1
|
Odagaki Y, Kinoshita M, Honda M, Meana JJ, Callado LF, García-Sevilla JA, Palkovits M, Borroto-Escuela DO, Fuxe K. Receptor-mediated G i-3 activation in mammalian and human brain membranes: Reestablishment method and its application to nociceptin/orphanin FQ opioid peptide (NOP) receptor/G i-3 interaction. J Pharmacol Sci 2025; 158:131-138. [PMID: 40288823 DOI: 10.1016/j.jphs.2025.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/11/2025] [Accepted: 03/29/2025] [Indexed: 04/29/2025] Open
Abstract
Functional activation of heterotrimeric guanine nucleotide-binding proteins (G-proteins) via G-protein-coupled receptors (GPCRs) has been extensively explored using guanosine-5'-O-(3-[35S]thio)triphosphate ([35S]GTPγS) binding assay. However, the conventional method is primarily applicable to Gi/o family without discrimination among G-protein subtypes. Therefore, this study aims to reestablish a novel method termed "[35S]GTPγS binding/immunoprecipitation assay" by identifying a most suitable anti-Gαi-3 antibody instead of the previously utilized, now withdrawn antibody. In the initial screening of commercially available anti-Gαi-3 antibodies, two were identified and one was selected for further investigations based on efficacy with adenosine-the most potent agonist in our previous research. After optimizing experimental conditions with rat and postmortem human brain membranes, the stimulatory effects of various agonists were evaluated. Some agonists, including nociceptin, exhibited sufficient stimulatory effects for further pharmacological characterization. Nociceptin increased [35S]GTPγS binding to Gαi-3 in a concentration-dependent manner, response that was insensitive to naloxone but potently inhibited using (±)-J-113397. The method described in this study provides a valuable strategy for determining the intrinsic efficacy of ligands at various GPCRs. This includes nociceptin/orphanin FQ opioid peptide (NOP) receptor selectively coupled to Gαi-3, providing insights into the pharmacological concept of "functional selectivity."
Collapse
Affiliation(s)
- Yuji Odagaki
- Department of Psychiatry, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, 350-0495, Saitama, Japan; Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| | - Masakazu Kinoshita
- Department of Psychiatry, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, 350-0495, Saitama, Japan
| | - Makoto Honda
- Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - J Javier Meana
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Biobizkaia Health Research Institute, CIBERSAM, Bizkaia, Spain
| | - Luis F Callado
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Biobizkaia Health Research Institute, CIBERSAM, Bizkaia, Spain
| | - Jesús A García-Sevilla
- Laboratory of Neuropharmacology, IUNICS/IdISPa, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Miklós Palkovits
- Human Brain Tissue Bank, Semmelweis University, Budapest, Hungary
| | | | - Kjell Fuxe
- Department of Neuroscience, Biomedicum, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
2
|
Bossert JM, Caldwell KE, Korah H, Batista A, Bonbrest H, Fredriksson I, Jackson SN, Sulima A, Rice KC, Zaveri NT, Shaham Y. Effect of chronic delivery of the NOP/MOR partial agonist AT-201 and NOP antagonist J-113397 on heroin relapse in a rat model of opioid maintenance. Psychopharmacology (Berl) 2024; 241:2497-2511. [PMID: 39269500 PMCID: PMC11569015 DOI: 10.1007/s00213-024-06678-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024]
Abstract
RATIONALE The opioid crisis persists despite availability of effective opioid agonist maintenance treatments (methadone and buprenorphine). Thus, there is a need to advance novel medications for the treatment of opioid use and relapse. OBJECTIVES We recently modeled maintenance treatment in rats and found that chronic delivery of buprenorphine and the mu opioid receptor (MOR) partial agonist TRV130 decreases relapse to oxycodone seeking and taking. In contrast, chronic delivery of the buprenorphine analog BU08028 had mixed effects on different heroin relapse-related measures. Here, we tested the effect of the mixed nociceptin (NOP) receptor/MOR partial agonist AT-201 and the NOP receptor antagonist J-113397 on different heroin relapse-related measures. METHODS We trained male and female rats to self-administer heroin (6-h/d, 14-d) in context A and then implanted osmotic minipumps containing AT-201 (0, 3.8, or 12 mg/kg/d) or J-113397 (0, 12.6, or 40 mg/kg/d). Next, we tested the effect of chronic delivery of the compounds on (1) incubation of heroin seeking in a non-drug context B, (2) extinction responding reinforced by heroin-associated discrete cues in context B, (3) context A-induced reinstatement of heroin seeking, and (4) reacquisition of heroin self-administration in context A. RESULTS In females, AT-201 modestly increased reacquisition of heroin self-administration and J-113397 modestly decreased incubation of heroin seeking. The compounds had no effect on the other relapse-related measures in females, and no effect on any of the measures in males. CONCLUSION The NOP/MOR partial agonist AT-201 and the NOP antagonist J-113397 did not mimic buprenorphine's inhibitory effects on relapse in a rat model of opioid maintenance treatment.
Collapse
MESH Headings
- Animals
- Male
- Female
- Rats
- Nociceptin Receptor
- Self Administration
- Receptors, Opioid/metabolism
- Receptors, Opioid/agonists
- Receptors, Opioid, mu/agonists
- Heroin/administration & dosage
- Recurrence
- Heroin Dependence/drug therapy
- Narcotic Antagonists/pharmacology
- Narcotic Antagonists/administration & dosage
- Piperidines/pharmacology
- Piperidines/administration & dosage
- Disease Models, Animal
- Rats, Sprague-Dawley
- Drug-Seeking Behavior/drug effects
- Analgesics, Opioid/administration & dosage
- Analgesics, Opioid/pharmacology
- Pyrimidines/pharmacology
- Pyrimidines/administration & dosage
- Extinction, Psychological/drug effects
- Dose-Response Relationship, Drug
- Benzimidazoles
Collapse
Affiliation(s)
| | - Kiera E Caldwell
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, MD, U.S.A
| | - Hannah Korah
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, MD, U.S.A
| | - Ashley Batista
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, MD, U.S.A
| | - Hannah Bonbrest
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, MD, U.S.A
| | - Ida Fredriksson
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, MD, U.S.A
| | | | - Agnieszka Sulima
- Molecular Targets and Medications Discovery Branch, IRP/NIDA, NIAAA/NIH, Baltimore, MD, U.S.A
| | - Kenner C Rice
- Molecular Targets and Medications Discovery Branch, IRP/NIDA, NIAAA/NIH, Baltimore, MD, U.S.A
| | | | - Yavin Shaham
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, MD, U.S.A
| |
Collapse
|
3
|
Toll L, Cippitelli A, Ozawa A. The NOP Receptor System in Neurological and Psychiatric Disorders: Discrepancies, Peculiarities and Clinical Progress in Developing Targeted Therapies. CNS Drugs 2021; 35:591-607. [PMID: 34057709 PMCID: PMC8279133 DOI: 10.1007/s40263-021-00821-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/28/2021] [Indexed: 02/01/2023]
Abstract
The nociceptin opioid peptide (NOP) receptor and its endogenous ligand nociceptin/orphanin FQ (N/OFQ) are the fourth members of the opioid receptor and opioid peptide families. Although they have considerable sequence homology to the other family members, they are not considered opioid per se because they do not have pharmacological profiles similar to the other family members. The number of NOP receptors in the brain is higher than the other family members, and NOP receptors can be found throughout the brain. Because of the widespread distribution of NOP receptors, N/OFQ and other peptide and small molecule agonists and antagonists have extensive CNS activities. Originally thought to be anti-opioid, NOP receptor agonists block some opioid activities, potentiate others, and modulate other activities not affected by traditional opiates. Because the effect of receptor activation can be dependent upon site of administration, state of the animal, and other variables, the study of NOP receptors has been fraught with contradictions and inconsistencies. In this article, the actions and controversies pertaining to NOP receptor activation and inhibition are discussed with respect to CNS disorders including pain (acute, chronic, and migraine), drug abuse, anxiety and depression. In addition, progress towards clinical use of NOP receptor-directed compounds is discussed.
Collapse
Affiliation(s)
- Lawrence Toll
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431, USA.
| | - Andrea Cippitelli
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431, USA
| | - Akihiko Ozawa
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431, USA
| |
Collapse
|
4
|
Ferrari F, Rizzo S, Ruzza C, Calo G. Detailed In Vitro Pharmacological Characterization of the Clinically Viable Nociceptin/Orphanin FQ Peptide Receptor Antagonist BTRX-246040. J Pharmacol Exp Ther 2020; 373:34-43. [PMID: 31937563 DOI: 10.1124/jpet.119.262865] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/07/2020] [Indexed: 12/20/2022] Open
Abstract
The peptide nociceptin/orphanin FQ (N/OFQ) is the natural ligand of the N/OFQ receptor (NOP), which is widely expressed in the central and peripheral nervous system. Selective NOP antagonists are worthy of testing as innovative drugs to treat depression, Parkinson disease, and drug abuse. The aim of this study was to perform a detailed in vitro characterization of BTRX-246040 (also known as LY2940094, [2-[4-[(2-chloro-4,4-difluoro-spiro[5H-thieno[2,3-c]pyran-7,4'-piperidine]-1'-yl)methyl]-3-methyl-pyrazol-1-yl]-3-pyridyl]methanol), a novel NOP antagonist that has been already studied in humans. BTRX-246040 has been tested in vitro in the following assays: calcium mobilization in cells expressing NOP and classic opioid receptors and chimeric G proteins, bioluminescence resonance energy transfer assay measuring NOP interaction with G proteins and β-arrestins, the label-free dynamic mass redistribution assay, and the electrically stimulated mouse vas deferens. BTRX-246040 was systematically compared with the standard NOP antagonist SB-612111. In all assays, BTRX-246040 behaves as a pure and selective antagonist at human recombinant and murine native NOP receptors displaying 3-10-fold higher potency than the standard antagonist SB-612111. BTRX-246040 is an essential pharmacological tool to further investigate the therapeutic potential of NOP antagonists in preclinical and clinical studies. SIGNIFICANCE STATEMENT: NOP antagonists may be innovative antidepressant drugs. In this research, the novel clinically viable NOP antagonist BTRX-246040 has been deeply characterized in vitro in a panel of assays. BTRX-246040 resulted a pure, potent, and selective NOP antagonist.
Collapse
Affiliation(s)
- Federica Ferrari
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy (F.F., S.R., C.R., G.C.) and Technopole of Ferrara, LTTA Laboratory for Advanced Therapies, Ferrara, Italy (C.R.)
| | - Sabrina Rizzo
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy (F.F., S.R., C.R., G.C.) and Technopole of Ferrara, LTTA Laboratory for Advanced Therapies, Ferrara, Italy (C.R.)
| | - Chiara Ruzza
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy (F.F., S.R., C.R., G.C.) and Technopole of Ferrara, LTTA Laboratory for Advanced Therapies, Ferrara, Italy (C.R.)
| | - Girolamo Calo
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy (F.F., S.R., C.R., G.C.) and Technopole of Ferrara, LTTA Laboratory for Advanced Therapies, Ferrara, Italy (C.R.)
