1
|
Ghosh A, Ribeiro-Rodrigues L, Ruffolo G, Alfano V, Domingos C, Rei N, Tosh DK, Rombo DM, Morais TP, Valente CA, Xapelli S, Bordadágua B, Rainha-Campos A, Bentes C, Aronica E, Diógenes MJ, Vaz SH, Ribeiro JA, Palma E, Jacobson KA, Sebastião AM. Selective modulation of epileptic tissue by an adenosine A 3 receptor-activating drug. Br J Pharmacol 2024. [PMID: 39300608 DOI: 10.1111/bph.17319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/17/2024] [Accepted: 07/02/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND AND PURPOSE Adenosine, through the A1 receptor (A1R), is an endogenous anticonvulsant. The development of adenosine receptor agonists as antiseizure medications has been hampered by their cardiac side effects. A moderately A1R-selective agonist, MRS5474, has been reported to suppress seizures without considerable cardiac action. Hypothesizing that this drug could act through other than A1R and/or through a disease-specific mechanism, we assessed the effect of MRS5474 on the hippocampus. EXPERIMENTAL APPROACH Excitatory synaptic currents, field potentials, spontaneous activity, [3H]GABA uptake and GABAergic currents were recorded from rodent or human hippocampal tissue. Alterations in adenosine A3 receptor (A3R) density in human tissue were assessed by Western blot. KEY RESULTS MRS5474 (50-500 nM) was devoid of effect upon rodent excitatory synaptic signals in hippocampal slices, except when hyperexcitability was previously induced in vivo or ex vivo. MRS5474 inhibited GABA transporter type 1 (GAT-1)-mediated γ-aminobutyric acid (GABA) uptake, an action not blocked by an A1R antagonist but blocked by an A3R antagonist and mimicked by an A3R agonist. A3R was overexpressed in human hippocampal tissue samples from patients with epilepsy that had focal resection from surgery. MRS5474 induced a concentration-dependent potentiation of GABA-evoked currents in oocytes micro-transplanted with human hippocampal membranes prepared from epileptic hippocampal tissue but not from non-epileptic tissue, an action blocked by an A3R antagonist. CONCLUSION AND IMPLICATIONS We identified a drug that activates A3R and has selective actions on epileptic hippocampal tissue. This underscores A3R as a promising target for the development of antiseizure medications.
Collapse
Affiliation(s)
- Anwesha Ghosh
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
| | - Leonor Ribeiro-Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
| | - Gabriele Ruffolo
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- IRCCS San Raffaele Roma, Rome, Italy
| | | | - Cátia Domingos
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
| | - Nádia Rei
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
| | - Dilip K Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Diogo M Rombo
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
| | - Tatiana P Morais
- Neuroscience Division, School of Bioscience, Cardiff University, Cardiff, UK
- Department of Physiology and Biochemistry, University of Malta, Msida, Malta
| | - Cláudia A Valente
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
| | - Sara Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
| | - Beatriz Bordadágua
- Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
- Heidelberg University, Heidelberg, Germany
- Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Alexandre Rainha-Campos
- Centro de Referência para a área da Epilepsia Refratária (ERN EpiCARE Member), CHULN, Lisbon, Portugal
- Serviço de Neurologia, CHULN, Lisbon, Portugal
| | - Carla Bentes
- Centro de Referência para a área da Epilepsia Refratária (ERN EpiCARE Member), CHULN, Lisbon, Portugal
- Laboratório de EEG/Sono-Unidade de Monitorização Neurofisiológica, Serviço de Neurologia, CHULN, Lisbon, Portugal
- Centro de Estudos Egas Moniz, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Eleonora Aronica
- Amsterdam Neuroscience, Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| | - Maria José Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
| | - Sandra H Vaz
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
| | - Joaquim A Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
| | - Eleonora Palma
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
2
|
Jang MH, Song J. Adenosine and adenosine receptors in metabolic imbalance-related neurological issues. Biomed Pharmacother 2024; 177:116996. [PMID: 38897158 DOI: 10.1016/j.biopha.2024.116996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/08/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024] Open
Abstract
Metabolic syndromes (e.g., obesity) are characterized by insulin resistance, chronic inflammation, impaired glucose metabolism, and dyslipidemia. Recently, patients with metabolic syndromes have experienced not only metabolic problems but also neuropathological issues, including cognitive impairment. Several studies have reported blood-brain barrier (BBB) disruption and insulin resistance in the brain of patients with obesity and diabetes. Adenosine, a purine nucleoside, is known to regulate various cellular responses (e.g., the neuroinflammatory response) by binding with adenosine receptors in the central nervous system (CNS). Adenosine has four known receptors: A1R, A2AR, A2BR, and A3R. These receptors play distinct roles in various physiological and pathological processes in the brain, including endothelial cell homeostasis, insulin sensitivity, microglial activation, lipid metabolism, immune cell infiltration, and synaptic plasticity. Here, we review the recent findings on the role of adenosine receptor-mediated signaling in neuropathological issues related to metabolic imbalance. We highlight the importance of adenosine signaling in the development of therapeutic solutions for neuropathological issues in patients with metabolic syndromes.
Collapse
Affiliation(s)
- Mi-Hyeon Jang
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States.
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Republic of Korea.
| |
Collapse
|
3
|
Fisher ES, Chen Y, Sifuentes MM, Stubblefield JJ, Lozano D, Holstein DM, Ren J, Davenport M, DeRosa N, Chen TP, Nickel G, Liston TE, Lechleiter JD. Adenosine A1R/A3R agonist AST-004 reduces brain infarction in mouse and rat models of acute ischemic stroke. FRONTIERS IN STROKE 2022; 1:1010928. [PMID: 38348128 PMCID: PMC10861240 DOI: 10.3389/fstro.2022.1010928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Acute ischemic stroke (AIS) is the second leading cause of death globally. No Food and Drug Administration (FDA) approved therapies exist that target cerebroprotection following stroke. Our group recently reported significant cerebroprotection with the adenosine A1/A3 receptor agonist, AST-004, in a transient stroke model in non-human primates (NHP) and in a preclinical mouse model of traumatic brain injury (TBI). However, the specific receptor pathway activated was only inferred based on in vitro binding studies. The current study investigated the underlying mechanism of AST-004 cerebroprotection in two independent models of AIS: permanent photothrombotic stroke in mice and transient middle cerebral artery occlusion (MCAO) in rats. AST-004 treatments across a range of doses were cerebroprotective and efficacy could be blocked by A3R antagonism, indicating a mechanism of action that does not require A1R agonism. The high affinity A3R agonist MRS5698 was also cerebroprotective following stroke, but not the A3R agonist Cl-IB-MECA under our experimental conditions. AST-004 efficacy was blocked by the astrocyte specific mitochondrial toxin fluoroacetate, confirming an underlying mechanism of cerebroprotection that was dependent on astrocyte mitochondrial metabolism. An increase in A3R mRNA levels following stroke suggested an intrinsic cerebroprotective response that was mediated by A3R signaling. Together, these studies confirm that certain A3R agonists, such as AST-004, may be exciting new therapeutic avenues to develop for AIS.
Collapse
Affiliation(s)
- Elizabeth S. Fisher
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - Yanan Chen
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - Mikaela M. Sifuentes
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - Jeremy J. Stubblefield
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - Damian Lozano
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - Deborah M. Holstein
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - JingMei Ren
- NeuroVasc Preclinical Services, Inc., Lexington, MA, United States
| | | | - Nicholas DeRosa
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - Tsung-pei Chen
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - Gerard Nickel
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, United States
| | | | - James D. Lechleiter
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, United States
| |
Collapse
|
4
|
Valada P, Hinz S, Vielmuth C, Lopes CR, Cunha RA, Müller CE, Lopes JP. The impact of inosine on hippocampal synaptic transmission and plasticity involves the release of adenosine through equilibrative nucleoside transporters rather than the direct activation of adenosine receptors. Purinergic Signal 2022:10.1007/s11302-022-09899-7. [PMID: 36156760 DOI: 10.1007/s11302-022-09899-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 09/13/2022] [Indexed: 11/24/2022] Open
Abstract
Inosine has robust neuroprotective effects, but it is unclear if inosine acts as direct ligand of adenosine receptors or if it triggers metabolic effects indirectly modifying the activity of adenosine receptors. We now combined radioligand binding studies with electrophysiological recordings in hippocampal slices to test how inosine controls synaptic transmission and plasticity. Inosine was without effect at 30 μM and decreased field excitatory post-synaptic potentials by 14% and 33% at 100 and 300 μM, respectively. These effects were prevented by the adenosine A1 receptor antagonist DPCPX. Inosine at 300 (but not 100) μM also decreased the magnitude of long-term potentiation (LTP), an effect prevented by DPCPX and by the adenosine A2A receptor antagonist SCH58261. Inosine showed low affinity towards human and rat adenosine receptor subtypes with Ki values of > 300 µM; only at the human and rat A1 receptor slightly higher affinities with Ki values of around 100 µM were observed. Affinity of inosine at the rat A3 receptor was higher (Ki of 1.37 µM), while it showed no interaction with the human orthologue. Notably, the effects of inosine on synaptic transmission and plasticity were abrogated by adenosine deaminase and by inhibiting equilibrative nucleoside transporters (ENT) with dipyridamole and NBTI. This shows that the impact of inosine on hippocampal synaptic transmission and plasticity is not due to a direct activation of adenosine receptors but is instead due to an indirect modification of the tonic activation of these adenosine receptors through an ENT-mediated modification of the extracellular levels of adenosine.
Collapse
Affiliation(s)
- Pedro Valada
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Sonja Hinz
- Pharmaceutical & Medicinal Chemistry, University of Bonn, 53121, Bonn, Germany
| | - Christin Vielmuth
- Pharmaceutical & Medicinal Chemistry, University of Bonn, 53121, Bonn, Germany
| | - Cátia R Lopes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal. .,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| | - Christa E Müller
- Pharmaceutical & Medicinal Chemistry, University of Bonn, 53121, Bonn, Germany
| | - João Pedro Lopes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| |
Collapse
|
5
|
A3 adenosine receptor agonist IB-MECA reverses chronic cerebral ischemia-induced inhibitory avoidance memory deficit. Eur J Pharmacol 2022; 921:174874. [DOI: 10.1016/j.ejphar.2022.174874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 02/08/2022] [Accepted: 03/07/2022] [Indexed: 12/24/2022]
|
6
|
Boia R, Dias PA, Galindo-Romero C, Ferreira H, Aires ID, Vidal-Sanz M, Agudo-Barriuso M, Bernardes R, Santos PF, de Sousa HC, Ambrósio AF, Braga ME, Santiago AR. Intraocular implants loaded with A3R agonist rescue retinal ganglion cells from ischemic damage. J Control Release 2022; 343:469-481. [DOI: 10.1016/j.jconrel.2022.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 12/16/2021] [Accepted: 02/01/2022] [Indexed: 12/20/2022]
|
7
|
Bozdemir E, Vigil FA, Chun SH, Espinoza L, Bugay V, Khoury SM, Holstein DM, Stoja A, Lozano D, Tunca C, Sprague SM, Cavazos JE, Brenner R, Liston TE, Shapiro MS, Lechleiter JD. Neuroprotective Roles of the Adenosine A 3 Receptor Agonist AST-004 in Mouse Model of Traumatic Brain Injury. Neurotherapeutics 2021; 18:2707-2721. [PMID: 34608616 PMCID: PMC8804149 DOI: 10.1007/s13311-021-01113-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2021] [Indexed: 10/20/2022] Open
Abstract
Traumatic brain injury (TBI) remains one of the greatest public health concerns with increasing morbidity and mortality rates worldwide. Our group reported that stimulation of astrocyte mitochondrial metabolism by P2Y1 receptor agonists significantly reduced cerebral edema and reactive gliosis in a TBI model. Subsequent data on the pharmacokinetics (PK) and rapid metabolism of these compounds suggested that neuroprotection was likely mediated by a metabolite, AST-004, which binding data indicated was an adenosine A3 receptor (A3R) agonist. The neuroprotective efficacy of AST-004 was tested in a control closed cortical injury (CCCI) model of TBI in mice. Twenty-four (24) hours post-injury, mice subjected to CCCI and treated with AST-004 (0.22 mg/kg, injected 30 min post-trauma) exhibited significantly less secondary brain injury. These effects were quantified with less cell death (PSVue794 fluorescence) and loss of blood brain barrier breakdown (Evans blue extravasation assay), compared to vehicle-treated TBI mice. TBI-treated mice also exhibited significantly reduced neuroinflammatory markers, glial-fibrillary acidic protein (GFAP, astrogliosis) and ionized Ca2+-binding adaptor molecule 1 (Iba1, microgliosis), both at the mRNA (qRT-PCR) and protein (Western blot and immunofluorescence) levels, respectively. Four (4) weeks post-injury, both male and female TBI mice presented a significant reduction in freezing behavior during contextual fear conditioning (after foot shock). AST-004 treatment prevented this TBI-induced impairment in male mice, but did not significantly affect impairment in female mice. Impairment of spatial memory, assessed 24 and 48 h after the initial fear conditioning, was also reduced in AST-004-treated TBI-male mice. Female TBI mice did not exhibit memory impairment 24 and 48 h after contextual fear conditioning and similarly, AST-004-treated female TBI mice were comparable to sham mice. Finally, AST-004 treatments were found to increase in vivo ATP production in astrocytes (GFAP-targeted luciferase activity), consistent with the proposed mechanism of action. These data reveal AST-004 as a novel A3R agonist that increases astrocyte energy production and enhances their neuroprotective efficacy after brain injury.
