1
|
Li L, Hernandez CC, Gimenez LE, Xu B, Dahir NS, Swati, Birnbaum SG, Cone RD, Liu C. Functional coupling between MC4R and Kir7.1 contributes to clozapine-induced hyperphagia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.597973. [PMID: 38895206 PMCID: PMC11185771 DOI: 10.1101/2024.06.07.597973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Most antipsychotic drugs (APDs) induce hyperphagia and weight gain. However, the neural mechanisms are poorly understood, partly due to challenges replicating their metabolic effects in rodents. Here, we report a new mouse model that recapitulates overeating induced by clozapine, a widely prescribed APD. Our study shows that clozapine boosts food intake by inhibiting melanocortin 4 receptor (MC4R) expressing neurons in the paraventricular nucleus of the hypothalamus. Interestingly, neither clozapine nor risperidone, another commonly used APD, affects receptor-ligand binding or the canonical Gαs signaling of MC4R. Instead, they inhibit neuronal activity by enhancing the coupling between MC4R and Kir7.1, leading to the open state of the inwardly rectifying potassium channel. Deletion of Kir7.1 in Mc4r-Cre neurons prevents clozapine-induced weight gain, while treatment with a selective Kir7.1 blocker mitigates overeating in clozapine-fed mice. Our findings unveil a molecular pathway underlying the effect of APDs on feeding behavior and suggest its potential as a therapeutic target.
Collapse
|
2
|
Sagheddu C, Devoto P, Aroni S, Saba P, Pistis M, Gessa GL. Combined α 2- and D 2-receptor blockade activates noradrenergic and dopaminergic neurons, but extracellular dopamine in the prefrontal cortex is determined by uptake and release from noradrenergic terminals. Front Pharmacol 2023; 14:1238115. [PMID: 37680715 PMCID: PMC10482411 DOI: 10.3389/fphar.2023.1238115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/10/2023] [Indexed: 09/09/2023] Open
Abstract
Experimental and clinical evidence indicates a deficit of release and function of dopamine in schizophrenia and suggests that α2-adrenoceptor antagonists rescue dopamine deficit and improve the antipsychotic efficacy of D2-receptor antagonists. In anesthetized male rats, we investigated how the blockade of α2- and D2-receptors by atipamezole and raclopride, respectively, modified the firing of noradrenergic neurons in the locus coeruleus (LC) and dopaminergic neurons in the ventral tegmental area (VTA). In freely moving rats, we studied how atipamezole and raclopride modified extracellular noradrenaline, dopamine, and DOPAC levels in the medial prefrontal cortex (mPFC) through microdialysis. When administered alone, atipamezole activated LC noradrenaline but not VTA dopamine cell firing. Combined with raclopride, atipamezole activated dopamine cell firing above the level produced by raclopride. Atipamezole increased extracellular dopamine to the same level, whether administered alone or combined with raclopride. In the presence of the noradrenaline transporter (NET) inhibitor, atipamezole combined with raclopride increased extracellular dopamine beyond the level produced by either compound administered alone. The results suggest that a) the D2-autoreceptor blockade is required for LC noradrenaline to activate VTA cell firing; b) the level of dopamine released from dopaminergic terminals is determined by NET; c) the elevation of extracellular dopamine levels in the mPFC is the resultant of dopamine uptake and release from noradrenergic terminals, independent of dopaminergic cell firing and release; and d) LC noradrenergic neurons are an important target for treatments to improve the prefrontal deficit of dopamine in neuropsychiatric pathologies.
Collapse
Affiliation(s)
- Claudia Sagheddu
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Paola Devoto
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
- The Guy Everett Laboratory, University of Cagliari, Cagliari, Italy
| | - Sonia Aroni
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Pierluigi Saba
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
- The Guy Everett Laboratory, University of Cagliari, Cagliari, Italy
| | - Marco Pistis
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
- Neuroscience Institute of CNR, Cagliari, Italy
- Unit of Clinical Pharmacology, University Hospital of Cagliari, Cagliari, Italy
| | - Gian Luigi Gessa
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
- The Guy Everett Laboratory, University of Cagliari, Cagliari, Italy
- Neuroscience Institute of CNR, Cagliari, Italy
| |
Collapse
|
3
|
The α 2C-adrenoceptor antagonist JP-1302 controls behavioral parameters, tyrosine hydroxylase activity and receptor expression in a rat model of ketamine-induced schizophrenia-like deficits. Pharmacol Biochem Behav 2022; 221:173490. [PMID: 36379444 DOI: 10.1016/j.pbb.2022.173490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Schizophrenia is a chronic disabling disease affecting 1 % of the population. Current antipsychotics have limited efficacy in mitigating the severity of the symptoms of the disease. Therefore, searching for new therapeutic targets is essential. Previous studies have shown that α2C-adrenoceptor antagonists may have antipsychotic and pro-cognitive effects. Therefore, the current study evaluates the behavioral and neurochemical effects of JP-1302, a selective α2C-adrenoceptor antagonist, in a model of schizophrenia-like deficits induced by sub-chronic ketamine (KET) administration. Here, we administered ketamine (25 mg/kg, i.p.) to male and female Wistar rats for eight consecutive days. On the last two days of ketamine administration, rats were pretreated with either JP-1302 (1-3-10 μmol/kg, i.p.), chlorpromazine (0.1 mg/kg, i.p.), or saline, and the behavioral tests were performed. Behaviors related to positive (locomotor activity), negative (social interaction), and cognitive (novel object recognition) symptoms of schizophrenia were assessed. Glutamate, glutamine, GABA levels, and α2C-adrenoceptor expression were measured in the frontal cortex and the hippocampus. Tyrosine hydroxylase immunocytochemical reactivity was also shown in the midbrain regions. Sub-chronic ketamine administration increased locomotor activity and produced robust social interaction and object recognition deficits, and JP-1302 significantly ameliorated ketamine-induced cognitive deficits. Ketamine induced a hyperdopaminergic activity in the striatum, which was reversed by the treatment with JP-1302. Also, the α2C-adrenoceptor expression was higher in the frontal cortex and hippocampus in the ketamine-treated rats. Our findings confirm that α2C-adrenoceptor antagonism may be a potential drug target for treating cognitive disorders related to schizophrenia.
Collapse
|
4
|
de Bartolomeis A, Vellucci L, Barone A, Manchia M, De Luca V, Iasevoli F, Correll CU. Clozapine's multiple cellular mechanisms: What do we know after more than fifty years? A systematic review and critical assessment of translational mechanisms relevant for innovative strategies in treatment-resistant schizophrenia. Pharmacol Ther 2022; 236:108236. [PMID: 35764175 DOI: 10.1016/j.pharmthera.2022.108236] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 12/21/2022]
Abstract
Almost fifty years after its first introduction into clinical care, clozapine remains the only evidence-based pharmacological option for treatment-resistant schizophrenia (TRS), which affects approximately 30% of patients with schizophrenia. Despite the long-time experience with clozapine, the specific mechanism of action (MOA) responsible for its superior efficacy among antipsychotics is still elusive, both at the receptor and intracellular signaling level. This systematic review is aimed at critically assessing the role and specific relevance of clozapine's multimodal actions, dissecting those mechanisms that under a translational perspective could shed light on molecular targets worth to be considered for further innovative antipsychotic development. In vivo and in vitro preclinical findings, supported by innovative techniques and methods, together with pharmacogenomic and in vivo functional studies, point to multiple and possibly overlapping MOAs. To better explore this crucial issue, the specific affinity for 5-HT2R, D1R, α2c, and muscarinic receptors, the relatively low occupancy at dopamine D2R, the interaction with receptor dimers, as well as the potential confounder effects resulting in biased ligand action, and lastly, the role of the moiety responsible for lipophilic and alkaline features of clozapine are highlighted. Finally, the role of transcription and protein changes at the synaptic level, and the possibility that clozapine can directly impact synaptic architecture are addressed. Although clozapine's exact MOAs that contribute to its unique efficacy and some of its severe adverse effects have not been fully understood, relevant information can be gleaned from recent mechanistic understandings that may help design much needed additional therapeutic strategies for TRS.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy.
| | - Licia Vellucci
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Annarita Barone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy; Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Felice Iasevoli
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Christoph U Correll
- The Zucker Hillside Hospital, Department of Psychiatry, Northwell Health, Glen Oaks, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Department of Psychiatry and Molecular Medicine, Hempstead, NY, USA; Charité Universitätsmedizin Berlin, Department of Child and Adolescent Psychiatry, Berlin, Germany
| |
Collapse
|
5
|
Carnac T. Schizophrenia Hypothesis: Autonomic Nervous System Dysregulation of Fetal and Adult Immune Tolerance. Front Syst Neurosci 2022; 16:844383. [PMID: 35844244 PMCID: PMC9283579 DOI: 10.3389/fnsys.2022.844383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
The autonomic nervous system can control immune cell activation via both sympathetic adrenergic and parasympathetic cholinergic nerve release of norepinephrine and acetylcholine. The hypothesis put forward in this paper suggests that autonomic nervous system dysfunction leads to dysregulation of immune tolerance mechanisms in brain-resident and peripheral immune cells leading to excessive production of pro-inflammatory cytokines such as Tumor Necrosis Factor alpha (TNF-α). Inactivation of Glycogen Synthase Kinase-3β (GSK3β) is a process that takes place in macrophages and microglia when a toll-like receptor 4 (TLR4) ligand binds to the TLR4 receptor. When Damage-Associated Molecular Patterns (DAMPS) and Pathogen-Associated Molecular Patterns (PAMPS) bind to TLR4s, the phosphatidylinositol-3-kinase (PI3K)-protein kinase B (Akt) pathway should be activated, leading to inactivation of GSK3β. This switches the macrophage from producing pro-inflammatory cytokines to anti-inflammatory cytokines. Acetylcholine activation of the α7 subunit of the nicotinic acetylcholine receptor (α7 nAChR) on the cell surface of immune cells leads to PI3K/Akt pathway activation and can control immune cell polarization. Dysregulation of this pathway due to dysfunction of the prenatal autonomic nervous system could lead to impaired fetal immune tolerance mechanisms and a greater vulnerability to Maternal Immune Activation (MIA) resulting in neurodevelopmental abnormalities. It could also lead to the adult schizophrenia patient’s immune system being more vulnerable to chronic stress-induced DAMP release. If a schizophrenia patient experiences chronic stress, an increased production of pro-inflammatory cytokines such as TNF-α could cause significant damage. TNF-α could increase the permeability of the intestinal and blood brain barrier, resulting in lipopolysaccharide (LPS) and TNF-α translocation to the brain and consequent increases in glutamate release. MIA has been found to reduce Glutamic Acid Decarboxylase mRNA expression, resulting in reduced Gamma-aminobutyric acid (GABA) synthesis, which combined with an increase of glutamate release could result in an imbalance of glutamate and GABA neurotransmitters. Schizophrenia could be a “two-hit” illness comprised of a genetic “hit” of autonomic nervous system dysfunction and an environmental hit of MIA. This combination of factors could lead to neurotransmitter imbalance and the development of psychotic symptoms.