| |
Collapse
|
5
|
Odagaki Y, Kinoshita M, Ota T, Meana JJ, Callado LF, García-Sevilla JA. Optimization and pharmacological characterization of receptor-mediated G i/o activation in postmortem human prefrontal cortex. Basic Clin Pharmacol Toxicol 2019; 124:649-659. [PMID: 30507034 DOI: 10.1111/bcpt.13183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/22/2018] [Indexed: 01/11/2023]
Abstract
The biochemical abnormalities in transmembrane signal transduction mediated through G protein-coupled receptors (GPCRs) have been postulated as underlying pathophysiology of psychiatric diseases such as schizophrenia and mood disorders. In the present study, the experimental conditions of agonist-induced [35 S]GTPγS binding in postmortem human brain membranes were optimized, and the responses induced by a series of agonists were pharmacologically characterized. The [35 S]GTPγS binding assay was performed in postmortem human prefrontal cortical membranes by means of filtration techniques, and standardized as to GDP concentration, membrane protein content, MgCl2 and NaCl concentrations in assay buffer, incubation period and effect of white matter contamination. Under the standard assay conditions, the specific [35 S]GTPγS binding was stimulated by the addition of 15 compounds in a concentration-dependent manner. Of these agonists, R(+)-8-OH-DPAT, UK-14,304, DAMGO and DPDPE showed apparently biphasic concentration-response curves. As for these four responses, only higher-potency site was pharmacologically characterized. The receptors involved in the responses investigated were 5-HT1A receptor (probed with R(+)-8-OH-DPAT or 5-HT), α2A -adrenoceptor (UK-14,304 or (-)-epinephrine), M2 /M4 mAChRs (carbachol), adenosine A1 receptor (adenosine), histamine H3 receptor (histamine), group II mGlu (l-glutamate), GABAB receptor (baclofen), μ-opioid receptor (DAMGO or endomophin-1), δ-opioid receptor (DPDPE or SNC-80) and NOP (nociceptin). Although dopamine also activated specific [35 S]GTPγS binding, this response was likely mediated via α2A -adrenoceptor, but not dopamine receptor subtypes. The present study provides us with fundamental aspects of the strategy for elucidation of probable abnormalities of neural signalling mediated by G proteins activated through multiple GPCRs in the brain of psychiatric patients.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Binding, Competitive
- Female
- GTP-Binding Proteins/agonists
- GTP-Binding Proteins/metabolism
- Guanosine 5'-O-(3-Thiotriphosphate)/metabolism
- Humans
- Male
- Middle Aged
- Prefrontal Cortex/metabolism
- Protein Binding
- Receptor, Adenosine A1/metabolism
- Receptor, Serotonin, 5-HT2C/metabolism
- Receptors, Adrenergic, alpha-2/metabolism
- Receptors, GABA-B/metabolism
- Receptors, Histamine H3/metabolism
- Receptors, Metabotropic Glutamate/metabolism
- Receptors, Opioid, mu/metabolism
- Receptors, sigma/metabolism
- Young Adult
- Sigma-1 Receptor
Collapse
Affiliation(s)
- Yuji Odagaki
- Department of Psychiatry, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Masakazu Kinoshita
- Department of Psychiatry, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Toshio Ota
- Department of Psychiatry, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - J Javier Meana
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Bizkaia
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain
| | - Luis F Callado
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Bizkaia
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain
| | - Jesús A García-Sevilla
- Laboratory of Neuropharmacology, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), University of the Balearic Islands (UIB), Balearic Islands Health Research Institute (IdISBa), Palma de Mallorca, Spain
| |
Collapse
|
6
|
Cunningham CW, Elballa WM, Vold SU. Bifunctional opioid receptor ligands as novel analgesics. Neuropharmacology 2019; 151:195-207. [PMID: 30858102 DOI: 10.1016/j.neuropharm.2019.03.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/30/2019] [Accepted: 03/02/2019] [Indexed: 12/12/2022]
Abstract
Prolonged treatment of chronic severe pain with opioid analgesics is frought with problematic adverse effects including tolerance, dependence, and life-threatening respiratory depression. Though these effects are mediated predominately through preferential activation of μ opioid peptide (μOP) receptors, there is an emerging appreciation that actions at κOP and δOP receptors contribute to the observed pharmacologic and behavioral profile of μOP receptor agonists and may be targeted simultaneously to afford improved analgesic effects. Recent developments have also identified the related nociceptin opioid peptide (NOP) receptor as a key modulator of the effects of μOP receptor signaling. We review here the available literature describing OP neurotransmitter systems and highlight recent drug and probe design strategies.
Collapse
Affiliation(s)
| | - Waleed M Elballa
- Department of Pharmaceutical Sciences, Concordia University Wisconsin, Mequon, WI, USA.
| | - Stephanie U Vold
- Department of Pharmaceutical Sciences, Concordia University Wisconsin, Mequon, WI, USA.
| |
Collapse
|
7
|
Abstract
The development of nonpeptide systemically active small-molecule NOP-targeted ligands has contributed tremendously to validating the NOP receptor as a promising target for therapeutics. Although a NOP-targeted compound is not yet approved for clinical use, a few NOP ligands are in clinical trials for various indications. Both successful and failed human clinical trials with NOP ligands provide opportunities for rational development of new and improved NOP-targeted compounds. A few years after the discovery of the NOP receptor in 1994, and its de-orphanization upon discovery of the endogenous peptide nociceptin/orphanin FQ (N/OFQ) in 1995, there was a significant effort in the pharmaceutical industry to discover nonpeptide NOP ligands from hits obtained from high-throughput screening campaigns of compound libraries. Depending on the therapeutic indication to be pursued, NOP agonists and antagonists were discovered, and some were optimized as clinical candidates. Advances such as G protein-coupled receptor (GPCR) structure elucidation, functional selectivity in ligand-driven GPCR activation, and multi-targeted ligands provide new scope for the rational design of novel NOP ligands fine-tuned for successful clinical translation. This article reviews the field of nonpeptide NOP ligand drug design in the context of these exciting developments and highlights new optimized nonpeptide NOP ligands possessing interesting functional profiles, which are particularly attractive for several unmet clinical applications involving NOP receptor pharmacomodulation.
Collapse
|
8
|
Abstract
Since the discovery of the NOP receptor and N/OFQ as the endogenous ligand, evidence has appeared demonstrating the involvement of this receptor system in pain. This was not surprising for members of the opioid receptor and peptide families, particularly since both the receptor and N/OFQ are highly expressed in brain regions involved in pain, spinal cord, and dorsal root ganglia. What has been surprising is the complicated picture that has emerged from 25 years of research. The original finding that N/OFQ decreased tail flick and hotplate latency, when administered i.c.v., led to the hypothesis that NOP receptor antagonists could have analgesic activity without abuse liability. However, as data accumulated, it became clear that not only the potency but the activity per se was different when N/OFQ or small molecule NOP agonists were administered in the brain versus the spinal cord and it also depended upon the pain assay used. When administered systemically, NOP receptor agonists are generally ineffective in attenuating heat pain but are antinociceptive in an acute inflammatory pain model. Most antagonists administered systemically have no antinociceptive activity of their own, even though selective peptide NOP antagonists have potent antinociceptive activity when administered i.c.v. Chronic pain models provide different results as well, as small molecule NOP receptor agonists have potent anti-allodynic and anti-hyperalgesic activity after systemic administration. A considerable number of electrophysiological and anatomical experiments, in particular with NOP-eGFP mice, have been conducted in an attempt to explain the complicated profile resulting from NOP receptor modulation, to examine receptor plasticity, and to elucidate mechanisms by which selective NOP agonists, bifunctional NOP/mu agonists, or NOP receptor antagonists modulate acute and chronic pain.
Collapse
Affiliation(s)
- Lawrence Toll
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA.
| | - Akihiko Ozawa
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Andrea Cippitelli
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| |
Collapse
|
9
|
Malfacini D, Simon K, Trapella C, Guerrini R, Zaveri NT, Kostenis E, Calo’ G. NOP receptor pharmacological profile - A dynamic mass redistribution study. PLoS One 2018; 13:e0203021. [PMID: 30161182 PMCID: PMC6117024 DOI: 10.1371/journal.pone.0203021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 08/14/2018] [Indexed: 12/12/2022] Open
Abstract
The Nociceptin/Orphanin FQ (N/OFQ) peptide NOP receptor is coupled to pertussis toxin (PTX)-sensitive G proteins (Gi/o) whose activation leads to the inhibition of both cAMP production and calcium channel activity, and to the stimulation of potassium currents. The label free dynamic mass redistribution (DMR) approach has been demonstrated useful for investigating the pharmacological profile of G protein-coupled receptors. Herein, we employ DMR technology to systematically characterize the pharmacology of a large panel of NOP receptor ligands. These are of peptide and non-peptide nature and display varying degrees of receptor efficacy, ranging from full agonism to pure antagonism. Using Chinese hamster ovary (CHO) cells expressing the human NOP receptor we provide rank orders of potency for full and partial agonists as well as apparent affinities for selective antagonists. We find the pharmacological profile of NOP receptor ligands to be similar but not identical to values reported in the literature using canonical assays for Gi/o-coupled receptors. Our data demonstrate that holistic label-free DMR detection can be successfully used to investigate the pharmacology of the NOP receptor and to characterize the cellular effects of novel NOP receptor ligands.
Collapse
Affiliation(s)
- Davide Malfacini
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
- Section of Pharmacology, Department of Medical Sciences, and National Institute of Neurosciences, University of Ferrara, Ferrara, Italy
- * E-mail:
| | - Katharina Simon
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Claudio Trapella
- Department of Chemical and Pharmaceutical Sciences and LTTA, University of Ferrara, Ferrara, Italy
| | - Remo Guerrini
- Department of Chemical and Pharmaceutical Sciences and LTTA, University of Ferrara, Ferrara, Italy
| | | | - Evi Kostenis
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Girolamo Calo’
- Section of Pharmacology, Department of Medical Sciences, and National Institute of Neurosciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
10
|
Schiene K, Schröder W, Linz K, Frosch S, Tzschentke TM, Jansen U, Christoph T. Nociceptin/orphanin FQ opioid peptide (NOP) receptor and µ-opioid peptide (MOP) receptors both contribute to the anti-hypersensitive effect of cebranopadol in a rat model of arthritic pain. Eur J Pharmacol 2018; 832:90-95. [PMID: 29753041 DOI: 10.1016/j.ejphar.2018.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 02/05/2023]
Abstract
Cebranopadol is a novel, first-in-class analgesic with agonist activity at the nociceptin/orphanin FQ opioid peptide (NOP) receptor as well as the classical opioid peptide receptors. This study investigated the anti-hypersensitive effect of cebranopadol in a rat model of arthritic pain. Selective antagonists were used to probe the involvement of the NOP receptor and the µ-opioid peptide (MOP) receptors. Experimental mono-arthritis was induced by intra-articular injection of complete Freund's adjuvant into the left hind knee joint. Intravenous (i.v.) administration of cebranopadol 0.8-8.0 µg/kg to rats 5 days after induction of arthritis elicited dose-dependent increases in weight bearing on the affected limb. The quarter-maximal effective dose (ED25) for this anti-hypersensitive effect of cebranopadol was 1.6 µg/kg i.v. (95% confidence interval [CI]: 0.8, 1.6). The ED25 increased to 3.2 µg/kg i.v. (95% CI: 2.4, 4.0) following pretreatment with the selective NOP receptor antagonist J-113397 and to 18.3 µg/kg i.v. (95% CI: 9.6, 146.0) following pretreatment with the MOP receptor antagonist naloxone (at intraperitoneal antagonist doses of 4.64 mg/kg and 1.0 mg/kg, respectively). The MOP receptor agonist morphine and the NOP receptor agonist Ro65-6570 also elicited increases in weight bearing on the affected limb. The anti-hypersensitive effect of morphine 2.15 mg/kg i.v. was inhibited by naloxone but not by J-113397. Conversely, the anti-hypersensitive effect of Ro65-6570 0.464 mg/kg i.v. was inhibited by J-113397 but not by naloxone. In conclusion, cebranopadol evoked potent anti-hypersensitive efficacy in a rat model of arthritic pain, and this involved agonist activity at both the NOP and MOP receptors.
Collapse
Affiliation(s)
- Klaus Schiene
- Department of Pharmacology, Grünenthal GmbH, Zieglerstrasse 6, 52078 Aachen, Germany.
| | - Wolfgang Schröder
- Department of Translational Science and Intelligence, Grünenthal GmbH, Aachen, Germany
| | - Klaus Linz
- Department of Preclinical Drug Development, Grünenthal GmbH, Aachen, Germany
| | - Stefanie Frosch
- Department of Preclinical Drug Development, Grünenthal GmbH, Aachen, Germany
| | - Thomas M Tzschentke
- Department of Pharmacology, Grünenthal GmbH, Zieglerstrasse 6, 52078 Aachen, Germany
| | - Ulla Jansen
- Department of Pharmacology, Grünenthal GmbH, Zieglerstrasse 6, 52078 Aachen, Germany
| | - Thomas Christoph
- Department of Pharmacology, Grünenthal GmbH, Zieglerstrasse 6, 52078 Aachen, Germany
| |
Collapse
|
11
|
Selectivity profiling of NOP, MOP, DOP and KOP receptor antagonists in the rat spinal nerve ligation model of mononeuropathic pain. Eur J Pharmacol 2018. [DOI: 10.1016/j.ejphar.2018.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Farb TB, Adeva M, Beauchamp TJ, Cabrera O, Coates DA, Meredith TD, Droz BA, Efanov A, Ficorilli JV, Gackenheimer SL, Martinez-Grau MA, Molero V, Ruano G, Statnick MA, Suter TM, Syed SK, Toledo MA, Willard FS, Zhou X, Bokvist KB, Barrett DG. Regulation of Endogenous (Male) Rodent GLP-1 Secretion and Human Islet Insulin Secretion by Antagonism of Somatostatin Receptor 5. Endocrinology 2017; 158:3859-3873. [PMID: 28938487 DOI: 10.1210/en.2017-00639] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/06/2017] [Indexed: 12/25/2022]
Abstract
Incretin and insulin responses to nutrient loads are suppressed in persons with diabetes, resulting in decreased glycemic control. Agents including sulfonylureas and dipeptidyl peptidase-4 inhibitors (DPP4i) partially reverse these effects and provide therapeutic benefit; however, their modes of action limit efficacy. Because somatostatin (SST) has been shown to suppress insulin and glucagonlike peptide-1 (GLP-1) secretion through the Gi-coupled SST receptor 5 (SSTR5) isoform in vitro, antagonism of SSTR5 may improve glycemic control via intervention in both pathways. Here, we show that a potent and selective SSTR5 antagonist reverses the blunting effects of SST on insulin secretion from isolated human islets, and demonstrate that SSTR5 antagonism affords increased levels of systemic GLP-1 in vivo. Knocking out Sstr5 in mice provided a similar increase in systemic GLP-1 levels, which were not increased further by treatment with the antagonist. Treatment of mice with the SSTR5 antagonist in combination with a DPP4i resulted in increases in systemic GLP-1 levels that were more than additive and resulted in greater glycemic control compared with either agent alone. In isolated human islets, the SSTR5 antagonist completely reversed the inhibitory effect of exogenous SST-14 on insulin secretion. Taken together, these data suggest that SSTR5 antagonism should increase circulating GLP-1 levels and stimulate insulin secretion (directly and via GLP-1) in humans, improving glycemic control in patients with diabetes.
