage-drug interactions: An update on fruit juices and green tea. J Clin Pharmacol 2015; 55:1313-31. [DOI: 10.1002/jcph.563] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 06/03/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Guohua An
- Department of Pharmaceutical Sciences and Experimental Therapeutics; College of Pharmacy; University of Iowa; Iowa City IA USA
| | - Jatinder Kaur Mukker
- Department of Pharmaceutics; College of Pharmacy; University of Florida; Gainesville FL USA
| | - Hartmut Derendorf
- Department of Pharmaceutics; College of Pharmacy; University of Florida; Gainesville FL USA
| | - Reginald F. Frye
- Department of Pharmacotherapy and Translational Research; College of Pharmacy; University of Florida; Gainesville FL USA
| |
Collapse
|
11
|
Carrasco JCA, Portugal MDCC, Murrieta FJF, Quinteros SC. Oral Pharmacokinetics of Felodipine in Mexican Healthy Volunteers: Evidence for Interethnic Differences. INT J PHARMACOL 2015. [DOI: 10.3923/ijp.2015.382.386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Clinical hypotension with co-prescription of macrolide antibiotics and calcium-channel blockers in haemodialysis patients: a retrospective chart review. Drug Saf 2013; 36:989-93. [PMID: 23873482 DOI: 10.1007/s40264-013-0088-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND Macrolide antibiotics inhibit the cytochrome p450 enzyme system, which metabolizes calcium-channel blockers. This may result in a clinically significant interaction, causing hypotension in patients co-prescribed these two drugs. Since these drugs are frequently used in the haemodialysis population, we studied the effect of their co-prescription on actual blood pressure. METHODS A retrospective chart review of all haemodialysis patients was conducted to identify patients co-prescribed a macrolide and a dihydropyridine calcium-channel blocker. Blood pressure measurements before and during the macrolide co-prescription were abstracted and compared using a student's t test. RESULTS We identified 154 haemodialysis patients concurrently prescribed a macrolide antibiotic and a dihydropyridine calcium-channel blocker. There was no significant difference in episodes of intra-dialytic hypotension or actual blood pressure measurements in the period before macrolide co-prescription and the period during macrolide co-prescription. CONCLUSION In contrast to hospitalized patients receiving dihydropyridine calcium-channel blockers, concurrent administration of a macrolide antibiotic for infection did not result in hypotension in haemodialysis outpatients. Further research should be undertaken before a change in clinical practice against their co-prescription is considered.
Collapse
|
13
|
Mertens-Talcott SU, Zadezensky I, De Castro WV, Derendorf H, Butterweck V. Grapefruit-Drug Interactions: Can Interactions With Drugs Be Avoided? J Clin Pharmacol 2013; 46:1390-416. [PMID: 17101740 DOI: 10.1177/0091270006294277] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Grapefruit is rich in flavonoids, which have been demonstrated to have a preventive influence on many chronic diseases, such as cancer and cardiovascular disease. However, since the early 1990s, the potential health benefits of grapefruit have been overshadowed by the possible risk of interactions between drugs and grapefruit and grapefruit juice. Several drugs interacting with grapefruit are known in different drug classes, such as HMG-CoA reductase inhibitors, calcium antagonists, and immunosuppressives. Currently known mechanisms of interaction include the inhibition of cytochrome P450 as a major mechanism, but potential interactions with P-glycoprotein and organic anion transporters have also been reported. This review is designed to provide a comprehensive summary of underlying mechanisms of interaction and human clinical trials performed in the area of grapefruit drug interactions and to point out possible replacements for drugs with a high potential for interactions.
Collapse
Affiliation(s)
- S U Mertens-Talcott
- Department of Pharmaceutics, Center for Food Drug Interaction Research and Education, University of Florida, Gainesville, FL 32610-0494, USA
| | | | | | | | | |
Collapse
|
14
|
Cohen EEW, Wu K, Hartford C, Kocherginsky M, Eaton KN, Zha Y, Nallari A, Maitland ML, Fox-Kay K, Moshier K, House L, Ramirez J, Undevia SD, Fleming GF, Gajewski TF, Ratain MJ. Phase I studies of sirolimus alone or in combination with pharmacokinetic modulators in advanced cancer patients. Clin Cancer Res 2012; 18:4785-93. [PMID: 22872575 DOI: 10.1158/1078-0432.ccr-12-0110] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE Sirolimus is the eponymous inhibitor of the mTOR; however, only its analogs have been approved as cancer therapies. Nevertheless, sirolimus is readily available, has been well studied in organ transplant patients, and shows efficacy in several preclinical cancer models. EXPERIMENTAL DESIGN Three simultaneously conducted phase I studies in advanced cancer patients used an adaptive escalation design to find the dose of oral, weekly sirolimus alone or in combination with either ketoconazole or grapefruit juice that achieves similar blood concentrations as its intravenously administered and approved prodrug, temsirolimus. In addition, the effect of sirolimus on inhibition of p70S6 kinase phosphorylation in peripheral T cells was determined. RESULTS Collectively, the three studies enrolled 138 subjects. The most commonly observed toxicities were hyperglycemia, hyperlipidemia, and lymphopenia in 52%, 43%, and 41% of subjects, respectively. The target sirolimus area under the concentration curve (AUC) of 3,810 ng-h/mL was achieved at sirolimus doses of 90, 16, and 25 mg in the sirolimus alone, sirolimus plus ketoconazole, and sirolimus plus grapefruit juice studies, respectively. Ketoconazole and grapefruit juice increased sirolimus AUC approximately 500% and 350%, respectively. Inhibition of p70 S6 kinase phosphorylation was observed at all doses of sirolimus and correlated with blood concentrations. One partial response was observed in a patient with epithelioid hemangioendothelioma. CONCLUSION Sirolimus can be feasibly administered orally, once weekly with a similar toxicity and pharmacokinetic profile compared with other mTOR inhibitors and warrants further evaluation in studies of its comparative effectiveness relative to recently approved sirolimus analogs.
Collapse
Affiliation(s)
- Ezra E W Cohen
- Departments of Medicine, University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Henneman A, Thornby KA. Risk of hypotension with concomitant use of calcium-channel blockers and macrolide antibiotics. Am J Health Syst Pharm 2012; 69:1038-43. [PMID: 22644980 DOI: 10.2146/ajhp110486] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Amy Henneman
- Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, FL
| | - Krisy-Ann Thornby
- Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, FL
| |
Collapse
|
16
|
Vuppugalla R, Zhang Y, Chang S, Rodrigues AD, Marathe PH. Impact of nonlinear midazolam pharmacokinetics on the magnitude of the midazolam-ketoconazole interaction in rats. Xenobiotica 2012; 42:1058-68. [PMID: 22574883 DOI: 10.3109/00498254.2012.684104] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Numerous groups have described the rat as an in vivo model for the assessment and prediction of drug-drug interactions (DDIs) in humans involving the inhibition of cytochrome P450 3A forms. Even for a well-established substrate-inhibitor pair like midazolam-ketoconazole, however, the magnitude of the DDI in rats (e.g. 1.5- to 5-fold) does not relate to what is observed clinically (e.g. 5- to 16-fold). Because nonlinear substrate pharmacokinetics (PK) may result in a weaker interaction, it was hypothesized that the lower magnitude of interaction observed in rats was due to the saturation of metabolic pathway(s) of midazolam at the doses used (10-20 mg/kg). Therefore, the inhibitory effects of ketoconazole were reevaluated at lower oral (1 and 5 mg/kg) and intravenous (IV) (1 mg/kg) doses of midazolam. In support of the hypothesis, oral exposure at 5 mg/kg dose of midazolam was 18-fold higher compared to that at 1 mg/kg. Furthermore, when the interaction was investigated at the lower midazolam dose (1 mg/kg), ketoconazole increased the IV and oral exposure of midazolam by 7-fold and 11-fold, respectively. A weaker DDI (1.5- to 1.8-fold) was observed at the higher oral midazolam dose. Collectively, these results suggest that the lower reported interaction in rats is likely due to saturation of midazolam clearance at the doses used. Therefore, when the rat is used as a DDI model to screen and differentiate compounds, or predict CYP3A inhibition in humans, it is important to use low doses of midazolam and ensure linear PK.
Collapse
Affiliation(s)
- Ragini Vuppugalla
- Metabolism and Pharmacokinetics, Department of Pharmaceutical Candidate Optimization, Bristol-Mye's Squibb Co., P.O. Box 4000, Princeton, NJ 08543, USA.
| | | | | | | | | |
Collapse
|
17
|
Bolhuis MS, Panday PN, Pranger AD, Kosterink JGW, Alffenaar JWC. Pharmacokinetic drug interactions of antimicrobial drugs: a systematic review on oxazolidinones, rifamycines, macrolides, fluoroquinolones, and Beta-lactams. Pharmaceutics 2011; 3:865-913. [PMID: 24309312 PMCID: PMC3857062 DOI: 10.3390/pharmaceutics3040865] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 10/26/2011] [Accepted: 11/09/2011] [Indexed: 12/17/2022] Open
Abstract
Like any other drug, antimicrobial drugs are prone to pharmacokinetic drug interactions. These drug interactions are a major concern in clinical practice as they may have an effect on efficacy and toxicity. This article provides an overview of all published pharmacokinetic studies on drug interactions of the commonly prescribed antimicrobial drugs oxazolidinones, rifamycines, macrolides, fluoroquinolones, and beta-lactams, focusing on systematic research. We describe drug-food and drug-drug interaction studies in humans, affecting antimicrobial drugs as well as concomitantly administered drugs. Since knowledge about mechanisms is of paramount importance for adequate management of drug interactions, the most plausible underlying mechanism of the drug interaction is provided when available. This overview can be used in daily practice to support the management of pharmacokinetic drug interactions of antimicrobial drugs.
