1
|
Grigorieva EV, Strokotova AV, Ernberg I, Kashuba VI. Differential regulation of heparan sulfate biosynthesis in fibroblasts cocultured with normal vs. cancerous prostate cells. Front Immunol 2024; 15:1440623. [PMID: 39318629 PMCID: PMC11420852 DOI: 10.3389/fimmu.2024.1440623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/20/2024] [Indexed: 09/26/2024] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) regulate a wide range of biological activities in both physiological and pathological conditions. Altered expression or deregulated function of HSPGs and their heparan sulfate (HS) chains significantly contribute to carcinogenesis as well and crucially depends on the functioning of the complex system of HS biosynthetic/modifying enzymes termed as "GAGosome". Here, we aimed at investigating the expression profile of the system in a cell culture model of stroma-epithelial crosstalk and searching for transcription factors potentially related to the regulation of expression of the genes involved. Coculture of BjTERT-fibroblasts with normal PNT2 human prostate epithelial cells resulted in significant downregulation (2-4-fold) of transcriptional activity of HS metabolism-involved genes (EXT1/2, NDST1/2, GLCE, HS2ST1, HS3ST1/2, HS6ST1/2, SULF1/2, HPSE) in both cell types, whereas coculture with prostate cancer cells (LNCaP, PC3, DU145) demonstrated no significant interchanges. Human Transcription Factor RT2 Profiler PCR array and manual RT-PCR verification supposed FOS, MYC, E2F, SRF, NR3C1 as potential candidates for regulation and/or coordination of HS biosynthesis. Taken together, transcriptional activity of HS biosynthetic system in normal fibroblasts and prostate epithelial cells during their coculture might be controlled by their intercellular communication, reflecting of adaptation of these cells to each other. The regulation is attenuated or abrogated if normal fibroblasts interact with prostate cancer cells making the cancer cells independent of the limiting effects of fibroblasts, thus contributing to possibility of unlimited growth and progression. Overall, these data demonstrate an ability of cell-cell interactions to affect transcriptional activity of HS biosynthesis-involved genes.
Collapse
Affiliation(s)
- Elvira V Grigorieva
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Stockholm, Sweden
| | - Anastasia V Strokotova
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Stockholm, Sweden
| | - Ingemar Ernberg
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Stockholm, Sweden
| | - Vladimir I Kashuba
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
2
|
Mycroft-West CJ, Abdelkarim S, Duyvesteyn HME, Gandhi NS, Skidmore MA, Owens RJ, Wu L. Structural and mechanistic characterization of bifunctional heparan sulfate N-deacetylase-N-sulfotransferase 1. Nat Commun 2024; 15:1326. [PMID: 38351061 PMCID: PMC10864358 DOI: 10.1038/s41467-024-45419-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
Heparan sulfate (HS) polysaccharides are major constituents of the extracellular matrix, which are involved in myriad structural and signaling processes. Mature HS polysaccharides contain complex, non-templated patterns of sulfation and epimerization, which mediate interactions with diverse protein partners. Complex HS modifications form around initial clusters of glucosamine-N-sulfate (GlcNS) on nascent polysaccharide chains, but the mechanistic basis underpinning incorporation of GlcNS itself into HS remains unclear. Here, we determine cryo-electron microscopy structures of human N-deacetylase-N-sulfotransferase (NDST)1, the bifunctional enzyme primarily responsible for initial GlcNS modification of HS. Our structures reveal the architecture of both NDST1 deacetylase and sulfotransferase catalytic domains, alongside a non-catalytic N-terminal domain. The two catalytic domains of NDST1 adopt a distinct back-to-back topology that limits direct cooperativity. Binding analyses, aided by activity-modulating nanobodies, suggest that anchoring of the substrate at the sulfotransferase domain initiates the NDST1 catalytic cycle, providing a plausible mechanism for cooperativity despite spatial domain separation. Our data shed light on key determinants of NDST1 activity, and describe tools to probe NDST1 function in vitro and in vivo.