Collapse
Affiliation(s)
- Thomas B Farb
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285
| | - Marta Adeva
- Centro de Investigacion Lilly, Eli Lilly and Company, 28108-Alcobendas, Madrid, Spain
| | - Thomas J Beauchamp
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285
| | - Over Cabrera
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285
| | - David A Coates
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285
| | | | - Brian A Droz
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285
| | - Alexander Efanov
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285
| | - James V Ficorilli
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285
| | | | - Maria A Martinez-Grau
- Centro de Investigacion Lilly, Eli Lilly and Company, 28108-Alcobendas, Madrid, Spain
| | - Victoriano Molero
- Centro de Investigacion Lilly, Eli Lilly and Company, 28108-Alcobendas, Madrid, Spain
| | - Gema Ruano
- Centro de Investigacion Lilly, Eli Lilly and Company, 28108-Alcobendas, Madrid, Spain
| | - Michael A Statnick
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285
| | - Todd M Suter
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285
| | - Samreen K Syed
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285
| | - Miguel A Toledo
- Centro de Investigacion Lilly, Eli Lilly and Company, 28108-Alcobendas, Madrid, Spain
| | - Francis S Willard
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285
| | - Xin Zhou
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285
| | - Krister B Bokvist
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285
| | - David G Barrett
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285
| |
Collapse
|
13
|
Opioid-type Respiratory Depressant Side Effects of Cebranopadol in Rats Are Limited by Its Nociceptin/Orphanin FQ Peptide Receptor Agonist Activity. Anesthesiology 2017; 126:708-715. [DOI: 10.1097/aln.0000000000001530] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Abstract
Background
Cebranopadol is a first-in-class analgesic with agonist activity at classic opioid peptide receptors and the nociceptin/orphanin FQ peptide receptor. The authors compared the antinociceptive and respiratory depressant effects of cebranopadol and the classic opioid fentanyl and used selective antagonists to provide the first mechanistic evidence of the contributions of the nociceptin/orphanin FQ peptide and μ-opioid peptide receptors to cebranopadol’s respiratory side-effect profile.
Methods
Antinociception was assessed in male Sprague–Dawley rats using the low-intensity tail-flick model (n = 10 per group). Arterial blood gas tensions (Paco2 and Pao2) were measured over time in samples from unrestrained, conscious rats after intravenous administration of cebranopadol or fentanyl (n = 6 per group).
Results
The ED50 for peak antinociceptive effect in the tail-flick model was 7.4 μg/kg for cebranopadol (95% CI, 6.6 to 8.2 μg/kg) and 10.7 μg/kg for fentanyl citrate (9 to 12.7 μg/kg). Fentanyl citrate increased Paco2 levels to 45 mmHg (upper limit of normal range) at 17.6 μg/kg (95% CI, 7.6 to 40.8 μg/kg) and to greater than 50 mmHg at doses producing maximal antinociception. In contrast, with cebranopadol, Paco2 levels remained less than 35 mmHg up to doses producing maximal antinociception. The nociceptin/orphanin FQ peptide receptor antagonist J-113397 potentiated the respiratory depressant effects of cebranopadol; these changes in Paco2 and Pao2 were fully reversible with the μ-opioid peptide receptor antagonist naloxone.
Conclusions
The therapeutic window between antinociception and respiratory depression in rats is larger for cebranopadol than that for fentanyl because the nociceptin/orphanin FQ peptide receptor agonist action of cebranopadol counteracts side effects resulting from its μ-opioid peptide receptor agonist action.
Collapse
|
14
|
Odagaki Y, Kinoshita M, Ota T. Comparative analysis of pharmacological properties of xanomeline and N-desmethylclozapine in rat brain membranes. J Psychopharmacol 2016; 30:896-912. [PMID: 27464743 DOI: 10.1177/0269881116658989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND 3(3-Hexyloxy-1,2,5-thiadiazol-4-yl)-1,2,5,6-tetrahydro-1-methylpyridine (xanomeline) and N-desmethylclozapine are of special interest as promising antipsychotics with better efficacy, especially for negative symptoms and/or cognitive/affective impairment. METHODS The guanosine-5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPγS) binding experiments were performed using (1) conventional filtration technique, (2) antibody-capture scintillation proximity assay, and (3) immunoprecipitation method, in brain membranes prepared from rat cerebral cortex, hippocampus, and striatum. RESULTS Xanomeline had agonistic activity at the M1 muscarinic acetylcholine receptor (mAChR) in all brain regions, as well as at the 5-HT1A receptor in the cerebral cortex and hippocampus. On the other hand, N-desmethylclozapine exhibited slight agonistic effects on the M1 mAChR, and agonistic properties at the 5-HT1A receptor in the cerebral cortex and hippocampus. This compound also behaved as an agonist at the δ-opioid receptor in the cerebral cortex and striatum. In addition, the stimulatory effects of N-desmethylclozapine on [(35)S]GTPγS binding to Gαi/o were partially mediated through mAChRs (most likely M4 mAChR subtype), at least in striatum. CONCLUSIONS The agonistic effects on the mAChRs (particularly M1 subtype, and also probably M4 subtype), the 5-HT1A receptor and the δ-opioid receptor expressed in native brain tissues, some of which are common to both compounds and others specific to either, likely shape the unique beneficial effectiveness of both compounds in the treatment for schizophrenic patients. These characteristics provide us with a clue to develop newer antipsychotics, beyond the framework of dopamine D2 receptor antagonism, that are effective not only on positive symptoms but also on negative symptoms and/or cognitive/affective impairment.
Collapse
Affiliation(s)
- Yuji Odagaki
- Department of Psychiatry, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Masakazu Kinoshita
- Department of Psychiatry, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Toshio Ota
- Department of Psychiatry, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| |
Collapse
|
15
|
Hardaway JA, Jensen J, Kim M, Mazzone CM, Sugam JA, Diberto JF, Lowery-Gionta EG, Hwa LS, Pleil KE, Bulik CM, Kash TL. Nociceptin receptor antagonist SB 612111 decreases high fat diet binge eating. Behav Brain Res 2016; 307:25-34. [PMID: 27036650 PMCID: PMC4896639 DOI: 10.1016/j.bbr.2016.03.046] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/25/2016] [Accepted: 03/28/2016] [Indexed: 10/22/2022]
Abstract
Binge eating is a dysregulated form of feeding behavior that occurs in multiple eating disorders including binge-eating disorder, the most common eating disorder. Feeding is a complex behavioral program supported through the function of multiple brain regions and influenced by a diverse array of receptor signaling pathways. Previous studies have shown the overexpression of the opioid neuropeptide nociceptin (orphanin FQ, N/OFQ) can induce hyperphagia, but the role of endogenous nociceptin receptor (NOP) in naturally occurring palatability-induced hyperphagia is unknown. In this study we adapted a simple, replicable form of binge eating of high fat food (HFD). We found that male and female C57BL/6J mice provided with daily one-hour access sessions to HFD eat significantly more during this period than those provided with continuous 24h access. This form of feeding is rapid and entrained. Chronic intermittent HFD binge eating produced hyperactivity and increased light zone exploration in the open field and light-dark assays respectively. Treatment with the potent and selective NOP antagonist SB 612111 resulted in a significant dose-dependent reduction in binge intake in both male and female mice, and, unlike treatment with the serotonin selective reuptake inhibitor fluoxetine, produced no change in total 24-h food intake. SB 612111 treatment also significantly decreased non-binge-like acute HFD consumption in male mice. These data are consistent with the hypothesis that high fat binge eating is modulated by NOP signaling and that the NOP system may represent a promising novel receptor to explore for the treatment of binge eating.
Collapse
Affiliation(s)
- J Andrew Hardaway
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, NC, USA; UNC Department of Pharmacology, University of North Carolina at Chapel Hill, NC, USA
| | - Jennifer Jensen
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, NC, USA; UNC Department of Pharmacology, University of North Carolina at Chapel Hill, NC, USA
| | - Michelle Kim
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, NC, USA; UNC Department of Pharmacology, University of North Carolina at Chapel Hill, NC, USA
| | - Christopher M Mazzone
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, NC, USA; UNC Department of Pharmacology, University of North Carolina at Chapel Hill, NC, USA
| | - Jonathan A Sugam
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, NC, USA; UNC Department of Pharmacology, University of North Carolina at Chapel Hill, NC, USA
| | - Jeffrey F Diberto
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, NC, USA; UNC Department of Pharmacology, University of North Carolina at Chapel Hill, NC, USA
| | - Emily G Lowery-Gionta
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, NC, USA; UNC Department of Pharmacology, University of North Carolina at Chapel Hill, NC, USA
| | - Lara S Hwa
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, NC, USA; UNC Department of Pharmacology, University of North Carolina at Chapel Hill, NC, USA
| | - Kristen E Pleil
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, NC, USA; UNC Department of Pharmacology, University of North Carolina at Chapel Hill, NC, USA
| | - Cynthia M Bulik
- UNC Department of Psychiatry, University of North Carolina at Chapel Hill, NC, USA; UNC Department of Nutrition, University of North Carolina at Chapel Hill, NC, USA; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Thomas L Kash
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, NC, USA; UNC Department of Pharmacology, University of North Carolina at Chapel Hill, NC, USA.
| |
Collapse
|
16
|
Toll L, Bruchas MR, Calo' G, Cox BM, Zaveri NT. Nociceptin/Orphanin FQ Receptor Structure, Signaling, Ligands, Functions, and Interactions with Opioid Systems. Pharmacol Rev 2016; 68:419-57. [PMID: 26956246 PMCID: PMC4813427 DOI: 10.1124/pr.114.009209] [Citation(s) in RCA: 226] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The NOP receptor (nociceptin/orphanin FQ opioid peptide receptor) is the most recently discovered member of the opioid receptor family and, together with its endogenous ligand, N/OFQ, make up the fourth members of the opioid receptor and opioid peptide family. Because of its more recent discovery, an understanding of the cellular and behavioral actions induced by NOP receptor activation are less well developed than for the other members of the opioid receptor family. All of these factors are important because NOP receptor activation has a clear modulatory role on mu opioid receptor-mediated actions and thereby affects opioid analgesia, tolerance development, and reward. In addition to opioid modulatory actions, NOP receptor activation has important effects on motor function and other physiologic processes. This review discusses how NOP pharmacology intersects, contrasts, and interacts with the mu opioid receptor in terms of tertiary structure and mechanism of receptor activation; location of receptors in the central nervous system; mechanisms of desensitization and downregulation; cellular actions; intracellular signal transduction pathways; and behavioral actions with respect to analgesia, tolerance, dependence, and reward. This is followed by a discussion of the agonists and antagonists that have most contributed to our current knowledge. Because NOP receptors are highly expressed in brain and spinal cord and NOP receptor activation sometimes synergizes with mu receptor-mediated actions and sometimes opposes them, an understanding of NOP receptor pharmacology in the context of these interactions with the opioid receptors will be crucial to the development of novel therapeutics that engage the NOP receptor.