Collapse
Affiliation(s)
- Mathieu S Bolhuis
- Department of Hospital and Clinical Pharmacy, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
18
|
Hanley MJ, Cancalon P, Widmer WW, Greenblatt DJ. The effect of grapefruit juice on drug disposition. Expert Opin Drug Metab Toxicol 2011; 7:267-86. [PMID: 21254874 DOI: 10.1517/17425255.2011.553189] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Since their initial discovery in 1989, grapefruit juice (GFJ)-drug interactions have received extensive interest from the scientific, medical, regulatory and lay communities. Although knowledge regarding the effects of GFJ on drug disposition continues to expand, the list of drugs studied in the clinical setting remains relatively limited. AREAS COVERED This article reviews the in vitro effects of GFJ and its constituents on the activity of CYP enzymes, organic anion-transporting polypeptides (OATPs), P-glycoprotein, esterases and sulfotransferases. The translational applicability of the in vitro findings to the clinical setting is discussed for each drug metabolizing enzyme and transporter. Reported AUC ratios for available GFJ-drug interaction studies are also provided. Relevant investigations were identified by searching the PubMed electronic database from 1989 to 2010. EXPERT OPINION GFJ increases the bioavailability of some orally administered drugs that are metabolized by CYP3A and normally undergo extensive presystemic extraction. In addition, GFJ can decrease the oral absorption of a few drugs that rely on OATPs in the gastrointestinal tract for their uptake. The number of drugs shown to interact with GFJ in vitro is far greater than the number of clinically relevant GFJ-drug interactions. For the majority of patients, complete avoidance of GFJ is unwarranted.
Collapse
Affiliation(s)
- Michael J Hanley
- Tufts University School of Medicine, Program in Pharmacology and Experimental Therapeutics, 136 Harrison Avenue, Boston, MA 02111, USA
| | | | | | | |
Collapse
|
19
|
Wright AJ, Gomes T, Mamdani MM, Horn JR, Juurlink DN. The risk of hypotension following co-prescription of macrolide antibiotics and calcium-channel blockers. CMAJ 2011; 183:303-7. [PMID: 21242274 DOI: 10.1503/cmaj.100702] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND The macrolide antibiotics clarithromycin and erythromycin may potentiate calcium-channel blockers by inhibiting cytochrome P450 isoenzyme 3A4. However, this potential drug interaction is widely underappreciated and its clinical consequences have not been well characterized. We explored the risk of hypotension or shock requiring hospital admission following the simultaneous use of calcium-channel blockers and macrolide antibiotics. METHODS We conducted a population-based, nested, case-crossover study involving people aged 66 years and older who had been prescribed a calcium-channel blocker between Apr. 1, 1994, and Mar. 31, 2009. Of these patients, we included those who had been admitted to hospital for the treatment of hypotension or shock. For each antibiotic, we estimated the risk of hypotension or shock associated with the use of a calcium blocker using a pair-matched analytic approach to contrast each patient's exposure to each macrolide antibiotic (erythromycin, clarithromycin or azithromycin) in a seven-day risk interval immediately before admission to hospital and in a seven-day control interval one month earlier. RESULTS Of the 7100 patients admitted to hospital because of hypotension while receiving a calcium-channel blocker, 176 had been prescribed a macrolide antibiotic during either the risk or control intervals. Erythromycin (the strongest inhibitor of cytochrome P450 3A4) was most strongly associated with hypotension (odds ratio [OR] 5.8, 95% confidence interval [CI] 2.3-15.0), followed by clarithromycin (OR 3.7, 95% CI 2.3-6.1). Azithromycin, which does not inhibit cytochrome P450 3A4, was not associated with an increased risk of hypotension (OR 1.5, 95% CI 0.8-2.8). We found similar results in a stratified analysis of patients who received only dihydropyridine calcium-channel blockers. INTERPRETATION In older patients receiving a calcium-channel blocker, use of erythromycin or clarithromycin was associated with an increased risk of hypotension or shock requiring admission to hospital. Preferential use of azithromycin should be considered when a macrolide antibiotic is required for patients already receiving a calcium-channel blocker.
Collapse
|
20
|
Kubota Y, Kobayashi K, Tanaka N, Nakamura K, Kunitomo M, Umegaki K, Shinozuka K. Pretreatment with Ginkgo biloba extract weakens the hypnosis action of phenobarbital and its plasma concentration in rats. J Pharm Pharmacol 2010; 56:401-5. [PMID: 15025867 DOI: 10.1211/0022357022836] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
In a previous study, we found that orally administered Ginkgo biloba extract (GBE) induced hepatic cytochrome P450 (CYP) in rats, especially the CYP2B type. This fact suggested that GBE influenced the availability and safety of drugs that were metabolized via CYP2B type enzymes. To confirm this possibility, in this study we examined the effect of feeding a 0.1, 0.5 and 1.0% GBE diet for 2 weeks on the pharmacokinetics and pharmacological action of phenobarbital, which is known to be metabolized by CYP2B in Wistar rats. The feeding of GBE markedly shortened the sleeping time in rats. Furthermore, the maximal phenobarbital plasma concentration (Cmax) and the 24-h area under the curve (AUC0–24) were decreased in rats fed GBE. These findings indicate that GBE reduces the therapeutic potency of phenobarbital via enhancement of cytochrome P450 expression, and raises the possibility that GBE and drug interactions may occur clinically.
Collapse
Affiliation(s)
- Yoko Kubota
- Department of Pharmacology, School of Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya 663-8179, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Marathe PH, Rodrigues AD. Examination of CYP3A and P-glycoprotein-mediated drug-drug interactions using animal models. Methods Mol Biol 2010; 596:385-403. [PMID: 19949933 DOI: 10.1007/978-1-60761-416-6_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
With the advent of polytherapy for cancer treatment it has become prudent to minimize, as much as possible, the potential for drug-drug interactions (DDI). Toward this end, the metabolic and transporter pathways involved in the disposition of a drug candidate (phenotyping) and potential for inhibition and induction of drug-metabolizing enzymes and transporters are evaluated in vitro. Such in vitro human data can be made available prior to human dosing and enable in vitro to in vivo-based predictions of clinical outcomes. Despite some success, however, in vitro systems are not dynamic and sometimes fail to predict drug-drug interactions for a variety of reasons. In comparison, relatively less effort has been made to evaluate predictions based on data derived from in vivo animal models. This chapter will attempt to summarize different examples from the literature where animal models have been used to predict cytochrome P450 3A (CYP3A)- and P-glycoprotein-based DDI. When employing data from animal models one needs to be aware of species differences in enzyme- and transporter-activity leading to differences in pharmacokinetics, clearance pathways as well as species differences in selectivity and affinity of probe substrates and inhibitors. Because of these differences, in vivo animal studies alone, cannot be predictive of human DDI. Despite these caveats, the information obtained from validated in vivo animal models may prove useful when used in conjunction with in vitro-in vivo extrapolation methods. Such an integrated data set can be used to select drug candidates with a reduced DDI potential.
Collapse
Affiliation(s)
- Punit H Marathe
- Metabolism and Pharmacokinetics, Bristol-Myers Squibb, Pennington, NJ, USA.
| | | |
Collapse
|
22
|
Sekiguchi N, Higashida A, Kato M, Nabuchi Y, Mitsui T, Takanashi K, Aso Y, Ishigai M. Prediction of Drug-Drug Interactions based on Time-Dependent Inhibition from High Throughput Screening of Cytochrome P450 3A4 Inhibition. Drug Metab Pharmacokinet 2009; 24:500-10. [DOI: 10.2133/dmpk.24.500] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Mandlekar SV, Rose AV, Cornelius G, Sleczka B, Caporuscio C, Wang J, Marathe PH. Development of anin vivorat screen model to predict pharmacokinetic interactions of CYP3A4 substrates. Xenobiotica 2008; 37:923-42. [PMID: 17896322 DOI: 10.1080/00498250701570269] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
With the advent of polytherapy, drug interactions have become a common clinical problem. Although in vitro data are routinely used for the prediction of drug interactions, in vitro systems are not dynamic and sometimes fail to predict drug interactions. We sought to use the rat as an in vivo screening model to predict pharmacokinetic interactions with ketoconazole. The pharmacokinetic studies were conducted following an oral dose of CYP3A substrates and an optimized oral regimen of ketoconazole. In vitro reaction phenotyping was conducted using individual human and rat cDNA-expressed CYP enzymes and human or rat liver microsomes in the presence of ketoconazole. The in vitro experiments indicated that the test compounds were largely metabolized by CYP3A in both human and rat. The compounds could be rank-ordered with respect to the increase in C(max) and area under the curve (AUC) values relative to midazolam in the presence of ketoconazole. The degree of pharmacokinetic interaction with ketoconazole was dependent, in part, upon their in vitro metabolism in the presence of rat CYP3A1/3A2 and in rat and human microsomes, co-incubated with ketoconazole, and on their fraction metabolized (f(m)) in the rat relative to other disposition pathways. Based on the rank-order of interaction, the compounds could be prioritized for further preclinical development.