Collapse
Affiliation(s)
- Eda Bozdemir
- Department of Cell Systems and Anatomy, UT Health San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3904 USA
| | - Fabio A. Vigil
- Department of Cellular and Integrative Physiology, UT Health San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3904 USA
| | - Sang H. Chun
- Department of Cell Systems and Anatomy, UT Health San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3904 USA
| | - Liliana Espinoza
- Department of Cellular and Integrative Physiology, UT Health San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3904 USA
| | - Vladislav Bugay
- Department of Cellular and Integrative Physiology, UT Health San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3904 USA
| | - Sarah M. Khoury
- Department of Cell Systems and Anatomy, UT Health San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3904 USA
| | - Deborah M. Holstein
- Department of Cell Systems and Anatomy, UT Health San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3904 USA
| | - Aiola Stoja
- Department of Cellular and Integrative Physiology, UT Health San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3904 USA
| | - Damian Lozano
- Department of Cell Systems and Anatomy, UT Health San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3904 USA
| | - Ceyda Tunca
- Department of Cell Systems and Anatomy, UT Health San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3904 USA
| | - Shane M. Sprague
- Department of Neurosurgery, UT Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3904 USA
| | - Jose E. Cavazos
- Department of Neurology, UT Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3904 USA
| | - Robert Brenner
- Department of Cellular and Integrative Physiology, UT Health San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3904 USA
| | - Theodore E. Liston
- Astrocyte Pharmaceuticals Inc, 245 First Street, Suite 1800, Cambridge, MA 02142 USA
| | - Mark S. Shapiro
- Department of Cellular and Integrative Physiology, UT Health San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3904 USA
| | - James D. Lechleiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3904 USA
| |
Collapse
|
8
|
Agarwal P, Agarwal R. Tackling retinal ganglion cell apoptosis in glaucoma: role of adenosine receptors. Expert Opin Ther Targets 2021; 25:585-596. [PMID: 34402357 DOI: 10.1080/14728222.2021.1969362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The role of adenosine receptors as therapeutic targets for neuroprotection is now widely recognized. Their role, however, in protection against retinal ganglion cell (RGC) apoptosis in glaucoma needs further investigation. Hence, in this review, we look into the possibility of adenosine receptors as potential therapeutic targets by exploring their role in modulating various pathophysiological mechanisms underlying glaucomatous RGC loss. AREAS COVERED This review presents a summary of the adenosine receptor distribution in retina and the cellular functions mediated by them. The major pathophysiological mechanisms such as excitotoxicity, vascular dysregulation, loss of neurotrophic signaling, and inflammatory responses involved in glaucomatous RGC loss are discussed. The literature showing the role of adenosine receptors in modulating these pathophysiological mechanisms is discussed. The literature search was conducted using Pubmed search engine using key words such as 'RGC apoptosis,' 'adenosine,' adenosine receptors' 'retina' 'excitotoxicity,' 'neurotrophins,' 'ischemia', and 'cytokines' individually and in various combinations. EXPERT OPINION Use of adenosine receptor agonists and antagonists, for preservation of the RGCs in glaucomatous eyes independent of the level of intraocular pressure seems a very useful strategy. Future application of this strategy would require appropriate designing of drug formulation for tissue and disease-specific receptor targeting. Furthermore, the modulation of physiological functions and potential adverse effects need further investigations.
Collapse
Affiliation(s)
- Puneet Agarwal
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Renu Agarwal
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
G-Protein-Coupled Receptors and Ischemic Stroke: a Focus on Molecular Function and Therapeutic Potential. Mol Neurobiol 2021; 58:4588-4614. [PMID: 34120294 DOI: 10.1007/s12035-021-02435-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/18/2021] [Indexed: 01/22/2023]
Abstract
In ischemic stroke, there is only one approved drug, tissue plasminogen activator, to be used in clinical conditions for thrombolysis. New neuroprotective therapies for ischemic stroke are desperately needed. Several targets and pathways have been shown to confer neuroprotective effects in ischemic stroke. G-protein-coupled receptors (GPCRs) are one of the most frequently targeted receptors for developing novel therapeutics for central nervous system disorders. GPCRs are a large family of cell surface receptors that response to a wide variety of extracellular stimuli. GPCRs are involved in a wide range of physiological and pathological processes. More than 90% of the identified non-sensory GPCRs are expressed in the brain, where they play important roles in regulating mood, pain, vision, immune responses, cognition, and synaptic transmission. There is also good evidence that GPCRs are implicated in the pathogenesis of stroke. This review narrates the pathophysiological role and possible targeted therapy of GPCRs in ischemic stroke.
Collapse
|
10
|
Farr SA, Cuzzocrea S, Esposito E, Campolo M, Niehoff ML, Doyle TM, Salvemini D. Adenosine A 3 receptor as a novel therapeutic target to reduce secondary events and improve neurocognitive functions following traumatic brain injury. J Neuroinflammation 2020; 17:339. [PMID: 33183330 PMCID: PMC7659122 DOI: 10.1186/s12974-020-02009-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/22/2020] [Indexed: 12/17/2022] Open
Abstract
Background Traumatic brain injury (TBI) is a common pathological condition that presently lacks a specific pharmacological treatment. Adenosine levels rise following TBI, which is thought to be neuroprotective against secondary brain injury. Evidence from stroke and inflammatory disease models suggests that adenosine signaling through the G protein-coupled A3 adenosine receptor (A3AR) can provide antiinflammatory and neuroprotective effects. However, the role of A3AR in TBI has not been investigated. Methods Using the selective A3AR agonist, MRS5980, we evaluated the effects of A3AR activation on the pathological outcomes and cognitive function in CD1 male mouse models of TBI. Results When measured 24 h after controlled cortical impact (CCI) TBI, male mice treated with intraperitoneal injections of MRS5980 (1 mg/kg) had reduced secondary tissue injury and brain infarction than vehicle-treated mice with TBI. These effects were associated with attenuated neuroinflammation marked by reduced activation of nuclear factor of kappa light polypeptide gene enhancer in B cells (NFκB) and MAPK (p38 and extracellular signal-regulated kinase (ERK)) pathways and downstream NOD-like receptor pyrin domain-containing 3 inflammasome activation. MRS5980 also attenuated TBI-induced CD4+ and CD8+ T cell influx. Moreover, when measured 4–5 weeks after closed head weight-drop TBI, male mice treated with MRS5980 (1 mg/kg) performed significantly better in novel object-placement retention tests (NOPRT) and T maze trials than untreated mice with TBI without altered locomotor activity or increased anxiety. Conclusion Our results provide support for the beneficial effects of small molecule A3AR agonists to mitigate secondary tissue injury and cognitive impairment following TBI.
Collapse
Affiliation(s)
- Susan A Farr
- Veterans Affairs Medical Center, 915 N Grand Blvd, St. Louis, MO, 63106, USA.,Department of Internal Medicine, Division of Geriatric Medicine, Saint Louis University School of Medicine, 1402 S. Grand Blvd, St. Louis, MO, 63104, USA.,Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Blvd, St. Louis, MO, 63104, USA.,Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 S. Grand Blvd, St. Louis, MO, 63104, USA
| | - Salvatore Cuzzocrea
- Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, 98122, Messina, Italy
| | - Emanuela Esposito
- Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, 98122, Messina, Italy
| | - Michela Campolo
- Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, 98122, Messina, Italy
| | - Michael L Niehoff
- Department of Internal Medicine, Division of Geriatric Medicine, Saint Louis University School of Medicine, 1402 S. Grand Blvd, St. Louis, MO, 63104, USA
| | - Timothy M Doyle
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Blvd, St. Louis, MO, 63104, USA.,Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 S. Grand Blvd, St. Louis, MO, 63104, USA
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Blvd, St. Louis, MO, 63104, USA. .,Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 S. Grand Blvd, St. Louis, MO, 63104, USA.
| |
Collapse
|
11
|
Effendi WI, Nagano T, Kobayashi K, Nishimura Y. Focusing on Adenosine Receptors as a Potential Targeted Therapy in Human Diseases. Cells 2020; 9:E785. [PMID: 32213945 PMCID: PMC7140859 DOI: 10.3390/cells9030785] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023] Open
Abstract
Adenosine is involved in a range of physiological and pathological effects through membrane-bound receptors linked to G proteins. There are four subtypes of adenosine receptors, described as A1AR, A2AAR, A2BAR, and A3AR, which are the center of cAMP signal pathway-based drug development. Several types of agonists, partial agonists or antagonists, and allosteric substances have been synthesized from these receptors as new therapeutic drug candidates. Research efforts surrounding A1AR and A2AAR are perhaps the most enticing because of their concentration and affinity; however, as a consequence of distressing conditions, both A2BAR and A3AR levels might accumulate. This review focuses on the biological features of each adenosine receptor as the basis of ligand production and describes clinical studies of adenosine receptor-associated pharmaceuticals in human diseases.
Collapse
Affiliation(s)
- Wiwin Is Effendi
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan; (W.I.E.); (K.K.); (Y.N.)
- Department of Pulmonology and Respiratory Medicine, Medical Faculty of Airlangga University, Surabaya 60131, Indonesia
| | - Tatsuya Nagano
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan; (W.I.E.); (K.K.); (Y.N.)
| | - Kazuyuki Kobayashi
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan; (W.I.E.); (K.K.); (Y.N.)
| | - Yoshihiro Nishimura
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan; (W.I.E.); (K.K.); (Y.N.)
| |
Collapse
|
12
|
Santiago AR, Madeira MH, Boia R, Aires ID, Rodrigues-Neves AC, Santos PF, Ambrósio AF. Keep an eye on adenosine: Its role in retinal inflammation. Pharmacol Ther 2020; 210:107513. [PMID: 32109489 DOI: 10.1016/j.pharmthera.2020.107513] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adenosine is an endogenous purine nucleoside ubiquitously distributed throughout the body that interacts with G protein-coupled receptors, classified in four subtypes: A1R, A2AR, A2BR and A3R. Among the plethora of functions of adenosine, it has been increasingly recognized as a key mediator of the immune response. Neuroinflammation is a feature of chronic neurodegenerative diseases and contributes to the pathophysiology of several retinal degenerative diseases. Animal models of retinal diseases are helping to elucidate the regulatory roles of adenosine receptors in the development and progression of those diseases. Mounting evidence demonstrates that the adenosinergic system is altered in the retina during pathological conditions, compromising retinal physiology. This review focuses on the roles played by adenosine and the elements of the adenosinergic system (receptors, enzymes, transporters) in the neuroinflammatory processes occurring in the retina. An improved understanding of the molecular and cellular mechanisms of the signalling pathways mediated by adenosine underlying the onset and progression of retinal diseases will pave the way towards the identification of new therapeutic approaches.