Collapse
Affiliation(s)
- Lawrence Toll
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida (L.T.); Departments of Anesthesiology, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (M.R.B.); Section of Pharmacology, Department of Medical Science, and National Institute of Neurosciences, University of Ferrara, Ferrara, Italy (G.C.); Professor of Pharmacology & Neuroscience, Uniformed Services University, Bethesda, Maryland (B.M.C.); and Astraea Therapeutics, LLC, Mountain View, California (N.T.Z.)
| | - Michael R Bruchas
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida (L.T.); Departments of Anesthesiology, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (M.R.B.); Section of Pharmacology, Department of Medical Science, and National Institute of Neurosciences, University of Ferrara, Ferrara, Italy (G.C.); Professor of Pharmacology & Neuroscience, Uniformed Services University, Bethesda, Maryland (B.M.C.); and Astraea Therapeutics, LLC, Mountain View, California (N.T.Z.)
| | - Girolamo Calo'
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida (L.T.); Departments of Anesthesiology, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (M.R.B.); Section of Pharmacology, Department of Medical Science, and National Institute of Neurosciences, University of Ferrara, Ferrara, Italy (G.C.); Professor of Pharmacology & Neuroscience, Uniformed Services University, Bethesda, Maryland (B.M.C.); and Astraea Therapeutics, LLC, Mountain View, California (N.T.Z.)
| | - Brian M Cox
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida (L.T.); Departments of Anesthesiology, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (M.R.B.); Section of Pharmacology, Department of Medical Science, and National Institute of Neurosciences, University of Ferrara, Ferrara, Italy (G.C.); Professor of Pharmacology & Neuroscience, Uniformed Services University, Bethesda, Maryland (B.M.C.); and Astraea Therapeutics, LLC, Mountain View, California (N.T.Z.)
| | - Nurulain T Zaveri
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida (L.T.); Departments of Anesthesiology, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (M.R.B.); Section of Pharmacology, Department of Medical Science, and National Institute of Neurosciences, University of Ferrara, Ferrara, Italy (G.C.); Professor of Pharmacology & Neuroscience, Uniformed Services University, Bethesda, Maryland (B.M.C.); and Astraea Therapeutics, LLC, Mountain View, California (N.T.Z.)
| |
Collapse
|
17
|
Zaveri NT. Nociceptin Opioid Receptor (NOP) as a Therapeutic Target: Progress in Translation from Preclinical Research to Clinical Utility. J Med Chem 2016; 59:7011-28. [PMID: 26878436 DOI: 10.1021/acs.jmedchem.5b01499] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the two decades since the discovery of the nociceptin opioid receptor (NOP) and its ligand, nociceptin/orphaninFQ (N/OFQ), steady progress has been achieved in understanding the pharmacology of this fourth opioid receptor/peptide system, aided by genetic and pharmacologic approaches. This research spawned an explosion of small-molecule NOP receptor ligands from discovery programs in major pharmaceutical companies. NOP agonists have been investigated for their efficacy in preclinical models of anxiety, cough, substance abuse, pain (spinal and peripheral), and urinary incontinence, whereas NOP antagonists have been investigated for treatment of pain, depression, and motor symptoms in Parkinson's disease. Translation of preclinical findings into the clinic is guided by PET and receptor occupancy studies, particularly for NOP antagonists. Recent progress in preclinical NOP research suggests that NOP agonists may have clinical utility for pain treatment and substance abuse pharmacotherapy. This review discusses the progress toward validating the NOP-N/OFQ system as a therapeutic target.
Collapse
Affiliation(s)
- Nurulain T Zaveri
- Astraea Therapeutics , 320 Logue Avenue, Suite 142, Mountain View, California 94043, United States
| |
Collapse
|
18
|
Statnick MA, Chen Y, Ansonoff M, Witkin JM, Rorick-Kehn L, Suter TM, Song M, Hu C, Lafuente C, Jiménez A, Benito A, Diaz N, Martínez-Grau MA, Toledo MA, Pintar JE. A Novel Nociceptin Receptor Antagonist LY2940094 Inhibits Excessive Feeding Behavior in Rodents: A Possible Mechanism for the Treatment of Binge Eating Disorder. J Pharmacol Exp Ther 2016; 356:493-502. [PMID: 26659925 DOI: 10.1124/jpet.115.228221] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 12/02/2015] [Indexed: 11/22/2022] Open
Abstract
Nociceptin/orphanin FQ (N/OFQ), a 17 amino acid peptide, is the endogenous ligand of the ORL1/nociceptin-opioid-peptide (NOP) receptor. N/OFQ appears to regulate a variety of physiologic functions including stimulating feeding behavior. Recently, a new class of thienospiro-piperidine-based NOP antagonists was described. One of these molecules, LY2940094 has been identified as a potent and selective NOP antagonist that exhibited activity in the central nervous system. Herein, we examined the effects of LY2940094 on feeding in a variety of behavioral models. Fasting-induced feeding was inhibited by LY2940094 in mice, an effect that was absent in NOP receptor knockout mice. Moreover, NOP receptor knockout mice exhibited a baseline phenotype of reduced fasting-induced feeding, relative to wild-type littermate controls. In lean rats, LY2940094 inhibited the overconsumption of a palatable high-energy diet, reducing caloric intake to control chow levels. In dietary-induced obese rats, LY2940094 inhibited feeding and body weight regain induced by a 30% daily caloric restriction. Last, in dietary-induced obese mice, LY2940094 decreased 24-hour intake of a high-energy diet made freely available. These are the first data demonstrating that a systemically administered NOP receptor antagonist can reduce feeding behavior and body weight in rodents. Moreover, the hypophagic effect of LY2940094 is NOP receptor dependent and not due to off-target or aversive effects. Thus, LY2940094 may be useful in treating disorders of appetitive behavior such as binge eating disorder, food choice, and overeating, which lead to obesity and its associated medical complications and morbidity.
Collapse
Affiliation(s)
- Michael A Statnick
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (M.A.S., Y.C., J.M.W., L.R.K., T.M.S., M.S., C.H.); Eli Lilly and Company, Madrid, Spain (C.L., A.J., A.B., N.D., M.A.M.G., M.A.T.); and Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854 (M.A., J.E.P.)
| | - Yanyun Chen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (M.A.S., Y.C., J.M.W., L.R.K., T.M.S., M.S., C.H.); Eli Lilly and Company, Madrid, Spain (C.L., A.J., A.B., N.D., M.A.M.G., M.A.T.); and Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854 (M.A., J.E.P.)
| | - Michael Ansonoff
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (M.A.S., Y.C., J.M.W., L.R.K., T.M.S., M.S., C.H.); Eli Lilly and Company, Madrid, Spain (C.L., A.J., A.B., N.D., M.A.M.G., M.A.T.); and Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854 (M.A., J.E.P.)
| | - Jeffrey M Witkin
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (M.A.S., Y.C., J.M.W., L.R.K., T.M.S., M.S., C.H.); Eli Lilly and Company, Madrid, Spain (C.L., A.J., A.B., N.D., M.A.M.G., M.A.T.); and Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854 (M.A., J.E.P.)
| | - Linda Rorick-Kehn
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (M.A.S., Y.C., J.M.W., L.R.K., T.M.S., M.S., C.H.); Eli Lilly and Company, Madrid, Spain (C.L., A.J., A.B., N.D., M.A.M.G., M.A.T.); and Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854 (M.A., J.E.P.)
| | - Todd M Suter
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (M.A.S., Y.C., J.M.W., L.R.K., T.M.S., M.S., C.H.); Eli Lilly and Company, Madrid, Spain (C.L., A.J., A.B., N.D., M.A.M.G., M.A.T.); and Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854 (M.A., J.E.P.)
| | - Min Song
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (M.A.S., Y.C., J.M.W., L.R.K., T.M.S., M.S., C.H.); Eli Lilly and Company, Madrid, Spain (C.L., A.J., A.B., N.D., M.A.M.G., M.A.T.); and Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854 (M.A., J.E.P.)
| | - Charlie Hu
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (M.A.S., Y.C., J.M.W., L.R.K., T.M.S., M.S., C.H.); Eli Lilly and Company, Madrid, Spain (C.L., A.J., A.B., N.D., M.A.M.G., M.A.T.); and Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854 (M.A., J.E.P.)
| | - Celia Lafuente
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (M.A.S., Y.C., J.M.W., L.R.K., T.M.S., M.S., C.H.); Eli Lilly and Company, Madrid, Spain (C.L., A.J., A.B., N.D., M.A.M.G., M.A.T.); and Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854 (M.A., J.E.P.)
| | - Alma Jiménez
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (M.A.S., Y.C., J.M.W., L.R.K., T.M.S., M.S., C.H.); Eli Lilly and Company, Madrid, Spain (C.L., A.J., A.B., N.D., M.A.M.G., M.A.T.); and Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854 (M.A., J.E.P.)
| | - Ana Benito
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (M.A.S., Y.C., J.M.W., L.R.K., T.M.S., M.S., C.H.); Eli Lilly and Company, Madrid, Spain (C.L., A.J., A.B., N.D., M.A.M.G., M.A.T.); and Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854 (M.A., J.E.P.)
| | - Nuria Diaz
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (M.A.S., Y.C., J.M.W., L.R.K., T.M.S., M.S., C.H.); Eli Lilly and Company, Madrid, Spain (C.L., A.J., A.B., N.D., M.A.M.G., M.A.T.); and Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854 (M.A., J.E.P.)
| | - Maria Angeles Martínez-Grau
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (M.A.S., Y.C., J.M.W., L.R.K., T.M.S., M.S., C.H.); Eli Lilly and Company, Madrid, Spain (C.L., A.J., A.B., N.D., M.A.M.G., M.A.T.); and Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854 (M.A., J.E.P.)
| | - Miguel A Toledo
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (M.A.S., Y.C., J.M.W., L.R.K., T.M.S., M.S., C.H.); Eli Lilly and Company, Madrid, Spain (C.L., A.J., A.B., N.D., M.A.M.G., M.A.T.); and Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854 (M.A., J.E.P.)
| | - John E Pintar
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (M.A.S., Y.C., J.M.W., L.R.K., T.M.S., M.S., C.H.); Eli Lilly and Company, Madrid, Spain (C.L., A.J., A.B., N.D., M.A.M.G., M.A.T.); and Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854 (M.A., J.E.P.)
| |
Collapse
|
19
|
Váradi A, Marrone GF, Eans SO, Ganno ML, Subrath JJ, Le Rouzic V, Hunkele A, Pasternak GW, McLaughlin JP, Majumdar S. Synthesis and characterization of a dual kappa-delta opioid receptor agonist analgesic blocking cocaine reward behavior. ACS Chem Neurosci 2015; 6:1813-24. [PMID: 26325040 DOI: 10.1021/acschemneuro.5b00153] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
3-Iodobenzoyl naltrexamine (IBNtxA) is a potent analgesic belonging to the pharmacologically diverse 6β-amidoepoxymorphinan group of opioids. We present the synthesis and pharmacological evaluation of five analogs of IBNtxA. The scaffold of IBNtxA was modified by removing the 14-hydroxy group, incorporating a 7,8 double bond and various N-17 alkyl substituents. The structural modifications resulted in analogs with picomolar affinities for opioid receptors. The lead compound (MP1104) was found to exhibit approximately 15-fold greater antinociceptive potency (ED50 = 0.33 mg/kg) compared with morphine, mediated through the activation of kappa- and delta-opioid receptors. Despite its kappa agonism, this lead derivative did not cause place aversion or preference in mice in a place-conditioning assay, even at doses 3 times the analgesic ED50. However, pretreatment with the lead compound prevented the reward behavior associated with cocaine in a conditioned place preference assay. Together, these results suggest the promise of dual acting kappa- and delta-opioid receptor agonists as analgesics and treatments for cocaine addiction.
Collapse
Affiliation(s)
- András Váradi
- Molecular
Pharmacology and Chemistry Program, Department of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Gina F. Marrone
- Molecular
Pharmacology and Chemistry Program, Department of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Shainnel O. Eans
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Michelle L. Ganno
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Joan J. Subrath
- Molecular
Pharmacology and Chemistry Program, Department of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Valerie Le Rouzic
- Molecular
Pharmacology and Chemistry Program, Department of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Amanda Hunkele
- Molecular
Pharmacology and Chemistry Program, Department of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Gavril W. Pasternak
- Molecular
Pharmacology and Chemistry Program, Department of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Jay P. McLaughlin
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Susruta Majumdar
- Molecular
Pharmacology and Chemistry Program, Department of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| |
Collapse
|
20
|
Yawata T, Higashi Y, Shimizu T, Shimizu S, Nakamura K, Taniuchi K, Ueba T, Saito M. Brain opioid and nociceptin receptors are involved in regulation of bombesin-induced activation of central sympatho-adrenomedullary outflow in the rat. Mol Cell Biochem 2015; 411:201-11. [DOI: 10.1007/s11010-015-2582-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/26/2015] [Indexed: 11/28/2022]
|
21
|
Zhang Y, Simpson-Durand CD, Standifer KM. Nociceptin/orphanin FQ peptide receptor antagonist JTC-801 reverses pain and anxiety symptoms in a rat model of post-traumatic stress disorder. Br J Pharmacol 2015; 172:571-82. [PMID: 24666365 PMCID: PMC4292969 DOI: 10.1111/bph.12701] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 03/17/2014] [Accepted: 03/20/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Single-prolonged stress (SPS), a rat model of post-traumatic stress disorder (PTSD), also induces long-lasting hyperalgesia associated with hypocortisolism and elevated nociceptin/orphanin FQ (N/OFQ) levels in serum and CSF. Here, we determined the effect of JTC-801 (N-(4-amino-2-methylquinolin-6-yl)-2-(4-ethylphenoxymethyl) benzamide monohydrochloride), a nociceptin/orphanin FQ peptide (NOP) receptor antagonist, on symptoms of pain and anxiety in rats after SPS exposure, and examined N/OFQ-NOP receptor system changes. EXPERIMENTAL APPROACH Male Sprague Dawley rats received JTC-801 (6 mg kg(-1) i.p., once daily) during days 7-21 of SPS. The ability of JTC-801 to inhibit N/OFQ-stimulated [(35) S]-GTPγS binding was confirmed in rat brain membranes. Anxiety-like behaviour and pain sensitivity were monitored by changes in elevated plus maze performance and withdrawal responses to thermal and mechanical stimuli. Serum corticosterone and N/OFQ content in CSF, serum and brain tissues were determined by radioimmunoassay; NOP receptor protein and gene expression in amygdala, hippocampus and periaqueductal grey (PAG) were examined by immunoblotting and real-time PCR respectively. KEY RESULTS JTC-801 treatment reversed SPS-induced mechanical allodynia, thermal hyperalgesia, anxiety-like behaviour and hypocortisolism. Elevated N/OFQ levels in serum, CSF, PAG and hippocampus at day 21 of SPS were blocked by JTC-801; daily JTC-801 treatment also reversed NOP receptor protein and mRNA up-regulation in amygdala and PAG. CONCLUSION AND IMPLICATIONS JTC-801 reversed SPS-induced anxiety- and pain-like behaviours, and NOP receptor system up-regulation. These findings suggest that N/OFQ plays an important role in hyperalgesia and allodynia maintenance after SPS. NOP receptor antagonists may provide effective treatment for co-morbid PTSD and pain. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.