Collapse
Affiliation(s)
- S V Mandlekar
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, NJ, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Ohno Y, Hisaka A, Suzuki H. General Framework for the Quantitative Prediction of CYP3A4-Mediated Oral Drug Interactions Based on the AUC Increase by Coadministration of??Standard Drugs. Clin Pharmacokinet 2007; 46:681-96. [PMID: 17655375 DOI: 10.2165/00003088-200746080-00005] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
BACKGROUND Cytochrome P450 (CYP) 3A4 is the most prevalent metabolising enzyme in the human liver and is also a target for various drug interactions of significant clinical concern. Even though there are numerous reports regarding drug interactions involving CYP3A4, it is far from easy to estimate all potential interactions, since too many drugs are metabolised by CYP3A4. For this reason, a comprehensive framework for the prediction of CYP3A4-mediated drug interactions would be of considerable clinical importance. OBJECTIVE The objective of this study was to provide a robust and practical method for the prediction of drug interactions mediated by CYP3A4 using minimal in vivo information from drug-interaction studies, which are often carried out early in the course of drug development. DATA SOURCES The analysis was based on 113 drug-interaction studies reported in 78 published articles over the period 1983-2006. The articles were used if they contained sufficient information about drug interactions. Information on drug names, doses and the magnitude of the increase in the area under the concentration-time curve (AUC) were collected. METHODS The ratio of the contribution of CYP3A4 to oral clearance (CR(CYP)(3A4)) was calculated for 14 substrates (midazolam, alprazolam, buspirone, cerivastatin, atorvastatin, ciclosporin, felodipine, lovastatin, nifedipine, nisoldipine, simvastatin, triazolam, zolpidem and telithromycin) based on AUC increases observed in interaction studies with itraconazole or ketoconazole. Similarly, the time-averaged apparent inhibition ratio of CYP3A4 (IR(CYP)(3A4)) was calculated for 18 inhibitors (ketoconazole, voriconazole, itraconazole, telithromycin, clarithromycin, saquinavir, nefazodone, erythromycin, diltiazem, fluconazole, verapamil, cimetidine, ranitidine, roxithromycin, fluvoxamine, azithromycin, gatifloxacin and fluoxetine) primarily based on AUC increases observed in drug-interaction studies with midazolam. The increases in the AUC of a substrate associated with coadministration of an inhibitor were estimated using the equation 1/(1 - CR(CYP)(3A4) x IR(CYP)(3A4)), based on pharmacokinetic considerations. RESULTS The proposed method enabled predictions of the AUC increase by interactions with any combination of these substrates and inhibitors (total 251 matches). In order to validate the reliability of the method, the AUC increases in 60 additional studies were analysed. The method successfully predicted AUC increases within 67-150% of the observed increase for 50 studies (83%) and within 50-200% for 57 studies (95%). Midazolam is the most reliable standard substrate for evaluation of the in vivo inhibition of CYP3A4. The present analysis suggests that simvastatin, lovastatin and buspirone can be used as alternatives. To evaluate the in vivo contribution of CYP3A4, ketoconazole or itraconazole is the selective inhibitor of choice. CONCLUSION This method is applicable to (i) prioritize clinical trials for investigating drug interactions during the course of drug development and (ii) predict the clinical significance of unknown drug interactions. If a drug-interaction study is carefully designed using appropriate standard drugs, significant interactions involving CYP3A4 will not be missed. In addition, the extent of CYP3A4-mediated interactions between many other drugs can be predicted using the current method.
Collapse
Affiliation(s)
- Yoshiyuki Ohno
- Department of Pharmacy, University of Tokyo Hospital Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
25
|
Ogasawara A, Kume T, Kazama E. Effect of oral ketoconazole on intestinal first-pass effect of midazolam and fexofenadine in cynomolgus monkeys. Drug Metab Dispos 2006; 35:410-8. [PMID: 17142564 DOI: 10.1124/dmd.106.011288] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Because the expression of drug-metabolizing enzymes and drug efflux transporters has been shown in the intestine, the contribution of this tissue to the first-pass effect has become of significant interest. Consequently, a comprehensive understanding of the absorption barriers in key preclinical species would be useful for the precise characterization of drug candidates. In the present investigation, we evaluated the intestinal first-pass effect of midazolam (MDZ) and fexofenadine (FEX), typical substrates for CYP3A and P-glycoprotein (P-gp), respectively, with ketoconazole (KTZ) as a potent dual CYP3A/P-gp inhibitor in cynomolgus monkeys. When MDZ or FEX was administered i.v. at doses of 0.3 or 1 mg/kg, respectively, the plasma concentration-time profiles were not influenced by p.o. coadministration of KTZ (20 mg/kg). On the other hand, when MDZ or FEX was administered p.o. at doses of 1 or 5 mg/kg, respectively, concomitant with a dose p.o. of KTZ (20 mg/kg), significant increases were observed in the area under the plasma concentration-time curves of MDZ or FEX (22-fold in MDZ and 3-fold in FEX). These findings indicate that both CYP3A and P-gp play a key role in the intestinal barrier and that inhibition of intestinal CYP3A/P-gp activities contributes exclusively toward the drug-drug interactions (DDI) with KTZ. Additionally, the K(i) values of the antifungal agents, KTZ, itraconazole, and fluconazole, for MDZ 1'-hydroxylation in monkey intestinal and liver microsomes were comparable with those in the respective human samples. These results suggest that monkeys may be an appropriate animal species for evaluating the intestinal first-pass effect of p.o. administered drugs and predicting intestinal DDI related to CYP3A4 and P-gp in humans.
Collapse
Affiliation(s)
- Akihito Ogasawara
- Exploratory DMPK, Exploratory Toxicology and DMPK Research Laboratories, Tanabe Seiyaku Co., Ltd., 2-2-50, Kawagishi, Toda, Saitama, 335-8505, Japan.
| | | | | |
Collapse
|
26
|
Galetin A, Burt H, Gibbons L, Houston JB. PREDICTION OF TIME-DEPENDENT CYP3A4 DRUG-DRUG INTERACTIONS: IMPACT OF ENZYME DEGRADATION, PARALLEL ELIMINATION PATHWAYS, AND INTESTINAL INHIBITION. Drug Metab Dispos 2005; 34:166-75. [PMID: 16221752 DOI: 10.1124/dmd.105.006874] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Time-dependent inhibition of CYP3A4 often results in clinically significant drug-drug interactions. In the current study, 37 in vivo cases of irreversible inhibition were collated, focusing on macrolides (erythromycin, clarithromycin, and azithromycin) and diltiazem as inhibitors. The interactions included 17 different CYP3A substrates showing up to a 7-fold increase in AUC (13.5% of studies were in the range of potent inhibition). A systematic analysis of the impact of CYP3A4 degradation half-life (mean t1/2deg = 3 days, ranging from 1 to 6 days) on the prediction of the extent of interaction for compounds with a differential contribution from CYP3A4 to the overall elimination (defined by fmCYP3A4) was performed. Although the prediction accuracy was very sensitive to the CYP3A4 degradation rate for substrates mainly eliminated by this enzyme fm(CYP3A4 >or= 0.9), minimal effects are observed when CYP3A4 contributes less than 50% to the overall elimination in cases when the parallel elimination pathway is not subject to inhibition. Use of the mean CYP3A4 t1/2deg (3 days), average unbound systemic plasma concentration of the inhibitor, and the corresponding fm(CYP3A4) resulted in 89% of studies predicted within 2-fold of the in vivo value. The impact of the interaction in the gut wall was assessed by assuming maximal intestinal inhibition of CYP3A4. Although a reduced number of false-negative predictions was observed, there was an increased number of overpredictions, and generally, a loss of prediction accuracy was observed. The impact of the possible interplay between CYP3A4 and efflux transporters on the intestinal interaction requires further evaluation.
Collapse
Affiliation(s)
- Aleksandra Galetin
- School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | | | | | | |
Collapse
|
27
|
Saito M, Hirata-Koizumi M, Miyake S, Hasegawa R. Comparison of information on the pharmacokinetic interactions of Ca antagonists in the package inserts from three countries (Japan, USA and UK). Eur J Clin Pharmacol 2005; 61:531-6. [PMID: 16041596 DOI: 10.1007/s00228-005-0974-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2005] [Accepted: 06/24/2005] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Ca antagonists are one of the most popular classes of drugs used to treat hypertension and angina. These drugs may interact with either CYP3A4 or MDR-1 substrates, with the degree of interaction differing with each drug. We carried out a literature search to examine and compare the extent to which crucial pharmacokinetic (PK) information is included in package inserts (PIs) in Japan, USA and the UK. METHODS A MEDLINE search from 1966 to November 2004 was undertaken with the aim of identifying studies on clinical PK drug interactions between seven Ca antagonists that are available in three countries and three CYP3A4 inhibitors (erythromycin, itraconazole and cimetidine), a CYP3A4 inhibitory food, grapefruit juice (GFJ) and the MDR-1 substrate, digoxin. The current PIs for Ca antagonists were obtained from the website of the regulatory authorities or the electronic Medicines Compendium. RESULTS Of all possible combinations of seven Ca antagonists with three CYP3A4 inhibitor drugs, drug interaction information was available in the literature on nine combinations: Seven of these were listed in the USA PIs, two in the UK PIs, and none in the Japanese PIs. Interaction studies with GFJ were reported for every Ca antagonist; PIs in the USA provided quantitative data for four of these interactions, whereas UK PIs provided quantitative data for only one of the interactions and Japanese PIs provided no quantitative information. The PK data of co-medication of digoxin with Ca antagonists have been reported for every Ca antagonists. The USA PIs provided quantitative data for five Ca antagonists, whereas the UK PIs provided quantitative data for three Ca antagonists and Japanese PIs provided no quantitative data. CONCLUSION The literature search revealed that PIs in the USA provided a great deal of quantitative information on PK interactions between Ca antagonists and other drugs or GFJ. In contrast, PIs in the UK and Japan did not provide sufficient information. We conclude that crucial quantitative information on these drug interactions should be incorporated in PIs, especially in Japan and the UK, as a means of assisting healthcare providers.