Collapse
|
6
|
Proudman RGW, Akinaga J, Baker JG. The affinity and selectivity of α-adrenoceptor antagonists, antidepressants and antipsychotics for the human α2A, α2B, and α2C-adrenoceptors and comparison with human α1 and β-adrenoceptors. Pharmacol Res Perspect 2022; 10:e00936. [PMID: 35224877 PMCID: PMC8882856 DOI: 10.1002/prp2.936] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/15/2022] Open
Abstract
α2-Adrenoceptors, subdivided into α2A, α2B, and α2C subtypes and expressed in heart, blood vessels, kidney, platelets and brain, are important for blood pressure, sedation, analgesia, and platelet aggregation. Brain α2C-adrenoceptor blockade has also been suggested to be beneficial for antipsychotic action. However, comparing α2-adrenoceptor subtype affinity is difficult due to significant species and methodology differences in published studies. Here, 3 H-rauwolscine whole cell binding was used to determine the affinity and selectivity of 99 α-antagonists (including antidepressants and antipsychotics) in CHO cells expressing human α2A, α2B, or α2C-adrenoceptors, using an identical method to β and α1-adrenoceptor measurements, thus allowing direct human receptor comparisons. Yohimbine, RX821002, RS79948, and atipamezole are high affinity non-selective α2-antagonists. BRL44408 was the most α2A-selective antagonist, although its α1A-affinity (81 nM) is only 9-fold greater than its α2C-affinity. MK-912 is the highest-affinity, most α2C-selective antagonist (0.15 nM α2C-affinity) although its α2C-selectivity is only 13-fold greater than at α2A. There are no truely α2B-selective antagonists. A few α-ligands with significant β-affinity were detected, for example, naftopidil where its clinical α1A-affinity is only 3-fold greater than off-target β2-affinity. Antidepressants (except mirtazapine) and first-generation antipsychotics have higher α1A than α2-adrenoceptor affinity but poor β-affinity. Second-generation antipsychotics varied widely in their α2-adrenoceptor affinity. Risperidone (9 nM) and paliperidone (14 nM) have the highest α2C-adrenoceptor affinity however this is only 5-fold selective over α2A, and both have a higher affinity for α1A (2 nM and 4 nM, respectively). So, despite a century of yohimbine use, and decades of α2-subtype studies, there remains plenty of scope to develop α2-subtype selective antagonists.
Collapse
Affiliation(s)
- Richard G W Proudman
- Cell Signalling Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, C Floor Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Juliana Akinaga
- Cell Signalling Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, C Floor Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Jillian G Baker
- Cell Signalling Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, C Floor Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| |
Collapse
|
7
|
Present and future antipsychotic drugs: a systematic review of the putative mechanisms of action for efficacy and a critical appraisal under a translational perspective. Pharmacol Res 2022; 176:106078. [PMID: 35026403 DOI: 10.1016/j.phrs.2022.106078] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/23/2021] [Accepted: 01/07/2022] [Indexed: 01/10/2023]
Abstract
Antipsychotics represent the mainstay of schizophrenia pharmacological therapy, and their role has been expanded in the last years to mood disorders treatment. Although introduced in 1952, many years of research were required before an accurate picture of how antipsychotics work began to emerge. Despite the well-recognized characterization of antipsychotics in typical and atypical based on their liability to induce motor adverse events, their main action at dopamine D2R to elicit the "anti-psychotic" effect, as well as the multimodal action at other classes of receptors, their effects on intracellular mechanisms starting with receptor occupancy is still not completely understood. Significant lines of evidence converge on the impact of these compounds on multiple molecular signaling pathways implicated in the regulation of early genes and growth factors, dendritic spine shape, brain inflammation, and immune response, tuning overall the function and architecture of the synapse. Here we present, based on PRISMA approach, a comprehensive and systematic review of the above mechanisms under a translational perspective to disentangle those intracellular actions and signaling that may underline clinically relevant effects and represent potential targets for further innovative strategies in antipsychotic therapy.
Collapse
|
8
|
Brocos-Mosquera I, Miranda-Azpiazu P, Muguruza C, Corzo-Monje V, Morentin B, Meana JJ, Callado LF, Rivero G. Differential brain ADRA2A and ADRA2C gene expression and epigenetic regulation in schizophrenia. Effect of antipsychotic drug treatment. Transl Psychiatry 2021; 11:643. [PMID: 34930904 PMCID: PMC8688495 DOI: 10.1038/s41398-021-01762-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 01/19/2023] Open
Abstract
Postsynaptic α2A-adrenoceptor density is enhanced in the dorsolateral prefrontal cortex (DLPFC) of antipsychotic-treated schizophrenia subjects. This alteration might be due to transcriptional activation, and could be regulated by epigenetic mechanisms such as histone posttranslational modifications (PTMs). The aim of this study was to evaluate ADRA2A and ADRA2C gene expression (codifying for α2-adrenoceptor subtypes), and permissive and repressive histone PTMs at gene promoter regions in the DLPFC of subjects with schizophrenia and matched controls (n = 24 pairs). We studied the effect of antipsychotic (AP) treatment in AP-free (n = 12) and AP-treated (n = 12) subgroups of schizophrenia subjects and in rats acutely and chronically treated with typical and atypical antipsychotics. ADRA2A mRNA expression was selectively upregulated in AP-treated schizophrenia subjects (+93%) whereas ADRA2C mRNA expression was upregulated in all schizophrenia subjects (+53%) regardless of antipsychotic treatment. Acute and chronic clozapine treatment in rats did not alter brain cortex Adra2a mRNA expression but increased Adra2c mRNA expression. Both ADRA2A and ADRA2C promoter regions showed epigenetic modification by histone methylation and acetylation in human DLPFC. The upregulation of ADRA2A expression in AP-treated schizophrenia subjects might be related to observed bivalent chromatin at ADRA2A promoter region in schizophrenia (depicted by increased permissive H3K4me3 and repressive H3K27me3) and could be triggered by the enhanced H4K16ac at ADRA2A promoter. In conclusion, epigenetic predisposition differentially modulated ADRA2A and ADRA2C mRNA expression in DLPFC of schizophrenia subjects.
Collapse
Affiliation(s)
- Iria Brocos-Mosquera
- grid.11480.3c0000000121671098Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Bizkaia Spain ,grid.469673.90000 0004 5901 7501Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Leioa, Spain
| | - Patricia Miranda-Azpiazu
- grid.11480.3c0000000121671098Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Bizkaia Spain ,grid.469673.90000 0004 5901 7501Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Leioa, Spain
| | - Carolina Muguruza
- grid.11480.3c0000000121671098Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Bizkaia Spain ,grid.469673.90000 0004 5901 7501Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Leioa, Spain
| | - Virginia Corzo-Monje
- grid.11480.3c0000000121671098Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Bizkaia Spain
| | - Benito Morentin
- Section of Forensic Pathology, Basque Institute of Legal Medicine, Bilbao, Spain ,grid.452310.1Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia Spain
| | - J. Javier Meana
- grid.11480.3c0000000121671098Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Bizkaia Spain ,grid.469673.90000 0004 5901 7501Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Leioa, Spain ,grid.452310.1Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia Spain
| | - Luis F. Callado
- grid.11480.3c0000000121671098Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Bizkaia Spain ,grid.469673.90000 0004 5901 7501Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Leioa, Spain ,grid.452310.1Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia Spain
| | - Guadalupe Rivero
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Bizkaia, Spain. .,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Leioa, Spain. .,Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain.
| |
Collapse
|
9
|
Li L, Yoo ES, Li X, Wyler SC, Chen X, Wan R, Arnold AG, Birnbaum SG, Jia L, Sohn JW, Liu C. The atypical antipsychotic risperidone targets hypothalamic melanocortin 4 receptors to cause weight gain. J Exp Med 2021; 218:212095. [PMID: 33978701 PMCID: PMC8126977 DOI: 10.1084/jem.20202484] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/17/2021] [Accepted: 04/02/2021] [Indexed: 12/15/2022] Open
Abstract
Atypical antipsychotics such as risperidone cause drug-induced metabolic syndrome. However, the underlying mechanisms remain largely unknown. Here, we report a new mouse model that reliably reproduces risperidone-induced weight gain, adiposity, and glucose intolerance. We found that risperidone treatment acutely altered energy balance in C57BL/6 mice and that hyperphagia accounted for most of the weight gain. Transcriptomic analyses in the hypothalamus of risperidone-fed mice revealed that risperidone treatment reduced the expression of Mc4r. Furthermore, Mc4r in Sim1 neurons was necessary for risperidone-induced hyperphagia and weight gain. Moreover, we found that the same pathway underlies the obesogenic effect of olanzapine-another commonly prescribed antipsychotic drug. Remarkably, whole-cell patch-clamp recording demonstrated that risperidone acutely inhibited the activity of hypothalamic Mc4r neurons via the opening of a postsynaptic potassium conductance. Finally, we showed that treatment with setmelanotide, an MC4R-specific agonist, mitigated hyperphagia and obesity in both risperidone- and olanzapine-fed mice.
Collapse
Affiliation(s)
- Li Li
- The Hypothalamic Research Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Eun-Seon Yoo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Xiujuan Li
- The Hypothalamic Research Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Steven C Wyler
- The Hypothalamic Research Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Xiameng Chen
- The Hypothalamic Research Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Rong Wan
- The Hypothalamic Research Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Amanda G Arnold
- The Hypothalamic Research Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Shari G Birnbaum
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX.,Peter O'Donnell Jr. Brain Institute, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Lin Jia
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX
| | - Jong-Woo Sohn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Chen Liu
- The Hypothalamic Research Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX.,Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
10
|
Kikuchi T, Maeda K, Suzuki M, Hirose T, Futamura T, McQuade RD. Discovery research and development history of the dopamine D 2 receptor partial agonists, aripiprazole and brexpiprazole. Neuropsychopharmacol Rep 2021; 41:134-143. [PMID: 33960741 PMCID: PMC8340839 DOI: 10.1002/npr2.12180] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 01/31/2023] Open
Abstract
Otsuka Pharmaceutical Co., Ltd. successfully developed the first dopamine D2 receptor partial agonist approved for schizophrenia, the antipsychotic aripiprazole (Abilify®). The drug was approved for this indication in the United States in 2002 and has received approval in the United States, Europe, Japan, and many other countries for several indications including schizophrenia, acute mania, adjunctive treatment of major depressive disorder (MDD), irritability associated with autistic disorder, and Tourette's disorder. Otsuka next developed brexpiprazole (Rexulti®), another D2 receptor partial agonist, which was granted marketing approval in the United States in 2015 as adjunctive therapy in major depressive disorder and for the treatment of schizophrenia. In Japan, brexpiprazole also received approval as a treatment for schizophrenia in 2018. In this review, we describe Otsuka's research history and achievements over the preceding 40 years in the area of antipsychotic drug discovery for dopamine D2 receptor partial agonists. “Dopamine‐system stabilizer” activity of aripiprazole.
![]()
Collapse
Affiliation(s)
- Tetsuro Kikuchi
- New Drug Research Division, Pharmaceutical Business Division, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan
| | - Kenji Maeda
- Department of Lead Discovery Research, New Drug Research Division, Pharmaceutical Business Division, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan
| | - Mikio Suzuki
- Department of CNS Research, New Drug Research Division, Pharmaceutical Business Division, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan
| | - Tsuyoshi Hirose
- New Drug Research Division, Pharmaceutical Business Division, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan
| | - Takashi Futamura
- Department of CNS Research, New Drug Research Division, Pharmaceutical Business Division, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan
| | - Robert D McQuade
- Otsuka Pharmaceutical Development & Commercialization, Inc., Princeton, NJ, USA
| |
Collapse
|
11
|
Phencyclidine-induced cognitive impairments in repeated touchscreen visual reversal learning tests in rats. Behav Brain Res 2020; 404:113057. [PMID: 33316322 DOI: 10.1016/j.bbr.2020.113057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 12/27/2022]
Abstract
Reversal learning, a component of executive functioning, is commonly impaired among schizophrenia patients and is lacking effective treatment. N-methyl-ᴅ-aspartate (NMDA) receptor antagonists, such as phencyclidine (PCP), impair reversal learning of rodents. Touchscreen-based pairwise visual discrimination and reversal test is a translational tool to assess reversal learning in rodents. However, to fully exploit this task in testing of novel compounds, it is necessary to perform several reversal learning experiments with trained animals. Firstly, we assessed whether PCP-induced deficits in visual reversal learning in rats would be detectable with a short (5 sessions) reversal learning phase, and whether the short reversal phases could be repeated with novel stimulus pairs. Secondly, we assessed whether the PCP-induced deficits in reversal learning could be seen upon repeated PCP challenges with the same animals. Finally, we tested the effect of a novel compound, a selective α2C adrenoceptor antagonist, ORM-13070, to reverse PCP-induced cognitive deficits in this model. A 4-day PCP treatment at a dose of 1.5 mg/kg/day impaired early reversal learning in male Lister Hooded rats without inducing non-specific behavioral effects. We repeated the reversal learning experiment four times using different stimulus pairs with the same animals, and the PCP-induced impairment was evident in every single experiment. The α2C adrenoceptor antagonist ameliorated the PCP-induced cognitive deficits. Our results suggest that repeated PCP challenges in the touchscreen set-up induce schizophrenia-like cognitive deficits in visual reversal learning, improve throughput of the test and provide a protocol for testing novel drugs.