Collapse
Affiliation(s)
| | - Sahar Abdelkarim
- The Rosalind Franklin Institute, Harwell Science & Innovation Campus, OX11 0QX, Didcot, UK
| | - Helen M E Duyvesteyn
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, OX3 7BN, Oxford, UK
| | - Neha S Gandhi
- Department of Computer Science and Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
- School of Chemistry and Physics, Queensland University of Technology, QLD 4000, Brisbane, Australia
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Mark A Skidmore
- Centre for Glycoscience Research and Training, Keele University, ST5 5BG, Newcastle-Under-Lyme, UK
| | - Raymond J Owens
- The Rosalind Franklin Institute, Harwell Science & Innovation Campus, OX11 0QX, Didcot, UK
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, OX3 7BN, Oxford, UK
| | - Liang Wu
- The Rosalind Franklin Institute, Harwell Science & Innovation Campus, OX11 0QX, Didcot, UK.
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, OX3 7BN, Oxford, UK.
| |
Collapse
|
3
|
Wishart TFL, Lovicu FJ. Heparan sulfate proteoglycans (HSPGs) of the ocular lens. Prog Retin Eye Res 2023; 93:101118. [PMID: 36068128 DOI: 10.1016/j.preteyeres.2022.101118] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022]
Abstract
Heparan sulfate proteoglycans (HSPGs) reside in most cells; on their surface, in the pericellular milieu and/or extracellular matrix. In the eye, HSPGs can orchestrate the activity of key signalling molecules found in the ocular environment that promote its development and homeostasis. To date, our understanding of the specific roles played by individual HSPG family members, and the heterogeneity of their associated sulfated HS chains, is in its infancy. The crystalline lens is a relatively simple and well characterised ocular tissue that provides an ideal stage to showcase and model the expression and unique roles of individual HSPGs. Individual HSPG core proteins are differentially localised to eye tissues in a temporal and spatial developmental- and cell-type specific manner, and their loss or functional disruption results in unique phenotypic outcomes for the lens, and other ocular tissues. More recent work has found that different HS sulfation enzymes are also presented in a cell- and tissue-specific manner, and that disruption of these different sulfation patterns affects specific HS-protein interactions. Not surprisingly, these sulfated HS chains have also been reported to be required for lens and eye development, with dysregulation of HS chain structure and function leading to pathogenesis and eye-related phenotypes. In the lens, HSPGs undergo significant and specific changes in expression and function that can drive pathology, or in some cases, promote tissue repair. As master signalling regulators, HSPGs may one day serve as valuable biomarkers, and even as putative targets for the development of novel therapeutics, not only for the eye but for many other systemic pathologies.
Collapse
Affiliation(s)
- Tayler F L Wishart
- Molecular and Cellular Biomedicine, School of Medical Sciences, The University of Sydney, NSW, Australia.
| | - Frank J Lovicu
- Molecular and Cellular Biomedicine, School of Medical Sciences, The University of Sydney, NSW, Australia; Save Sight Institute, The University of Sydney, NSW, Australia.
| |
Collapse
|
4
|
Anderson RA, Oyarbide U. Neuronal expression of ndst3 in early zebrafish development is responsive to Wnt signaling manipulation. Gene Expr Patterns 2023; 47:119300. [PMID: 36503154 PMCID: PMC10006321 DOI: 10.1016/j.gep.2022.119300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/22/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Heparan sulfate proteoglycans (HSPGs) are constituents of the cell surface and extracellular matrix and are vital for various activities within the cell. The N-deacetylase/N-sulfotransferase (heparin glucosaminyl) family of enzymes, or NDST, modifies heparan sulfate (HS) by catalyzing both the N-deacetylation and the N-sulfation of N-acetylglucosamine residues. In zebrafish, a single ndst3 gene is an orthologue of both mammalian NDST3 and NDST4 genes. The role of ndst3 in zebrafish development has not been investigated and such study may provide insight into the role(s) of both mammalian orthologues. Here, we characterized expression of ndst3 during early development in zebrafish and found it to be predominately neuronal. We found that expression of ndst3 is sensitive to Wnt signaling manipulation, with stimulation of the Wnt pathway resulting in robust expansion of ndst3 expression domains. Finally, using CRISPR/Cas9 genome editing, we mutagenized the ndst3 gene and isolated an allele, ndst3nu20, resulting in a frameshift and premature protein truncation. We discovered Ndst3 is not essential for zebrafish survival as ndst3nu20 homozygous mutants are viable and fertile.