Collapse
Affiliation(s)
- Ana Raquel Santiago
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, 3000-548 Coimbra, Portugal.
| | - Maria H Madeira
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, 3000-548 Coimbra, Portugal
| | - Raquel Boia
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Inês Dinis Aires
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Catarina Rodrigues-Neves
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Paulo Fernando Santos
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - António Francisco Ambrósio
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, 3000-548 Coimbra, Portugal.
| |
Collapse
|
13
|
Jacobson KA, Tosh DK, Jain S, Gao ZG. Historical and Current Adenosine Receptor Agonists in Preclinical and Clinical Development. Front Cell Neurosci 2019; 13:124. [PMID: 30983976 PMCID: PMC6447611 DOI: 10.3389/fncel.2019.00124] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/13/2019] [Indexed: 12/22/2022] Open
Abstract
Adenosine receptors (ARs) function in the body’s response to conditions of pathology and stress associated with a functional imbalance, such as in the supply and demand of energy/oxygen/nutrients. Extracellular adenosine concentrations vary widely to raise or lower the basal activation of four subtypes of ARs. Endogenous adenosine can correct an energy imbalance during hypoxia and other stress, for example, by slowing the heart rate by A1AR activation or increasing the blood supply to heart muscle by the A2AAR. Moreover, exogenous AR agonists, antagonists, or allosteric modulators can be applied for therapeutic benefit, and medicinal chemists working toward that goal have reported thousands of such agents. Thus, numerous clinical trials have ensued, using promising agents to modulate adenosinergic signaling, most of which have not succeeded. Currently, short-acting, parenteral agonists, adenosine and Regadenoson, are the only AR agonists approved for human use. However, new concepts and compounds are currently being developed and applied toward preclinical and clinical evaluation, and initial results are encouraging. This review focuses on key compounds as AR agonists and positive allosteric modulators (PAMs) for disease treatment or diagnosis. AR agonists for treating inflammation, pain, cancer, non-alcoholic steatohepatitis, angina, sickle cell disease, ischemic conditions and diabetes have been under development. Multiple clinical trials with two A3AR agonists are ongoing.
Collapse
Affiliation(s)
- Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Dilip K Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Shanu Jain
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
14
|
Jacobson KA, Tosh DK, Jain S, Gao ZG. Historical and Current Adenosine Receptor Agonists in Preclinical and Clinical Development. Front Cell Neurosci 2019. [PMID: 30983976 DOI: 10.3389/fncel.2019.00124/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Adenosine receptors (ARs) function in the body's response to conditions of pathology and stress associated with a functional imbalance, such as in the supply and demand of energy/oxygen/nutrients. Extracellular adenosine concentrations vary widely to raise or lower the basal activation of four subtypes of ARs. Endogenous adenosine can correct an energy imbalance during hypoxia and other stress, for example, by slowing the heart rate by A1AR activation or increasing the blood supply to heart muscle by the A2AAR. Moreover, exogenous AR agonists, antagonists, or allosteric modulators can be applied for therapeutic benefit, and medicinal chemists working toward that goal have reported thousands of such agents. Thus, numerous clinical trials have ensued, using promising agents to modulate adenosinergic signaling, most of which have not succeeded. Currently, short-acting, parenteral agonists, adenosine and Regadenoson, are the only AR agonists approved for human use. However, new concepts and compounds are currently being developed and applied toward preclinical and clinical evaluation, and initial results are encouraging. This review focuses on key compounds as AR agonists and positive allosteric modulators (PAMs) for disease treatment or diagnosis. AR agonists for treating inflammation, pain, cancer, non-alcoholic steatohepatitis, angina, sickle cell disease, ischemic conditions and diabetes have been under development. Multiple clinical trials with two A3AR agonists are ongoing.
Collapse
Affiliation(s)
- Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Dilip K Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Shanu Jain
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
15
|
|
16
|
Caspase Inhibition Via A3 Adenosine Receptors: A New Cardioprotective Mechanism Against Myocardial Infarction. Cardiovasc Drugs Ther 2013; 28:19-32. [DOI: 10.1007/s10557-013-6500-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Controlled pauses at the initiation of sodium nitroprusside-enhanced cardiopulmonary resuscitation facilitate neurological and cardiac recovery after 15 mins of untreated ventricular fibrillation. Crit Care Med 2012; 40:1562-9. [PMID: 22430233 DOI: 10.1097/ccm.0b013e31823e9f78] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE A multipronged approach to improve vital organ perfusion during cardiopulmonary resuscitation that includes sodium nitroprusside, active compression-decompression cardiopulmonary resuscitation, an impedance threshold device, and abdominal pressure (sodium nitroprusside-enhanced cardiopulmonary resuscitation) has been recently shown to increase coronary and cerebral perfusion pressures and higher rates of return of spontaneous circulation vs. standard cardiopulmonary resuscitation. To further reduce reperfusion injury during sodium nitroprusside-enhanced cardiopulmonary resuscitation, we investigated the addition of adenosine and four 20-sec controlled pauses spread throughout the first 3 mins of sodium nitroprusside-enhanced cardiopulmonary resuscitation. The primary study end point was 24-hr survival with favorable neurologic function after 15 mins of untreated ventricular fibrillation. DESIGN Randomized, prospective, blinded animal investigation. SETTING Preclinical animal laboratory. SUBJECTS Thirty-two female pigs (four groups of eight) 32±2 kg. INTERVENTIONS After 15 mins of untreated ventricular fibrillation, isoflurane-anesthetized pigs received 5 mins of either standard cardiopulmonary resuscitation, sodium nitroprusside-enhanced cardiopulmonary resuscitation, sodium nitroprusside-enhanced cardiopulmonary resuscitation+adenosine, or controlled pauses-sodium nitroprusside-enhanced cardiopulmonary resuscitation+adenosine. After 4 mins of cardiopulmonary resuscitation, all animals received epinephrine (0.5 mg) and a defibrillation shock 1 min later. Sodium nitroprusside-enhanced cardiopulmonary resuscitation-treated animals received sodium nitroprusside (2 mg) after 1 min of cardiopulmonary resuscitation and 1 mg after 3 mins of cardiopulmonary resuscitation. After 1 min of sodium nitroprusside-enhanced cardiopulmonary resuscitation, adenosine (24 mg) was administered in two groups. MEASUREMENTS AND MAIN RESULTS A veterinarian blinded to the treatment assigned a cerebral performance category score of 1-5 (normal, slightly disabled, severely disabled but conscious, vegetative state, or dead, respectively) 24 hrs after return of spontaneous circulation. Sodium nitroprusside-enhanced cardiopulmonary resuscitation, sodium nitroprusside-enhanced cardiopulmonary resuscitation+adenosine, and controlled pauses-sodium nitroprusside-enhanced cardiopulmonary resuscitation+adenosine resulted in a significantly higher 24-hr survival rate compared to standard cardiopulmonary resuscitation (7 of 8, 8 of 8, and 8 of 8 vs. 2 of 8, respectively p<.05). The mean cerebral performance category scores for standard cardiopulmonary resuscitation, sodium nitroprusside-enhanced cardiopulmonary resuscitation, sodium nitroprusside-enhanced cardiopulmonary resuscitation+adenosine, or controlled pauses-sodium nitroprusside-enhanced cardiopulmonary resuscitation+adenosine were 4.6±0.7, 3±1.3, 2.5±0.9, and 1.5±0.9, respectively (p<.01 for controlled pauses-sodium nitroprusside-enhanced cardiopulmonary resuscitation+adenosine compared to all other groups). CONCLUSIONS Reducing reperfusion injury and maximizing circulation during cardiopulmonary resuscitation significantly improved functional neurologic recovery after 15 mins of untreated ventricular fibrillation. These results suggest that brain resuscitation after prolonged cardiac arrest is possible with novel, noninvasive approaches focused on reversing the mechanisms of tissue injury.
Collapse
|
18
|
Chen Z, Janes K, Chen C, Doyle T, Bryant L, Tosh DK, Jacobson KA, Salvemini D. Controlling murine and rat chronic pain through A3 adenosine receptor activation. FASEB J 2012; 26:1855-65. [PMID: 22345405 PMCID: PMC3336784 DOI: 10.1096/fj.11-201541] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 01/30/2012] [Indexed: 12/19/2022]
Abstract
Clinical management of chronic neuropathic pain is limited by marginal effectiveness and unacceptable side effects of current drugs. We demonstrate A(3) adenosine receptor (A(3)AR) agonism as a new target-based therapeutic strategy. The development of mechanoallodynia in a well-characterized mouse model of neuropathic pain following chronic constriction injury of the sciatic nerve was rapidly and dose-dependently reversed by the A(3)AR agonists: IB-MECA, its 2-chlorinated analog (Cl-IB-MECA), and the structurally distinct MRS1898. These effects were naloxone insensitive and thus are not opioid receptor mediated. IB-MECA was ≥1.6-fold more efficacious than morphine and >5-fold more potent. In addition, IB-MECA was equally efficacious as gabapentin (Neurontin) or amitriptyline, but respectively >350- and >75-fold more potent. Besides its potent standalone ability to reverse established mechanoallodynia, IB-MECA significantly increased the antiallodynic effects of all 3 analgesics. Moreover, neuropathic pain development in rats caused by widely used chemotherapeutics in the taxane (paclitaxel), platinum-complex (oxaliplatin), and proteasome-inhibitor (bortezomib) classes was blocked by IB-MECA without antagonizing their antitumor effect. A(3)AR agonist effects were blocked with A(3)AR antagonist MRS1523, but not with A(1)AR (DPCPX) or A(2A)AR (SCH-442416) antagonists. Our findings provide the scientific rationale and pharmacological basis for therapeutic development of A(3)AR agonists for chronic pain.
Collapse
Affiliation(s)
- Zhoumou Chen
- Department of Pharmacological and Physiological Science, St. Louis University School of Medicine, St. Louis, Missouri, USA; and
| | - Kali Janes
- Department of Pharmacological and Physiological Science, St. Louis University School of Medicine, St. Louis, Missouri, USA; and
| | - Collin Chen
- Department of Pharmacological and Physiological Science, St. Louis University School of Medicine, St. Louis, Missouri, USA; and
| | - Tim Doyle
- Department of Pharmacological and Physiological Science, St. Louis University School of Medicine, St. Louis, Missouri, USA; and
| | - Leesa Bryant
- Department of Pharmacological and Physiological Science, St. Louis University School of Medicine, St. Louis, Missouri, USA; and
| | - Dilip K. Tosh
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kenneth A. Jacobson
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniela Salvemini
- Department of Pharmacological and Physiological Science, St. Louis University School of Medicine, St. Louis, Missouri, USA; and
| |
Collapse
|
19
|
Cheong SL, Federico S, Venkatesan G, Mandel AL, Shao YM, Moro S, Spalluto G, Pastorin G. The A3 adenosine receptor as multifaceted therapeutic target: pharmacology, medicinal chemistry, and in silico approaches. Med Res Rev 2011; 33:235-335. [PMID: 22095687 DOI: 10.1002/med.20254] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Adenosine is an ubiquitous local modulator that regulates various physiological and pathological functions by stimulating four membrane receptors, namely A(1), A(2A), A(2B), and A(3). Among these G protein-coupled receptors, the A(3) subtype is found mainly in the lung, liver, heart, eyes, and brain in our body. It has been associated with cerebroprotection and cardioprotection, as well as modulation of cellular growth upon its selective activation. On the other hand, its inhibition by selective antagonists has been reported to be potentially useful in the treatment of pathological conditions including glaucoma, inflammatory diseases, and cancer. In this review, we focused on the pharmacology and the therapeutic implications of the human (h)A(3) adenosine receptor (AR), together with an overview on the progress of hA(3) AR agonists, antagonists, allosteric modulators, and radioligands, as well as on the recent advances pertaining to the computational approaches (e.g., quantitative structure-activity relationships, homology modeling, molecular docking, and molecular dynamics simulations) applied to the modeling of hA(3) AR and drug design.