Collapse
|
12
|
Pariwatcharakul P, Srifuengfung M. Clonidine and Tizanidine for Management of Bipolar Disorder Due to Dengue Encephalopathy: A Case Report. PSYCHOSOMATICS 2020; 61:727-731. [PMID: 32917393 DOI: 10.1016/j.psym.2020.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 01/18/2023]
Affiliation(s)
- Pornjira Pariwatcharakul
- Department of Psychiatry, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Maytinee Srifuengfung
- Department of Psychiatry, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
13
|
Chiappini S, Schifano F, Corkery JM, Guirguis A. Focus on Clozapine Withdrawal- and Misuse-Related Cases as Reported to the European Medicines Agency (EMA) Pharmacovigilance Database. Brain Sci 2020; 10:E105. [PMID: 32079135 PMCID: PMC7071448 DOI: 10.3390/brainsci10020105] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Clozapine is of high clinical relevance for the management of both treatment-resistant schizophrenia and psychotic disturbances with concurrent drug misuse. Although the molecule presents with a range of well-known side-effects, its discontinuation/withdrawal syndrome has been only anecdotally described. AIMS the 2005-2018 European Medicines Agency (EMA) dataset of Adverse Drug Reactions (ADRs) was analyzed to identify and describe possible clozapine withdrawal- and misuse-/abuse-/dependence-related issues. METHOD A descriptive analysis of clozapine-related ADRs was performed when available, data on ADRs' outcome, dosage, and possible concomitant drug(s) were considered. RESULTS Out of 11,847 clozapine-related ADRs, some 599 (5.05%) were related to misuse/abuse/dependence/withdrawal issues, including 258 withdrawal-related (43.1%); 241 abuse-related (40.2%); and 80 intentional product misuse-related (13.3%) ADRs. A small number of overdose- and suicide-related ADRs were reported as well. Clozapine was typically (69.2%) identified alone, and most (84.7%) fatalities/high-dosage intake instances were reported in association with a history of substance abuse. CONCLUSIONS Previous suggestions about the possibility of a clozapine discontinuation/withdrawal occurrence are here supported, but further studies are needed. However, the misuse/abuse cases here identified might be difficult to interpret, given the lack of studies highlighting the possible recreational use of clozapine. The high-dosage intake, fatal outcomes and clozapine/polydrug abuse issues reported here may, however, be a reason for concern.
Collapse
Affiliation(s)
- Stefania Chiappini
- Psychopharmacology, Drug Misuse, and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Hertfordshire AL10 9AB, UK; (S.C.); (J.M.C.)
| | - Fabrizio Schifano
- Psychopharmacology, Drug Misuse, and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Hertfordshire AL10 9AB, UK; (S.C.); (J.M.C.)
| | - John Martin Corkery
- Psychopharmacology, Drug Misuse, and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Hertfordshire AL10 9AB, UK; (S.C.); (J.M.C.)
| | - Amira Guirguis
- Swansea University Medical School, Institute of Life Sciences 2, Swansea University, Singleton Park, Swansea SA2 8PP, UK;
| |
Collapse
|
14
|
Selective adrenergic alpha2C receptor antagonist ameliorates acute phencyclidine-induced schizophrenia-like social interaction deficits in rats. Psychopharmacology (Berl) 2019; 236:1245-1253. [PMID: 30535904 PMCID: PMC6591184 DOI: 10.1007/s00213-018-5130-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 11/21/2018] [Indexed: 11/05/2022]
Abstract
RATIONALE Social withdrawal is a core feature of the negative symptoms of schizophrenia. Currently available pharmacotherapies have only limited efficacy towards the negative symptoms, i.e., there is a significant unmet medical need in the treatment of these symptoms. OBJECTIVE We wanted to confirm whether selective adrenergic α2C receptor (AR) antagonist therapy could ameliorate acute phencyclidine (PCP)-induced schizophrenia-like social interaction deficits in rats, and to compare the effects of an α2C AR antagonist to another putative therapeutic alternative, an α7 nicotinic acetylcholine receptor (nAChR) partial agonist, as well against three commonly used atypical antipsychotics. METHODS Here, we used acute PCP administration and modified a protocol for testing social interaction deficits in male Wistar rats and then used this model to compare the effects of an α2C AR antagonist (ORM-13070 0.3 and 1.0 mg/kg s.c.) with an α7 nAChR partial agonist (EVP-6124 0.3 mg/kg s.c.) and three atypical antipsychotics (clozapine 2.5 mg/kg i.p., risperidone 0.04 and 0.08 mg/kg s.c., olanzapine 0.125 and 0.5 mg/kg s.c.) on social interaction behavior. RESULTS Acute PCP (1.5 mg/kg s.c.) produced robust and reproducible deficits in social interaction behavior without affecting locomotor activity. The selective α2C AR antagonist significantly ameliorated PCP-induced social interaction deficits. In contrast, neither the partial α7 nAChR agonist nor any of the three atypical antipsychotics were able to reverse the behavioral deficits at the selected doses. CONCLUSION Our findings confirm that α2C AR antagonism is a potential mechanism for the treatment of the negative symptoms of schizophrenia.
Collapse
|
15
|
Khokhar JY, Henricks AM, Sullivan EDK, Green AI. Unique Effects of Clozapine: A Pharmacological Perspective. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2018; 82:137-162. [PMID: 29413518 DOI: 10.1016/bs.apha.2017.09.009] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Schizophrenia is a heterogenous and severe neuropsychiatric disorder that affects nearly 1% of the population worldwide. Antipsychotic drugs are the mainstay of treatment, but not all patients with schizophrenia respond to treatment with these agents. Clozapine, the first atypical antipsychotic, is a highly effective medication for patients with schizophrenia who do not respond to other antipsychotics. Although clozapine tends not to produce extrapyramidal symptoms, other side effects of the drug (e.g., agranulocytosis, myocarditis, seizures) limit its widespread use. This chapter reviews clozapine's unique clinical effects and unusual pharmacological profile. In addition to its effects in treatment-resistant schizophrenia, clozapine has been shown to decrease suicidality, which occurs at an increased rate in patients with schizophrenia. Still preliminary, but consistent data, also suggest that clozapine limits substance use in these patients, an important effect since substance use disorders are common in patients with schizophrenia and are associated with a poor outcome, including an increased risk for suicide and poor response to treatment. We have suggested, from animal studies, that clozapine's apparent ability to limit substance use may occur through its actions as a weak dopamine D2 receptor antagonist, a potent norepinephrine α-2 receptor antagonist and a norepinephrine reuptake inhibitor. Using animal models, we have built combinations of agents toward creation of safer clozapine-like drugs to reduce substance use in these patients. Future research into the mechanisms of action of clozapine toward the development of safe clozapine-like agents is of great public health importance.
Collapse
Affiliation(s)
- Jibran Y Khokhar
- Geisel School of Medicine at Dartmouth, Hanover, NH, United States; Dartmouth Clinical and Translational Science Institute, Dartmouth College, Hanover, NH, United States
| | - Angela M Henricks
- Geisel School of Medicine at Dartmouth, Hanover, NH, United States; Dartmouth Clinical and Translational Science Institute, Dartmouth College, Hanover, NH, United States
| | - Emily D K Sullivan
- Geisel School of Medicine at Dartmouth, Hanover, NH, United States; Dartmouth Clinical and Translational Science Institute, Dartmouth College, Hanover, NH, United States
| | - Alan I Green
- Geisel School of Medicine at Dartmouth, Hanover, NH, United States; Dartmouth Clinical and Translational Science Institute, Dartmouth College, Hanover, NH, United States.
| |
Collapse
|
16
|
Norman SM, Sullivan KM, Liu F, DiPaula BA, Jose PA, Kitchen CA, Feldman SM, Kelly DL. Blood Pressure and Heart Rate Changes During Clozapine Treatment. Psychiatr Q 2017; 88:545-552. [PMID: 27678498 PMCID: PMC5471124 DOI: 10.1007/s11126-016-9468-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
People with schizophrenia are 3-4 times more likely to die from cardiovascular disease than the general population. Clozapine (CLZ) is the gold standard of treatment for refractory schizophrenia. It has been associated with tachycardia and recent evidence shows individuals prescribed CLZ may develop blood pressure (BP) elevation and hypertension. The purpose of this study was to examine the effects of CLZ on BP and heart rate (HR). This was a retrospective chart review of patients 18-75 years old with a DSM IV diagnosis of Schizophrenia or Schizoaffective disorder. Primary outcomes were systolic blood pressure (SBP), diastolic blood pressure (DBP), and HR measured 12 weeks before and 24 weeks during CLZ treatment. Eighteen patient records were included in this study. The mean stabilized CLZ dose was 441.7 ± 171.8 mg/day. DBP (t = 1.02, df = 79.5, = 2.00, 0.049) and HR (t = 1.32, df = 355 = -4.61, < 0.0001) were significantly higher after CLZ initiation. A trend was noted for increase in SBP (p = 0.071). 22 % of patients met criteria for hypertension before CLZ and 67 % during CLZ treatment (Chi Square = 6.25, df = 1, p = 0.0124). No significant changes in weight or renal function occured during CLZ treatment. No patients had evidence of cardiomyopathy. The data suggest CLZ may be associated with a rise in BP and HR. The results of this study support previous literature that found an increase in SBP/DBP regardless of CLZ dose, occurring early in treatment. Due to high risk of cardiovascular morbidity and mortality, more work is needed to determine risk factors and understand the mechanism of action that may cause this side effect.
Collapse
Affiliation(s)
- Sarah M Norman
- University of Maryland School of Pharmacy, 20 N. Pine St, Baltimore, MD, 21201, USA
| | - Kelli M Sullivan
- Marsico Lung Institute/Cystic Fibrosis Center, University of North Carolina at Chapel Hill, 7222 Marsico Hall CB #7248, Chapel Hill, NC, 27599, USA
| | - Fang Liu
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, 55 Wade Avenue, Catonsville, MD, 21228, USA
| | - Bethany A DiPaula
- University of Maryland School of Pharmacy, 20 N. Pine St, Baltimore, MD, 21201, USA
| | - Pedro A Jose
- Division of Renal Diseases & Hypertension, The George Washington University School of Medicine and Health Sciences, 2300 I St NW #601, Washington, DC, 20052, USA
| | - Christopher A Kitchen
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, 55 Wade Avenue, Catonsville, MD, 21228, USA
| | - Stephanie M Feldman
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, 55 Wade Avenue, Catonsville, MD, 21228, USA
| | - Deanna L Kelly
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, 55 Wade Avenue, Catonsville, MD, 21228, USA.
| |
Collapse
|
17
|
Khan A, Corbett A, Ballard C. Emerging treatments for Alzheimer's disease for non-amyloid and non-tau targets. Expert Rev Neurother 2017; 17:683-695. [PMID: 28490260 DOI: 10.1080/14737175.2017.1326818] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION The number of people with dementia, including Alzheimer's disease, is growing as a result of an ageing global population. Treatments available for AD only alleviate the symptoms of the disease, and are effective in some people with AD for a limited time. There is no disease-modifying treatment available, and despite research efforts, the underlying mechanisms of AD and optimal treatment targets have not been fully elucidated. Amyloid and tau are key pathological markers of AD with ongoing trials targeting both. However, there are also many trials at various stages of development that primarily target other markers and processes implicated in the disease, which are now being investigated. Areas covered: This review summarizes current treatment approaches for AD and explores both repositioned and novel therapies that target non amyloid and non tau mechanisms that are in the clinical trials pipeline. This includes treatments for cognitive and neuropsychiatric symptoms and potentially disease modifying therapies. The studies included in this review have been obtained from searches of PubMed and clinical trials databases. Expert commentary: There is a renewed energy in identifying better treatments for behavioural symptoms of AD using both novel drugs and repositioning existing drugs. Lack of success in clinical trials of drugs targeting amyloid and tau have led to a surge in targeting alternative mechanisms. Progress in the development of biomarkers will provide further tools for clinical trials of potential therapeutics for both symptomatic treatment and disease modification in AD.