Collapse
Affiliation(s)
- Rebecca A Anderson
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Cancer Biology, Cleveland Clinic, Cleveland, OH, USA.
| | - Usua Oyarbide
- Department of Pediatrics and Cancer Biology, Cleveland Clinic, Cleveland, OH, USA; Department of Molecular Medicine in the Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
5
|
Abstract
Wnts are secreted proteins that control stem cell maintenance, cell fate decisions, and growth during development and adult homeostasis. Wnts carry a post-translational modification not seen in any other secreted protein: during biosynthesis, they are appended with a palmitoleoyl moiety that is required for signaling but also impairs solubility and hence diffusion in the extracellular space. In some contexts, Wnts act only in a juxtacrine manner but there are also instances of long range action. Several proteins and processes ensure that active Wnts reach the appropriate target cells. Some, like Porcupine, Wntless, and Notum are dedicated to Wnt function; we describe their activities in molecular detail. We also outline how the cell infrastructure (secretory, endocytic, and retromer pathways) contribute to the progression of Wnts from production to delivery. We then address how Wnts spread in the extracellular space and form a signaling gradient despite carrying a hydrophobic moiety. We highlight particularly the role of lipid-binding Wnt interactors and heparan sulfate proteoglycans. Finally, we briefly discuss how evolution might have led to the emergence of this unusual signaling pathway.
Collapse
|
6
|
Chua JS, Balagurunathan K, Saijoh Y. Manipulation of Glycosaminoglycans Using Synthetic Xylosides to Study Their Roles in Lung Branching Morphogenesis in Ex Vivo Lung Bud Culture System. Methods Mol Biol 2022; 2303:645-653. [PMID: 34626413 DOI: 10.1007/978-1-0716-1398-6_49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The primary left and right bronchial buds grow and sprout secondary bronchi, which in turn develop tertiary bronchi, and so on. Branching continues for a total of 6-8 generations in the mouse and for about 23 generations in humans, forming the estimated 50 million branches of the human lung. Thus, patterns of branching are incalculably complex. However, these branches are rarely random, implying that they are under genetic control. Genomic information alone cannot specify the patterning information in terms of where the branching occurs and the direction it grows as well as their size and shape. There is a complex choreography among glycosaminoglycans and growth factors/morphogens that provide a highly complex instructive cues that control lung branching and development of the functional lung. Herein, we describe the use of xylosides in the manipulation of glycosaminoglycan (GAG) biosynthesis and study the effect of xyloside-primed GAGs in the regulation of lung branching events.
Collapse
Affiliation(s)
- Jie Shi Chua
- Departments of Biology, Bioengineering & Medicinal Chemistry, University of Utah, Salt Lake City, UT, USA
| | - Kuberan Balagurunathan
- Departments of Biology, Bioengineering & Medicinal Chemistry, University of Utah, Salt Lake City, UT, USA
| | - Yukio Saijoh
- Department of Neurobiology & Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
7
|
Abstract
Cell surface proteoglycans, such as syndecans and glypicans, regulate molecular interactions that mediate cell adhesion, migration, proliferation, and differentiation. Through these activities, surface proteoglycans modulate critical biological processes of development, inflammation, infection, tissue repair, and cancer metastasis. Proteoglycans are unique glycoproteins comprised of one or several glycosaminoglycans attached covalently to core proteins. Glycosaminoglycans mediate the majority of ligand-binding functions of proteoglycans. Accumulating evidence indicates that surface proteoglycans regulate the onset, progression, and outcome of lung diseases, including lung injury, infection, fibrosis, and cancer. This article will review key features of surface proteoglycan biology in lung health and disease.