Collapse
Affiliation(s)
- Siew Lee Cheong
- Department of Pharmacy, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Fishman P, Bar-Yehuda S, Liang BT, Jacobson KA. Pharmacological and therapeutic effects of A3 adenosine receptor agonists. Drug Discov Today 2011; 17:359-66. [PMID: 22033198 DOI: 10.1016/j.drudis.2011.10.007] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 09/27/2011] [Accepted: 10/12/2011] [Indexed: 10/16/2022]
Abstract
The A(3) adenosine receptor (A(3)AR) coupled to G(i) (inhibitory regulative guanine nucleotide-binding protein) mediates anti-inflammatory, anticancer and anti-ischemic protective effects. The receptor is overexpressed in inflammatory and cancer cells, while low expression is found in normal cells, rendering the A(3)AR as a potential therapeutic target. Highly selective A(3)AR agonists have been synthesized and molecular recognition in the binding site has been characterized. In this article, we summarize preclinical and clinical human studies that demonstrate that A(3)AR agonists induce specific anti-inflammatory and anticancer effects through a molecular mechanism that entails modulation of the Wnt and the NF-κB signal transduction pathways. At present, A(3)AR agonists are being developed for the treatment of inflammatory diseases, including rheumatoid arthritis (RA) and psoriasis; ophthalmic diseases such as dry eye syndrome and glaucoma; liver diseases such as hepatocellular carcinoma and hepatitis.
Collapse
Affiliation(s)
- Pnina Fishman
- Can-Fite BioPharma Ltd, Kiryat-Matalon, 10 Bareket St, PO Box 7537, Petah-Tikva 49170, Israel
| | | | | | | |
Collapse
|
21
|
Zhang M, Hu H, Zhang X, Lu W, Lim J, Eysteinsson T, Jacobson KA, Laties AM, Mitchell CH. The A3 adenosine receptor attenuates the calcium rise triggered by NMDA receptors in retinal ganglion cells. Neurochem Int 2009; 56:35-41. [PMID: 19723551 DOI: 10.1016/j.neuint.2009.08.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 08/19/2009] [Accepted: 08/25/2009] [Indexed: 01/06/2023]
Abstract
The A(3) adenosine receptor is emerging as an important regulator of neuronal signaling, and in some situations receptor stimulation can limit excitability. As the NMDA receptor frequently contributes to neuronal excitability, this study examined whether A(3) receptor activation could alter the calcium rise accompanying NMDA receptor stimulation. Calcium levels were determined from fura-2 imaging of isolated rat retinal ganglion cells as these neurons possess both receptor types. Brief application of glutamate or NMDA led to repeatable and reversible elevations of intracellular calcium. The A(3) agonist Cl-IB-MECA reduced the response to both glutamate and NMDA. While adenosine mimicked the effect of Cl-IB-MECA, the A(3) receptor antagonist MRS 1191 impeded the block by adenosine, implicating a role for the A(3) receptor in response to the natural agonist. The A(1) receptor antagonist DPCPX provided additional inhibition, implying a contribution from both A(1) and A(3) adenosine receptors. The novel A(3) agonist MRS 3558 (1'S,2'R,3'S,4'R,5'S)-4-(2-chloro-6-(3-chlorobenzylamino)-9H-purin-9-yl)-2,3-dihydroxy-N-methylbicyclo [3.1.0] hexane-1-carboxamide and mixed A(1)/A(3) agonist MRS 3630 (1'S,2'R,3'S,4'R,5'S)-4-(2-chloro-6-(cyclopentylamino)-9H-purin-9-yl)-2,3-dihydroxy-N-methylbicyclo [3.1.0] hexane-1-carboxamide also inhibited the calcium rise induced by NMDA. Low levels of MRS 3558 were particularly effective, with an IC(50) of 400 pM. In all cases, A(3) receptor stimulation inhibited only 30-50% of the calcium rise. In summary, stimulation of the A(3) adenosine receptor by either endogenous or synthesized agonists can limit the calcium rise accompanying NMDA receptor activation. It remains to be determined if partial block of the calcium rise by A(3) agonists can modify downstream responses to NMDA receptor stimulation.
Collapse
Affiliation(s)
- Mei Zhang
- Department of Ophthalmology, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104-6085, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Stone TW, Ceruti S, Abbracchio MP. Adenosine receptors and neurological disease: neuroprotection and neurodegeneration. Handb Exp Pharmacol 2009:535-87. [PMID: 19639293 DOI: 10.1007/978-3-540-89615-9_17] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Adenosine receptors modulate neuronal and synaptic function in a range of ways that may make them relevant to the occurrence, development and treatment of brain ischemic damage and degenerative disorders. A(1) adenosine receptors tend to suppress neural activity by a predominantly presynaptic action, while A(2A) adenosine receptors are more likely to promote transmitter release and postsynaptic depolarization. A variety of interactions have also been described in which adenosine A(1) or A(2) adenosine receptors can modify cellular responses to conventional neurotransmitters or receptor agonists such as glutamate, NMDA, nitric oxide and P2 purine receptors. Part of the role of adenosine receptors seems to be in the regulation of inflammatory processes that often occur in the aftermath of a major insult or disease process. All of the adenosine receptors can modulate the release of cytokines such as interleukins and tumor necrosis factor-alpha from immune-competent leukocytes and glia. When examined directly as modifiers of brain damage, A(1) adenosine receptor (AR) agonists, A(2A)AR agonists and antagonists, as well as A(3)AR antagonists, can protect against a range of insults, both in vitro and in vivo. Intriguingly, acute and chronic treatments with these ligands can often produce diametrically opposite effects on damage outcome, probably resulting from adaptational changes in receptor number or properties. In some cases molecular approaches have identified the involvement of ERK and GSK-3beta pathways in the protection from damage. Much evidence argues for a role of adenosine receptors in neurological disease. Receptor densities are altered in patients with Alzheimer's disease, while many studies have demonstrated effects of adenosine and its antagonists on synaptic plasticity in vitro, or on learning adequacy in vivo. The combined effects of adenosine on neuronal viability and inflammatory processes have also led to considerations of their roles in Lesch-Nyhan syndrome, Creutzfeldt-Jakob disease, Huntington's disease and multiple sclerosis, as well as the brain damage associated with stroke. In addition to the potential pathological relevance of adenosine receptors, there are earnest attempts in progress to generate ligands that will target adenosine receptors as therapeutic agents to treat some of these disorders.
Collapse
Affiliation(s)
- Trevor W Stone
- Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| | | | | |
Collapse
|
23
|
Gessi S, Merighi S, Varani K, Leung E, Mac Lennan S, Borea PA. The A3 adenosine receptor: an enigmatic player in cell biology. Pharmacol Ther 2007; 117:123-40. [PMID: 18029023 DOI: 10.1016/j.pharmthera.2007.09.002] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Accepted: 09/05/2007] [Indexed: 02/01/2023]
Abstract
Adenosine is a primordial signaling molecule present in every cell of the human body that mediates its physiological functions by interacting with 4 subtypes of G-protein-coupled receptors, termed A1, A2A, A2B and A3. The A3 subtype is perhaps the most enigmatic among adenosine receptors since, although several studies have been performed in the years to elucidate its physiological function, it still presents in several cases a double nature in different pathophysiological conditions. The 2 personalities of A3 often come into direct conflict, e.g., in ischemia, inflammation and cancer, rendering this receptor as a single entity behaving in 2 different ways. This review focuses on the most relevant aspects of A3 adenosine subtype activation and summarizes the pharmacological evidence as the basis of the dichotomy of this receptor in different therapeutic fields. Although much is still to be learned about the function of the A3 receptor and in spite of its duality, at the present time it can be speculated that A3 receptor selective ligands might show utility in the treatment of ischemic conditions, glaucoma, asthma, arthritis, cancer and other disorders in which inflammation is a feature. The biggest and most intriguing challenge for the future is therefore to understand whether and where selective A3 agonists or antagonists are the best choice.
Collapse
Affiliation(s)
- Stefania Gessi
- Department of Clinical and Experimental Medicine, Pharmacology Unit and Interdisciplinary Center for the Study of Inflammation, Ferrara, Italy
| | | | | | | | | | | |
Collapse
|
24
|
Chen GJ, Harvey BK, Shen H, Chou J, Victor A, Wang Y. Activation of adenosine A3 receptors reduces ischemic brain injury in rodents. J Neurosci Res 2007; 84:1848-55. [PMID: 17016854 DOI: 10.1002/jnr.21071] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Adenosine A3 receptor (A3R) agonists have been shown to reduce cardiac and lung injury, but the protective roles of A3R agonists in the CNS are not well characterized. The protective effect of selective A3R agonist chloro-N(6)-(3-iodo-benzyl)-adenosine-5'-N-methyluronamide (Cl-IB-MECA) was first examined in primary cortical cultures. In cortical culture, Cl-IB-MECA pretreatment antagonized the hypoxia-mediated decrease in cell viability. In vivo, Cl-IB-MECA or vehicle was given intracerebroventricularly or intravenously to anesthetized rats. Animals were subjected to focal cerebral ischemia induced by transient middle cerebral artery (MCA) ligation. Intracerebroventricular or repeated intravenous administration (i.e., at 165 min and 15 min before MCA ligation) of Cl-IB-MECA did not alter blood pressure during ischemia but increased locomotor activity and decreased cerebral infarction 2 days after. In these animals, Cl-IB-MECA also reduced the density of TUNEL labeling in the lesioned cortex. The possibility of endogeneous neuroprotection was further examined in A3R knockout mice. After MCA ligation, an increase in cerebral infarction was found in the A3R knockouts compared with the A3R wild-type controls, suggesting that A3Rs are tonically activated during ischemia. Additionally, intracerebroventricular pretreatment with Cl-IB-MECA decreased the size of infarction in the wild-type controls, but not in the A3R knockout animals, suggesting that Cl-IB-MECA-induced protection was mediated through the A3 receptors. Collectively, these data suggest that Cl-IB-MECA reduced cerebral infarction through the activation of A3Rs and suppression of apoptosis.
Collapse
MESH Headings
- Adenosine/analogs & derivatives
- Adenosine/pharmacology
- Adenosine/therapeutic use
- Analysis of Variance
- Animals
- Blood Gas Analysis/methods
- Blood Pressure/drug effects
- Brain Infarction/drug therapy
- Brain Infarction/etiology
- Cell Survival/drug effects
- Cells, Cultured
- Cerebral Cortex/cytology
- Dose-Response Relationship, Drug
- Embryo, Mammalian
- Enzyme Activation/drug effects
- Female
- Hypoxia-Ischemia, Brain/complications
- Hypoxia-Ischemia, Brain/metabolism
- Hypoxia-Ischemia, Brain/pathology
- Hypoxia-Ischemia, Brain/prevention & control
- In Situ Nick-End Labeling/methods
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neurons/drug effects
- Neurons/metabolism
- Pregnancy
- Rats
- Rats, Sprague-Dawley
- Receptor, Adenosine A3/metabolism
- Receptor, Adenosine A3/physiology
- Tetrazolium Salts
Collapse
Affiliation(s)
- Guann-Juh Chen
- National Institute on Drug Abuse, NIH, Baltimore, MD 21224, USA
| | | | | | | | | | | |
Collapse
|
25
|
Wang Q, Tompkins KD, Simonyi A, Korthuis RJ, Sun AY, Sun GY. Apocynin protects against global cerebral ischemia-reperfusion-induced oxidative stress and injury in the gerbil hippocampus. Brain Res 2006; 1090:182-9. [PMID: 16650838 DOI: 10.1016/j.brainres.2006.03.060] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Revised: 03/08/2006] [Accepted: 03/09/2006] [Indexed: 11/28/2022]
Abstract
Increased production of reactive oxygen species (ROS) following cerebral ischemia-reperfusion (I/R) is an important underlying cause for neuronal injury leading to delayed neuronal death (DND). In this study, apocynin, a specific inhibitor for NADPH oxidase, was used to test whether suppression of ROS by the NADPH oxidase inhibitor can protect against ischemia-induced ROS generation and decrease DND. Global cerebral ischemia was induced in gerbils by a 5-min occlusion of bilateral common carotid arteries (CCA). Using measurement of 4-hydroxy-2-nonenal (HNE) as a marker for lipid peroxidation, apocynin (5 mg/kg body weight) injected i.p. 30 min prior to ischemia significantly attenuated the early increase in HNE in hippocampus measured at 3 h after I/R. Apocynin also protected against I/R-induced neuronal degeneration and DND, oxidative DNA damage, and glial cell activation. Taken together, the neuroprotective effects of apocynin against ROS production during early phase of I/R and subsequent I/R-induced neuronal damage provide strong evidence that inhibition of NADPH oxidase could be a promising therapeutic mechanism to protect against stroke damage in the brain.