Collapse
Affiliation(s)
- Ayesha Khan
- a Institute for NanoBiotechnology , Johns Hopkins University , Baltimore , Maryland , USA
| | - Anne Corbett
- b King's College London , Wolfson Centre for Age-Related Diseases , London , UK
| | - Clive Ballard
- b King's College London , Wolfson Centre for Age-Related Diseases , London , UK
| |
Collapse
|
18
|
Uys MM, Shahid M, Harvey BH. Therapeutic Potential of Selectively Targeting the α 2C-Adrenoceptor in Cognition, Depression, and Schizophrenia-New Developments and Future Perspective. Front Psychiatry 2017; 8:144. [PMID: 28855875 PMCID: PMC5558054 DOI: 10.3389/fpsyt.2017.00144] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 07/24/2017] [Indexed: 12/12/2022] Open
Abstract
α2A- and α2C-adrenoceptors (ARs) are the primary α2-AR subtypes involved in central nervous system (CNS) function. These receptors are implicated in the pathophysiology of psychiatric illness, particularly those associated with affective, psychotic, and cognitive symptoms. Indeed, non-selective α2-AR blockade is proposed to contribute toward antidepressant (e.g., mirtazapine) and atypical antipsychotic (e.g., clozapine) drug action. Both α2C- and α2A-AR share autoreceptor functions to exert negative feedback control on noradrenaline (NA) release, with α2C-AR heteroreceptors regulating non-noradrenergic transmission (e.g., serotonin, dopamine). While the α2A-AR is widely distributed throughout the CNS, α2C-AR expression is more restricted, suggesting the possibility of significant differences in how these two receptor subtypes modulate regional neurotransmission. However, the α2C-AR plays a more prominent role during states of low endogenous NA activity, while the α2A-AR is relatively more engaged during states of high noradrenergic tone. Although augmentation of conventional antidepressant and antipsychotic therapy with non-selective α2-AR antagonists may improve therapeutic outcome, animal studies report distinct yet often opposing roles for the α2A- and α2C-ARs on behavioral markers of mood and cognition, implying that non-selective α2-AR antagonism may compromise therapeutic utility both in terms of efficacy and side-effect liability. Recently, several highly selective α2C-AR antagonists have been identified that have allowed deeper investigation into the function and utility of the α2C-AR. ORM-13070 is a useful positron emission tomography ligand, ORM-10921 has demonstrated antipsychotic, antidepressant, and pro-cognitive actions in animals, while ORM-12741 is in clinical development for the treatment of cognitive dysfunction and neuropsychiatric symptoms in Alzheimer's disease. This review will emphasize the importance and relevance of the α2C-AR as a neuropsychiatric drug target in major depression, schizophrenia, and associated cognitive deficits. In addition, we will present new prospects and future directions of investigation.
Collapse
Affiliation(s)
- Madeleine Monique Uys
- Division of Pharmacology, Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | | | - Brian Herbert Harvey
- Division of Pharmacology, Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
19
|
Uys M, Shahid M, Sallinen J, Dreyer W, Cockeran M, Harvey BH. The α2C-adrenoceptor antagonist, ORM-10921, has antipsychotic-like effects in social isolation reared rats and bolsters the response to haloperidol. Prog Neuropsychopharmacol Biol Psychiatry 2016; 71:108-16. [PMID: 27381554 DOI: 10.1016/j.pnpbp.2016.07.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/28/2016] [Accepted: 07/01/2016] [Indexed: 02/04/2023]
Abstract
Early studies suggest that selective α2C-adrenoceptor (AR)-antagonism has anti-psychotic-like and pro-cognitive properties. However, this has not been demonstrated in an animal model of schizophrenia with a neurodevelopmental construct. The beneficial effects of clozapine in refractory schizophrenia and associated cognitive deficits have, among others, been associated with its α2C-AR modulating activity. Altered brain-derived neurotrophic factor (BDNF) has been linked to schizophrenia and cognitive deficits. We investigated whether the α2C-AR antagonist, ORM-10921, could modulate sensorimotor gating and cognitive deficits, as well as alter striatal BDNF levels in the social isolation reared (SIR) model of schizophrenia, comparing its effects to clozapine and the typical antipsychotic, haloperidol, the latter being devoid of α2C-AR-activity. Moreover, the ability of ORM-10921 to augment the effects of haloperidol on the above parameters was also investigated. Animals received subcutaneous injection of either ORM-10921 (0.01mg/kg), clozapine (5mg/kg), haloperidol (0.2mg/kg), haloperidol (0.2mg/kg)+ORM-10921 (0.01mg/kg) or vehicle once daily for 14days, followed by assessment of novel object recognition (NOR), prepulse inhibition (PPI) of startle response and striatal BDNF levels. SIR significantly attenuated NOR memory as well as PPI, and reduced striatal BDNF levels vs. social controls. Clozapine, ORM-10921 and haloperidol+ORM-10921, but not haloperidol alone, significantly improved SIR-associated deficits in PPI and NOR, with ORM-10921 also significantly improving PPI deficits vs. haloperidol-treated SIR animals. Haloperidol+ORM-10921 significantly reversed reduced striatal BDNF levels in SIR rats. α2C-AR-antagonism improves deficits in cognition and sensorimotor gating in a neurodevelopmental animal model of schizophrenia and bolsters the effects of a typical antipsychotic, supporting a therapeutic role for α2C-AR-antagonism in schizophrenia.
Collapse
Affiliation(s)
- Madeleine Uys
- Division of Pharmacology, North-West University (Potchefstroom Campus), Potchefstroom 2520, South Africa.
| | | | | | - Walter Dreyer
- Center of Excellence for Pharmaceutical Sciences, North-West University (Potchefstroom Campus), Hoffman Street, Potchefstroom 2520, South Africa.
| | - Marike Cockeran
- Medicines Usage in South Africa, North-West University (Potchefstroom Campus), Hoffman Street, Potchefstroom 2520, South Africa.
| | - Brian H Harvey
- Center of Excellence for Pharmaceutical Sciences, North-West University (Potchefstroom Campus), Hoffman Street, Potchefstroom 2520, South Africa.
| |
Collapse
|
20
|
Rajkumar R, Kumar JR, Dawe GS. Priming locus coeruleus noradrenergic modulation of medial perforant path-dentate gyrus synaptic plasticity. Neurobiol Learn Mem 2016; 138:215-225. [PMID: 27400867 DOI: 10.1016/j.nlm.2016.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/30/2016] [Accepted: 07/06/2016] [Indexed: 01/09/2023]
Abstract
Priming phenomenon, in which an earlier exposure to a stimulus or condition alters synaptic plasticity in response to a subsequent stimulus or condition, known as a challenge, is an example of metaplasticity. In this review, we make the case that the locus coeruleus noradrenergic system-medial perforant path-dentate gyrus pathway is a neural ensemble amenable to studying priming-challenge effects on synaptic plasticity. Accumulating evidence points to a tyrosine hydroxylase-dependent priming effect achieved by pharmacological (nicotine and antipsychotics) or physiological (septal theta driving) manipulations of the locus coeruleus noradrenergic system that can facilitate noradrenaline-induced synaptic plasticity in the dentate gyrus of the hippocampus. The evidence suggests the hypothesis that behavioural experiences inducing tyrosine hydroxylase expression in the locus coeruleus may be sufficient to prime this form of metaplasticity. We propose exploring this phenomenon of priming and challenge physiologically, to determine whether behavioural experiences are sufficient to prime the locus coeruleus, enabling subsequent pharmacological or behavioural challenge conditions that increase locus coeruleus firing to release sufficient noradrenaline to induce long-lasting potentiation in the dentate gyrus. Such an approach may contribute to unravelling mechanisms underlying this form of metaplasticity and its importance in stress-related mnemonic processes.
Collapse
Affiliation(s)
- Ramamoorthy Rajkumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 117600, Singapore; Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, 117456, Singapore; Singapore Institute for Neurotechnology (SINAPSE), 117456, Singapore
| | - Jigna Rajesh Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 117600, Singapore; Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, 117456, Singapore; Singapore Institute for Neurotechnology (SINAPSE), 117456, Singapore; NUS Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, 117456, Singapore
| | - Gavin S Dawe
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 117600, Singapore; Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, 117456, Singapore; Singapore Institute for Neurotechnology (SINAPSE), 117456, Singapore; NUS Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, 117456, Singapore.
| |
Collapse
|
21
|
Khokhar JY, Green AI. Effects of iloperidone, combined with desipramine, on alcohol drinking in the Syrian golden hamster. Neuropharmacology 2016; 105:25-34. [PMID: 26796639 PMCID: PMC4873404 DOI: 10.1016/j.neuropharm.2016.01.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 01/09/2016] [Accepted: 01/10/2016] [Indexed: 12/20/2022]
Abstract
Alcohol use disorder in patients with schizophrenia dramatically worsens their clinical course, and few treatment options are available. Clozapine appears to reduce alcohol use in these patients, but its toxicity limits its use. To create a safer clozapine-like drug, we tested whether the antipsychotic iloperidone, a drug that combines a weak dopamine D2 receptor blockade and a potent norepinephrine alpha-2 receptor blockade would reduce alcohol drinking, and whether its effect on alcohol drinking could be increased if combined with an agent to facilitate norepinephrine activity. Syrian golden hamsters (useful animal model for screening drugs that reduce alcohol drinking in patients with schizophrenia) were given free access to water and alcohol (15% v/v) until stable drinking was established. Animals (n = 6-7/group), matched according to alcohol intake, were treated daily with each drug (iloperidone; clozapine; haloperidol; desipramine [norepinephrine reuptake inhibitor]; with idazoxan [norepinephrine alpha-2 receptor antagonist]) or with a two-drug (iloperidone + desipramine; iloperidone + idazoxan) combination for 14 days. Moderate doses of iloperidone (1-5 mg/kg) significantly reduced alcohol drinking (p < 0.05) in the hamster, whereas higher doses (10-20 mg/kg) did not. In addition, 5 mg/kg of iloperidone reduced alcohol drinking to the same extent as clozapine (8 mg/kg), whereas haloperidol (0.2 mg/kg) did not. Moreover, iloperidone's effects were enhanced via the addition of desipramine (3 mg/kg), but not idazoxan (1.5/3 mg/kg). In this animal model, iloperidone decreases alcohol drinking as effectively as clozapine, and desipramine appears to amplify this effect. The data suggest that iloperidone, alone or in combination with desipramine, should be tested in patients with schizophrenia and alcohol use disorder.
Collapse
Affiliation(s)
- Jibran Y Khokhar
- Department of Psychiatry, Geisel School of Medicine at Dartmouth, Dartmouth College, Lebanon, NH, USA
| | - Alan I Green
- Department of Psychiatry, Geisel School of Medicine at Dartmouth, Dartmouth College, Lebanon, NH, USA; The Dartmouth Clinical and Translational Science Institute, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
22
|
Sensitivity of [(11)C]ORM-13070 to increased extracellular noradrenaline in the CNS - a PET study in human subjects. Psychopharmacology (Berl) 2015; 232:4169-78. [PMID: 25918111 DOI: 10.1007/s00213-015-3941-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 04/14/2015] [Indexed: 10/23/2022]
Abstract
RATIONALE No validated methods have been available for studying brain noradrenergic neurotransmission in vivo in humans. Positron emission tomography (PET) radiotracers are widely used in clinical drug development targeted to brain receptors and can also in some cases be employed to monitor extracellular (synaptic) neurotransmitter concentrations. OBJECTIVES The objective of this study is to test the sensitivity of [(11)C]ORM-13070 uptake to increased concentrations of extracellular (synaptic) noradrenaline in the human brain. METHODS Eight subjects underwent a control PET scan with [(11)C]ORM-13070, a subtype-selective α2C-adrenoceptor antagonist radioligand, and two PET scans after two different noradrenaline challenges, i.e. during ketamine infusion and after a dose of atomoxetine combined with cold stimulation. Tracer uptake in the caudate nucleus and putamen was described with AUC values in scan time windows of 10-20 and 5-30 min post injection and quantified with the ratio method. Voxel-based analysis was performed with average bound per free (B/F) ratio images. RESULTS Both noradrenaline challenges were consistently associated with 10-20 % (p < 0.05) reductions in tracer uptake in the dorsal striatum, as determined with region-of-interest-based analysis. Voxel-based analysis revealed significant reductions in B/F ratios in the dorsal striatum, in the brain stem and in several cortical areas. Reductions of 24 and 23 % were detected in the peak putamen clusters with ketamine and atomoxetine + cold, respectively. CONCLUSION Direct experimental support was gained for the suitability of [(11)C]ORM-13070 for imaging of brain noradrenergic neurotransmission.