Collapse
|
8
|
Wishart TFL, Flokis M, Shu DY, Das SJ, Lovicu FJ. Hallmarks of lens aging and cataractogenesis. Exp Eye Res 2021; 210:108709. [PMID: 34339681 DOI: 10.1016/j.exer.2021.108709] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/05/2021] [Accepted: 07/26/2021] [Indexed: 12/18/2022]
Abstract
Lens homeostasis and transparency are dependent on the function and intercellular communication of its epithelia. While the lens epithelium is uniquely equipped with functional repair systems to withstand reactive oxygen species (ROS)-mediated oxidative insult, ROS are not necessarily detrimental to lens cells. Lens aging, and the onset of pathogenesis leading to cataract share an underlying theme; a progressive breakdown of oxidative stress repair systems driving a pro-oxidant shift in the intracellular environment, with cumulative ROS-induced damage to lens cell biomolecules leading to cellular dysfunction and pathology. Here we provide an overview of our current understanding of the sources and essential functions of lens ROS, antioxidative defenses, and changes in the major regulatory systems that serve to maintain the finely tuned balance of oxidative signaling vs. oxidative stress in lens cells. Age-related breakdown of these redox homeostasis systems in the lens leads to the onset of cataractogenesis. We propose eight candidate hallmarks that represent common denominators of aging and cataractogenesis in the mammalian lens: oxidative stress, altered cell signaling, loss of proteostasis, mitochondrial dysfunction, dysregulated ion homeostasis, cell senescence, genomic instability and intrinsic apoptotic cell death.
Collapse
Affiliation(s)
| | - Mary Flokis
- School of Medical Sciences, The University of Sydney, NSW, Australia
| | - Daisy Y Shu
- School of Medical Sciences, The University of Sydney, NSW, Australia; Save Sight Institute, The University of Sydney, NSW, Australia; Schepens Eye Research Institute of Mass Eye and Ear. Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Shannon J Das
- School of Medical Sciences, The University of Sydney, NSW, Australia
| | - Frank J Lovicu
- School of Medical Sciences, The University of Sydney, NSW, Australia; Save Sight Institute, The University of Sydney, NSW, Australia.
| |
Collapse
|
9
|
Heparan Sulfate Proteoglycans Biosynthesis and Post Synthesis Mechanisms Combine Few Enzymes and Few Core Proteins to Generate Extensive Structural and Functional Diversity. Molecules 2020; 25:molecules25184215. [PMID: 32937952 PMCID: PMC7570499 DOI: 10.3390/molecules25184215] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
Glycosylation is a common and widespread post-translational modification that affects a large majority of proteins. Of these, a small minority, about 20, are specifically modified by the addition of heparan sulfate, a linear polysaccharide from the glycosaminoglycan family. The resulting molecules, heparan sulfate proteoglycans, nevertheless play a fundamental role in most biological functions by interacting with a myriad of proteins. This large functional repertoire stems from the ubiquitous presence of these molecules within the tissue and a tremendous structural variety of the heparan sulfate chains, generated through both biosynthesis and post synthesis mechanisms. The present review focusses on how proteoglycans are “gagosylated” and acquire structural complexity through the concerted action of Golgi-localized biosynthesis enzymes and extracellular modifying enzymes. It examines, in particular, the possibility that these enzymes form complexes of different modes of organization, leading to the synthesis of various oligosaccharide sequences.