Collapse
Affiliation(s)
- Qun Wang
- Department of Biochemistry, M743 Medical Sciences Building, University of Missouri-Columbia, Columbia, MO 65212, USA
| | | | | | | | | | | |
Collapse
|
26
|
Vianna EPM, Ferreira AT, Doná F, Cavalheiro EA, da Silva Fernandes MJ. Modulation of Seizures and Synaptic Plasticity by Adenosinergic Receptors in an Experimental Model of Temporal Lobe Epilepsy Induced by Pilocarpine in Rats. Epilepsia 2005; 46 Suppl 5:166-73. [PMID: 15987273 DOI: 10.1111/j.1528-1167.2005.01027.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE Adenosine is a major negative neuromodulator of synaptic activity in the central nervous system and can exert anticonvulsant and neuroprotective effects in many experimental models of epilepsy. Extracellular adenosine can be formed by a membrane-anchored enzyme ecto-5'-nucleotidase. The purposes of this study were to characterize the role of adenosine receptors in modulating status epilepticus (SE) induced by pilocarpine and evaluate its neuroprotective action. Ecto-5'-nucleotidase activity was studied during the different phases of pilocarpine-induced epilepsy in rats. METHODS Adult rats were pretreated with different adenosinergic agents to evaluate the latency and incidence of SE induced by pilocarpine in rats. The neuroprotective effect also was evaluated. RESULTS A proconvulsant effect was observed with DPCPX and DMPX that reduced the latency of SE in almost all rats. Pretreatment with the MRS 1220 did not alter the incidence of SE but reduced the latency to develop SE. An anticonvulsant and neuroprotective effect was detected with R-PIA. Rats pretreated with R-PIA had a decreased number of apoptotic cells in the hippocampus, whereas pretreatment with DPCPX did not modify the hippocampal damage. An intensification of neuronal death was observed in the dentate gyrus and CA3 when rats were pretreated with DMPX. MRS-1220 did not modify the number of apoptotic cells in the hippocampus. An increase in the ecto-5 -nucleotidase staining was detected in the hippocampus during silent and chronic phases. CONCLUSIONS The present data show that adenosine released during pilocarpine-induced SE via A1-receptor stimulation can exhibit neuroprotective and anticonvulsant roles. Similar effects could also be inferred with A2a and A3 adenosinergic agents, but further experiments are necessary to confirm their roles. Ecto-5 -nucleotidase activity during silent and chronic phases might have a role in blocking spontaneous seizures by production of inhibitory neuromodulator adenosine, besides taking part in the mechanism that controls sprouting.
Collapse
|
27
|
Van Rompaey P, Jacobson KA, Gross AS, Gao ZG, Van Calenbergh S. Exploring human adenosine A3 receptor complementarity and activity for adenosine analogues modified in the ribose and purine moiety. Bioorg Med Chem 2005; 13:973-83. [PMID: 15670905 PMCID: PMC3460517 DOI: 10.1016/j.bmc.2004.11.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2004] [Revised: 11/18/2004] [Accepted: 11/23/2004] [Indexed: 11/17/2022]
Abstract
In this paper we investigated the influence on affinity, selectivity and intrinsic activity upon modification of the adenosine agonist scaffold at the 3'- and 5'-positions of the ribofuranosyl moiety and the 2- and N6-positions of the purine base. This resulted in the synthesis of various analogues, that is, 3-12 and 24-33, with good hA3AR selectivity and moderate-to-high affinities (as in 32, Ki=27 nM). Interesting was the ability to tune the intrinsic activity depending on the substituent introduced at the 3'-position.
Collapse
Affiliation(s)
- Philippe Van Rompaey
- Laboratory for Medicinal Chemistry, Faculty of Pharmaceutical Sciences (FFW), Ghent University, Harelbekestraat 72, B-9000 Gent, Belgium
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Disease (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20892-0810, USA
| | - Ariel S. Gross
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Disease (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20892-0810, USA
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Disease (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20892-0810, USA
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry, Faculty of Pharmaceutical Sciences (FFW), Ghent University, Harelbekestraat 72, B-9000 Gent, Belgium
| |
Collapse
|
28
|
Slézia A, Kékesi AK, Szikra T, Papp AM, Nagy K, Szente M, Maglóczky Z, Freund TF, Juhász G. Uridine release during aminopyridine-induced epilepsy. Neurobiol Dis 2004; 16:490-9. [PMID: 15262260 DOI: 10.1016/j.nbd.2004.02.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2002] [Revised: 01/23/2004] [Accepted: 02/25/2004] [Indexed: 12/01/2022] Open
Abstract
Uridine, like adenosine, is released under sustained depolarization and it can inhibit hippocampal neuronal activity, suggesting that uridine may be released during seizures and can be involved in epileptic mechanisms. In an in vivo microdialysis study, we measured the extracellular changes of nucleoside and amino acid levels and recorded cortical EEG during 3-aminopyridine-induced epilepsy. Applying silver impregnation and immunohistochemistry, we examined the degree of hippocampal cell loss. We found that extracellular concentration of uridine, adenosine, inosine, and glutamate increased significantly, while glutamine level decreased during seizures. The release of uridine correlated with seizure activity. Systemic and local uridine application was ineffective. The number of parvalbumin- and calretinin-containing interneurons of dorsal hippocampi decreased. We conclude that uridine is released during epileptic activity, and suggest that as a neuromodulator, uridine may contribute to epilepsy-related neuronal activity changes, but uridine analogues having slower turnover would be needed for further investigation of physiological role of uridine.
Collapse
Affiliation(s)
- A Slézia
- Research Group of Neurobiology of the Hungarian Academy of Sciences, Eötvös Loránd University, H-1117 Budapest, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Varani K, Gessi S, Merighi S, Iannotta V, Cattabriga E, Pancaldi C, Cadossi R, Borea PA. Alteration of A(3) adenosine receptors in human neutrophils and low frequency electromagnetic fields. Biochem Pharmacol 2003; 66:1897-906. [PMID: 14599547 DOI: 10.1016/s0006-2952(03)00454-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The present study was designed to evaluate the binding and functional characterization of A(3) adenosine receptors in human neutrophils exposed to low frequency, low energy, pulsing electromagnetic fields (PEMFs). Great interest has grown concerning the use of PEMF in the clinical practice for therapeutic purposes strictly correlated with inflammatory conditions. Saturation experiments performed using the high affinity and selective A(3) adenosine antagonist 5N-(4-methoxyphenyl-carbamoyl)amino-8-propyl-2-(2-furyl)pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine ([3H]-MRE 3008F20) revealed a single class of binding sites with similar affinity in control and in PEMF treated human neutrophils (K(D)=2.36+/-0.16 and 2.45+/-0.15 nM, respectively). PEMFs treatment revealed that the receptor density was statistically increased (P<0.01) (B(max)=451+/-18 and 736+/-25fmolmg(-1) protein, respectively). Thermodynamic data indicated that [3H]-MRE 3008F20 binding in control and in PEMF-treated human neutrophils was entropy and enthalpy driven. Competition of radioligand binding by the high affinity A(3) receptor agonists, N(6)-(3-iodo-benzyl)-2-chloro-adenosine-5'-N-methyluronamide (Cl-IB-MECA) and N(6)-(3-iodo-benzyl)adenosine-5'-N-methyl-uronamide (IB-MECA), in the absence of PEMFs revealed high and low affinity values similar to those found in the presence of PEMFs. In both experimental conditions, the addition of GTP 100 microM shifted the competition binding curves of the agonists from a biphasic to a monophasic shape. In functional assays Cl-IB-MECA and IB-MECA were able to inhibit cyclic AMP accumulation and their potencies were statistically increased after exposure to PEMFs. These results indicate in human neutrophils treated with PEMFs the presence of significant alterations in the A(3) adenosine receptor density and functionality.
Collapse
Affiliation(s)
- Katia Varani
- Department of Clinical and Experimental Medicine, Pharmacology Unit, University of Ferrara, via Fossato di Mortara 17-19, 44100 Ferrara, Italy
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
The activation of adenosine A1, A2 andA3 receptors can protect neurones against damage generated by mechanical or hypoxic/ischaemic insults as well as excitotoxins. A1 receptors are probably effective by suppressing transmitter release and producing neuronal hyperpolarisation. They are less likely to be of therapeutic importance due to the plethora of side effects resulting from A1 agonism, although the existence of receptor subtypes and recent synthetic chemistry efforts to increase ligand selectivity, may yet yield clinically viable compounds. Activation of A2A receptors can protect neurons, although there is much uncertainty as to whether agonists are acting centrally or via a peripheral mechanism such as altering blood flow or immune cell function. Selective antagonists at the A2A receptor, such as 4-(2-[7-amino-2-(2-furyl)(1,2,4)triazolo(2,3-a)(1,3,5)triazin-5-yl-amino]ethyl)phenol (ZM 241385) and 7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3e]-1,2,4-triazolo[1,5-c]pyrimidine (SCH 58261), can also protect against neuronal death produced by ischaemia or excitotoxicity. In addition, A2A receptor antagonists can reduce damage produced by combinations of subthreshold doses of the endogenous excitotoxin quinolinic acid and free radicals. Since the A2A receptors do not seem to be activated by normal endogenous levels of adenosine, their blockade should not generate significant side effects, so that A2A receptor antagonists appear to be promising candidates as new drugs for the prevention of neuronal damage. Adenosine A3 receptors have received less attention to date, but agonists are clearly able to afford protection against damage when administered chronically. Given the disappointing lack of success of NMDA receptor antagonists in human stroke patients, despite their early promise in animal models, it is possible that A2A receptor antagonists could have a far greater clinical utility.
Collapse
Affiliation(s)
- Trevor W Stone
- Division of Neuroscienec and Biomedical Systems, West Medical Bldg, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
31
|
Baraldi PG, Tabrizi MA, Bovero A, Avitabile B, Preti D, Fruttarolo F, Romagnoli R, Varani K, Borea PA. Recent developments in the field of A2A and A3 adenosine receptor antagonists. Eur J Med Chem 2003; 38:367-82. [PMID: 12750024 DOI: 10.1016/s0223-5234(03)00042-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the last years adenosine receptors have been extensively studied, and mainly at present we understand the importance of A(2A) and A(3) adenosine receptors. A(2A) selective adenosine receptors antagonists are promising new drugs for the treatment of Parkinson's disease, while A(3) selective adenosine receptors antagonists have been postulated as novel anti-inflammatory and antiallergic agents; recent studies also indicated a possible employment of these derivatives as antitumour agents. Lately different classes of compounds have been identified as potent A(2A) and A(3) antagonists. In this article we report the past and present efforts which led to development of more potent and selective A(2A) and A(3) antagonists. Our group has mainly worked on the pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine nucleus both as A(2A) and A(3) antagonists, aiming to improve the affinity, selectivity and the hydrophilic profile. In fact, we have synthesised several compounds endowed with high affinity and selectivity versus A(2A) adenosine receptors, as 2, 2a-c (K(i)A(2A)=0.12-0.19 nM), or A(3) adenosine receptors, as 4p (K(i)A(3)=0.01 nM) and 4q (K(i)A(3)=0.04 nM).