Collapse
|
23
|
Finnema SJ, Hughes ZA, Haaparanta-Solin M, Stepanov V, Nakao R, Varnäs K, Varrone A, Arponen E, Marjamäki P, Pohjanoksa K, Vuorilehto L, Babalola PA, Solin O, Grimwood S, Sallinen J, Farde L, Scheinin M, Halldin C. Amphetamine decreases α2C-adrenoceptor binding of [11C]ORM-13070: a PET study in the primate brain. Int J Neuropsychopharmacol 2015; 18:pyu081. [PMID: 25522417 PMCID: PMC4360244 DOI: 10.1093/ijnp/pyu081] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The neurotransmitter norepinephrine has been implicated in psychiatric and neurodegenerative disorders. Examination of synaptic norepinephrine concentrations in the living brain may be possible with positron emission tomography (PET), but has been hampered by the lack of suitable radioligands. METHODS We explored the use of the novel α2C-adrenoceptor antagonist PET tracer [(11)C]ORM-13070 for measurement of amphetamine-induced changes in synaptic norepinephrine. The effect of amphetamine on [(11)C]ORM-13070 binding was evaluated ex vivo in rat brain sections and in vivo with PET imaging in monkeys. RESULTS Microdialysis experiments confirmed amphetamine-induced elevations in rat striatal norepinephrine and dopamine concentrations. Regional [(11)C]ORM-13070 receptor binding was high in the striatum and low in the cerebellum. After injection of [(11)C]ORM-13070 in rats, mean striatal specific binding ratios, determined using cerebellum as a reference region, were 1.4±0.3 after vehicle pretreatment and 1.2±0.2 after amphetamine administration (0.3mg/kg, subcutaneous). Injection of [(11)C]ORM-13070 in non-human primates resulted in mean striatal binding potential (BP ND) estimates of 0.65±0.12 at baseline. Intravenous administration of amphetamine (0.5 and 1.0mg/kg, i.v.) reduced BP ND values by 31-50%. Amphetamine (0.3mg/kg, subcutaneous) increased extracellular norepinephrine (by 400%) and dopamine (by 270%) in rat striata. CONCLUSIONS Together, these results indicate that [(11)C]ORM-13070 may be a useful tool for evaluation of synaptic norepinephrine concentrations in vivo. Future studies are required to further understand a potential contribution of dopamine to the amphetamine-induced effect.
Collapse
Affiliation(s)
- Sjoerd J Finnema
- Karolinska Institutet, Department of Clinical Neuroscience, Center for Psychiatric Research, Stockholm, Sweden (Drs Finnema, Stepanov, Nakao, Varnäs, Varrone, Farde, and Halldin); Pfizer, Neuroscience Research Unit, Cambridge, MA (Drs Hughes, Babalola, and Grimwood); University of Turku, Turku PET Centre, Turku, Finland (Drs Haaparanta-Solin, Arponen, Marjamäki, and Solin); University of Turku, Department of Pharmacology, Drug Development and Therapeutics, and Turku University Hospital, Unit of Clinical Pharmacology, Turku, Finland (Drs Pohjanoksa, Vuorilehto, and Scheinin); Orion Corporation, Orion Pharma, Research and Development, Turku, Finland (Dr Sallinen); AstraZeneca, Translational Science Center at Karolinska Institutet, Stockholm, Sweden (Dr Farde)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lehto J, Hirvonen MM, Johansson J, Kemppainen J, Luoto P, Naukkarinen T, Oikonen V, Arponen E, Rouru J, Sallinen J, Scheinin H, Vuorilehto L, Finnema SJ, Halldin C, Rinne JO, Scheinin M. Validation of [(11) C]ORM-13070 as a PET tracer for alpha2c -adrenoceptors in the human brain. Synapse 2015; 69:172-81. [PMID: 25530024 DOI: 10.1002/syn.21798] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/03/2014] [Accepted: 12/10/2014] [Indexed: 12/24/2022]
Abstract
This study explored the use of the α2C -adrenoceptor PET tracer [(11) C]ORM-13070 to monitor α2C -AR occupancy in the human brain. The subtype-nonselective α2 -AR antagonist atipamezole was administered to eight healthy volunteer subjects to determine its efficacy and potency (Emax and EC50 ) at inhibiting tracer uptake. We also explored whether the tracer could reveal changes in the synaptic concentrations of endogenous noradrenaline in the brain, in response to several pharmacological and sensory challenge conditions. We assessed occupancy from the bound-to-free ratio measured during 5-30 min post injection. Based on extrapolation of one-site binding, the maximal extent of inhibition of striatal [(11) C]ORM-13070 uptake (Emax ) achievable by atipamezole was 78% (95% CI 69-87%) in the caudate nucleus and 65% (53-77%) in the putamen. The EC50 estimates of atipamezole (1.6 and 2.5 ng/ml, respectively) were in agreement with the drug's affinity to α2C -ARs. These findings represent clear support for the use of [(11) C]ORM-13070 for monitoring drug occupancy of α2C -ARs in the living human brain. Three of the employed noradrenaline challenges were associated with small, approximately 10-16% average reductions in tracer uptake in the dorsal striatum (atomoxetine, ketamine, and the cold pressor test; P < 0.05 for all), but insulin-induced hypoglycemia did not affect tracer uptake. The tracer is suitable for studying central nervous system receptor occupancy by α2C -AR ligands in human subjects. [(11) C]ORM-13070 also holds potential as a tool for in vivo monitoring of synaptic concentrations of noradrenaline, but this remains to be further evaluated in future studies.
Collapse
Affiliation(s)
- Jussi Lehto
- Department of Pharmacology, Drug Development and Therapeutics, University of Turku, Turku, Finland; Clinical Research Services Turku CRST, Turku, Finland; Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kelly B, McMullan M, Muguruza C, Ortega JE, Meana JJ, Callado LF, Rozas I. α2-Adrenoceptor Antagonists: Synthesis, Pharmacological Evaluation, and Molecular Modeling Investigation of Pyridinoguanidine, Pyridino-2-aminoimidazoline and Their Derivatives. J Med Chem 2015; 58:963-77. [DOI: 10.1021/jm501635e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Brendan Kelly
- School
of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Michela McMullan
- School
of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Carolina Muguruza
- Department of Pharmacology, University
of the Basque Country UPV/EHU, and Centro de Investigación
Biomédica en Red de Salud Mental, CIBERSAM, 28029 Madrid, Spain
| | - Jorge E. Ortega
- Department of Pharmacology, University
of the Basque Country UPV/EHU, and Centro de Investigación
Biomédica en Red de Salud Mental, CIBERSAM, 28029 Madrid, Spain
| | - J. Javier Meana
- Department of Pharmacology, University
of the Basque Country UPV/EHU, and Centro de Investigación
Biomédica en Red de Salud Mental, CIBERSAM, 28029 Madrid, Spain
| | - Luis F. Callado
- Department of Pharmacology, University
of the Basque Country UPV/EHU, and Centro de Investigación
Biomédica en Red de Salud Mental, CIBERSAM, 28029 Madrid, Spain
| | - Isabel Rozas
- School
of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| |
Collapse
|
26
|
Citraro R, Leo A, Aiello R, Pugliese M, Russo E, De Sarro G. Comparative analysis of the treatment of chronic antipsychotic drugs on epileptic susceptibility in genetically epilepsy-prone rats. Neurotherapeutics 2015; 12:250-62. [PMID: 25404052 PMCID: PMC4322085 DOI: 10.1007/s13311-014-0318-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Antipsychotic drugs (APs) are of great benefit in several psychiatric disorders, but they can be associated with various adverse effects, including seizures. To investigate the effects of chronic antipsychotic treatment on seizure susceptibility in genetically epilepsy-prone rats, some APs were administered for 7 weeks, and seizure susceptibility (audiogenic seizures) was evaluated once a week during treatment and for 5 weeks after drug withdrawal. Furthermore, acute and subchronic (5-day treatment) effects were also measured. Rats received haloperidol (0.2-1.0 mg/kg), clozapine (1-5 mg/kg), risperidone (0.03-0.50 mg/kg), quetiapine (2-10 mg/kg), aripriprazole (0.2-1.0 mg/kg), and olanzapine (0.13-0.66 mg/kg), and tested according to treatment duration. Acute administration of APs had no effect on seizures, whereas, after regular treatment, aripiprazole reduced seizure severity; haloperidol had no effects and all other APs increased seizure severity. In chronically treated rats, clozapine showed the most marked proconvulsant effects, followed by risperidone and olanzapine. Quetiapine and haloperidol had only modest effects, and aripiprazole was anticonvulsant. Finally, the proconvulsant effects lasted at least 2-3 weeks after treatment suspension; for aripiprazole, a proconvulsant rebound effect was observed. Taken together, these results indicate and confirm that APs might have the potential to increase the severity of audiogenic seizures but that aripiprazole may exert anticonvulsant effects. The use of APs in patients, particularly in patients with epilepsy, should be monitored for seizure occurrence, including during the time after cessation of therapy. Further studies will determine whether aripiprazole really has a potential as an anticonvulsant drug and might also be clinically relevant for epileptic patients with psychiatric comorbidities.
Collapse
Affiliation(s)
- Rita Citraro
- />Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, Viale Europa – Germaneto, 88100 Catanzaro, Italy
| | - Antonio Leo
- />Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, Viale Europa – Germaneto, 88100 Catanzaro, Italy
| | - Rossana Aiello
- />Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, Viale Europa – Germaneto, 88100 Catanzaro, Italy
| | - Michela Pugliese
- />Department of Veterinary Science, University of Messina, Messina, Italy
| | - Emilio Russo
- />Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, Viale Europa – Germaneto, 88100 Catanzaro, Italy
| | - Giovambattista De Sarro
- />Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, Viale Europa – Germaneto, 88100 Catanzaro, Italy
| |
Collapse
|
27
|
Test–retest reliability of 11C-ORM-13070 in PET imaging of α2C-adrenoceptors in vivo in the human brain. Eur J Nucl Med Mol Imaging 2014; 42:120-7. [DOI: 10.1007/s00259-014-2899-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/13/2014] [Indexed: 10/24/2022]
|
28
|
Solismaa A, Kampman O, Seppälä N, Viikki M, Mäkelä KM, Mononen N, Lehtimäki T, Leinonen E. Polymorphism in alpha 2A adrenergic receptor gene is associated with sialorrhea in schizophrenia patients on clozapine treatment. Hum Psychopharmacol 2014; 29:336-41. [PMID: 25163438 DOI: 10.1002/hup.2408] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 03/20/2014] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Clozapine-induced sialorrhea (CIS) is a common, inconvenient and socially stigmatizing adverse effect. The pathophysiology of CIS may be related to the effect of clozapine on the muscarinic and adrenergic receptors as well as the disruption of the circadian rhythms. The aim of this study was to find out if polymorphisms in muscarinic M1 and M3 receptor genes (CHRM1 and CHRM3), adrenoceptor alpha 2A gene (ADRA2A) or clock circadian regulator gene (CLOCK) are associated with CIS. METHODS Two hundred and thirty-seven clozapine-treated Finnish schizophrenia patients were genotyped for CHRM1, CHRM3, CLOCK and ADRA2A polymorphisms, and their salivary dysfunction was assessed with two questions. Twenty-six of these patients had previously been on medication to treat CIS. Comparisons of the genotypes between patients with excessive versus non-excessive salivation were analysed. Genotype distributions between patients and control group and haplotypes were also studied. RESULTS CHRM1, CHRM3 and CLOCK polymorphisms and haplotypes were not associated with CIS. ADRA2A (rs1800544) genotype was associated with CIS (p = 0.029). In patients with CIS, CC genotype (n = 103) was more common than in G-allele carriers (n = 79) (p = 0.013, OR 2.13, 95% CI: 1.17-3.88). No differences were found in the distributions of genotypes between patients and controls. CONCLUSIONS ADRA2A genotype was associated with CIS.