Collapse
Affiliation(s)
- Y Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | | |
Collapse
|
22
|
Rewarding or aversive effects of buprenorphine/naloxone combination (Suboxone) depend on conditioning trial duration. Int J Neuropsychopharmacol 2014; 17:1367-73. [PMID: 24606726 DOI: 10.1017/s146114571400025x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Buprenorphine is used as a sublingual medication in the treatment of opioid dependence. However, its misuse by i.v. injection may limit its acceptability and dissemination. A buprenorphine/naloxone (ratio 4:1) combination has been developed to reduce diversion and abuse. So far, the relevance of this combination has not been investigated in the animal models traditionally used to study the reinforcing effects of drugs of abuse. The aim of this study was to compare the rewarding effects, assessed by conditioned place preference (CPP), of buprenorphine and buprenorphine/naloxone combination following i.v. administration in mice. Animals were treated with different doses of buprenorphine or buprenorphine/naloxone combination (ratio 4:1), and CPP conditioning trial duration was 5 or 30 min. At the longest trial duration, a bell-shaped dose-response curve was obtained with buprenorphine, which was shifted significantly to the right with naloxone combination. At the shortest trial duration, an aversive effect was observed with the buprenorphine/naloxone combination in animals, involving opioid receptor-like 1 (ORL1). These findings may explain the discrepancies reported in the literature as some authors have shown a reduced buprenorphine/naloxone misuse compared to buprenorphine in opioid abusers, while others have not.
Collapse
|
23
|
Linz K, Christoph T, Tzschentke TM, Koch T, Schiene K, Gautrois M, Schröder W, Kögel BY, Beier H, Englberger W, Schunk S, De Vry J, Jahnel U, Frosch S. Cebranopadol: a novel potent analgesic nociceptin/orphanin FQ peptide and opioid receptor agonist. J Pharmacol Exp Ther 2014; 349:535-48. [PMID: 24713140 DOI: 10.1124/jpet.114.213694] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cebranopadol (trans-6'-fluoro-4',9'-dihydro-N,N-dimethyl-4-phenyl-spiro[cyclohexane-1,1'(3'H)-pyrano[3,4-b]indol]-4-amine) is a novel analgesic nociceptin/orphanin FQ peptide (NOP) and opioid receptor agonist [Ki (nM)/EC50 (nM)/relative efficacy (%): human NOP receptor 0.9/13.0/89; human mu-opioid peptide (MOP) receptor 0.7/1.2/104; human kappa-opioid peptide receptor 2.6/17/67; human delta-opioid peptide receptor 18/110/105]. Cebranopadol exhibits highly potent and efficacious antinociceptive and antihypersensitive effects in several rat models of acute and chronic pain (tail-flick, rheumatoid arthritis, bone cancer, spinal nerve ligation, diabetic neuropathy) with ED50 values of 0.5-5.6 µg/kg after intravenous and 25.1 µg/kg after oral administration. In comparison with selective MOP receptor agonists, cebranopadol was more potent in models of chronic neuropathic than acute nociceptive pain. Cebranopadol's duration of action is long (up to 7 hours after intravenous 12 µg/kg; >9 hours after oral 55 µg/kg in the rat tail-flick test). The antihypersensitive activity of cebranopadol in the spinal nerve ligation model was partially reversed by pretreatment with the selective NOP receptor antagonist J-113397[1-[(3R,4R)-1-cyclooctylmethyl-3-hydroxymethyl-4-piperidyl]-3-ethyl-1,3-dihydro-2H-benzimidazol-2-one] or the opioid receptor antagonist naloxone, indicating that both NOP and opioid receptor agonism are involved in this activity. Development of analgesic tolerance in the chronic constriction injury model was clearly delayed compared with that from an equianalgesic dose of morphine (complete tolerance on day 26 versus day 11, respectively). Unlike morphine, cebranopadol did not disrupt motor coordination and respiration at doses within and exceeding the analgesic dose range. Cebranopadol, by its combination of agonism at NOP and opioid receptors, affords highly potent and efficacious analgesia in various pain models with a favorable side effect profile.
Collapse
MESH Headings
- Analgesics, Opioid/administration & dosage
- Analgesics, Opioid/adverse effects
- Analgesics, Opioid/pharmacology
- Analgesics, Opioid/therapeutic use
- Animals
- Arthritis, Experimental/complications
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/metabolism
- Behavior, Animal/drug effects
- Bone Neoplasms/complications
- Bone Neoplasms/drug therapy
- Bone Neoplasms/metabolism
- CHO Cells
- Cell Membrane/drug effects
- Cell Membrane/metabolism
- Cricetinae
- Cricetulus
- Female
- Indoles/administration & dosage
- Indoles/adverse effects
- Indoles/pharmacology
- Indoles/therapeutic use
- Male
- Opioid Peptides/agonists
- Pain/drug therapy
- Pain/etiology
- Pain/metabolism
- Polyneuropathies/complications
- Polyneuropathies/drug therapy
- Polyneuropathies/metabolism
- Protein Binding
- Radioligand Assay
- Rats
- Rats, Sprague-Dawley
- Rats, Wistar
- Receptors, Opioid/agonists
- Rotarod Performance Test
- Spiro Compounds/administration & dosage
- Spiro Compounds/adverse effects
- Spiro Compounds/pharmacology
- Spiro Compounds/therapeutic use
- Nociceptin
Collapse
Affiliation(s)
- Klaus Linz
- Departments of Preclinical Drug Safety (K.L.), Global Preclinical Drug Development (S.F.), Global Preclinical Research and Development (U.J.), Pain Pharmacology (T.C., T.M.T., K.S., B.Y.K., J.D.V.), Molecular Pharmacology (T.K., W.E.), Translational Science (W.S.), Pharmacokinetics (M.G., H.B.), and Medicinal Chemistry (S.S.), Grünenthal GmbH, Aachen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Senćanski M, Došen-Mićović L. In Silico Study of the Structurally Similar ORL1 Receptor Agonist and Antagonist Pairs Reveal Possible Mechanism of Receptor Activation. Protein J 2014; 33:231-42. [DOI: 10.1007/s10930-014-9555-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Gavioli EC, Calo' G. Nociceptin/orphanin FQ receptor antagonists as innovative antidepressant drugs. Pharmacol Ther 2013; 140:10-25. [PMID: 23711793 DOI: 10.1016/j.pharmthera.2013.05.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 12/21/2022]
Abstract
Nociceptin/orphanin FQ (N/OFQ) and its receptor (NOP) were identified in the mid 90s as a novel peptidergic system structurally related to opioids. A growing body of preclinical evidence suggests that blockade of NOP receptors evokes antidepressant-like actions. These have been explored using a range of compounds (peptide and non peptide antagonists), across different species (rat and mouse) and assays (behavioral despair and chronic mild stress) suggesting a robust and consistent antidepressant-like effect. Moreover, rats and mice knockout for the NOP receptor gene display an antidepressant-like phenotype in behavioral despair assays. Electrophysiological, immunohistochemical and neurochemical studies point to an important role played by monoaminergic systems, particularly 5-HTergic, in mediating the antidepressant-like properties of NOP antagonists. However other putative mechanisms of action, including modulation of the CRF system, circadian rhythm and a possible neuroendocrine-immune control might be involved. A close relationship between the N/OFQ-NOP receptor system and stress responses is well described in the literature. Stressful situations also alter endocrine, behavioral and neurochemical parameters in rats and chronic administration of a NOP antagonist restored these alterations. Interestingly, clinical findings showed that plasma N/OFQ levels were significantly altered in major and post-partum depression, and bipolar disease patients. Collectively, data in the literature support the notion that blockade of NOP receptor signaling could be a novel and interesting strategy for the development of innovative antidepressants.
Collapse
Affiliation(s)
- Elaine Cristina Gavioli
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, 59078-970 Natal-RN, Brazil.
| | | |
Collapse
|
26
|
Zamfirova R, Pavlov N, Todorov P, Mateeva P, Martinez J, Calmès M, Naydenova E. Synthesis and changes in affinity for NOP and opioid receptors of novel hexapeptides containing β2-tryptophan analogues. Bioorg Med Chem Lett 2013; 23:4052-5. [DOI: 10.1016/j.bmcl.2013.05.064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/15/2013] [Accepted: 05/18/2013] [Indexed: 10/26/2022]
|
27
|
Miranda-Morales RS, Nizhnikov ME, Waters DH, Spear NE. Participation of the nociceptin/orphanin FQ receptor in ethanol-mediated locomotor activation and ethanol intake in preweanling rats. Behav Brain Res 2013; 245:137-44. [PMID: 23439216 PMCID: PMC3666860 DOI: 10.1016/j.bbr.2013.02.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 02/12/2013] [Accepted: 02/14/2013] [Indexed: 12/16/2022]
Abstract
Activation of nociceptin/orphanin FQ (NOP) receptors seems to attenuate ethanol-induced reinforcement in adult rodents. Since early ethanol exposure results in later increased responsiveness to ethanol, it is important to analyze NOP receptor modulation of ethanol-related behaviors during early ontogeny. By measuring NOP involvement in ethanol intake and ethanol-induced locomotor activation, we analyzed the specific participation of NOP receptors on these ethanol-related behaviors in two-week-old rats. In each experiment animals were pre-treated with the endogenous ligand for this receptor (nociceptin/orphanin FQ at 0.0, 0.5, 1.0 or 2.0 μg) or a selective NOP antagonist (J-113397 at 0.0, 0.5, 2.0 or 5.0 mg/kg). Results indicated that activation of the nociceptin receptor system had no effect on ethanol or water intake, while blockade of the NOP receptor has an unspecific effect on consummatory behavior: J-113397 increased ethanol (at a dose of 0.5 mg/kg) and water intake (at 0.5 and 5.0 mg/kg). Ethanol-mediated locomotor stimulation was attenuated by activation of the NOP system (nociceptin at 1.0 and 2.0 μg). Nociceptin had no effect on basal locomotor activity. Blockade of NOP receptors did not modify ethanol-induced locomotor activation. Contrary to what has been reported for adult rodents, nociceptin failed to suppress intake of ethanol in infants. Attenuation of ethanol-induced stimulation by activation of NOP receptor system suggests an early role of this receptor in this ethanol-related behavior.
Collapse
Affiliation(s)
- Roberto Sebastián Miranda-Morales
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY 13902-6000, USA.