Collapse
Affiliation(s)
- Pier Giovanni Baraldi
- Dipartimento di Scienze Farmaceutiche, Università di Ferrara, Via fossato di Mortara 17-19, 44100, Ferrara, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kim SG, Soltysiak KA, Gao ZG, Chang TS, Chung E, Jacobson KA. Tumor necrosis factor alpha-induced apoptosis in astrocytes is prevented by the activation of P2Y6, but not P2Y4 nucleotide receptors. Biochem Pharmacol 2003; 65:923-31. [PMID: 12623123 PMCID: PMC3402349 DOI: 10.1016/s0006-2952(02)01614-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The physiological role of the uracil nucleotide-preferring P2Y(6) and P2Y(4) receptors is still unclear, although they are widely distributed in various tissues. In an effort to identify their biological functions, we found that activation by UDP of the rat P2Y(6) receptor expressed in 1321N1 human astrocytes significantly reduced cell death induced by tumor necrosis factor alpha (TNF alpha). This effect of UDP was not observed in non-transfected 1321N1 cells. Activation of the human P2Y(4) receptor expressed in 1321N1 cells by UTP did not elicit this protective effect, although both receptors were coupled to phospholipase C. The activation of P2Y(6) receptors prevented the activation of both caspase-3 and caspase-8 resulting from TNF alpha exposure. Even a brief (10-min) incubation with UDP protected the cells against TNF alpha-induced apoptosis. Interestingly, UDP did not protect the P2Y(6)-1321N1 cells from death induced by other methods, i.e. oxidative stress induced by hydrogen peroxide and chemical ischemia. Therefore, it is suggested that P2Y(6) receptors interact rapidly with the TNF alpha-related intracellular signals to prevent apoptotic cell death. This is the first study to describe the cellular protective role of P2Y(6) nucleotide receptor activation.
Collapse
Affiliation(s)
- Seong G. Kim
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bldg. 8A, Rm. B1A-19, National Institutes of Health, Bethesda, MD 20892-0810, USA
| | - Kelly A. Soltysiak
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bldg. 8A, Rm. B1A-19, National Institutes of Health, Bethesda, MD 20892-0810, USA
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bldg. 8A, Rm. B1A-19, National Institutes of Health, Bethesda, MD 20892-0810, USA
| | - Tong-Shin Chang
- Laboratory of Cell Signaling, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eunju Chung
- Preclinical Development Scientific Core, Medical Oncology Clinical Research Unit, National Cancer Institute, Bethesda, MD 20892, USA
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bldg. 8A, Rm. B1A-19, National Institutes of Health, Bethesda, MD 20892-0810, USA
- Corresponding author. Tel.: +1-301-496-9024; fax: +1-301-480-8422. (K.A. Jacobson)
| |
Collapse
|
33
|
Cristalli G, Costanzi S, Lambertucci C, Taffi S, Vittori S, Volpini R. Purine and deazapurine nucleosides: synthetic approaches, molecular modelling and biological activity. FARMACO (SOCIETA CHIMICA ITALIANA : 1989) 2003; 58:193-204. [PMID: 12620415 DOI: 10.1016/s0014-827x(03)00019-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A number of ligands for the adenosine binding sites has been obtained by using nucleoside convergent and divergent synthesis. Most of our nucleosides have been synthesized by coupling 2,6-dichloropurine (1), 2,6-dichloro-1-deazapurine (2), 2,6-dichloro-3-deazapurine (3) with ribose, 2- and 3-deoxyribose and 2,3-dideoxyribose derivatives. The use of these versatile synthons allowed the introduction of various substituents in 2- and/or 6-positions. The glycosylation site and the anomeric configuration of the obtained nucleosides were assigned on the basis of spectroscopic studies and confirmed by molecular models. A series of potent adenosine receptor ligands has been obtained by using divergent approaches, mostly starting from guanosine. Substitutions in 2, 6, 8, and 5' position of adenosine molecule led to ligands selective for the different adenosine receptor subtypes. Furthermore, we investigated the molecular bases of the different behavior of 2- and 8-alkynyl adenosines, by means of NMR experiments and molecular modeling studies. With docking experiments, we demonstrated that the two class of molecules should have different binding modes that explain their different degree of affinity and the shift of their activity from agonistic (2-substituted derivatives) to antagonistic (8-substituted derivatives).
Collapse
Affiliation(s)
- Gloria Cristalli
- Dipartimento di Scienze Chimiche, Università di Camerino, via S Agostino 1, 62032 Camerino, MC, Italy.
| | | | | | | | | | | |
Collapse
|
34
|
Molecular and Cell Biology of Adenosine Receptors. CURRENT TOPICS IN MEMBRANES 2003. [DOI: 10.1016/s1063-5823(03)01005-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
35
|
Costanzi S, Lambertucci C, Vittori S, Volpini R, Cristalli G. 2- and 8-alkynyladenosines: conformational studies and docking to human adenosine A3 receptor can explain their different biological behavior. J Mol Graph Model 2003; 21:253-62. [PMID: 12479925 DOI: 10.1016/s1093-3263(02)00161-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Adenosine (Ado) derivatives substituted at the C2 position with an alkynyl chain are endowed with high affinity for A(1), A(2A) and A(3) human adenosine receptors, while being less active at the low affinity A(2B) subtype. On the other hand, the introduction of an alkynyl chain at the C8 position of adenosine is detrimental for the affinity and potency at A(1), A(2A), and A(2B) receptors, while is more tolerated by the A(3) receptor. The evaluation of the stimulation of [35S]GTPgammaS binding revealed that 2-alkynyladenosines behave as adenosine receptors agonists while, on the contrary, 8-alkynyladenosines behave as antagonists. With this work we demonstrated, by means of an NMR-based and a computational conformational analysis, that 8-alkynyladenosines, differently from 2-alkynyladenosines, cannot adopt the sugar-base anti conformation required for adenosine receptor activation.Furthermore, using the recently reported X-ray crystal structure of bovine rhodopsin as template, we built a 3D model of the seven transmembrane domains of the human adenosine A(3) receptor with the homology modeling. After identification of the binding site we carried out docking experiments, demonstrating that the two class of molecules have different binding modes that explain their different degree of affinity and the shift of their activity from agonism to antagonism.
Collapse
Affiliation(s)
- Stefano Costanzi
- Dipartimento di Scienze Chimiche, Università di Camerino, 62032 Camerino, Italy
| | | | | | | | | |
Collapse
|
36
|
Volpini R, Costanzi S, Lambertucci C, Taffi S, Vittori S, Klotz KN, Cristalli G. N(6)-alkyl-2-alkynyl derivatives of adenosine as potent and selective agonists at the human adenosine A(3) receptor and a starting point for searching A(2B) ligands. J Med Chem 2002; 45:3271-9. [PMID: 12109910 DOI: 10.1021/jm0109762] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of N(6)-alkyl-2-alkynyl derivatives of adenosine (Ado) have been synthesized and evaluated for their affinity at human A(1), A(2A), and A(3) receptors and for their potency at A(2B) adenosine receptor subtypes. The corresponding 2-(1-alkynyl) derivatives of 5'-N-ethylcarboxamidoadenosine (NECA) and Ado are used as reference compounds. Binding studies demonstrated that the activities of 2-alkynylAdos were slightly increased for the adenosine A(1) receptor and slightly decreased for both A(3) and A(2B) subtypes compared to those of their corresponding NECA derivatives, whereas the A(2A) receptor affinities of the two series of nucleosides were similar. The presence of a methyl group on N(6) of the 2-alkynyladenosines, inducing an increase in affinity at the human A(3) receptor and a decrease at the other subtypes, resulted in an increase in A(3) selectivity. In particular, 2-phenylethynyl-N(6)-methylAdo (8b) showed an A(3) affinity in the low nanomolar range (K(i)(A(3)) = 3.4 nM), with a A(1)/A(3) and A(2A)/A(3) selectivity of about 500 and 2500, respectively. These findings motivated us to search for the preparation of new selective radioligands for the A(3) subtype; hence, a procedure to introduce a tritiated alkylamino group in these molecules was carried out. As far as the potency at the A(2B) receptor, the type of 2-alkynyl chain and the presence of the ethylcarboxamido group on the sugar seem to be very important; in fact, the (S)-2-phenylhydroxypropynylNECA [(S)-PHPNECA, 1e, EC(50)(A(2B)) = 0.22 microM] proved to be one of the most potent A(2B) agonist reported so far. On the other hand, the (S)-2-phenylhydroxypropynyl-N(6)-ethylAdo (9e, EC(50)(A(2B)) = 0.73 microM) showed a significantly increase of potency at the A(2B) subtype in comparison with the N(6)-methyl, N(6)-isopropyl, and the unsubstituted adenosine derivatives, although it resulted in being less potent than (S)-PHPNECA (1e, EC(50)(A(2B)) = 0.22 microM). These observations suggest that the introduction of an ethyl group in the N(6)-position and an ethylcarboxamido substituent in the 4'-position of (S)-2-phenylhydroxypropynyladenosine could lead to a compound endowed with high potency at the A(2B) receptor.
Collapse
Affiliation(s)
- Rosaria Volpini
- Dipartimento di Scienze Chimiche, Università di Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | | | | | | | | | | | | |
Collapse
|
37
|
Kim SG, Ravi G, Hoffmann C, Jung YJ, Kim M, Chen A, Jacobson KA. p53-Independent induction of Fas and apoptosis in leukemic cells by an adenosine derivative, Cl-IB-MECA. Biochem Pharmacol 2002; 63:871-80. [PMID: 11911839 PMCID: PMC4811183 DOI: 10.1016/s0006-2952(02)00839-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A(3) adenosine receptor (A(3)AR) agonists have been reported to influence cell death and survival. The effects of an A(3)AR agonist, 1-[2-chloro-6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-1-deoxy-N-methyl-beta-D-ribofuranonamide (Cl-IB-MECA), on apoptosis in two human leukemia cell lines, HL-60 and MOLT-4, were investigated. Cl-IB-MECA (> or =30 microM) increased the apoptotic fractions, as determined using fluorescence-activated cell sorting (FACS) analysis, and activated caspase 3 and poly-ADP-ribose-polymerase. Known messengers coupled to A(3)AR (phospholipase C and intracellular calcium) did not seem to play a role in the induction of apoptosis. Neither dantrolene nor BAPTA-AM affected the Cl-IB-MECA-induced apoptosis. Cl-IB-MECA failed to activate phospholipase C in HL-60 cells, while UTP activated it through endogenous P2Y(2) receptors. Induction of apoptosis during a 48hr exposure to Cl-IB-MECA was not prevented by the A(3)AR antagonists [5-propyl-2-ethyl-4-propyl-3-(ethylsulfanylcarbonyl)-6-phenylpyridine-5-carboxylate] (MRS 1220) or N-[9-chloro-2-(2-furanyl)[1,2,4]triazolo[1,5-c]quinazolin-5-yl]benzeneacetamide (MRS 1523). Furthermore, higher concentrations of MRS 1220, which would also antagonize A(1) and A(2A) receptors, were ineffective in preventing the apoptosis. Although Cl-IB-MECA has been shown in other systems to cause apoptosis through an A(3)AR-mediated mechanism, in these cells it appeared to be an adenosine receptor-independent effect, which required prolonged incubation. In both HL-60 and MOLT-4 cells, Cl-IB-MECA induced the expression of Fas, a death receptor. This induction of Fas was not dependent upon p53, because p53 is not expressed in an active form in either HL-60 or MOLT-4 cells. Cl-IB-MECA-induced apoptosis in HL-60 cells was augmented by an agonistic Fas antibody, CH-11, and this increase was suppressed by the antagonistic anti-Fas antibody ZB-4. Therefore, Cl-IB-MECA induced apoptosis via a novel, p53-independent up-regulation of Fas.