Collapse
Affiliation(s)
- Anssi Solismaa
- School of Medicine, University of Tampere, Tampere, Finland; Department of Psychiatry, Seinäjoki Hospital District, Seinäjoki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
29
|
|
30
|
α2-Adrenoceptors are targets for antipsychotic drugs. Psychopharmacology (Berl) 2014; 231:801-12. [PMID: 24488407 DOI: 10.1007/s00213-014-3459-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 01/11/2014] [Indexed: 01/29/2023]
Abstract
RATIONALE Almost all antipsychotic drugs (APDs), irrespective of whether they belong to the first-generation (e.g. haloperidol) or second-generation (e.g. clozapine), are dopamine D2 receptor antagonists. Second-generation APDs, which differ from first-generation APDs in possessing a lower propensity to induce extrapyramidal side effects, target a variety of monoamine receptors such as serotonin (5-hydroxytryptamine) receptors (e.g. 5-HT1A, 5-HT2A, 5-HT2C, 5-HT6, 5-HT7) and α1- and α2-adrenoceptors in addition to their antagonist effects at D2 receptors. OBJECTIVE This short review is focussed on the potential role of α2-adrenoceptors in the antipsychotic therapy. RESULTS Schizophrenia is characterised by three categories of symptoms: positive symptoms, negative symptoms and cognitive deficits. α2-Adrenoceptors are classified into three distinct subtypes in mammals, α2A, α2B and α2C. Whereas the α2B-adrenoceptor seems to play only a minor role in the brain, activation of postsynaptic α2A-adrenoceptors in the prefrontal cortex improves cognitive functions. Preclinical models such as D-amphetamine-induced locomotion, the conditioned avoidance response and the pharmacological N-methyl-D-aspartate receptor hypofunction model have shown that α2C-adrenoceptor blockade or the combination of D2 receptor antagonists with idazoxan (α2A/2C-adrenoceptor antagonist) could be useful in schizophrenia. A potential benefit of a treatment combination of first-generation APDs with the α2A/2C-adrenoceptor antagonists idazoxan or mirtazapine was also demonstrated in patients with schizophrenia. CONCLUSIONS It is concluded that α2-adrenoceptors may be promising targets in the antipsychotic therapy.
Collapse
|
31
|
Sajatovic M, Madhusoodanan S, Fuller MA, Aulakh L, Keaton DB. Risperidone for bipolar disorders. Expert Rev Neurother 2014; 5:177-87. [PMID: 15853488 DOI: 10.1586/14737175.5.2.177] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Atypical antipsychotic medications are a relatively new, increasingly prominent component of the treatment armamentarium for bipolar disorder -- a development that provides more options for potentially improved outcomes for patients and families affected by bipolar disorder. The US Food and Drug Administration-approved bipolar indications for risperidone include monotherapy for the short-term treatment of acute manic or mixed episodes associated with bipolar I disorder and combination therapy with lithium or valproate for the short-term treatment of acute manic or mixed episodes associated with bipolar I disorder. Risperidone is also approved in over 30 countries worldwide for bipolar mania either as monotherapy, adjunct therapy, or both monotherapy and adjunct therapy. A number of controlled and open-label treatment trials have shown risperidone's efficacy and tolerability in the manic phase of bipolar disorder. Risperidone has also been reported to be useful in the longer-term treatment of bipolar disorder. This drug profile of risperidone for bipolar disorder will address the chemistry, pharmacodynamics, pharmacokinetics and metabolism of risperidone, clinical trials in bipolar disorder, postmarketing surveillance, safety, tolerability and regulatory issues. Finally, a discussion of potential future directions, a summary of key issues and information resources are provided.
Collapse
Affiliation(s)
- Martha Sajatovic
- Department of Psychiatry, University Hospitals of Cleveland, 11100 Euclid Avenue, Cleveland, OH 44106, USA.
| | | | | | | | | |
Collapse
|
32
|
Li X, Johnson MS, Smith DL, Li Y, Kesterson RA, Allison DB, Nagy TR. Effects of risperidone on energy balance in female C57BL/6J mice. Obesity (Silver Spring) 2013; 21:1850-7. [PMID: 23408466 PMCID: PMC3657586 DOI: 10.1002/oby.20350] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 12/12/2012] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To investigate the effect of risperidone on energy expenditure and weight gain in female C57BL/6J mice. DESIGN AND METHODS Body weight and composition, food intake, energy expenditure, and activity were determined weekly. mRNA expression of uncoupling protein 1 in brown adipose tissue, orexin, and brain-derived neurotrophic factor in the hypothalamus were quantified using real-time PCR. RESULTS Risperidone tended to induce a greater body weight gain (P = 0.052) and significantly higher food intake (P = 0.038) relative to the placebo-treated group. Risperidone-treated mice had a higher resting energy expenditure (P = 0.001) and total energy expenditure (TEE) (P = 0.005) than the placebo group. There were no effects of treatment, time, and treatment by time on non-resting (or activity-related) energy expenditure between groups. Risperidone-treated mice showed a significantly lesser locomotor activity than placebo-treated mice over 3 weeks (P < 0.001). Risperidone induced a higher UCP1 mRNA (P = 0.003) and a lower orexin mRNA (P = 0.001) than placebo. CONCLUSION Risperidone-induced weight gain is associated with hyperphagia and a reduction in locomotor activity in C57BL/6J mice. Additionally, higher total and resting energy expenditure were accompanied by higher levels of UCP1 mRNA in BAT. The increased TEE could not offset the total intake of energy through risperidone-induced hyperphagia, therefore resulting in weight gain in female C57BL/6J mice.
Collapse
Affiliation(s)
- Xingsheng Li
- Department of Nutrition Sciences, University of Alabama at Birmingham
| | - Maria S. Johnson
- Department of Nutrition Sciences, University of Alabama at Birmingham
| | - Daniel L. Smith
- Department of Nutrition Sciences, University of Alabama at Birmingham
| | - Yan Li
- Department of Nutrition Sciences, University of Alabama at Birmingham
| | | | - David B. Allison
- Department of Nutrition Sciences, University of Alabama at Birmingham
- Department of Biostatistics, University of Alabama at Birmingham
| | - Tim R. Nagy
- Department of Nutrition Sciences, University of Alabama at Birmingham
| |
Collapse
|
33
|
Jantschak F, Brosda J, Franke RT, Fink H, Möller D, Hübner H, Gmeiner P, Pertz HH. Pharmacological profile of 2-bromoterguride at human dopamine D2, porcine serotonin 5-hydroxytryptamine 2A, and α2C-adrenergic receptors, and its antipsychotic-like effects in rats. J Pharmacol Exp Ther 2013; 347:57-68. [PMID: 23863695 DOI: 10.1124/jpet.113.205997] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Dopaminergic, serotonergic, and adrenergic receptors are targets for therapeutic actions in schizophrenia. Dopamine D2 receptor partial agonists such as aripiprazole represent a treatment option for patients with this severe disorder. The ineffectiveness of terguride, another D2 receptor partial agonist, in treating schizophrenia was recently attributed to its considerably high intrinsic activity at D2 receptors. In this study, we used functional assays for recombinant D2 receptors and native 5-hydroxytryptamine 2A (5-HT2A), α2C-adrenergic, and histamine H1 receptors to compare the pharmacological properties of terguride and three of its halogenated derivatives (2-chloro-, 2-bromo-, 2-iodoterguride) with those of aripiprazole. Subsequently, we studied the antidopaminergic effects of 2-bromoterguride using amphetamine-induced locomotion (AIL). Its influence on spontaneous behavior was tested in the open field. Extrapyramidal side effect (EPS) liability was evaluated by catalepsy test. In a guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPγS) binding assay, 2-chloro-, 2-bromo-, and 2-iodoterguride produced intrinsic activities at human D2short (hD2S) receptors that were half as high as the intrinsic activity for terguride; aripiprazole lacked agonist activity. 2-Bromoterguride and aripiprazole activated D2S receptor-mediated inhibition of cAMP accumulation to the same extent; intrinsic activity was half as high as that of terguride. All compounds tested behaved as antagonists at human D2long/Gαo (hD2L/Gαo) receptors. Compared with aripiprazole, terguride and its derivatives displayed higher affinity at porcine 5-HT2A receptors and α2C-adrenoceptors and lower affinity at H1 receptors. 2-Bromoterguride inhibited AIL and did not induce catalepsy in rats. Because of its in vitro and in vivo properties, 2-bromoterguride may be a strong candidate for the treatment of schizophrenia with a lower risk to induce EPS.
Collapse
Affiliation(s)
- F Jantschak
- Institute of Pharmacy, Free University of Berlin, Berlin, Germany (F.J., H.H.P.); Institute of Pharmacology and Toxicology, School of Veterinary Medicine, Free University of Berlin, Berlin, Germany (J.B., R.T.F., H.F.); and Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Erlangen, Germany (D.M., H.H., P.G.)
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Withdrawal symptoms and rebound syndromes associated with switching and discontinuing atypical antipsychotics: theoretical background and practical recommendations. CNS Drugs 2013; 27:545-72. [PMID: 23821039 DOI: 10.1007/s40263-013-0079-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
With the widespread use of atypical or second-generation antipsychotics, switching treatment has become current practice and more complicated, as the pharmacological profiles of these agents differ substantially despite their similarity in being 'atypical'. All share the ability to block dopamine D₂ receptors, and most of them also block serotonin 5-HT2A receptors. Apart from these common features, some atypical antipsychotics are also able to block or stimulate other dopamine or serotonin receptors, as well as histaminergic, muscarinergic or adrenergic receptors. As a result of the varying receptor affinities, in switching or discontinuing compounds several possible pitfalls have to be considered, including the occurrence of withdrawal and rebound syndromes. This article reviews the pharmacological background of functional blockade or stimulation of receptors of interest in regard to atypical antipsychotics and the implicated potential withdrawal and rebound phenomena. A MEDLINE search was carried out to identify information on withdrawal or rebound syndromes occurring after discontinuation of atypical antipsychotics. Using the resulting literature, we first discuss the theoretical background to the functional consequences of atypical antipsychotic-induced blockade or stimulation of neurotransmitter receptors and, secondly, we highlight the clinical consequences of this. We then review the available clinical literature on switching between atypical antipsychotics, with respect to the occurrence of withdrawal or rebound symptoms. Finally, we offer practical recommendations based on the reviewed findings. The systematic evaluation of withdrawal or rebound phenomena using randomized controlled trials is still understudied. Knowledge of pharmacological receptor-binding profiles may help clinicians in choosing adequate switching or discontinuation strategies for each agent. Results from large switching trials indicate that switching atypical antipsychotics can be performed in a safe manner. Treatment-emergent adverse events during or after switching are not always considered to be, at least in part, associated with the pre-switch antipsychotic. Further studies are needed to substantiate the evidence gained so far on different switching strategies. The use of concomitant medication, e.g., benzodiazepines or anticholinergic drugs, may help to minimize symptoms arising from the discontinuation or switching of antipsychotic treatment.