Collapse
Affiliation(s)
- Mitsuo Saito
- Division of Medicinal Safety Science, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan.
| | | | | | | |
Collapse
|
28
|
Gelal A, Balkan D, Ozzeybek D, Kaplan YC, Gurler S, Guven H, Benowitz NL. Effect of menthol on the pharmacokinetics and pharmacodynamics of felodipine in healthy subjects. Eur J Clin Pharmacol 2004; 60:785-90. [PMID: 15592925 DOI: 10.1007/s00228-004-0847-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Accepted: 09/27/2004] [Indexed: 11/28/2022]
Abstract
OBJECTIVES The present study was undertaken to determine whether menthol affects the metabolism of and pharmacological responses to the calcium channel antagonist felodipine in people. METHODS Eleven healthy subjects (ten female, one male) participated in a randomized, double-blind, two-way crossover study, comparing the kinetics and effects of a single oral dose of felodipine ER tablet (Plendil, 10 mg) with menthol (test) or placebo (reference) capsules. Ten subjects completed the study. At the beginning of the study, a 10-mg felodipine ER tablet and a 100-mg menthol or placebo capsule were given. During the 2nd, 5th and 7th hours of the study, 50, 25 and 25 mg menthol or placebo capsules were given, respectively. Blood samples and cardiovascular measurements were obtained at frequent intervals. Serum felodipine and dehydrofelodipine concentrations were determined by means of gas chromatography/mass spectrometry. RESULTS Pharmacokinetic parameters of felodipine and dehydrofelodipine (AUC0-24, Cmax, t(max), dehydrofelodipine/felodipine AUC0-24 ratio) were not markedly changed with menthol coadministration. Only eight female subjects' cardiovascular data were included in the analysis because of technical problems during the measurements. There were no statistically significant differences in blood pressures and heart rates between the two treatments. CONCLUSIONS We conclude that the pharmacokinetics and pharmacodynamics of felodipine were essentially unaltered by menthol.
Collapse
Affiliation(s)
- Ayse Gelal
- Department of Pharmacology, Dokuz Eylul University Medical Faculty, Inciralti, 35340, Izmir, Turkey.
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
P-glycoprotein (Pgp) is a 170 kDa phosphorylated glycoprotein encoded by human MDR1 gene. It is responsible for the systemic disposition of numerous structurally and pharmacologically unrelated lipophilic and amphipathic drugs, carcinogens, toxins, and other xenobiotics in many organs, such as the intestine, liver, kidney, and brain. Like cytochrome P450s (CYP3A4), Pgp is vulnerable to inhibition, activation, or induction by herbal constituents. This was demonstrated by using an ATPase assay, purified Pgp protein or intact Pgp-expressing cells, and proper probe substrates and inhibitors. Curcumin, ginsenosides, piperine, some catechins from green tea, and silymarin from milk thistle were found to be inhibitors of Pgp, while some catechins from green tea increased Pgp-mediated drug transport by heterotropic allosteric mechanism, and St. John's wort induced the intestinal expression of Pgp in vitro and in vivo. Some components (e.g., bergamottin and quercetin) from grapefruit juice were reported to modulate Pgp activity. Many of these herbal constituents, in particular flavonoids, were reported to modulate Pgp by directly interacting with the vicinal ATP-binding site, the steroid-binding site, or the substrate-binding site. Some herbal constituents (e.g., hyperforin and kava) were shown to activate pregnane X receptor, an orphan nuclear receptor acting as a key regulator of MDR1 and many other genes. The inhibition of Pgp by herbal constituents may provide a novel approach for reversing multidrug resistance in tumor cells, whereas the stimulation of Pgp expression or activity has implication for chemoprotective enhancement by herbal medicines. Certain natural flavonols (e.g., kaempferol, quercetin, and galangin) are potent stimulators of the Pgp-mediated efflux of 7,12-dimethylbenz(a)-anthracene (a carcinogen). The modulation of Pgp activity and expression by these herb constituents may result in altered absorption and bioavailability of drugs that are Pgp substrates. This is exemplified by increased oral bioavailability of phenytoin and rifampin by piperine and decreased bioavailability of indinavir, tacrolimus, cyclosporine, digoxin, and fexofenadine by coadministered St. John's wort. However, many of these drugs are also substrates of CYP3A4. Thus, the modulation of intestinal Pgp and CYP3A4 represents an important mechanism for many clinically important herb-drug interactions. Further studies are needed to explore the relative role of Pgp and CYP3A4 modulation by herbs and the mechanism for the interplay of these two important proteins in herb-drug interactions.
Collapse
Affiliation(s)
- Shufeng Zhou
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore.
| | | | | |
Collapse
|
30
|
Abstract
Today, the lifetime risk of patients aged 55-65 years to receive antihypertensive drugs approaches 60%. Yet, recent trials suggest that hypertension is not adequately controlled in the majority of patients. The prevalence of hypertension increases with advancing age, as does the prevalence of comorbid conditions and the total number of medications taken. Multi-drug therapy, advancing age and comorbid conditions are also key risk factors for adverse drug reactions and drug interactions. In this review, the authors evaluate the most frequently used antihypertensive drugs (diuretics, beta-adrenergic blockers, angiotensin-converting enzyme inhibitors, calcium channel blockers, angiotensin II receptor Type 1 blockers and alpha-adrenergic blockers) with special reference to pharmacodynamic and pharmacokinetic drug interactions. As the spectrum of drugs prescribed is constantly changing, safety yesterday does not imply safety today and safety today does not imply safety tomorrow. Furthermore, therapeutic efficacy should not be neglected over concerns regarding drug interactions. Many patients are at risk of clinically relevant drug interactions involving antihypertensive drugs but, presently, even more patients may be at risk of suffering from the consequences of their inadequately treated hypertension. In this respect, the authors discuss controversial viewpoints on the overall clinical relevance of drug interactions occurring at the level of cytochrome P450 metabolism.
Collapse
Affiliation(s)
- Renke Maas
- Institut für Experimentelle und Klinische Pharmakologie, Universitätsklinikum HamburgEppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | | |
Collapse
|
31
|
Abstract
Grapefruit juice can alter oral drug pharmacokinetics by different mechanisms. Irreversible inactivation of intestinal cytochrome P450 (CYP) 3A4 is produced by commercial grapefruit juice given as a single normal amount (e.g. 200-300 mL) or by whole fresh fruit segments. As a result, presystemic metabolism is reduced and oral drug bioavailability increased. Enhanced oral drug bioavailability can occur 24 hours after juice consumption. Inhibition of P-glycoprotein (P-gp) is a possible mechanism that increases oral drug bioavailability by reducing intestinal and/or hepatic efflux transport. Recently, inhibition of organic anion transporting polypeptides by grapefruit juice was observed in vitro; intestinal uptake transport appeared decreased as oral drug bioavailability was reduced. Numerous medications used in the prevention or treatment of coronary artery disease and its complications have been observed or are predicted to interact with grapefruit juice. Such interactions may increase the risk of rhabdomyolysis when dyslipidemia is treated with the HMG-CoA reductase inhibitors atorvastatin, lovastatin, or simvastatin. Potential alternative agents are pravastatin, fluvastatin, or rosuvastatin. Such interactions might also cause excessive vasodilatation when hypertension is managed with the dihydropyridines felodipine, nicardipine, nifedipine, nisoldipine, or nitrendipine. An alternative agent could be amlodipine. In contrast, the therapeutic effect of the angiotensin II type 1 receptor antagonist losartan may be reduced by grapefruit juice. Grapefruit juice interacting with the antidiabetic agent repaglinide may cause hypoglycemia, and interaction with the appetite suppressant sibutramine may cause elevated BP and HR. In angina pectoris, administration of grapefruit juice could result in atrioventricular conduction disorders with verapamil or attenuated antiplatelet activity with clopidrogel. Grapefruit juice may enhance drug toxicity for antiarrhythmic agents such as amiodarone, quinidine, disopyramide, or propafenone, and for the congestive heart failure drug, carvediol. Some drugs for the treatment of peripheral or central vascular disease also have the potential to interact with grapefruit juice. Interaction with sildenafil, tadalafil, or vardenafil for erectile dysfunction, may cause serious systemic vasodilatation especially when combined with a nitrate. Interaction between ergotamine for migraine and grapefruit juice may cause gangrene or stroke. In stroke, interaction with nimodipine may cause systemic hypotension. If a drug has low inherent oral bioavailability from presystemic metabolism by CYP3A4 or efflux transport by P-gp and the potential to produce serious overdose toxicity, avoidance of grapefruit juice entirely during pharmacotherapy appears mandatory. Although altered drug response is variable among individuals, the outcome is difficult to predict and avoiding the combination will guarantee toxicity is prevented. The elderly are at particular risk, as they are often prescribed medications and frequently consume grapefruit juice.