Collapse
Affiliation(s)
- Seong Gon Kim
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Building 8A, Room B1A-19, Bethesda, MD 20892, USA
| | - Gnana Ravi
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Building 8A, Room B1A-19, Bethesda, MD 20892, USA
| | - Carsten Hoffmann
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Building 8A, Room B1A-19, Bethesda, MD 20892, USA
| | - Yun-Jin Jung
- Medicine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Min Kim
- Medicine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aishe Chen
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Building 8A, Room B1A-19, Bethesda, MD 20892, USA
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Building 8A, Room B1A-19, Bethesda, MD 20892, USA
| |
Collapse
|
38
|
Gessi S, Varani K, Merighi S, Morelli A, Ferrari D, Leung E, Baraldi PG, Spalluto G, Borea PA. Pharmacological and biochemical characterization of A3 adenosine receptors in Jurkat T cells. Br J Pharmacol 2001; 134:116-26. [PMID: 11522603 PMCID: PMC1572937 DOI: 10.1038/sj.bjp.0704254] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2001] [Revised: 05/24/2001] [Accepted: 06/25/2001] [Indexed: 01/11/2023] Open
Abstract
1. The present work was devoted to the study of A3 adenosine receptors in Jurkat cells, a human leukemia line. 2. The A3 subtype was found by means of RT-PCR experiments and characterized by using the new A3 adenosine receptor antagonist [3H]-MRE 3008F20, the only A3 selective radioligand currently available. Saturation experiments revealed a single high affinity binding site with K(D) of 1.9+/-0.2 nM and B(max) of 1.3+/-0.1 pmol mg(-1) of protein. 3. The pharmacological profile of [3H]-MRE 3008F20 binding on Jurkat cells was established using typical adenosine ligands which displayed a rank order of potency typical of the A3 subtype. 4. Thermodynamic data indicated that [3H]-MRE 3008F20 binding to A3 subtype in Jurkat cells was entropy- and enthalpy-driven, according with that found in cells expressing the recombinant human A3 subtype. 5. In functional assays the high affinity A3 agonists Cl-IB-MECA and IB-MECA were able to inhibit cyclic AMP accumulation and stimulate Ca(2+) release from intracellular Ca(2+) pools followed by Ca(2+) influx. 6. The presence of the other adenosine subtypes was investigated in Jurkat cells. A1 receptors were characterized using [3H]-DPCPX binding with a K(D) of 0.9+/-0.1 nM and B(max) of 42+/-3 fmol mg(-1) of protein. A2A receptors were studied with [3H]-SCH 58261 binding and revealed a K(D) of 2.5+/-0.3 nM and a B(max) of 1.4+/-0.2 pmol mg(-1) of protein. 7. In conclusion, by means of the first antagonist radioligand [3H]-MRE 3008F20 we could demonstrate the existence of functional A3 receptors on Jurkat cells.
Collapse
Affiliation(s)
- Stefania Gessi
- Department of Clinical and Experimental Medicine, Pharmacology Unit, University of Ferrara, Italy
| | - Katia Varani
- Department of Clinical and Experimental Medicine, Pharmacology Unit, University of Ferrara, Italy
| | - Stefania Merighi
- Department of Clinical and Experimental Medicine, Pharmacology Unit, University of Ferrara, Italy
| | - Anna Morelli
- Section of General Pathology, Department of Experimental and Diagnostic Medicine, Biotechnology Center, University of Ferrara, Italy
| | - Davide Ferrari
- Section of General Pathology, Department of Experimental and Diagnostic Medicine, Biotechnology Center, University of Ferrara, Italy
| | - Edward Leung
- King Pharmaceutical Research, Research Triangle Park, North Carolina, U.S.A
| | | | | | - Pier Andrea Borea
- Department of Clinical and Experimental Medicine, Pharmacology Unit, University of Ferrara, Italy
- University of Ferrara, ‘Centro Nazionale di Eccellenza per lo Sviluppo di Metodologie Innovative per lo Studio ed il Trattamento delle Patologie Infiammatorie'
| |
Collapse
|
39
|
Von Lubitz DK, Simpson KL, Lin RC. Right thing at a wrong time? Adenosine A3 receptors and cerebroprotection in stroke. Ann N Y Acad Sci 2001; 939:85-96. [PMID: 11462807 DOI: 10.1111/j.1749-6632.2001.tb03615.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The involvement of adenosine A3 receptors in normal and pathologic functions of the brain remains to be defined. Previous studies have shown that chronic preischemic administration of the agonist [N6-(3-iodobenzyl)-5'-N-methylcarboxoamidoadenosine or IB-MECA) results in a significant protection of neurons in selectively vulnerable brain regions and in an equally significant reduction of the subsequent mortality. Acute administration of the drug, on the other hand, resulted in a pronounced worsening of these parameters. We now report that the effect of administration of IB-MECA depends on the timing of treatment with respect to the onset of the focal insult, and provide the first data supporting speculation that treatment with adenosine A3 receptor agonists may decrease the infarct size following focal brain ischemia. Treatment with IB-MECA administered 20 min prior to transient middle cerebral ischemia (MCAOt = 30 min) resulted in a significant increase of the infarct size (p < 0.01), whereas administration 20 min after ischemia resulted in statistically significant decrease of the infarct volume. Postischemic treatment results in improved neuronal preservation, decreased intensity of reactive gliosis, and pronounced reduction of microglial infiltration. The data indicate that the effects of adenosine A3 receptor stimulation depend on the differential impact of these receptors on both neuronal and non-neuronal elements of the cerebral tissue, for example, astrocytes, microglia, and vasculature.
Collapse
Affiliation(s)
- D K Von Lubitz
- Emergency Medicine Research Laboratories, Department of Emergency Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA.
| | | | | |
Collapse
|
40
|
Abstract
Cerebral ischemia studies demonstrating that stimulation of adenosine A1 receptors by either endogenously released adenosine or the administration of selective receptor agonists causes significant reductions in the morbidity and mortality associated with focal or global brain ischemias have triggered interest in the potential of purinergic therapies for the treatment of traumatic injuries to the brain and spinal cord. Preliminary findings indicate that activation of A1 adenosine receptors can ameliorate trauma-induced death of central neurons. Other avenues of approach include the administration of agents which elevate local concentrations of adenosine at injury sites by inhibiting its metabolism to inosine by adenosine deaminase, rephosphorylation to adenosine triphosphate by adenosine kinase; or re-uptake into adjacent cells. Amplification of the levels of endogenously released adenosine in such a 'site and event specific' fashion has the advantage of largely restricting the effect of such inhibitors to areas of injury-induced adenosine release. Another approach involving purinergic therapy has been applied to the problem of respiratory paralysis following high spinal cord injuries. In this instance, the adenosine antagonist theophylline has been used to enhance residual synaptic drive to spinal respiratory neurons by blocking adenosine A1 receptors. Theophylline induced, and maintained, hemidiaphragmatic recovery for prolonged periods after C2 spinal cord hemisection in rats and may prove to be beneficial in assisting respiration in spinal cord injury patients.
Collapse
Affiliation(s)
- J W Phillis
- Department of Physiology, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201-1928, USA.
| | | |
Collapse
|
41
|
Liang BT, Stewart D, Jacobson KA. Adenosine A1 and A3 receptors: Distinct cardioprotection. Drug Dev Res 2001. [DOI: 10.1002/ddr.1136] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
42
|
Trincavelli ML, Tuscano D, Cecchetti P, Falleni A, Benzi L, Klotz KN, Gremigni V, Cattabeni F, Lucacchini A, Martini C. Agonist-induced internalization and recycling of the human A(3) adenosine receptors: role in receptor desensitization and resensitization. J Neurochem 2000; 75:1493-501. [PMID: 10987829 DOI: 10.1046/j.1471-4159.2000.0751493.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A(3) adenosine receptors have been proposed to play an important role in the pathophysiology of cerebral ischemia with a regimen-dependent nature of the therapeutic effects probably related to receptor desensitization and down-regulation. Here we studied the agonist-induced internalization of human A(3) adenosine receptors in transfected Chinese hamster ovary cells, and then we evaluated the relationship between internalization and signal desensitization and resensitization. Binding of N(6)-(4-amino-3-[(125)I]iodobenzyl)adenosine-5'-N-methyluronamide to membranes from Chinese hamster ovary cells stably transfected with the human A(3) adenosine receptor showed a profile typical of these receptors in other cell lines (K:(D) = 1.3+/-0.08 nM; B(max) = 400+/-28 fmol/mg of proteins). The iodinated agonist, bound at 4 degrees C to whole transfected cells, was internalized by increasing the temperature to 37 degrees C with a rate constant of 0.04+/-0.034 min(-1). Agonist-induced internalization of A(3) adenosine receptors was directly demonstrated by immunogold electron microscopy, which revealed the localization of these receptors in plasma membranes and intracellular vesicles. Moreover, short-term exposure of these cells to the agonist caused rapid desensitization as tested in adenylyl cyclase assays. Subsequent removal of the agonist led to restoration of the receptor function and recycling of the receptors to the cell surface. The rate constant of receptor recycling was 0.02+/-0.0017 min(-1). Blockade of internalization and recycling demonstrated that internalization did not affect signal desensitization, whereas recycling of internalized receptors was implicated in the signal resensitization.
Collapse
Affiliation(s)
- M L Trincavelli
- Dipartimento di Psichiatria, Neurobiologia, Farmacologia e Biotecnologie, Università di Pisa, Pisa, Italia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
de Mendonça A, Sebastião AM, Ribeiro JA. Adenosine: does it have a neuroprotective role after all? BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2000; 33:258-74. [PMID: 11011069 DOI: 10.1016/s0165-0173(00)00033-3] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A neuroprotective role for adenosine is commonly assumed. Recent studies revealed that adenosine may unexpectedly, under certain circumstances, have the opposite effects contributing to neuronal damage and death. The basis for this duality may be the activation of distinct subtypes of adenosine receptors, interactions between these receptors, differential actions on neuronal and glial cells, and various time frames of adenosinergic compounds administration. If these aspects are understood, adenosine should remain an interesting target for therapeutical neuroprotective approaches after all.
Collapse
Affiliation(s)
- A de Mendonça
- Laboratory of Neurosciences, Faculty of Medicine of Lisbon, Av. Professor Egas Moniz, 1649-035, Lisbon, Portugal.
| | | | | |
Collapse
|
44
|
Fishman P, Bar-Yehuda S, Ohana G, Pathak S, Wasserman L, Barer F, Multani AS. Adenosine acts as an inhibitor of lymphoma cell growth: a major role for the A3 adenosine receptor. Eur J Cancer 2000; 36:1452-8. [PMID: 10899660 DOI: 10.1016/s0959-8049(00)00130-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this study, we demonstrated several mechanisms exploring the inhibitory effect of low-dose adenosine on lymphoma cell growth. Adenosine, a purine nucleoside present in plasma and other extracellular fluids, acts as a regulatory molecule, by binding to G-protein associated cell-surface receptors, A1, A2 and A3. Recently we showed that low-dose adenosine released by muscle cells, inhibits tumour cell growth and thus attributes to the rarity of muscle metastases. In the present work, a cytostatic effect of adenosine on the proliferation of the Nb2-11C rat lymphoma cell line was demonstrated. This effect was mediated through the induction of cell cycle arrest in the G0/G1 phase and by decreasing the telomeric signal in these cells. Adenosine was found to exert its antiproliferative effect mainly through binding to its A3 receptor. The cytostatic anticancer activity, mediated through the A3 adenosine receptor, turns it into a potential target for the development of anticancer therapies.