| | | | | | | |
Collapse
|
28
|
Calo’ G, Guerrini R. Medicinal Chemistry, Pharmacology, and Biological Actions of Peptide Ligands Selective for the Nociceptin/Orphanin FQ Receptor. ACS SYMPOSIUM SERIES 2013. [DOI: 10.1021/bk-2013-1131.ch015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Girolamo Calo’
- Department of Experimental and Clinical Medicine, Section of Pharmacology, University of Ferrara and National Institute of Neuroscience, Italy
- Department of Pharmaceutical Sciences and LTTA (Laboratorio per le Tecnologie delle Terapie Avanzate), University of Ferrara, Italy
| | - Remo Guerrini
- Department of Experimental and Clinical Medicine, Section of Pharmacology, University of Ferrara and National Institute of Neuroscience, Italy
- Department of Pharmaceutical Sciences and LTTA (Laboratorio per le Tecnologie delle Terapie Avanzate), University of Ferrara, Italy
| |
Collapse
|
29
|
Pedregal C, Joshi EM, Toledo MA, Lafuente C, Diaz N, Martinez-Grau MA, Jiménez A, Benito A, Navarro A, Chen Z, Mudra DR, Kahl SD, Rash KS, Statnick MA, Barth VN. Development of LC-MS/MS-Based Receptor Occupancy Tracers and Positron Emission Tomography Radioligands for the Nociceptin/Orphanin FQ (NOP) Receptor. J Med Chem 2012; 55:4955-67. [DOI: 10.1021/jm201629q] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Concepción Pedregal
- Centro de
Investigación Lilly, Avenida de la Industria 30, 28108-Alcobendas,
Madrid, Spain
| | - Elizabeth M. Joshi
- Eli Lilly & Co., Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - Miguel A. Toledo
- Centro de
Investigación Lilly, Avenida de la Industria 30, 28108-Alcobendas,
Madrid, Spain
| | - Celia Lafuente
- Centro de
Investigación Lilly, Avenida de la Industria 30, 28108-Alcobendas,
Madrid, Spain
| | - Nuria Diaz
- Centro de
Investigación Lilly, Avenida de la Industria 30, 28108-Alcobendas,
Madrid, Spain
| | - Maria A. Martinez-Grau
- Centro de
Investigación Lilly, Avenida de la Industria 30, 28108-Alcobendas,
Madrid, Spain
| | - Alma Jiménez
- Centro de
Investigación Lilly, Avenida de la Industria 30, 28108-Alcobendas,
Madrid, Spain
| | - Ana Benito
- Centro de
Investigación Lilly, Avenida de la Industria 30, 28108-Alcobendas,
Madrid, Spain
| | - Antonio Navarro
- Eli Lilly & Co., Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - Zhaogen Chen
- Eli Lilly & Co., Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - Daniel R. Mudra
- Eli Lilly & Co., Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - Steven D. Kahl
- Eli Lilly & Co., Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - Karen S. Rash
- Eli Lilly & Co., Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - Michael A. Statnick
- Eli Lilly & Co., Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - Vanessa N. Barth
- Eli Lilly & Co., Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| |
Collapse
|
30
|
Ces A, Reiss D, Walter O, Wichmann J, Prinssen EP, Kieffer BL, Ouagazzal AM. Activation of nociceptin/orphanin FQ peptide receptors disrupts visual but not auditory sensorimotor gating in BALB/cByJ mice: comparison to dopamine receptor agonists. Neuropsychopharmacology 2012; 37:378-89. [PMID: 21881568 PMCID: PMC3242299 DOI: 10.1038/npp.2011.175] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 07/21/2011] [Accepted: 07/25/2011] [Indexed: 11/08/2022]
Abstract
Nociceptin/orphanin FQ (N/OFQ) peptide and its receptor (NOP receptor) have been implicated in a host of brain functions and diseases, but the contribution of this neuropeptide system to behavioral processes of relevance to psychosis has not been investigated. We examined the effect of the NOP receptor antagonists, Compound 24 and J-113397, and the synthetic agonist, Ro64-6198, on time function (2-2000 ms prepulse-pulse intervals) of acoustic (80 dB/10 ms prepulse) and visual (1000 Lux/20 ms prepulse) prepulse inhibition of startle reflex (PPI), a preattentive sensory filtering mechanism that is central to perceptual and mental integration. The effects of the dopamine D1-like receptor agonist, SKF-81297, the D2-like receptor agonist, quinelorane, and the mixed D1/D2 agonist, apomorphine, were studied for comparison. When acoustic stimulus was used as prepulse, BALB/cByJ mice displayed a monotonic time function of PPI, and consistent with previous studies, apomorphine and SKF-81279 induced PPI impairment, whereas quinelorane had no effect. None of the NOP receptor ligands was effective on acoustic PPI. When flash light was used as prepulse, BALB/cByJ mice displayed a bell-shaped time function of PPI and all dopamine agonists were active. Ro64-6198 was also effective in reducing visual PPI. NOP receptor antagonists showed no activity but blocked disruptive effect of Ro64-6198. Finally, coadministration of the typical antipsychotic, haloperidol, attenuated PPI impairment induced by Ro64-6198, revealing involvement of a dopaminergic component. These findings show that pharmacological stimulation of NOP or dopamine D2-like receptors is more potent in disrupting visual than acoustic PPI in mice, whereas D1-like receptor activation disrupts both. They further suggest that dysfunction of N/OFQ transmission may be implicated in the pathogenesis of psychotic manifestations.
Collapse
Affiliation(s)
| | - David Reiss
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Département de Neurobiologie et Génétique, Illkirch, France
| | - Ondine Walter
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Département de Neurobiologie et Génétique, Illkirch, France
- Université Louis Pasteur, Strasbourg, France
| | | | | | - Brigitte L Kieffer
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Département de Neurobiologie et Génétique, Illkirch, France
- Inserm, U596, Illkirch, France
| | - Abdel-Mouttalib Ouagazzal
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Département de Neurobiologie et Génétique, Illkirch, France
- CNRS, UMR7104, Illkirch, France
| |
Collapse
|
31
|
Osmond RIW, Martin-Harris MH, Crouch MF, Park J, Morreale E, Dupriez VJ. G-Protein-Coupled Receptor-Mediated MAPK and PI3-Kinase Signaling Is Maintained in Chinese Hamster Ovary Cells after γ-Irradiation. ACTA ACUST UNITED AC 2011; 17:361-9. [DOI: 10.1177/1087057111425859] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To expedite G-protein-coupled receptor (GPCR) drug screening studies, cell lines amenable to transfection (e.g. CHO cells) have been widely used as cellular models. These cells can be frozen in a ready-to-use format, allowing screening of a single batch of cells and validation of the cellular material prior to the screening run. A common method used to deliver frozen cells to screening programs is to γ-irradiate the cells, abrogating cell division after thawing and ensuring consistency in the number of cells analyzed per well. With the recognition that signaling proteins such as ERK and Akt are important markers of GPCR activation, along with the availability of suitable assays for their measurement, these outputs have become important for GPCR screening programs. Here we show that several γ-irradiated and frozen CHO-K1 cell lines expressing transfected GPCRs, initially optimized for performing cAMP or AequoScreen calcium flux assays, can be used for the measurement of GPCR-mediated ERK and Akt phosphorylation. Furthermore, CHO-K1 cells transfected with NOP or GAL1 receptors show pharmacology for a number of agonists and antagonists that is consistent with non-irradiated cultured lines. These data indicate that γ-irradiated CHO-K1 cells can be reliably used for the measurement of GPCR-mediated kinase signaling outputs.
Collapse
|
32
|
Khroyan TV, Polgar WE, Orduna J, Montenegro J, Jiang F, Zaveri NT, Toll L. Differential effects of nociceptin/orphanin FQ (NOP) receptor agonists in acute versus chronic pain: studies with bifunctional NOP/μ receptor agonists in the sciatic nerve ligation chronic pain model in mice. J Pharmacol Exp Ther 2011; 339:687-93. [PMID: 21859931 PMCID: PMC3199991 DOI: 10.1124/jpet.111.184663] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 08/18/2011] [Indexed: 11/22/2022] Open
Abstract
1-(1-Cyclooctylpiperidin-4-yl)-indolin-2-one (SR14150) and 1-(1-(2,3,3a,4,5,6-hexahydro-1H-phenalen-1-yl)piperidinl-4-yl)-indolin-2-one (SR16835) are moderately selective nociceptin/orphanin FQ (NOP) receptor agonists. In the [(35)S]guanosine 5'-O-(3-thiotriphosphate) assay in vitro, SR14150 is a partial agonist at both the NOP and μ-opioid receptors, whereas SR16835 is a full agonist at the NOP receptor and has low efficacy at μ receptors. These compounds were tested for antinociceptive and antiallodynic activity, using mice in chronic pain, subsequent to spinal nerve ligation (SNL) surgery. When administered subcutaneously to mice after SNL surgery, SR14150 but not SR16835 increased tail-flick latency, which was blocked by the opioid antagonist naloxone, but not by the NOP receptor antagonist (-)-cis-1-methyl-7-[[4-(2,6-dichlorophenyl)piperidin-1-yl]methyl]-6,7,8,9-tetrahydro-5H-benzocyclohepten-5-ol (SB-612111). In contrast, both SR14150 and SR16835 had antiallodynic activity when mechanical allodynia was measured with von Frey monofilaments. This effect was completely blocked by SB-612111 but not by naloxone. On the other hand, morphine antinociception and antiallodynia were both blocked by naloxone and potentiated by SB-612111. These results indicate that, in mice, circuitry mediating antinociceptive activity in acute and chronic pain states is different. It is possible that during a chronic pain state, an up-regulated NOP system in the spinal cord leads to NOP receptor-mediated antiallodynia, which is blocked by NOP antagonists. However, supraspinal up-regulation could lead to an attenuation of morphine antinociception and antiallodynia, which can be alleviated by an NOP receptor antagonist. Thus, although neither NOP agonists nor antagonists are effective as analgesics in acute pain, they may have efficacy as analgesics, either alone or in combination with morphine, for treatment of chronic pain.
Collapse
|
33
|
Cami-Kobeci G, Polgar WE, Khroyan TV, Toll L, Husbands SM. Structural determinants of opioid and NOP receptor activity in derivatives of buprenorphine. J Med Chem 2011; 54:6531-7. [PMID: 21866885 DOI: 10.1021/jm2003238] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The unique pharmacological profile of buprenorphine has led to its considerable success as an analgesic and as a treatment agent for drug abuse. Activation of nociceptin/orphanin FQ peptide (NOP) receptors has been postulated to account for certain aspects of buprenorphine's behavioral profile. In order to investigate the role of NOP activation further, a series of buprenorphine analogues has been synthesized with the aim of increasing affinity for the NOP receptor. Binding and functional assay data on these new compounds indicate that the area around C20 in the orvinols is key to NOP receptor activity, with several compounds displaying higher affinity than buprenorphine. One compound, 1b, was found to be a mu opioid receptor partial agonist of comparable efficacy to buprenorphine but with higher efficacy at NOP receptors.
Collapse
Affiliation(s)
- Gerta Cami-Kobeci
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, U.K
| | | | | | | | | |
Collapse
|
34
|
Mustazza C, Bastanzio G. Development of nociceptin receptor (NOP) agonists and antagonists. Med Res Rev 2011; 31:605-48. [PMID: 20099319 DOI: 10.1002/med.20197] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The nociceptin opioid (NOP) receptor is the most recently discovered member of the family of the opioid receptors; its endogenous agonist is the peptide nociceptin. Due to the subsequent elucidation of its physiological role in both central and peripheral nervous system and in some non-neural tissues, there is a rapidly growing interest in the pharmacological application of substances active on this receptor. Despite the current clinical use of a morphinane-based NOP/MOP mixed ligand (buprenorphine) as an analgesic and in the treatment of drug addictions, so far just a few clinical trials have been made with selective NOP ligands. However, the perspective of their utilization is rapidly growing. Agonists can find applications in the treatment of neuropathic pain, anxiety, cough, drug addition, urinary incontinence, anorexia, congestive heart failure, hypertension; and antagonists for pain, depression, Parkinson's disease, obesity, and as memory enhancers. Besides peptide ligands, which are still subjected to many pharmacological investigations, many different chemical classes of NOP ligands have been discovered: piperidines, nortropanes, spiropiperidines, 4-amino-quinolines and quinazolines, and others. The new advances in establishing structure-activity relationships, also with the help of modeling studies, can permit the development of more active and selective molecules.
Collapse
Affiliation(s)
- Carlo Mustazza
- Dipartimento del Farmaco, Istituto Superiore di Sanità, Viale Regina Elena, Roma, Italy.
| | | |
Collapse
|
35
|
Pike VW, Rash KS, Chen Z, Pedregal C, Statnick MA, Kimura Y, Hong J, Zoghbi SS, Fujita M, Toledo MA, Diaz N, Gackenheimer SL, Tauscher JT, Barth VN, Innis RB. Synthesis and evaluation of radioligands for imaging brain nociceptin/orphanin FQ peptide (NOP) receptors with positron emission tomography. J Med Chem 2011; 54:2687-700. [PMID: 21438532 PMCID: PMC3081360 DOI: 10.1021/jm101487v] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Positron emission tomography (PET) coupled to an effective radioligand could provide an important tool for understanding possible links between neuropsychiatric disorders and brain NOP (nociceptin/orphanin FQ peptide) receptors. We sought to develop such a PET radioligand. High-affinity NOP ligands were synthesized based on a 3-(2'-fluoro-4',5'-dihydrospiro[piperidine-4,7'-thieno[2,3-c]pyran]-1-yl)-2(2-halobenzyl)-N-alkylpropanamide scaffold and from experimental screens in rats, with ex vivo LC-MS/MS measures, three ligands were identified for labeling with carbon-11 and evaluation with PET in monkey. Each ligand was labeled by (11)C-methylation of an N-desmethyl precursor and studied in monkey under baseline and NOP receptor-preblock conditions. The three radioligands, [(11)C](S)-10a-c, gave similar results. Baseline scans showed high entry of radioactivity into the brain to give a distribution reflecting that expected for NOP receptors. Preblock experiments showed high early peak levels of brain radioactivity, which rapidly declined to a much lower level than seen in baseline scans, thereby indicating a high level of receptor-specific binding in baseline experiments. Overall, [(11)C](S)-10c showed the most favorable receptor-specific signal and kinetics and is now selected for evaluation in human subjects.