Collapse
|
35
|
Sallinen J, Holappa J, Koivisto A, Kuokkanen K, Chapman H, Lehtimäki J, Piepponen P, Mijatovic J, Tanila H, Virtanen R, Sirviö J, Haapalinna A. Pharmacological Characterisation of a Structurally Novel α2C-Adrenoceptor Antagonist ORM-10921 and its Effects in Neuropsychiatric Models. Basic Clin Pharmacol Toxicol 2013; 113:239-49. [DOI: 10.1111/bcpt.12090] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Accepted: 05/23/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Jukka Sallinen
- Orion Corporation; Orion Pharma; Research and Development; Turku; Finland
| | - Johanna Holappa
- Orion Corporation; Orion Pharma; Research and Development; Turku; Finland
| | - Ari Koivisto
- Orion Corporation; Orion Pharma; Research and Development; Turku; Finland
| | - Katja Kuokkanen
- Orion Corporation; Orion Pharma; Research and Development; Turku; Finland
| | - Hugh Chapman
- Orion Corporation; Orion Pharma; Research and Development; Turku; Finland
| | - Jyrki Lehtimäki
- Orion Corporation; Orion Pharma; Research and Development; Turku; Finland
| | - Petteri Piepponen
- Division of Pharmacology and Toxicology; University of Helsinki; Helsinki; Finland
| | - Jelena Mijatovic
- Division of Pharmacology and Toxicology; University of Helsinki; Helsinki; Finland
| | - Heikki Tanila
- Department of Neurobiology; A. I. Virtanen Institute; University of Eastern Finland and CNServices Ltd; Kuopio; Finland
| | - Raimo Virtanen
- Orion Corporation; Orion Pharma; Research and Development; Turku; Finland
| | - Jouni Sirviö
- Department of Neurobiology; Sauloner Ltd.; Kuopio; Finland
| | - Antti Haapalinna
- Orion Corporation; Orion Pharma; Research and Development; Turku; Finland
| |
Collapse
|
36
|
Rajkumar R, Suri S, Deng HM, Dawe GS. Nicotine and clozapine cross-prime the locus coeruleus noradrenergic system to induce long-lasting potentiation in the rat hippocampus. Hippocampus 2013; 23:616-24. [PMID: 23520012 DOI: 10.1002/hipo.22122] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2013] [Indexed: 11/09/2022]
Abstract
A priming-challenge schedule of nicotine treatment causes long-lasting potentiation (LLP), a form of synaptic plasticity closely associated with the norepinephrine (NE) neurotransmitter system, at the medial perforant path (MPP)-dentate gyrus (DG) synapse in the rat hippocampus. Previous reports revealed that nicotine activates the locus coeruleus (LC) noradrenergic (NAergic) system and this mechanism may underlie its beta-adrenoceptor sensitive LLP effects. Clozapine, an atypical antipsychotic, is also known to activate the LC. Interactions between nicotine and clozapine are of interest because of the prevalence of smoking in patients with schizophrenia and increasing interest in the use of nicotinic receptor ligands as cognitive enhancers. Rats were subchronically primed with nicotine, clozapine or saline. Twenty-one to twenty-eight days later, the effects of the nicotine, clozapine or saline challenge on the evoked field excitatory postsynaptic potentials (fEPSP) at the MPP-DG monosynaptic pathway were recorded as a measure of LLP. We confirmed the hypothesis that a challenge dose of either nicotine or clozapine induces LLP exclusively in nicotine- and clozapine-primed rats, and not in saline-primed rats, thus indicating a cross-priming effect. Moreover, unilateral suppression of LC using lidocaine abolished the LLP induced by nicotine in clozapine-primed rats. Furthermore, systemic treatment with clonidine (an α2 adrenoceptor agonist that reduces NAergic activity via autoreceptors) prior to the challenge doses blocked the nicotine/clozapine-induced LLP in nicotine- and clozapine-primed rats. These findings may add to understanding of the cognitive enhancing effects of nicotine.
Collapse
Affiliation(s)
- Ramamoorthy Rajkumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
37
|
Abstract
Typical and atypical antipsychotic drugs are known to block potassium repolarization channels, prolong the QTc interval, and thereby predispose to ventricular tachyarrhythmias. We report a young male schizophrenic patient who experienced clinically significant and symptomatically distressing ventricular premature contractions (VPCs) in close temporal relation with iloperidone (8-16 mg/day) treatment; there had been no VPCs with prior exposure to risperidone, trihexyphenidyl, and olanzapine, nor with subsequent exposure to asenapine. We hypothesize that the VPCs may have been triggered by an alpha 2c receptor blockade-mediated cardiostimulatory action associated with iloperidone.
Collapse
Affiliation(s)
- Rashmin Achalia
- Department of Psychiatry, Government Medical College, Aurangabad, Maharashtra, India
| | | |
Collapse
|
38
|
Chau DT, Ahmed J, Wang TT, Xie H, Dawson R, Green AI. Raclopride lessens the ability of clozapine to suppress alcohol drinking in Syrian golden hamsters. Neuropharmacology 2011; 61:646-52. [DOI: 10.1016/j.neuropharm.2011.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 05/09/2011] [Accepted: 05/10/2011] [Indexed: 11/28/2022]
|
39
|
Comparative pharmacology of antipsychotics possessing combined dopamine D2 and serotonin 5-HT1A receptor properties. Psychopharmacology (Berl) 2011; 216:451-73. [PMID: 21394633 DOI: 10.1007/s00213-011-2247-y] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 02/22/2011] [Indexed: 02/07/2023]
Abstract
RATIONALE There is increasing interest in antipsychotics intended to manage positive symptoms via D(2) receptor blockade and improve negative symptoms and cognitive deficits via 5-HT(1A) activation. Such a strategy reduces side-effects such as the extrapyramidal syndrome (EPS), weight gain, and autonomic disturbance liability. OBJECTIVE This study aims to review pharmacological literature on compounds interacting at both 5-HT(1A) and D(2) receptors (as well as at other receptors), including aripiprazole, perospirone, ziprasidone, bifeprunox, lurasidone and cariprazine, PF-217830, adoprazine, SSR181507, and F15063. METHODS We examine data on in vitro binding and agonism and in vivo tests related to (1) positive symptoms (e.g., psychostimulant-induced hyperactivity or prepulse inhibition deficit), (2) negative symptoms (e.g., phencyclidine-induced social interaction deficits and cortical dopamine release), and (3) cognitive deficits (e.g., phencyclidine or scopolamine-induced memory deficits). EPS liability is assessed by measuring catalepsy and neuroendocrine impact by determining plasma prolactin, glucose, and corticosterone levels. RESULTS Compounds possessing "balanced" 5-HT(1A) receptor agonism and D(2) antagonism (or weak partial agonism) and, in some cases, combined with other beneficial properties, such as 5-HT(2A) receptor antagonism, are efficacious in a broad range of rodent pharmacological models yet have a lower propensity to elicit EPS or metabolic dysfunction. CONCLUSIONS Recent compounds exhibiting combined 5-HT(1A)/D(2) properties may be effective in treating a broader range of symptoms of schizophrenia and be better tolerated than existing antipsychotics. Nevertheless, further investigations are necessary to evaluate recent compounds, notably in view of their differing levels of 5-HT(1A) affinity and efficacy, which can markedly influence activity and side-effect profiles.
Collapse
|
40
|
Fagerholm V, Haaparanta M, Scheinin M. α2-adrenoceptor regulation of blood glucose homeostasis. Basic Clin Pharmacol Toxicol 2011; 108:365-70. [PMID: 21418144 DOI: 10.1111/j.1742-7843.2011.00699.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The α(2A)-adrenoceptor has been identified as an important regulator of blood glucose homeostasis. α(2A)-Adrenoceptors on pancreatic β-cells inhibit insulin secretion, and α(2A)-adrenoceptors on sympathetic nerves and on adrenomedullary chromaffin cells limit sympathoadrenal output. Recently, human α(2A)-adrenoceptor gene polymorphisms that influence α(2A)-adrenoceptor expression and function have been described. Increased α(2A)-adrenoceptor expression has been associated with impaired glucose-stimulated insulin secretion, elevated fasting blood glucose levels and an increased risk of type 2 diabetes. Accordingly, administration of α(2)-adrenoceptor agonists generally increases blood glucose levels, in spite of the ensuing sympatholysis that would be expected to lower blood glucose as a result of diminished α(1)- and β-adrenoceptor activation. α(2)-Adrenoceptor antagonists increase insulin secretion and reduce blood glucose levels by inhibiting tonically active α(2A)-adrenoceptors on pancreatic β-cells, but may also enhance sympathoadrenal output. In addition, α(2)-adrenoceptor antagonists potentiate the insulinotropic effect of sulphonylurea drugs, pointing to a potentially serious adverse drug interaction when the two classes of drugs are combined. The α(2)-adrenoceptor antagonist atipamezole is widely used in veterinary medicine, and sulphonylureas are prescribed for the treatment of type 2 diabetes in cats and dogs. Even if no dedicated α(2)-adrenoceptor antagonists are in clinical use in humans, some antipsychotic and antidepressant drugs are relatively potent α(2)-adrenoceptor antagonists. In the treatment of type 2 diabetes, α(2)-adrenoceptor agonists could possibly protect against sulphonylurea-induced hypoglycaemia, and α(2)-adrenoceptor antagonist drugs could improve insulin secretion. The potential usefulness of such drugs may vary between individuals, depending on α(2A)-adrenoceptor genetics, sympathetic tone and concomitant pathological conditions, such as cardiovascular disease and obesity.
Collapse
|
41
|
Tan W, Fan H, Yu PH. Induction of subcutaneous adipose proliferation by olanzapine in rodents. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:1098-103. [PMID: 20541579 DOI: 10.1016/j.pnpbp.2010.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 06/03/2010] [Accepted: 06/04/2010] [Indexed: 12/19/2022]
Abstract
Weight gain induced by atypical antipsychotics causes a serious health concern in the treatment of schizophrenic patients. In the present study chronic treatment of female Wistar rats with olanzapine caused weight gain, but limited effect on food intake. A dramatic drug-induced morphological change of the subcutaneous adipose tissue was observed, i.e. development of a pinkish coloration with the appearance of a "fish egg"-like texture. Histological examination revealed a massive increase in the proliferation of undifferentiated adipocytes. Such proliferation was detected as early as the third day after olanzapine treatment. The changes progressed in a time- and dose-dependent manner. The proliferation of adipose tissue was detected in rats treated with olanzapine independent of increases in weight gain. Protein profiles of the adipose tissue were also altered by olanzapine. These results suggest that olanzapine-induced weight gain may be not solely due to an effect on behavioural satiety. The potential involvement of adipose neuronal input and proliferation are discussed.
Collapse
Affiliation(s)
- W Tan
- Department of Pharmacology and Neuropsychiatry Research Unit University, of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E4.
| | | | | |
Collapse
|
42
|
Abstract
Iloperidone is an atypical antipsychotic that is approved for the treatment of adult patients with schizophrenia. In several large (n > 570 per trial), 4- or 6-week, double-blind, multinational, multicentre trials in adult patients with schizophrenia, recommended target dosages of oral iloperidone (6-12 mg twice daily) generally showed better efficacy than placebo, in terms of improvements in Positive and Negative Syndrome Scale (PANSS) total scores or Brief Psychiatric Rating Scale (BPRS) scores (primary endpoints) and also for most secondary endpoints, including PANSS subscale scores. In addition, pharmacogenomic studies identified single nucleotide polymorphisms (SNPs) that were associated with an enhanced response to iloperidone during acute treatment of schizophrenia. More limited data also support the role of these SNPs in enhancing responses to iloperidone during longer-term treatment. In a pooled analysis of three 52-week, double-blind, multinational, multicentre trials (n = 473), iloperidone treatment was shown to be equivalent to that with haloperidol, based on Kaplan-Meier estimates of the time to relapse (primary endpoint). Iloperidone was generally well tolerated and was associated with few extrapyramidal symptoms or changes in metabolic parameters in short- and longer-term clinical trials in adult patients with schizophrenia.