Collapse
Affiliation(s)
- David G Bailey
- Department of Medicine and Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada.
| | | |
Collapse
|
32
|
Veronese ML, Gillen LP, Burke JP, Dorval EP, Hauck WW, Pequignot E, Waldman SA, Greenberg HE. Exposure-dependent inhibition of intestinal and hepatic CYP3A4 in vivo by grapefruit juice. J Clin Pharmacol 2003; 43:831-9. [PMID: 12953340 DOI: 10.1177/0091270003256059] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Consumption of typical quantities of grapefruit juice (GFJ) increases the oral bioavailability of several CYP3A4 substrates without affecting their elimination, consistent with selective inhibition of intestinal but not hepatic CYP3A4. However, increases in the AUCs of CYP3A4 substrates recently associated with the consumption of large amounts of GFJ were similar to those observed with potent inhibitors of hepatic CYP3A4. The current study compared the effects of consuming large quantities and more typical amounts of GFJ on the activity of hepatic and intestinal cytochrome P450 3A4 in vivo, employing the erythromycin breath test (EBT) and oral midazolam pharmacokinetics. This was a two-phase, randomized, placebo-controlled crossover study, with each phase conducted with a separate panel of subjects. In Phase I, 8 male volunteers were randomized to the order of receiving one glass (240 mL) of water (placebo) or double-strength (DS) GFJ tid for 2 days and then 90, 60, and 30 minutes prior to administration of probe drugs on the 3rd day. In Phase II, 16 male volunteers were randomized to the order of receiving one glass of (1) single-strength (SS) GFJ, (2) DS GFJ, and (3) water (placebo). All treatments were administered in a fasted state. There was at least a 7-day washout period between treatments. Probe drugs, administered 30 minutes or 1 hour following each treatment in Phase I or II, respectively, consisted of oral midazolam (2 mg) coadministered with IV [14G N-methyl] erythromycin (0.03 mg). The EBT was performed 20 minutes following erythromycin administration. Blood was collected during the 24 hours following probe drug administration for the analysis of midazolam pharmacokinetics. In Phase I, consumption of one glass of DS GFJ tid for 3 days increased the Cmax of midazolam 3-fold, the AUC 6-fold, and the t1/2 2-fold and decreased the amount of exhaled 14CO2 in all 8 subjects, with a mean decrease in EBT of 18%. In Phase II, consumption of one glass of DS GFJ significantly increased the AUC and Cmax of midazolam approximately 2-fold without a significant effect on the t1/2 of midazolam or the EBT. The effects of consuming one glass of SS GFJ on midazolam pharmacokinetics and the EBT were not significantly different from those of one glass of DS GFJ. It was concluded that consumption of one glass of DS GFJ tid for 3 days significantly increased the AUC, Cmax, and t1/2 of midazolam and reduced EBT values, reflecting inhibition of both hepatic and intestinal CYP3A4. In contrast, consumption of one glass of SS or DS GFJ increased midazolam AUC and Cmax, with little effect on the midazolam t1/2 and EBT values, reflecting preferential inhibition of intestinal CYP3A4. Alterations of midazolam AUC and Cmax induced by nine glasses of DS GFJ were significantly greater than those produced by one glass of SS or DS GFJ. These data suggest that GFJ inhibits intestinal and hepatic CYP3A4 in an exposure-dependent fashion and that patients taking medications that are CYP3A4 substrates are at risk for developing drug-related adverse events if they consume large amounts of grapefruit juice.
Collapse
Affiliation(s)
- Maria L Veronese
- Division of Clinical Pharmacology, Departments of Medicine and Biochemistry, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Tsutsumi K, Kotegawa T, Kuranari M, Otani Y, Morimoto T, Matsuki S, Nakano S. The Effect of Erythromycin and Clarithromycin on the Pharmacokinetics of Intravenous Digoxin in Healthy Volunteers. J Clin Pharmacol 2002. [DOI: 10.1177/009127002237992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Kimiko Tsutsumi
- Department of Clinical Pharmacology and Therapeutics, Oita Medical University, Oita, Japan
| | - Tsutomu Kotegawa
- Clinical Pharmacology Center, Oita Medical University Hospital, Oita, Japan
| | - Masae Kuranari
- Clinical Pharmacology Center, Oita Medical University Hospital, Oita, Japan
| | - Yasukiyo Otani
- Department of Clinical Pharmacology and Therapeutics, Oita Medical University, Oita, Japan
| | - Takuya Morimoto
- Department of Clinical Pharmacology and Therapeutics, Oita Medical University, Oita, Japan
| | - Shunji Matsuki
- Department of Obstetrics and Gynecology, Oita Medical University, Oita, Japan
| | - Shigeyuki Nakano
- Department of Clinical Pharmacology and Therapeutics, Oita Medical University, Oita, Japan
- Clinical Pharmacology Center, Oita Medical University Hospital, Oita, Japan
| |
Collapse
|
34
|
Andersen V, Pedersen N, Larsen NE, Sonne J, Larsen S. Intestinal first pass metabolism of midazolam in liver cirrhosis --effect of grapefruit juice. Br J Clin Pharmacol 2002; 54:120-4. [PMID: 12207630 PMCID: PMC1874412 DOI: 10.1046/j.1365-2125.2002.01615.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AIMS Grapefruit juice inhibits CYP3A4 in the intestinal wall leading to a reduced intestinal first pass metabolism and thereby an increased oral bioavailability of certain drugs. For example, it has been shown that the oral bioavailability of midazolam, a CYP3A4 substrate, increased by 52% in healthy subjects after ingestion of grapefruit juice. However, this interaction has not been studied in patients with impaired liver function. Accordingly, the effect of grapefruit juice on the AUC of midazolam and the metabolite alpha-hydroxymidazolam was studied in patients with cirrhosis of the liver. METHODS An open randomized two-way crossover study was performed. Ten patients (3 females, 7 males) with liver cirrhosis based on biopsy or clinical criteria participated. Six patients had a Child-Pugh score of A, one B and three C. Tap water (200 ml) or grapefruit juice were consumed 60 and 15 min before midazolam (15 mg) was administered orally. Plasma samples were analysed for midazolam and alpha-hydroxymidazolam. RESULTS Grapefruit juice increased the AUC of midazolam by 106% (16, 197%) (mean (95% confidence interval)) and the AUC of the metabolite alpha-hydroxymidazolam decreased to 25% (12, 37%) (P<0.05 for both). The ratio of the AUCs of the metabolite alpha-hydroxymidazolam to midazolam decreased from 0.77 (0.46, 1.07) to 0.11 (0.05, 0.19) (P<0.05). t(1/2) remained unaltered for both drug and metabolite. Midazolam C(max), t(max), and alpha-hydroxymidazolam t(max) increased, but these changes were not statistically significant, whereas C(max) of the metabolite decreased to 30% (14, 47%) (P<0.05). CONCLUSIONS A marked interaction between oral midazolam and grapefruit juice was found and the data are consistent with a reduced first-pass metabolism of midazolam. This is likely to occur at the intestinal wall inhibition of CYP3A4 activity by grapefruit juice. These results indicate that patients with liver cirrhosis are more dependent on the intestine for metabolism of CYP3A4 substrates than subjects with normal liver function.
Collapse
Affiliation(s)
- Vibeke Andersen
- Medical Department, Viborg County Hospital, Viborg, Denmark.
| | | | | | | | | |
Collapse
|
35
|
Doherty MM, Charman WN. The mucosa of the small intestine: how clinically relevant as an organ of drug metabolism? Clin Pharmacokinet 2002; 41:235-53. [PMID: 11978143 DOI: 10.2165/00003088-200241040-00001] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The intestinal mucosa is capable of metabolising drugs via phase I and II reactions. Increasingly, as a result of in vitro and in vivo (animal and human) data, the intestinal mucosa is being implicated as a major metabolic organ for some drugs. This has been supported by clinical studies of orally administered drugs (well-known examples include cyclosporin, midazolam, nifedipine and tacrolimus) where intestinal drug metabolism has significantly reduced oral bioavailability. This review discusses the intestinal properties and processes that contribute to drug metabolism. An understanding of the interplay between the processes controlling absorption, metabolism and P-glycoprotein-mediated efflux from the intestinal mucosa into the intestinal lumen facilitates determination of the extent of the intestinal contribution to first-pass metabolism. The clinical relevance of intestinal metabolism, however, depends on the relative importance of the metabolic pathway involved, the therapeutic index of the drug and the inherent inter- and intra-individual variability. This variability can stem from genetic (metabolising enzyme polymorphisms) and/or non-genetic (including concomitant drug and food intake, route of administration) sources. An overwhelming proportion of clinically relevant drug interactions where the intestine has been implicated as a major contributor to first-pass metabolism involve drugs that undergo cytochrome P450 (CYP) 3A4-mediated biotransformation and are substrates for the efflux transporter P-glycoprotein. Much work is yet to be done in characterising the clinical impact of other enzyme systems on drug therapy. In order to achieve this, the first-pass contributions of the intestine and liver must be successfully decoupled.