Collapse
Affiliation(s)
- Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lu SX, Higgins GA, Hodgson RA, Hyde LA, Del Vecchio RA, Guthrie DH, Kazdoba T, McCool MF, Morgan CA, Bercovici A, Ho GD, Tulshian D, Parker EM, Hunter JC, Varty GB. The anxiolytic-like profile of the nociceptin receptor agonist, endo-8-[bis(2-chlorophenyl)methyl]-3-phenyl-8-azabicyclo[3.2.1]octane-3-carboxamide (SCH 655842): comparison of efficacy and side effects across rodent species. Eur J Pharmacol 2011; 661:63-71. [PMID: 21545797 DOI: 10.1016/j.ejphar.2011.04.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 03/28/2011] [Accepted: 04/14/2011] [Indexed: 11/19/2022]
Abstract
The endogenous opioid-like peptide, nociceptin, produces anxiolytic-like effects that are mediated via the nociceptin (NOP) receptor. Similarly, synthetic, non-peptide NOP agonists produce robust anxiolytic-like effects although these effects are limited by marked side effects. In the present studies, the effects of a novel NOP receptor agonist, SCH 655842, were examined in rodent models sensitive to anxiolytic drugs and tests measuring potential adverse affects. Oral administration of SCH 655842 produced robust, anxiolytic-like effects in three species, i.e., rat, guinea pig, and mouse. Specifically, SCH 655842 was effective in rat conditioned lick suppression (3-10 mg/kg) and fear-potentiated startle (3-10 mg/kg) tests, a guinea pig pup vocalization test (1-3 mg/kg), as well as in mouse Geller-Seifter (30 mg/kg) and marble burying (30 mg/kg) tests. The anxiolytic-like effect of SCH 655842 in the conditioned lick suppression test was attenuated by the NOP antagonist, J-113397. In mice, SCH 655842 reduced locomotor activity and body temperature at doses similar to the anxiolytic-like dose and these effects were absent in NOP receptor knockout mice. In rats, SCH 655842 did not produce adverse behavioral effects up to doses of 70-100 mg/kg. Pharmacokinetic studies in the rat confirmed dose-related increases in plasma and brain levels of SCH 655842 across a wide oral dose range. Taken together, SCH 655842 may represent a NOP receptor agonist with improved tolerability compared to other members of this class although further studies are necessary to establish whether this extends to higher species.
Collapse
Affiliation(s)
- Sherry X Lu
- Department of Neurobiology, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Suresh Kumar R, Osman H, Perumal S, Menéndez JC, Ashraf Ali M, Ismail R, Soo Choon T. A facile three-component [3+2]-cycloaddition/annulation domino protocol for the regio- and diastereoselective synthesis of novel penta- and hexacyclic cage systems, involving the generation of two heterocyclic rings and five contiguous stereocenters. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.02.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
38
|
Rizzi A, Molinari S, Marti M, Marzola G, Calo' G. Nociceptin/orphanin FQ receptor knockout rats: in vitro and in vivo studies. Neuropharmacology 2011; 60:572-9. [PMID: 21184763 DOI: 10.1016/j.neuropharm.2010.12.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 12/15/2010] [Accepted: 12/15/2010] [Indexed: 11/15/2022]
Abstract
Nociceptin/orphanin FQ (N/OFQ) regulates several biological functions via selective activation of the N/OFQ peptide (NOP) receptor. Recently knockout rats for the NOP receptor gene (NOP(-/-)) have been generated; these animals were used in the present study to investigate their emotional (open field, elevated plus maze, and forced swimming test), locomotor (drag and rotarod test), and nociceptive (plantar and formalin test) phenotypes in comparison with their NOP(+/+) littermates. In addition, N/OFQ sensitivity has been assessed in electrically stimulated vas deferens tissues taken from NOP(+/+) and NOP(-/-) rats. In the elevated plus maze and forced swimming tests NOP(-/-) rats showed anxiety- and anti-depressant-like phenotype, respectively. No differences were found in the open field test. NOP(-/-) rats outperformed their NOP(+/+) littermates in two motor behaviour assays. Genetic ablation of the NOP receptor gene produced a statistically significant increase in nociceptive behaviour of the mutant rats in the formalin test. Finally, in the electrically stimulated rat vas deferens taken from NOP(+/+) tissues, N/OFQ inhibited in a concentration-dependent manner the electrically induced twitches while the peptide was inactive in tissues taken from NOP(-/-) animals. These results, in line with previous findings obtained with selective NOP receptor antagonists in mice and rats and with mouse knockout studies, clearly indicate that endogenous N/OFQ-NOP receptor signalling plays an important role in controlling anxiety- and mood-related behaviours, exercise-driven locomotor activity and nociception. These observations are relevant for defining the therapeutic indications (and contraindications) of NOP receptor antagonists.
Collapse
Affiliation(s)
- Anna Rizzi
- Department of Experimental and Clinical Medicine, University of Ferrara, Ferrara, Italy
| | | | | | | | | |
Collapse
|
39
|
Hayashi S, Nakata E, Morita A, Mizuno K, Yamamura K, Kato A, Ohashi K. Discovery of {1-[4-(2-{hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl}-1H-benzimidazol-1-yl)piperidin-1-yl]cyclooctyl}methanol, systemically potent novel non-peptide agonist of nociceptin/orphanin FQ receptor as analgesic for the treatment of neuropathic pain: Design, synthesis, and structure–activity relationships. Bioorg Med Chem 2010; 18:7675-99. [DOI: 10.1016/j.bmc.2010.07.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 07/14/2010] [Accepted: 07/15/2010] [Indexed: 10/19/2022]
|
40
|
Rutten K, De Vry J, Bruckmann W, Tzschentke TM. Effects of the NOP receptor agonist Ro65-6570 on the acquisition of opiate- and psychostimulant-induced conditioned place preference in rats. Eur J Pharmacol 2010; 645:119-26. [PMID: 20674566 DOI: 10.1016/j.ejphar.2010.07.036] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 06/11/2010] [Accepted: 07/15/2010] [Indexed: 12/14/2022]
Abstract
Activation of the Nociceptin/Orphanin FQ (NOP) receptor may have anti-abuse effects. The present study examined the consequence of NOP receptor activation on the rewarding effect of opiates and psychostimulants in the conditioned place preference task in rats. First, the motivational effect of the NOP receptor agonists Ro64-6198 (0.316-3.16 mg/kg i.p.) and Ro65-6570 (1-10mg/kg i.p.) when administered alone, was assessed. Ro65-6570 was selected for further drug combination studies since, unlike Ro64-6198, it was devoid of an intrinsic motivational effect. Next, the minimal effective dose to induce reward for the opiates heroin (0.1-3.16 mg/kg i.p.), morphine (1-10mg/kg i.p.), hydrocodone (0.316-10mg/kg i.p.), tilidine (1-31.6 mg/kg i.p.), hydromorphone (0.1-10mg/kg i.p.), and oxycodone (0.0316-10mg/kg i.p.), as well as for the psychostimulants cocaine (3.16-31.6 mg/kg i.p.) and dexamphetamine (0.316-3.16 mg/kg i.p.) in combination with Ro 65-6570 (0 or 3.16 mg/kg i.p.) was determined. All drugs produced conditioned place preference, and for opiates and cocaine, but not for dexamphetamine, the minimal effective dose was higher when combined with Ro65-6570 (3.16 mg/kg i.p.). Attenuation of the rewarding effect of tilidine (3.16 mg/kg i.p.) and oxycodone (1mg/kg i.p.) by Ro65-6570 (3.16 mg/kg i.p.) could be reversed by pre-treatment with the NOP receptor antagonist J-113397 (4.64 mg/kg i.p.), suggesting that the attenuating effect of Ro65-6570 on opiates is due to activation of the NOP receptor. Taken together, the present study suggests that activation of NOP receptors effectively attenuates the rewarding effect of opiates, but may be less effective in reducing psychostimulant-induced reward.
Collapse
Affiliation(s)
- Kris Rutten
- Grünenthal GmbH, Global Preclinical Research and Development, Department of Pharmacology, Zieglerstrasse 6, 52078 Aachen, Germany.
| | | | | | | |
Collapse
|
41
|
Volta M, Marti M, McDonald J, Molinari S, Camarda V, Pelà M, Trapella C, Morari M. Pharmacological profile and antiparkinsonian properties of the novel nociceptin/orphanin FQ receptor antagonist 1-[1-cyclooctylmethyl-5-(1-hydroxy-1-methyl-ethyl)-1,2,3,6-tetrahydro-pyridin-4-yl]-3-ethyl-1,3-dihydro-benzoimidazol-2-one (GF-4). Peptides 2010; 31:1194-204. [PMID: 20307605 DOI: 10.1016/j.peptides.2010.03.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 03/10/2010] [Accepted: 03/10/2010] [Indexed: 11/20/2022]
Abstract
In this study we provided a pharmacological characterization of the recently synthesized nociceptin/orphanin FQ (N/OFQ) peptide receptor (NOP) antagonist 1-[1-Cyclooctylmethyl-5-(1-hydroxy-1-methyl-ethyl)-1,2,3,6-tetrahydro-pyridin-4-yl]-3-ethyl-1,3-dihydro-benzoimidazol-2-one (GF-4) and investigated its antiparkinsonian properties. GF-4 inhibited N/OFQ binding to CHO(hNOP) cell membranes (pK(i) 7.46), and antagonized N/OFQ effects in a calcium mobilization assay and electrically stimulated isolated tissues (pK(B) 7.27-7.82), showing a approximately 5-fold selectivity over classical opioid receptors. In vivo, GF-4 dually modulated stepping activity in wild-type mice, causing facilitation in the 0.01-10mg/kg dose range and inhibition at 30mg/kg. These effects were mediated by NOP receptors since GF-4 was ineffective in NOP receptor knock-out mice. Antiparkinsonian properties of GF-4 were investigated in 6-hydroxydopamine hemilesioned rats. GF-4 ameliorated akinesia, bradykinesia and overall gait ability in the 0.1-10mg/kg dose range, but inhibited motor activity at 30mg/kg. To investigate the circuitry underlying motor facilitating and inhibitory effects of GF-4, microdialysis coupled to behavioral testing (akinesia test) was performed. An anti-akinetic dose of GF-4 (1mg/kg) reduced glutamate (GLU) and enhanced GABA release in SNr, while the pro-akinetic dose of GF-4 (30mg/kg) evoked opposite effects. Moreover, the anti-akinetic dose of GF-4 reduced GABA and increased GLU release in ventro-medial thalamus, the pro-akinetic dose decreasing GABA without affecting GLU release in this area. We conclude that GF-4 is an effective NOP receptor antagonist able to attenuate parkinsonian-like symptoms in vivo via inhibition of the nigro-thalamic pathway.
Collapse
Affiliation(s)
- Mattia Volta
- Department of Experimental and Clinical Medicine, Section of Pharmacology, University of Ferrara, Ferrara Italy
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Calo' G, Rizzi A, Cifani C, Micioni Di Bonaventura MV, Regoli D, Massi M, Salvadori S, Lambert DG, Guerrini R. UFP-112 a potent and long-lasting agonist selective for the Nociceptin/Orphanin FQ receptor. CNS Neurosci Ther 2010; 17:178-98. [PMID: 20497197 DOI: 10.1111/j.1755-5949.2009.00107.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Nociceptin/orphanin FQ (N/OFQ) controls several biological functions via selective activation of the N/OFQ peptide receptor (NOP). [(pF)Phe(4) Aib(7) Arg(14) Lys(15) ]N/OFQ-NH(2) (UFP-112) is an NOP receptor ligand designed using a combination of several chemical modifications in the same peptide sequence that increase NOP receptor affinity/potency and/or reduce susceptibility to enzymatic degradation. In the present review article, we summarize data from the literature and present original findings on the in vitro and in vivo pharmacological features of UFP-112. Moreover, important biological actions and possible therapeutic indications of NOP receptor agonists are discussed based on the results obtained with UFP-112 and compared with other peptide and nonpeptide NOP receptor ligands.
Collapse
Affiliation(s)
- Girolamo Calo'
- Department Experimental and Clinical Medicine, Section of Pharmacology and Neuroscience Center, University of Ferrara, and National Institute of Neuroscience, Ferrara, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Scoto GM, Aricò G, Iemolo A, Ronsisvalle G, Parenti C. Selective inhibition of the NOP receptor in the ventrolateral periaqueductal gray attenuates the development and the expression of tolerance to morphine-induced antinociception in rats. Peptides 2010; 31:696-700. [PMID: 20067813 DOI: 10.1016/j.peptides.2009.12.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 12/30/2009] [Accepted: 12/30/2009] [Indexed: 12/14/2022]
Abstract
The ventrolateral periaqueductal gray (vlPAG) is a major site of opioid analgesic action and a key locus for the development of morphine tolerance. Previous experimental evidence supports the hypothesis that the brain synthesizes and secretes neuropeptides, which act as a part of the homeostatic system to attenuate the effects of morphine and endogenous opioid peptides. Among the known antiopioid peptides, nociceptin/orphanin FQ (N/OFQ) has been shown to inhibit various opioid effects, especially analgesia. The present study investigated the effect of NOP receptor blockade on the tolerance to morphine antinociception in the vlPAG. Systemic morphine (10mg/kg s.c. twice per day) induced an antinociceptive effect that diminished significantly on the third day when tolerance developed, as quantified by the tail flick and the hot plate tests. Intra vlPAG (i.vlPAG) administration of the NOP receptor antagonist (+/-)-J 113397 restored the opioid's analgesic effect. When (+/-)-J 113397 was administered beginning the first day preceding each morphine administration, tolerance did not develop, but it appeared if the NOP antagonist had been suspended. These data suggest that the N/OFQ in the vlPAG may play a key role in opioid-induced antinociceptive tolerance.