Collapse
Affiliation(s)
- P Fishman
- Laboratory of Clinical and Tumor Immunology, The Felsenstein Medical Research Center, Tel-Aviv University, Rabin Medical Center, Petach-Tikva, Israel.
| | | | | | | | | | | | | |
Collapse
|
45
|
von Lubitz DK, Ye W, McClellan J, Lin RC. Stimulation of adenosine A3 receptors in cerebral ischemia. Neuronal death, recovery, or both? Ann N Y Acad Sci 2000; 890:93-106. [PMID: 10668416 DOI: 10.1111/j.1749-6632.1999.tb07984.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The role of the adenosine A3 receptor continues to baffle, and, despite an increasing number of studies, the currently available data add to, rather than alleviate, the existing confusion. The reported effects of adenosine A3 receptor stimulation appear to depend on the pattern of drug administration (acute vs. chronic), dose, and type of the target tissue. Thus, while acute exposure to A3 receptor agonists protects against myocardial ischemia, it is severely damaging when these agents are given shortly prior to cerebral ischemia. Mast cells degranulate when their A3 receptors are stimulated. Degranulation of neutrophils is, on the other hand, impaired. While reduced production of reactive nitrogen species has been reported following activation of A3 receptors in collagen-induced arthritis, the process appears to be enhanced in cerebral ischemia. Indeed, immunocytochemical studies indicate that both pre- and postischemic treatment with A3 receptor antagonist dramatically reduces nitric oxide synthase in the affected hippocampus. Even more surprisingly, low doses of A3 receptor agonists seem to enhance astrocyte proliferation, while high doses induce their apoptosis. This review concentrates on the studies of cerebral A3 receptors and, based on the available evidence, discusses the possibility of adenosine A3 receptor serving as an integral element of the endogenous cerebral neuroprotective complex consisting of adenosine and its receptors.
Collapse
Affiliation(s)
- D K von Lubitz
- Department of Emergency Medicine, University of Michigan Health System, Ann Arbor 48109-0303, USA.
| | | | | | | |
Collapse
|
46
|
Agostinho P, Caseiro P, Rego AC, Duarte EP, Cunha RA, Oliveira CR. Adenosine modulation of D-[3H]aspartate release in cultured retina cells exposed to oxidative stress. Neurochem Int 2000; 36:255-65. [PMID: 10676861 DOI: 10.1016/s0197-0186(99)00113-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this study we evaluated the role of adenosine receptor activation on the K+-evoked D-[3H]aspartate release in cultured chick retina cells exposed to oxidant conditions. Oxidative stress, induced by ascorbate (3.5 mM)/Fe2+ (100 microM), increased by about fourfold the release of D-[3H]aspartate, evoked by KCl 35 mM in the presence and in the absence of Ca2+. The agonist of A1 adenosine receptors, N6-cyclopentyladenosine (CPA; 10 nM), inhibited the K+-evoked D-[3H]aspartate release in control in oxidized cells. The antagonist of A1 adenosine receptor, 1,3-dipropyl-8-cyclopentylxanthine (DPCPX; 50 nM), potentiated the release of D-[3H]aspartate in oxidized cells, and reverted the effect observed in the presence of CPA 10 nM. However, in oxidized cells, when DPCPX was tested together with CPA 100 nM the total release of D-[3H]aspartate increased from 5.1 +/- 0.4% to 11.4 +/- 1.0%, this increase being reverted by 3,7-dimethyl-1-propargylxanthine (DMPX; 100 nM), an antagonist of A2A adenosine receptors. In cells of both experimental conditions, the K+-evoked release of D-[3H]aspartate was potentiated by the selective agonist of A2A adenosine receptors, 2-[4-(2-carboxyethyl)phenethylamino]-5'-N-ethylcarboxamidoadenosin e (CGS 21680; 10 nM), whereas the antagonist of these receptors, DMPX (100 nM), inhibited the release of D-[3H]aspartate in oxidized cells, but not in control cells. Adenosine deaminase (ADA; 1 U/ml), which is able to remove adenosine from the synaptic space, reduced the K+-evoked D-[3H]aspartate release, from 5.1 +/- 0.4% to 3.1 +/- 0.3% in oxidized cells, and had no significant effect in control cells. The extracellular accumulation of endogenous adenosine, upon K+-depolarization, was higher in oxidized cells than in control cells, and was reduced by the inhibitors of adenosine transporter (NBTI) and of ecto-5'-nucleotidase (AOPCP). This suggests that adenosine accumulation resulted from the outflow of adenosine mediated by the transporter, and from extracellular degradation of adenine nucleotide. Our data show that both inhibitory A1 and excitatory A2A adenosine receptors are present in cultured retina cells, and that the K+-evoked D-[3H]aspartate release is modulated by the balance between inhibitory and excitatory responses. Under oxidative stress conditions, the extracellular accumulation of endogenous adenosine seems to reach levels enough to potentiate the release of D-[3H]aspartate by the tonic activation of A2A adenosine receptors.
Collapse
Affiliation(s)
- P Agostinho
- Center for Neurosciences of Coimbra, Faculty of Medicine, University of Coimbra, Portugal
| | | | | | | | | | | |
Collapse
|
47
|
Baraldi PG, Cacciari B, Romagnoli R, Merighi S, Varani K, Borea PA, Spalluto G. A(3) adenosine receptor ligands: history and perspectives. Med Res Rev 2000; 20:103-28. [PMID: 10723024 DOI: 10.1002/(sici)1098-1128(200003)20:2<103::aid-med1>3.0.co;2-x] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Adenosine regulates many physiological functions through specific cell membrane receptors. On the basis of pharmacological studies and molecular cloning, four different adenosine receptors have been identified and classified as A(1), A(2A), A(2B), and A(3). These adenosine receptors are members of the G-protein-coupled receptor family. While adenosine A(1) and A(2A) receptor subtypes have been pharmacologically characterized through the use of selective ligands, the A(3) adenosine receptor subtype is presently under study in order to better understand its physio-pathological functions. Activation of adenosine A(3) receptors has been shown to stimulate phospholipase C and D and to inhibit adenylate cyclase. Activation of A(3) adenosine receptors also causes the release of inflammatory mediators such as histamine from mast cells. These mediators are responsible for processes such as inflammation and hypotension. It has also been suggested that the A(3) receptor plays an important role in brain ischemia, immunosuppression, and bronchospasm in several animal models. Based on these results, highly selective A(3) adenosine receptor agonists and/or antagonists have been indicated as potential drugs for the treatment of asthma and inflammation, while highly selective agonists have been shown to possess cardioprotective effects. The updated material related to this field of research has been rationalized and arranged in order to offer an overview of the topic.
Collapse
Affiliation(s)
- P G Baraldi
- Dipartimento di Scienze Farmaceutiche, Universitá di Ferrara, Via Fossato di Mortara 17-19, I-44100 Ferrara, Italy.
| | | | | | | | | | | | | |
Collapse
|
48
|
Liang BT, Jacobson KA. Adenosine and ischemic preconditioning. Curr Pharm Des 1999; 5:1029-41. [PMID: 10607860 PMCID: PMC3561763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Adenosine is released in large amounts during myocardial ischemia and is capable of exerting potent cardioprotective effects in the heart. Although these observations on adenosine have been known for a long time, how adenosine acts to achieve its anti-ischemic effect remains incompletely understood. However, recent advances on the chemistry and pharmacology of adenosine receptor ligands have provided important and novel information on the function of adenosine receptor subtypes in the cardiovascular system. The development of model systems for the cardiac actions of adenosine has yielded important insights into its mechanism of action and have begun to elucidate the sequence of signalling events from receptor activation to the actual exertion of its cardioprotective effect. The present review will focus on the adenosine receptors that mediate the potent anti-ischemic effect of adenosine, new ligands at the receptors, potential molecular signalling mechanisms downstream of the receptor, mediators for cardioprotection, and possible clinical applications in cardiovascular disorders.
Collapse
Affiliation(s)
- B T Liang
- Department of Medicine, Cardiovascular Division, University of Pennsylvania Medical Center, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
49
|
Li AH, Chang L, Ji XD, Melman N, Jacobson KA. Functionalized congeners of 1,4-dihydropyridines as antagonist molecular probes for A3 adenosine receptors. Bioconjug Chem 1999; 10:667-77. [PMID: 10411465 PMCID: PMC3446815 DOI: 10.1021/bc9900136] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
4-Phenylethynyl-6-phenyl-1,4-dihydropyridine derivatives are selective antagonists at human A3 adenosine receptors, with Ki values in a radioligand binding assay vs [125I]AB-MECA [N(6)-(4-amino-3-iodobenzyl)-5'-N-methylcarbamoyl-adenosine] in the submicromolar range. In this study, functionalized congeners of 1,4-dihydropyridines were designed as chemically reactive adenosine A3 antagonists, for the purpose of synthesizing molecular probes for this receptor subtype. Selectivity of the new analogues for cloned human A3 adenosine receptors was determined in radioligand binding in comparison to binding at rat brain A1 and A2A receptors. Benzyl ester groups at the 3- and/or 5-positions and phenyl groups at the 2- and/or 6-positions were introduced as potential sites for chain attachment. Structure-activity analysis at A3 adenosine receptors indicated that 3,5-dibenzyl esters, but not 2,6-diphenyl groups, are tolerated in binding. Ring substitution of the 5-benzyl ester with a 4-fluorosulfonyl group provided enhanced A3 receptor affinity resulting in a Ki value of 2.42 nM; however, a long-chain derivative containing terminal amine functionalization at the 4-position of the 5-benzyl ester showed only moderate affinity. This sulfonyl fluoride derivative appeared to bind irreversibly to the human A3 receptor (1 h incubation at 100 nM resulting in the loss of 56% of the specific radioligand binding sites), while the binding of other potent dihydropyridines and other antagonists was generally reversible. At the 3-position of the dihydropyridine ring, an amine-functionalized chain attached at the 4-position of a benzyl ester provided higher A3 receptor affinity than the corresponding 5-position isomer. This amine congener was also used as an intermediate in the synthesis of a biotin conjugate, which bound to A3 receptors with a Ki value of 0.60 microM.
Collapse
Affiliation(s)
- An-Hu Li
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Building 8A, Room B1A-19, Bethesda, Maryland 20892-0810
| | - Louis Chang
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Building 8A, Room B1A-19, Bethesda, Maryland 20892-0810
| | - Xiao-duo Ji
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Building 8A, Room B1A-19, Bethesda, Maryland 20892-0810
| | - Neli Melman
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Building 8A, Room B1A-19, Bethesda, Maryland 20892-0810
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Building 8A, Room B1A-19, Bethesda, Maryland 20892-0810
| |
Collapse
|
50
|
Abstract
Numerous studies have consistently shown that agonist stimulation of adenosine A1 receptors results in a significant reduction of morbidity and mortality associated with global and focal brain ischemia in animals. Based on these observations, several authors have suggested utilization of adenosine A1 receptors as targets for the development of clinically viable drugs against ischemic brain disorders. Recent advent of adenosine A1 receptor agonists characterized by lowered cardiovascular effects added additional strength to this argument. On the other hand, although cardioprotective, adenosine A3 receptor agonists proved severely cerebrodestructive when administered prior to global ischemia in gerbils. Moreover, stimulation of adenosine A3 receptors appears to reduce the efficacy of some of the neuroprotective actions mediated by adenosine A1 receptors. The review discusses the possible role of adenosine receptor subtypes (A1, A2, and A3) in the context of their involvement in the pathology of cerebral ischemia, and analyzes putative strategies for the development of clinically useful strategies based on adenosine and its receptors. It also stresses the need for further experimental studies before definitive conclusions on the usefulness of the adenosine concept in the treatment of brain ischemia can be made.
Collapse
Affiliation(s)
- D K von Lubitz
- Department of Emergency Medicine, University of Michigan Medical Center, Ann Arbor 48109-0303, USA.
| |
Collapse
|