Collapse
Affiliation(s)
- Margaret M Doherty
- Department of Pharmaceutics, Victorian College of Pharmacy, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia.
| | | |
Collapse
|
36
|
Pea F, Furlanut M. Pharmacokinetic aspects of treating infections in the intensive care unit: focus on drug interactions. Clin Pharmacokinet 2002; 40:833-68. [PMID: 11735605 DOI: 10.2165/00003088-200140110-00004] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Pharmacokinetic interactions involving anti-infective drugs may be important in the intensive care unit (ICU). Although some interactions involve absorption or distribution, the most clinically relevant interactions during anti-infective treatment involve the elimination phase. Cytochrome P450 (CYP) 1A2, 2C9, 2C19, 2D6 and 3A4 are the major isoforms responsible for oxidative metabolism of drugs. Macrolides (especially troleandomycin and erythromycin versus CYP3A4), fluoroquinolones (especially enoxacin, ciprofloxacin and norfloxacin versus CYP1A2) and azole antifungals (especially fluconazole versus CYP2C9 and CYP2C19, and ketoconazole and itraconazole versus CYP3A4) are all inhibitors of CYP-mediated metabolism and may therefore be responsible for toxicity of other coadministered drugs by decreasing their clearance. On the other hand, rifampicin is a nonspecific inducer of CYP-mediated metabolism (especially of CYP2C9, CYP2C19 and CYP3A4) and may therefore cause therapeutic failure of other coadministered drugs by increasing their clearance. Drugs frequently used in the ICU that are at risk of clinically relevant pharrmacokinetic interactions with anti-infective agents include some benzodiazepines (especially midazolam and triazolam), immunosuppressive agents (cyclosporin, tacrolimus), antiasthmatic agents (theophylline), opioid analgesics (alfentanil), anticonvulsants (phenytoin, carbamazepine), calcium antagonists (verapamil, nifedipine, felodipine) and anticoagulants (warfarin). Some lipophilic anti-infective agents inhibit (clarithromycin, itraconazole) or induce (rifampicin) the transmembrane transporter P-glycoprotein, which promotes excretion from renal tubular and intestinal cells. This results in a decrease or increase, respectively, in the clearance of P-glycoprotein substrates at the renal level and an increase or decrease, respectively, of their oral bioavailability at the intestinal level. Hydrophilic anti-infective agents are often eliminated unchanged by renal glomerular filtration and tubular secretion, and are therefore involved in competition for excretion. Beta-lactams are known to compete with other drugs for renal tubular secretion mediated by the organic anion transport system, but this is frequently not of major concern, given their wide therapeutic index. However, there is a risk of nephrotoxicity and neurotoxicity with some cephalosporins and carbapenems. Therapeutic failure with these hydrophilic compounds may be due to haemodynamically active coadministered drugs, such as dopamine, dobutamine and furosemide, which increase their renal clearance by means of enhanced cardiac output and/or renal blood flow. Therefore, coadministration of some drugs should be avoided, or at least careful therapeutic drug monitoring should be performed when available. Monitoring may be especially helpful when there is some coexisting pathophysiological condition affecting drug disposition, for example malabsorption or marked instability of the systemic circulation or of renal or hepatic function.
Collapse
Affiliation(s)
- F Pea
- Institute of Clinical Pharmacology and Toxicology, Department of Experimental and Clinical Pathology and Medicine, Medical School, University of Udine, Italy.
| | | |
Collapse
|
37
|
Kuroha M, Azumano A, Kuze Y, Shimoda M, Kokue E. Effect of multiple dosing of ketoconazole on pharmacokinetics of midazolam, a cytochrome P-450 3A substrate in beagle dogs. Drug Metab Dispos 2002; 30:63-8. [PMID: 11744613 DOI: 10.1124/dmd.30.1.63] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To evaluate effects of multiple dosing of ketoconazole (KTZ) on hepatic CYP3A, the pharmacokinetics of intravenous midazolam (MDZ, 0.5 mg/kg) before and during multiple dosing of KTZ were investigated in beagle dogs. KTZ tablets were given orally to dogs (n = 4) for 30 days (200 mg b.i.d.). With coadministration of KTZ, t(1/2beta) of MDZ were significantly increased both on day 1 (2-fold) and on day 30 (3-fold). Total body clearance (CL(tot)) of MDZ declined gradually during the first 5 days after the start of KTZ treatment, and thereafter CL(tot) appeared to reach a plateau phase (one-fourth), depending on plasma KTZ concentrations. The effects of KTZ on the biotransformation of MDZ were also investigated using dog liver microsomes (n = 5). The K(i) values of KTZ for MDZ 1'-hydroxylation and 4-hydroxylation were 0.0237 and 0.111 microM, respectively, indicating that KTZ extensively inhibits hepatic CYP3A activity in dogs. CL(tot) values estimated from in vitro K(i) values corrected by unbound fraction of KTZ and unbound concentrations of the drug in plasma were consistent with in vivo CL(tot) of MDZ. The results in this study suggest that KTZ treatment is necessary until plasma concentrations of the drug reach a steady state to evaluate the effect of multiple dosing of the drug on hepatic CYP3A in vivo. In addition, it is suggested that K(i) values corrected by unbound fraction of KTZ and unbound concentrations of the drug in plasma enable precise in vitro-in vivo scaling.
Collapse
Affiliation(s)
- Masanori Kuroha
- Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-0054, Japan
| | | | | | | | | |
Collapse
|
38
|
Goldschmidt N, Azaz-Livshits T, Nir-Paz R, Ben-Yehuda A, Muszkat M. Compound cardiac toxicity of oral erythromycin and verapamil. Ann Pharmacother 2001; 35:1396-9. [PMID: 11724091 DOI: 10.1345/aph.10396] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE To report a case of complete atrioventricular (AV) block and QTc prolongation following coadministration of high-dose verapamil and erythromycin. CASE SUMMARY A 79-year-old white woman was admitted to the hospital due to extreme fatigue and dizziness. On admission, heart rate was 40 beats/min and blood pressure was 80/40 mm Hg. An electrocardiogram showed complete atrioventricular (AV) block, escape rhythm of 50 beats/min, and QTc prolongation 583 msec. This event was attributed to concomitant treatment with verapamil 480 mg/d and erythromycin 2,000 mg/d, which was prescribed one week before admission. DISCUSSION This is the first case published describing complete AV block and prolongation of QTc following coadministration of erythromycin and verapamil. CYP3A4 is the main isoenzyme responsible for metabolism of erythromycin and verapamil. Both drugs are potent inhibitors of CYP3A4 and of P-glycoprotein; this may be the basis for the pharmacokinetic interaction between erythromycin and verapamil. In addition to being a woman, our patient had other risk factors for QT prolongation: slow baseline heart rate (probably induced by verapamil), left-ventricular hypertrophy, and possibly ischemic heart disease. CONCLUSIONS This life-threatening arrhythmia was probably the result of a pharmacokinetic and/or pharmacodynamic interaction of high-dose verapamil and erythromycin.
Collapse
Affiliation(s)
- N Goldschmidt
- Department of Medicine, Hadassah University Hospital, Ein Kerem, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
39
|
Lin JH, Lu AY. Interindividual variability in inhibition and induction of cytochrome P450 enzymes. Annu Rev Pharmacol Toxicol 2001; 41:535-67. [PMID: 11264468 DOI: 10.1146/annurev.pharmtox.41.1.535] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Drug interactions have always been a major concern in medicine for clinicians and patients. Inhibition and induction of cytochrome P450 (CYP) enzymes are probably the most common causes for documented drug interactions. Today, many pharmaceutical companies are predicting potential interactions of new drug candidates. Can in vivo drug interactions be predicted accurately from in vitro metabolic studies? Should the prediction be qualitative or quantitative? Although some scientists believe that quantitative prediction of drug interactions is possible, others are less optimistic and believe that quantitative prediction would be very difficult. There are many factors that contribute to our inability to quantitatively predict drug interactions. One of the major complicating factors is the large interindividual variability in response to enzyme inhibition and induction. This review examines the sources that are responsible for the interindividual variability in inhibition and induction of cytochrome P450 enzymes.
Collapse
Affiliation(s)
- J H Lin
- Department of Drug Metabolism, Merck Research Laboratories, West Point, Pennsylvania 19486, USA
| | | |
Collapse
|
40
|
Abstract
This review reports the last decade acquisitions on grapefruit. New coumarins and limonoids were isolated and characterised. The bioavailability of many drugs was tested with grapefruit juice (GJ) coadministration; the inhibition on cytochrome P450 seems due to a synergic action between flavonoids and coumarins. Antimicrobial, antifeeding, insecticidal, and antitumour activities were also reported.
Collapse
Affiliation(s)
- B Tirillini
- Istituto di Botanica, Università di Urbino Via Bramante, 28-61029, Urbino, Italy
| |
Collapse
|
41
|
Ozdemir V, Kalow W, Tang BK, Paterson AD, Walker SE, Endrenyi L, Kashuba AD. Evaluation of the genetic component of variability in CYP3A4 activity: a repeated drug administration method. PHARMACOGENETICS 2000; 10:373-88. [PMID: 10898107 DOI: 10.1097/00008571-200007000-00001] [Citation(s) in RCA: 287] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The CYP3A4 enzyme contributes to the disposition of more than 60 therapeutically important drugs and displays marked person-to-person variability of the catalytic function. However, the extent of genetic contribution to variability in CYP3A4 activity remains elusive. Recently, we showed that a comparison of between- (SDb2) and within-person (SDW2) variances provides an estimate of the genetic component of variability in drug disposition. The aim of the present analysis was to assess the genetic control of CYP3A4 activity in vivo. A computerized literature search was conducted covering 1966 to September 1999 to identify studies reporting repeated administration of CYP3A4 substrates. The genetic contribution (rGC) to disposition of each CYP3A4 substrate was obtained by the formula (SDb2-SDW2)/SDb2. The rGC values approaching 1.0, point to overwhelming genetic control, whereas those close to zero suggest that environmental factors dominate. A total of 16 studies with 10 different CYP3A4 substrates were identified (n = 161 subjects). The rGC for hepatic CYP3A4 activity as measured by midazolam plasma clearance or the erythromycin breath test was 0.96 (0.92-0.98) (95% Cl) and 0.89 (0.65-0.98), respectively (P < 0.05). The point estimates of rGC for composite (hepatic + intestinal) CYP3A4 activity measured after oral administration of cyclosporine, ethinylestradiol, ethylmorphine, nifedipine and nitrendipine, ranged from 0.66-0.98 (median: 0.83) (P < 0.05). Cyclosporine data suggested a higher genetic control of CYP3A4 at night than during the day. These data indicate that further molecular genetic investigations are warranted to identify genetic variants at CYP3A4 or elsewhere in the genome which contribute to regulation of CYP3A4 activity.