Collapse
Affiliation(s)
- Giovanna M Scoto
- Department of Pharmaceutical Sciences-Pharmacology Section, University of Catania, vle A Doria 6, 95125 Catania, Italy.
| | | | | | | | | |
Collapse
|
44
|
Hu E, Calò G, Guerrini R, Ko MC. Long-lasting antinociceptive spinal effects in primates of the novel nociceptin/orphanin FQ receptor agonist UFP-112. Pain 2010; 148:107-113. [PMID: 19945794 PMCID: PMC2861283 DOI: 10.1016/j.pain.2009.10.026] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 09/23/2009] [Accepted: 10/29/2009] [Indexed: 10/20/2022]
Abstract
Chemical modifications of nociceptin/orphanin FQ (N/OFQ) peptide that result in increased potency and resistance to degradation have recently lead to the discovery of [(pF)Phe(4)Aib(7)Arg(14)Lys(15)]N/OFQ-NH(2) (UFP-112), a novel N/OFQ peptide (NOP) receptor agonist. The aim of this study was to investigate the pharmacological profile of intrathecally administered UFP-112 in monkeys under different behavioral assays. Intrathecal UFP-112 (1-10 nmol) dose-dependently produced antinociception against an acute noxious stimulus (50 degrees C water) and capsaicin-induced thermal hyperalgesia. Intrathecal UFP-112-induced antinociception could be reversed by a NOP receptor antagonist, J-113397 (0.1mg/kg), but not by a classic opioid receptor antagonist, naltrexone (0.03 mg/kg). Like intrathecal morphine, UFP-112 produced antinociception in two primate pain models with a similar magnitude of effectiveness and a similar duration of action that last for 4-5h. Unlike intrathecal morphine, UFP-112 did not produce itch/scratching responses. In addition, intrathecal inactive doses of UFP-112 and morphine produced significant antinociceptive effects when given in combination without increasing scratching responses. These results demonstrated that intrathecal UFP-112 produced long-lasting morphine-comparable antinociceptive effects without potential itch side effect. This study is the first to provide functional evidence that selective NOP receptor agonists such as UFP-112 alone or in conjunction with morphine may improve the quality of spinal analgesia.
Collapse
Affiliation(s)
- Eric Hu
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109-5632, USA
| | - Girolamo Calò
- Department of Experimental and Clinical Medicine, Section of Pharmacology and Neuroscience Center, National Institute of Neuroscience, University of Ferrara, 44100 Ferrara, Italy
| | - Remo Guerrini
- Department of Pharmaceutical Sciences, Biotechnology Center, University of Ferrara, 44100 Ferrara, Italy
| | - Mei-Chuan Ko
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109-5632, USA
- Department of Psychology, Institute of Neuroscience, National Cheng-Chi University, Taipei 11605, Taiwan
| |
Collapse
|
45
|
Pharmacological profile of the NOP agonist and cough suppressing agent SCH 486757 (8-[Bis(2-Chlorophenyl)Methyl]-3-(2-Pyrimidinyl)-8-Azabicyclo[3.2.1]Octan-3-Ol) in preclinical models. Eur J Pharmacol 2009; 630:112-20. [PMID: 20006596 DOI: 10.1016/j.ejphar.2009.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 11/19/2009] [Accepted: 12/03/2009] [Indexed: 10/20/2022]
Abstract
We describe the pharmacological and pharmacokinetic profiles of SCH 486757, a nociceptin/orphanin FQ peptide (NOP) receptor agonist that has recently entered human clinical trials for cough. SCH 486757 selectively binds human NOP receptor (K(i)=4.6+/-0.61nM) over classical opioid receptors. In a guinea pig capsaicin cough model, SCH 486757 (0.01-1mg/kg) suppressed cough at 2, 4, and 6h post oral administration with a maximum efficacy occurring at 4h equivalent to codeine, hydrocodone, dextromethorphan and baclofen. The antitussive effects of SCH 486757 (3.0mg/kg, p.o.) was blocked by the NOP receptor antagonist J113397 (12mg/kg, i.p.) but not by naltrexone (10mg/kg, p.o.). SCH 486757 does not produce tolerance to its antitussive activity after a 5-day BID dosing regimen. After acute and chronic dosing paradigms, SCH 486757 (1mg/kg) inhibited capsaicin-evoked coughing by 46+/-9% and 40+/-11%, respectively. In a feline mechanically-evoked cough model, SCH 486757 produces a maximum inhibition of cough and expiratory abdominal electromyogram amplitude of 59 and 61%, respectively. SCH 486757 did not significantly affect inspiratory electromyogram amplitude. We examined the abuse potential of SCH 486757 (10mg/kg, p.o.) in a rat conditioned place preference procedure which is sensitive to classical drugs of abuse, such as amphetamine and morphine. SCH 486757 was without effect in this model. Finally, SCH 486757 displays a good oral pharmacokinetic profile in the guinea pig, rat and dog. We conclude that SCH 486757 has a favorable antitussive profile in preclinical animal models.
Collapse
|
46
|
Khroyan TV, Polgar WE, Jiang F, Zaveri NT, Toll L. Nociceptin/orphanin FQ receptor activation attenuates antinociception induced by mixed nociceptin/orphanin FQ/mu-opioid receptor agonists. J Pharmacol Exp Ther 2009; 331:946-53. [PMID: 19713488 PMCID: PMC2784721 DOI: 10.1124/jpet.109.156711] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 08/26/2009] [Indexed: 11/22/2022] Open
Abstract
Activation of brain nociceptin/orphanin FQ (NOP) receptors leads to attenuation of mu-opioid receptor (MOP receptor)-mediated antinociception. Buprenorphine, a high-affinity partial MOP receptor agonist also binds to NOP receptors with 80 nM affinity. The buprenorphine-induced inverted U-shaped dose-response curve for antinociception may be due to NOP receptor activation, given that, in the presence of the NOP receptor antagonist, 1-[(3R,4R)-1-cyclooctylmethyl-3-hydroxymethyl-4-piperidyl]-3-ethyl-1,3-dihydro-2H-benzimidazol-2-one (J113397), or in NOP receptor knockout mice, buprenorphine has a steeper dose-response curve and acts as a full agonist. To further explore the involvement of the direct activation of NOP receptors by buprenorphine and other compounds that activate both NOP and MOP receptors, the antinociceptive effects of 1-(1-(2,3,3alpha,4,5,6-hexahydro-1H-phenalen-1-yl)piperidin-4-yl)-indolin-2-one. (SR16435), 3-ethyl-1-(1-(4-isopropylcyclohexyl)piperidin-4-yl)-indolin-2-one (SR16507), buprenorphine, pentazocine, and morphine, compounds with varying levels of MOP and NOP receptor affinity and efficacy, were assessed in mice using the tail-flick assay. The ability of the selective NOP receptor antagonist (-)-cis-1-methyl-7-[[4-(2,6-dichlorophenyl)piperidin-1-yl]methyl]-6,7,8,9-tetrahydro-5H-benzocyclohepten-5-ol (SB-612111) to potentiate antinociception induced by the above compounds was examined to investigate whether activation of NOP receptors leads to attenuation of MOP receptor-mediated antinociception. SB-612111 potentiated antinociception induced by buprenorphine and the other mixed NOP/MOP receptor agonists SR16435 and SR16507. However, SB-612111 had no effect on pentazocine or morphine antinociception, two compounds with no NOP receptor-binding affinity. These results further support the hypothesis that activation of NOP receptors can lead to attenuation of MOP receptor-mediated antinociception elicited by mixed NOP/MOP receptor compounds such as buprenorphine, SR16435, and SR16507 and that, although buprenorphine has low efficacy in vitro, it has significant NOP receptor agonist activity in vivo.
Collapse
Affiliation(s)
- Taline V Khroyan
- Policy Division, SRI International, Menlo Park, California 94025, USA
| | | | | | | | | |
Collapse
|
47
|
Koga K, Ichikawa D, Nambu H, Azuma-Kanoh T, Sakai N, Takaki-Kawagoe H, Ozaki S, Ohta H. Cloning and characterization of the rhesus monkey nociceptin/orphanin FQ receptor. Genes Genet Syst 2009; 84:319-25. [PMID: 20154418 DOI: 10.1266/ggs.84.319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We succeeded in cloning the rhesus monkey nociceptin/orphanin FQ peptide (NOP) receptor. The nucleotide sequence and amino acid sequence of the rhesus monkey NOP receptor were 95.9% and 97.8%, respectively, identical to the human NOP receptor. There was no significant difference between the rhesus monkey NOP receptor and the human NOP receptor in the binding affinity of [(125)I] [Thy(14)]nociceptin and the binding of [(35)S]guanosine 5'-O-(gamma thio)triphospate ([(35)S]GTPgammaS) stimulated by nociceptin/orphanin FQ (N/OFQ). A selective NOP receptor antagonist, 1-[(3R,4R)-1-cyclooctylmethyl-3-hydroxymethyl-4-piperidyl]-3-ethyl-1,3-dihydro-2H-benzimidazol-2-one ((+)-J-113397) inhibited the [(35)S]GTPgammaS binding activated by N/OFQ using the membrane of the rhesus monkey NOP receptor. The antagonistic activity of (+)-J-113397 to the rhesus monkey NOP receptor was comparable to that to the human NOP receptor. Thus, N/OFQ acts via activation of the NOP receptor in both human and rhesus monkeys without significant species differences.
Collapse
Affiliation(s)
- Kazumi Koga
- Pharmacology, Tsukuba Research Institute, Banyu Pharmaceutical Co., Ltd., 3 Okubo, Tsukuba, Ibaraki 300-2611, Japan
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Hayashi S, Hirao A, Nakamura H, Yamamura K, Mizuno K, Yamashita H. Discovery of 1-[1-(1-methylcyclooctyl)-4-piperidinyl]-2-[(3R)-3-piperidinyl]-1H-benzimidazole: integrated drug-design and structure-activity relationships for orally potent, metabolically stable and potential-risk reduced novel non-peptide nociceptin/orphanin FQ receptor agonist as antianxiety drug. Chem Biol Drug Des 2009; 74:369-81. [PMID: 19691471 DOI: 10.1111/j.1747-0285.2009.00872.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Anxiety disorders, caused by continuous or acute stress or fear, have been highly prevailing psychiatric disorders. For the acute treatment of the disorders, benzodiazepines have been widely used despite having liabilities that limit their utility. Alternatively, endogenous nociceptin/orphanin FQ and nociceptin/orphanin FQ peptide receptor (or opioid-receptor-like-1 receptor) have important roles in the integration of emotional components, e.g. anxiolytic activity is the key behavioral action of nociceptin/orphanin FQ in brain. In our preceding study, various structurally novel 1,2-disubstituted benzimidazole derivatives were designed and synthesized as highly potent nociceptin/orphanin FQ peptide receptor selective full agonists in vitro with high or moderate nociceptin/orphanin FQ peptide receptor occupancy in the mice brain per os based on appropriate physicochemical properties for the oral brain activity [Hayashi et al. (2009) J Med Chem;52:610-625]. In the present study, drug design and structure-activity relationships for Vogel anticonflict activities in mice per os, metabolic stabilities in human liver microsome, CYP2D6 inhibitions, serum protein bindings, and human ether-a-go-go related gene binding affinities of novel nociceptin/orphanin FQ peptide receptor agonists were investigated. Through the series of coherent drug discovery studies, the strongest nociceptin/orphanin FQ peptide receptor agonist, 1-[1-(1-methylcyclooctyl)-4-piperidinyl]-2-[(3R)-3-piperidinyl]-1H-benzimidazole was designed and identified as a new-class orally potent anxiolytic with little side-effects, as significant findings.
Collapse
Affiliation(s)
- Shigeo Hayashi
- Pfizer Global Research & Development Nagoya Laboratories, Pfizer Japan Inc, 5-2 Taketoyo, Aichi 470-2393, Japan.
| | | | | | | | | | | |
Collapse
|
49
|
Sugimoto Y, Kobayashi K, Asai M, Ohno A, Yamada K, Ozaki S, Ohta H, Okamoto O. Synthesis and biological evaluation of imidazole derivatives as novel NOP/ORL1 receptor antagonists: Exploration and optimization of alternative pyrazole structure. Bioorg Med Chem Lett 2009; 19:4611-6. [DOI: 10.1016/j.bmcl.2009.06.095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 06/19/2009] [Accepted: 06/24/2009] [Indexed: 11/30/2022]
|
50
|
Kobayashi K, Uchiyama M, Ito H, Takahashi H, Yoshizumi T, Sakoh H, Nagatomi Y, Asai M, Miyazoe H, Tsujita T, Hirayama M, Ozaki S, Tani T, Ishii Y, Ohta H, Okamoto O. Discovery of novel arylpyrazole series as potent and selective opioid receptor-like 1 (ORL1) antagonists. Bioorg Med Chem Lett 2009; 19:3627-31. [DOI: 10.1016/j.bmcl.2009.04.116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 04/22/2009] [Accepted: 04/24/2009] [Indexed: 10/20/2022]
|