Collapse
|
43
|
Ravanic DB, Dejanovic SMD, Janjic V, Jovic SD, Milovanovic DR, Jakovljevic V, Pantovic V, Ravanic B, Pantovic M, Pantovic MM. Effectiveness of clozapine, haloperidol and chlorpromazine in schizophrenia during a five-year period. ARQUIVOS DE NEURO-PSIQUIATRIA 2009; 67:195-202. [DOI: 10.1590/s0004-282x2009000200005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 03/05/2009] [Indexed: 11/22/2022]
Abstract
OBJECTIVE: The aim of our study was to evaluate the effects of low doses of clozapine in flexible regime in comparison with haloperidol and chlorpromazine in long term. METHOD: The naturalistic study was prospective, active-controlled with 325 adult outpatients of both genders (140 females), with mean year age of 34.8 (range 21-57), suffering from chronic schizophrenia. The first onset of illness was at the mean of 27.9 years (range 17-38), and subjects had the mean year age of 4.1±0.5 previous relapses. The patients were allocated to receive haloperidol (105 subjects, dose range 2-15 mg), chlorpromazine (n=105, 100-400 mg) or clozapine (n=115, 75-600 mg). The scores of psychometric instruments (GWB, PANSS, CGI) were regularly assessed during 5 year period. RESULTS: The sixty-six responders were included in per-protocol analysis: 12, 10 and 16 with positive and 7, 6 and 15 with negative schizophrenic syndrome in haloperidol, chlorpromazine and clozapine group, respectively. The statistically significant differences in all psychometric scores was found, for both schizophrenic syndromes, favoring clozapine. The distribution of eighteen different types of adverse events, which we noted, were significantly different among treatment groups ( χ2=315.7, df=34, p<0.001). Clozapine was safer and had fewer adverse effects (average of 0.9 adverse events per patient) than haloperidol (2.7) and chlorpromazine (3.2). CONCLUSIONS: Clozapine, in low doses of flexible regime, in long term (five years) showed better effectiveness in chronic schizophrenics with positive and negative symptoms than typical antipsychotics.
Collapse
|
44
|
Therapeutic potential of alpha2 adrenoceptor antagonism for antipsychotic-induced extrapyramidal motor disorders. Neurosci Lett 2009; 454:143-7. [PMID: 19429072 DOI: 10.1016/j.neulet.2009.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 02/19/2009] [Accepted: 03/02/2009] [Indexed: 11/22/2022]
Abstract
We examined the effects of JP-1302 (a selective alpha2C antagonist), BRL-44408 (a selective alpha2A antagonist) and yohimbine (a non-selective alpha2 antagonist) on haloperidol-induced bradykinesia and catalepsy in mice to elucidate the role of alpha2 adrenoceptor subtypes in modifying extrapyramidal motor disorders. JP-1302 (0.1-1 mg/kg, s.c.) dose-dependently ameliorated haloperidol-induced bradykinesia in the pole-test and reversed the catalepsy time increased by haloperidol. Antibradykinetic and anticataleptic actions of JP-1302 were statistically significant at 0.3 and 1 mg/kg, and these doses did not alter the ambulatory distance, rearing or center-perimeter residence time in the open-field test. BRL-44408 (1-10 mg/kg, s.c.) and yohimbine (0.3-3 mg/kg, i.p.) also ameliorated haloperidol-induced bradykinesia and catalepsy. However, both agents significantly decreased ambulatory distance and rearing in the open-field test, possibly reflecting their anxiogenic actions associated with alpha2A antagonism. The present study shows for the first time that blockade of alpha2C receptors can alleviate antipsychotic-induced extrapyramidal motor disorders without affecting gross behaviors.
Collapse
|
45
|
Abstract
Antipsychotic drugs have become the mainstay treatment of schizophrenia. However, patients who receive antipsychotic treatment differ with respect to treatment response and adverse events. The problem of antipsychotic response variability has stimulated further search for agents with improved effectiveness and tolerability. Equally intense is the search for novel ways of using DNA information to personalize treatment with antipsychotic drugs. Iloperidone is an investigational, atypical antipsychotic drug of the serotonin/dopamine type. The US FDA is currently reviewing the new drug application for an oral formulation of iloperidone for the treatment of schizophrenia. Data from 35 clinical trials and approximately 3000 patients treated with iloperidone were included in the new drug application submission, as well as data from pharmacogenetic studies of iloperidone. Given the emerging role of pharmacogenetics, knowledge of genetic biomarkers of iloperidone response could lead to personalized medicine.
Collapse
Affiliation(s)
- Charles U Nnadi
- Zucker Hillside Hospital, Psychiatry Research, 75–59 263rd Street, Glen Oaks, NY 11004, USA
| | - Anil K Malhotra
- Zucker Hillside Hospital, Psychiatry Research, 75–59 263rd Street, Glen Oaks, NY 11004, USA
| |
Collapse
|
46
|
Gyertyán I, Sághy K, Laszy J, Elekes O, Kedves R, Gémesi LI, Pásztor G, Zájer-Balázs M, Kapás M, Agai Csongor E, Domány G, Kiss B, Szombathelyi Z. Subnanomolar dopamine D3 receptor antagonism coupled to moderate D2 affinity results in favourable antipsychotic-like activity in rodent models: II. behavioural characterisation of RG-15. Naunyn Schmiedebergs Arch Pharmacol 2008; 378:529-39. [PMID: 18548231 DOI: 10.1007/s00210-008-0311-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Accepted: 05/01/2008] [Indexed: 11/25/2022]
Abstract
RG-15 (trans-N-[4-[2-[4-(3-cyano-5-trifluoromethyl -phenyl) -piperazine -1 -yl] -ethyl] -cyclohexyl] -3 -pyridinesulfonic amide dihydro-chloride), is a highly selective dopamine D3/D2 receptor antagonist with subnanomolar affinity for the D3 receptor and nanomolar affinity for the D2 receptor. We found that RG-15 showed a good oral bioavailability (54%) and high brain levels (approx. 900 ng/g) in rats and demonstrated antipsychotic efficacy in amphetamine-induced hyperactivity and conditioned avoidance response tests in rats, yielding ED50 (median effective dose) values of 8.6 and 12 mg/kg orally, respectively. At six- to eightfold higher doses, RG-15 blocked spontaneous motor activity, while a 30 mg/kg dose of the compound caused an increase in the home-cage motility of rats. The drug did not produce catalepsy up to 160 mg/kg oral dose; moreover, it inhibited haloperidol-induced catalepsy in the range 15-60 mg/kg. RG-15 (10 mg/kg orally) restored the impaired learning performance of scopolamine- or diazepam-treated rats in a water-labyrinth paradigm. It is assumed that the motor activating, anticataleptic and cognitive-enhancing properties of RG-15 result from its potent D3 antagonism. In this regard, RG 15 clearly differs from other antipsychotics. Olanzapine, clozapine and amisulpride all showed efficacy against amphetamine-induced hyperactivity and on conditioned avoidance, but compared to RG-15, they proved to be more cataleptogenic and depressed or did not change the home-cage activity of animals. Olanzapine was also inactive in the learning paradigm. Our results suggest that subnanomolar dopamine D3 receptor antagonism coupled to moderate D2 affinity may result in an antipsychotic profile characterised by a lack of extrapyramidal side effects and secondary negative symptoms with simultaneous efficacy on positive and cognitive symptoms of schizophrenia.
Collapse
Affiliation(s)
- István Gyertyán
- Research Division, Gedeon Richter Plc., Budapest 1475, Hungary.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Fagerholm V, Scheinin M, Haaparanta M. alpha2A-adrenoceptor antagonism increases insulin secretion and synergistically augments the insulinotropic effect of glibenclamide in mice. Br J Pharmacol 2008; 154:1287-96. [PMID: 18493247 DOI: 10.1038/bjp.2008.186] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE The imidazoline-type alpha2-adrenoceptor antagonists (+/-)-efaroxan and phentolamine increase insulin secretion and reduce blood glucose levels. It is not known whether they act by antagonizing pancreatic beta-cell alpha2-adrenoceptors or by alpha2-adrenoceptor-independent mechanisms. Many imidazolines inhibit the pancreatic beta-cell KATP channel, which is the molecular target of sulphonylurea drugs used in the treatment of type II diabetes. To investigate the mechanisms of action of (+/-)-efaroxan and phentolamine, alpha2A-adrenoceptor knockout (alpha2A-KO) mice were used. EXPERIMENTAL APPROACH Effects of (+/-)-efaroxan, 5 mg kg(-1), and phentolamine, 1 mg kg(-1), on blood glucose and insulin levels were compared with those of the non-imidazoline alpha2-adrenoceptor antagonist [8aR,12aS,13aS]-5,8,8a,9,10,11,12,12a,13,13a-decahydro-3-methoxy-12-(ethylsulphonyl)-6H-isoquino[2,1-g][1,6]naphthyridine (RS79948-197), 1 mg kg(-1), and the sulphonylurea glibenclamide, in alpha2A-KO and control (wild type (WT)) mice. KEY RESULTS In fed WT mice, (+/-)-efaroxan, phentolamine and RS79948-197 reduced blood glucose and increased insulin levels. Fasting abolished these effects. In fed alpha2A-KO mice, (+/-)-efaroxan, phentolamine and RS79948-197 did not alter blood glucose or insulin levels, and in fasted alpha2A-KO mice, blood glucose levels were increased. Glibenclamide, at a dose only moderately efficacious in WT mice (5 mg kg(-1)), caused severe hyperinsulinaemia and hypoglycaemia in alpha2A-KO mice. This was mimicked in WT mice by co-administration of RS79948-197 with glibenclamide. CONCLUSIONS AND IMPLICATIONS These results suggest that (+/-)-efaroxan and phentolamine increase insulin secretion by inhibition of beta-cell alpha2A-adrenoceptors, and demonstrate a critical role for alpha2A-adrenoceptors in limiting sulphonylurea-induced hyperinsulinaemia and hypoglycaemia.
Collapse
Affiliation(s)
- V Fagerholm
- Turku PET Centre/Preclinical Imaging, Turku, Finland.
| | | | | |
Collapse
|
48
|
Millan MJ, Brocco M. Cognitive Impairment in Schizophrenia: a Review of Developmental and Genetic Models, and Pro-cognitive Profile of the Optimised D3 > D2 Antagonist, S33138. Therapie 2008; 63:187-229. [DOI: 10.2515/therapie:2008041] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2008] [Indexed: 01/23/2023]
|
49
|
|
50
|
Abstract
Iloperidone is an atypical antipsychotic in development for the treatment of schizophrenia. This report examines efficacy results from three 6-week, randomized, double-blind, placebo- and active comparator-controlled studies in patients with schizophrenia or schizoaffective disorder. Multiple doses of iloperidone were studied. Active comparators (haloperidol 15 mg/d, or risperidone 4-8 mg/d) were included to confirm trial validity. The primary protocol-defined efficacy variable in Study 1 was change from baseline to end point in Positive and Negative Syndrome Scale total scores; in Studies 2 and 3, it was change in the Positive and Negative Syndrome Scale-derived Brief Psychiatric Rating Scale scores. Results were assessed through analysis of covariance using last observation carried forward in the intent-to-treat population. In total, 1943 patients were randomized. At least 1 iloperidone dosing group in each study demonstrated significantly better efficacy than placebo (Study 1, iloperidone 12 mg/d [P = 0.047]; Study 2, 4-8 mg/d [P = 0.012] and 10-16 mg/d [P = 0.001]; and Study 3, 20-24 mg/d [P = 0.010]). Active controls were also significantly more effective than placebo in each trial, thus validating the trials. Additional analysis in patients who received active treatment for at least 2 weeks indicated comparable efficacy score reductions at 6 weeks for patients receiving iloperidone 20 to 24 mg/d versus those receiving haloperidol or risperidone. Risk for motor-related adverse events (eg, akathisia and extrapyramidal symptoms) was lower with iloperidone than with risperidone and haloperidol and was generally similar to placebo. These trials indicate that iloperidone is effective for the treatment of schizophrenia.
Collapse
|