Collapse
Affiliation(s)
- V Ozdemir
- Department of Pharmacology and Pharmaceutical Sciences, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
OBJECTIVE To describe the current drug interaction profiles for the commonly used macrolides in the US and Europe, and to comment on the clinical impact of these interactions. DATA SOURCES A MEDLINE search (1975-1998) was performed to identify all pertinent studies, review articles, and case reports. When appropriate information was not available in the literature, data were obtained from the product manufacturers. STUDY SELECTION All available data were reviewed to provide an unbiased account of possible drug interactions. DATA EXTRACTION Data for some of the interactions were not available from the literature, but were available from abstracts or company-supplied materials. Although the data were not always explicit, the best attempt was made to deliver pertinent information that clinical practitioners would need to formulate practice opinions. When more in-depth information was supplied in the form of a review or study report, a thorough explanation of pertinent methodology was supplied. DATA SYNTHESIS Several clinically significant drug interactions have been identified since the approval of erythromycin. These interactions usually were related to the inhibition of the cytochrome P450 enzyme systems, which are responsible for the metabolism of many drugs. The decreased metabolism by the macrolides has in some instances resulted in potentially severe adverse events. The development and marketing of newer macrolides are hoped to improve the drug interaction profile associated with this class. However, this has produced variable success. Some of the newer macrolides demonstrated an interaction profile similar to that of erythromycin; others have improved profiles. The most success in avoiding drug interactions related to the inhibition of cytochrome P450 has been through the development of the azalide subclass, of which azithromycin is the first and only to be marketed. Azithromycin has not been demonstrated to inhibit the cytochrome P450 system in studies using a human liver microsome model, and to date has produced none of the classic drug interactions characteristic of the macrolides. CONCLUSIONS Most of the available data regarding macrolide drug interactions are from studies in healthy volunteers and case reports. These data suggest that clarithromycin appears to have an interaction profile similar to that of erythromycin. Given this similarity, it is important to consider the interaction profile of clarithromycin when using erythromycin. This is especially necessary as funds for further studies of a medication available in generic form (e.g., erythromycin) are limited. Azithromycin has produced few clinically significant interactions with any agent cleared through the cytochrome P450 enzyme system. Although the available data are promising, the final test should come from studies conducted in patients who are taking potentially interacting compounds on a chronic basis.
Collapse
Affiliation(s)
- M P Pai
- Clinical Pharmacology Research Center, Bassett Healthcare, Cooperstown, NY 13326, USA
| | | | | |
Collapse
|
43
|
Takanaga H, Ohnishi A, Matsuo H, Murakami H, Sata H, Kuroda K, Urae A, Higuchi S, Sawada Y. Pharmacokinetic analysis of felodipine-grapefruit juice interaction based on an irreversible enzyme inhibition model. Br J Clin Pharmacol 2000; 49:49-58. [PMID: 10606837 PMCID: PMC2014888 DOI: 10.1046/j.1365-2125.2000.00140.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1998] [Accepted: 09/02/1999] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Aims Ingestion of grapefruit juice (GFJ) alters the pharmacokinetics of various orally administered drugs. Quantitative evaluation of this GFJ-drug interaction is required for the proper clinical management of patients. Methods Using felodipine as a model drug, we constructed a pharmacokinetic model based on irreversible inhibition of intestinal cytochrome P450 3A4 (CYP3A4) by GFJ. We fitted previously published data [5, 6] for felodipine ER (extended release formulation) to the ratio of CLGI,int before and after grapefruit juice ingestion by nonlinear least-squares regression analysis to estimate the reaction rate constant between GFJ and CYP3A4 (K) and the elimination rate constant of CYP3A4 (k ). RESULTS The model gave a turnover rate of CYP3A4 of 0.0849 h-1, corresponding to a half-life of 8.16 h, in agreement with reported values. The AUC-time profiles of felodipine ER in the case of different amounts and schedules of GFJ ingestion were simulated using the parameter values estimated from the model. CONCLUSIONS The modelling leads to the important conclusion that GFJ-felodipine interaction increases with increasing frequency and amount of GFJ ingestion, and that an interval of 2-3 days between GFJ intake and felodipine administration is necessary if GFJ-felodipine interaction is to be avoided.
Collapse
Affiliation(s)
- H Takanaga
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka Prefecture, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Dresser GK, Spence JD, Bailey DG. Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition. Clin Pharmacokinet 2000; 38:41-57. [PMID: 10668858 DOI: 10.2165/00003088-200038010-00003] [Citation(s) in RCA: 577] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Drug interactions occur when the efficacy or toxicity of a medication is changed by administration of another substance. Pharmacokinetic interactions often occur as a result of a change in drug metabolism. Cytochrome P450 (CYP) 3A4 oxidises a broad spectrum of drugs by a number of metabolic processes. The location of CYP3A4 in the small bowel and liver permits an effect on both presystemic and systemic drug disposition. Some interactions with CYP3A4 inhibitors may also involve inhibition of P-glycoprotein. Clinically important CYP3A4 inhibitors include itraconazole, ketoconazole, clarithromycin, erythromycin, nefazodone, ritonavir and grapefruit juice. Torsades de pointes, a life-threatening ventricular arrhythmia associated with QT prolongation, can occur when these inhibitors are coadministered with terfenadine, astemizole, cisapride or pimozide. Rhabdomyolysis has been associated with the coadministration of some 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors ('statins') and CYP3A4 inhibitors. Symptomatic hypotension may occur when CYP3A4 inhibitors are given with some dihydropyridine calcium antagonists, as well with the phosphodiesterase inhibitor sildenafil. Excessive sedation can result from concomitant administration of benzodiazepine (midazolam, triazolam, alprazolam or diazepam) or nonbenzodiazepine (zopiclone and buspirone) hypnosedatives with CYP3A4 inhibitors. Ataxia can occur with carbamazepine, and ergotism with ergotamine, following the addition of a CYP3A4 inhibitor. Beneficial drug interactions can occur. Administration of a CYP3A4 inhibitor with cyclosporin may allow reduction of the dosage and cost of the immunosuppressant. Certain HIV protease inhibitors, e.g. saquinavir, have low oral bioavailability that can be profoundly increased by the addition of ritonavir. The clinical importance of any drug interaction depends on factors that are drug-, patient- and administration-related. Generally, a doubling or more in plasma drug concentration has the potential for enhanced adverse or beneficial drug response. Less pronounced pharmacokinetic interactions may still be clinically important for drugs with a steep concentration-response relationship or narrow therapeutic index. In most cases, the extent of drug interaction varies markedly among individuals; this is likely to be dependent on interindividual differences in CYP3A4 tissue content, pre-existing medical conditions and, possibly, age. Interactions may occur under single dose conditions or only at steady state. The pharmacodynamic consequences may or may not closely follow pharmacokinetic changes. Drug interactions may be most apparent when patients are stabilised on the affected drug and the CYP3A4 inhibitor is then added to the regimen. Temporal relationships between the administration of the drug and CYP3A4 inhibitor may be important in determining the extent of the interaction.
Collapse
Affiliation(s)
- G K Dresser
- Department of Medicine, London Health Sciences Centre and The University of Western Ontario, Canada
| | | | | |
Collapse
|
45
|
Damkier P, Hansen LL, Brosen K. Effect of diclofenac, disulfiram, itraconazole, grapefruit juice and erythromycin on the pharmacokinetics of quinidine. Br J Clin Pharmacol 1999; 48:829-38. [PMID: 10594487 PMCID: PMC2014310 DOI: 10.1046/j.1365-2125.1999.00099.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AIMS In vitro studies suggest that the oxidation of quinidine to 3-hydroxyquinidine is a specific marker reaction for CYP3A4 activity. To assess the possible use of this reaction as an in vivo marker of CYP3A4 activity, we studied the involvement of cytochromes CYP2C9, CYP2E1 and CYP3A4 in the in vivo oxidative metabolism of quinidine. METHODS An open study of 30 healthy young male volunteers was performed. The pharmacokinetics of a 200 mg single oral dose of quinidine was studied before and during daily administration of 100 mg diclofenac, a CYP2C9 substrate (n=6); 200 mg disulfiram, an inhibitor of CYP2E1 (n=6); 100 mg itraconazole, an inhibitor of CYP3A4 (n=6); 250 ml single strength grapefruit juice twice daily, an inhibitor of CYP3A4 (n=6); 250 mg of erythromycin 4 times daily, an inhibitor of CYP3A4 (n=6). Probes of other enzyme activities, caffeine (CYP1A2), sparteine (CYP2D6), mephenytoin (CYP2C19), tolbutamide (CYP2C9) and cortisol (CYP3A4) were also studied. RESULTS Concomitant administration of diclofenac reduced the partial clearance of quinidine by N-oxidation by 27%, while no effect was found for other pharmacokinetic parameters of quinidine. Concomitant administration of disulfiram did not alter any of the pharmacokinetic parameters of quinidine. Concomitant administration of itraconazole reduced quinidine total clearance, partial clearance by 3-hydroxylation and partial clearance by N-oxidation by 61, 84 and 73%, respectively. The renal clearance was reduced by 60% and the elimination half-life increased by 35%. Concomitant administration of grapefruit juice reduced the total clearance of quinidine and its partial clearance by 3-hydroxylation and N-oxidation by 15, 19 and 27%, respectively. The elimination half-life of quinidine was increased by 19%. The caffeine metabolic index was reduced by 25%. Concomitant administration of erythromycin reduced the total clearance of quinidine and its partial clearance by 3-hydroxylation and N-oxidation by 34, 50 and 33%, respectively. Cmax was increased by 39%. CONCLUSIONS The results confirm an important role for CYP3A4 in the oxidation of quinidine in vivo, and this applies particularly to the formation of 3-hydroxyquinidine. While a minor contribution of CYP2C9 to the N-oxidation of quinidine is possible, a major involvement of the CYP2C9 or CYP2E1 enzymes in the oxidation of quinidine in vivo is unlikely.
Collapse
Affiliation(s)
- P Damkier
- Institute of Public Health, Clinical Phamacology, University of Southern Denmark, Odense, Denmark.
| | | | | |
Collapse
|
46
|
Tran JQ, Di Cicco RA, Sheth SB, Tucci M, Peng L, Jorkasky DK, Hursting MJ, Benincosa LJ. Assessment of the Potential Pharmacokinetic and Pharmacodynamic Interactions between Erythromycin and Argatroban. J Clin Pharmacol 1999. [DOI: 10.1177/009127009903900512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Jonathan Q. Tran
- SmithKline Beecham Clinical Pharmacology Unit, Presbyterian Medical Center, University of Pennsylvania Health System, Philadelphia
| | - Robert A. Di Cicco
- SmithKline Beecham Clinical Pharmacology Unit, Presbyterian Medical Center, University of Pennsylvania Health System, Philadelphia
| | - Sunita B. Sheth
- SmithKline Beecham Clinical Pharmacology Unit, Presbyterian Medical Center, University of Pennsylvania Health System, Philadelphia
| | - Marcella Tucci
- Department of Drug Metabolism and Pharmacokinetics, SmithKline Beecham Pharmaceuticals, King of Prussia, Pennsylvania
| | - Lana Peng
- Department of Drug Metabolism and Pharmacokinetics, SmithKline Beecham Pharmaceuticals, King of Prussia, Pennsylvania
| | - Diane K. Jorkasky
- SmithKline Beecham Clinical Pharmacology Unit, Presbyterian Medical Center, University of Pennsylvania Health System, Philadelphia
| | | | - Lisa J. Benincosa
- Department of Drug Metabolism and Pharmacokinetics, SmithKline Beecham Pharmaceuticals, King of Prussia, Pennsylvania
| |
Collapse
|
47
|
Bailey DG, Kreeft JH, Munoz C, Freeman DJ, Bend JR. Grapefruit juice-felodipine interaction: effect of naringin and 6',7'-dihydroxybergamottin in humans. Clin Pharmacol Ther 1998; 64:248-56. [PMID: 9757148 DOI: 10.1016/s0009-9236(98)90173-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To test whether naringin or 6',7'-dihydroxybergamottin is a major active substance in grapefruit juice-felodipine interaction in humans. METHODS Grapefruit juice was separated by means of centrifugation and filtration into supernatant and particulate fractions, which were then assayed for naringin and 6',7'-dihydroxybergamottin. The effect of these fractions, grapefruit juice (containing comparable amounts of both fractions), and water on the pharmacokinetics of oral felodipine were assessed in 12 healthy men in a randomized, 4-way crossover study. RESULTS The amounts of naringin and 6',7'-dihydroxybergamottin in the supernatant fraction (148 mg and 1.85 mg) were greater than in the particulate fraction (7 mg and 0.60 mg). The area under the plasma concentration-time curve (AUC) and the peak concentration (Cmax) of felodipine were higher with supernatant fraction (81 nmol.h/L and 20 nmol/L), particulate fraction (117 nmol.h/L and 24 nmol/L), and grapefruit juice (130 nmol.h/L and 33 nmol/L) compared with water (53 nmol.h/L and 11 nmol/L). However, the supernatant fraction had a lower AUC for felodipine and a similar Cmax of felodipine relative to the particulate fraction. The supernatant fraction neither augmented the AUC of the primary metabolite dehydrofelodipine nor decreased the AUC ratio of dehydrofelodipine to felodipine compared with water. Individually the supernatant fraction consistently produced lower felodipine AUC and Cmax compared with grapefruit juice. In contrast, the particulate fraction had values ranging from more than grapefruit juice to less than supernatant fraction. CONCLUSIONS Naringin and 6',7'-dihydroxybergamottin are not the major active ingredients, although they may contribute to the grapefruit juice-felodipine interaction. The variable effect with the particulate fraction may result from erratic bioavailability of unidentified primary active substances. The findings show the importance of in vivo testing to determine the ingredients in grapefruit juice responsible for inhibition of cytochrome P450 3A4 in humans.
Collapse
Affiliation(s)
- D G Bailey
- Department of Medicine, London Health Sciences Centre, Ontario, Canada.
| | | | | | | | | |
Collapse
|
48
|
Bailey DG, Malcolm J, Arnold O, Spence JD. Grapefruit juice-drug interactions. Br J Clin Pharmacol 1998; 46:101-10. [PMID: 9723817 PMCID: PMC1873672 DOI: 10.1046/j.1365-2125.1998.00764.x] [Citation(s) in RCA: 440] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/1998] [Accepted: 03/26/1998] [Indexed: 11/20/2022] Open
Abstract
The novel finding that grapefruit juice can markedly augment oral drug bioavailability was based on an unexpected observation from an interaction study between the dihydropyridine calcium channel antagonist, felodipine, and ethanol in which grapefruit juice was used to mask the taste of the ethanol. Subsequent investigations showed that grapefruit juice acted by reducing presystemic felodipine metabolism through selective post-translational down regulation of cytochrome P450 3A4 (CYP3A4) expression in the intestinal wall. Since the duration of effect of grapefruit juice can last 24 h, repeated juice consumption can result in a cumulative increase in felodipine AUC and Cmax. The high variability of the magnitude of effect among individuals appeared dependent upon inherent differences in enteric CYP3A4 protein expression such that individuals with highest baseline CYP3A4 had the highest proportional increase. At least 20 other drugs have been assessed for an interaction with grapefruit juice. Medications with innately low oral bioavailability because of substantial presystemic metabolism mediated by CYP3A4 appear affected by grapefruit juice. Clinically relevant interactions seem likely for most dihydropyridines, terfenadine, saquinavir, cyclosporin, midazolam, triazolam and verapamil and may also occur with lovastatin, cisapride and astemizole. The importance of the interaction appears to be influenced by individual patient susceptibility, type and amount of grapefruit juice and administration-related factors. Although in vitro findings support the flavonoid, naringin, or the furanocoumarin, 6',7'-dihydroxybergamottin, as being active ingredients, a recent investigation indicated that neither of these substances made a major contribution to grapefruit juice-drug interactions in humans.
Collapse
Affiliation(s)
- D G Bailey
- Department of Medicine, London Health Sciences Centre, Ontario, Canada
| | | | | | | |
Collapse
|
49
|
Abstract
Cytochrome P4503A (CYP3A) is importantly involved in the metabolism of many chemically diverse drugs administered to humans. Moreover, its localization in high amounts both in the small intestinal epithelium and liver makes it a major contributor to presystemic elimination following oral drug administration. Drug interactions involving enzyme inhibition or induction are common following the coadministration of two or more CYP3A substrates. Studies using in vitro preparations are useful in identifying such potential interactions and possibly permitting extrapolation of in vitro findings to the likely in vivo situation. Even if accurate quantitative predictions cannot be made, several classes of drugs can be expected to result in a drug interaction based on clinical experience. In many instances, the extent of such drug interactions is sufficiently pronounced to contraindicate the therapeutic use of the involved drugs.
Collapse
Affiliation(s)
- K E Thummel
- Department of Pharmaceutics, University of Washington, Seattle 98195, USA.
| | | |
Collapse
|
50
|
Cheng KL, Nafziger AN, Peloquin CA, Amsden GW. Effect of grapefruit juice on clarithromycin pharmacokinetics. Antimicrob Agents Chemother 1998; 42:927-9. [PMID: 9559810 PMCID: PMC105569 DOI: 10.1128/aac.42.4.927] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
To investigate whether grapefruit juice inhibits the metabolism of clarithromycin, 12 healthy subjects were given water or grapefruit juice before and after a clarithromycin dose of 500 mg in a randomized crossover study. Administration of grapefruit juice increased the time to peak concentration of both clarithromycin (82 +/- 35 versus 148 +/- 83 min; P = 0.02) and 14-hydroxyclarithromycin (84 +/- 38 min versus 173 +/- 85; P = 0.01) but did not affect other pharmacokinetic parameters.
Collapse
Affiliation(s)
- K L Cheng
- Department of Pharmacy Services, Bassett Healthcare, Cooperstown, New York 13326-1394, USA
| | | | | | | |
Collapse
|