Collapse
|
10
|
Wigén J, Elowsson-Rendin L, Karlsson L, Tykesson E, Westergren-Thorsson G. Glycosaminoglycans: A Link Between Development and Regeneration in the Lung. Stem Cells Dev 2019; 28:823-832. [PMID: 31062651 DOI: 10.1089/scd.2019.0009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
What can we learn from embryogenesis to increase our understanding of how regeneration of damaged adult lung tissue could be induced in serious lung diseases such as chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and asthma? The local tissue niche determines events in both embryogenesis and repair of the adult lung. Important constituents of the niche are extracellular matrix (ECM) molecules, including proteoglycans and glycosaminoglycans (GAGs). GAGs, strategically located in the pericellular and extracellular space, bind developmentally active growth factors (GFs) and morphogens such as fibroblast growth factors (FGFs), transforming growth factor-β (TGF-β), and bone morphogenetic proteins (BMPs) aside from cytokines. These interactions affect activities in many cells, including stem cells, important in development and tissue regeneration. Moreover, it is becoming clear that the "inherent code," such as sulfation of disaccharides of GAGs, is a strong determinant of cellular outcome. Sulfation patterns, deacetylations, and epimerizations of GAG chains function as tuning forks in gradient formation of morphogens, growth factors, and cytokines. Learning to tune these fine instruments, that is, interactions between GFs, chemokines, and cytokines with the specific disaccharide code of GAGs in the adult lung, could become the key to unlock inherent regenerative forces to override pathological remodeling. This review aims to provide an overview of the role GAGs play during development and similar events in regenerative efforts in the adult lung.
Collapse
Affiliation(s)
- Jenny Wigén
- Experimental Medical Sciences, Lung Biology, Lund, Sweden
| | | | - Lisa Karlsson
- Experimental Medical Sciences, Lung Biology, Lund, Sweden
| | - Emil Tykesson
- Experimental Medical Sciences, Lung Biology, Lund, Sweden
| | | |
Collapse
|
11
|
LaRivière WB, Schmidt EP. The Pulmonary Endothelial Glycocalyx in ARDS: A Critical Role for Heparan Sulfate. CURRENT TOPICS IN MEMBRANES 2018; 82:33-52. [PMID: 30360782 DOI: 10.1016/bs.ctm.2018.08.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The endothelial glycocalyx is a glycosaminoglycan-enriched endovascular layer that, with the development of novel fixation and in vivo microscopy techniques, has been increasingly recognized as a major contributor to vascular homeostasis. Sepsis-associated degradation of the endothelial glycocalyx mediates the onset of the alveolar microvascular dysfunction characteristic of sepsis-induced lung injury (such as the Acute Respiratory Distress Syndrome, ARDS). Emerging evidence indicates that processes of glycocalyx reconstitution are necessary for endothelial repair and, as such, are promising therapeutic targets to accelerate lung injury recovery. This review discusses what has been learned about the homeostatic and pathophysiologic role of the pulmonary endothelial glycocalyx during lung health and injury, with the goal to identify promising new areas for future mechanistic investigation.
Collapse
Affiliation(s)
- Wells B LaRivière
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Eric P Schmidt
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, CO, United States.
| |
Collapse
|
12
|
Huang M, He H, Belenkaya T, Lin X. Multiple roles of epithelial heparan sulfate in stomach morphogenesis. J Cell Sci 2018; 131:jcs.210781. [PMID: 29700203 DOI: 10.1242/jcs.210781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 04/19/2018] [Indexed: 12/12/2022] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) have been shown to regulate various developmental processes. However, the function of heparan sulfate (HS) during the development of mammalian stomach has not been characterized yet. Here, we investigate the role of epithelial HS in embryonic stomach by examining mice deficient in the glycosyltransferase gene Ext1 We show that HS exhibits a specific and dynamic expression pattern in mouse embryonic stomach. Depletion of the epithelial HS leads to stomach hypoplasia, with phenotypic differences in the gastric mucosa between the forestomach and hindstomach. In the posterior stomach, HS depletion disrupts glandular stomach patterning and cytodifferentiation via attenuation of Fgf signaling activity. Inhibition of Fgf signaling in vitro recapitulates the patterning defect. Ligand and carbohydrate engagement assay (LACE) reveals a diminished assembly of Fgf10 and Fgfr2b in the mutant. In the anterior stomach, loss of epithelial HS leads to stratification and differentiation defects of the multilayered squamous epithelium, along with reduced Hh and Bmp signaling activity. Our data demonstrate that epithelial HS plays multiple roles in regulating mammalian stomach morphogenesis in a regional-specific manner.
Collapse
Affiliation(s)
- Meina Huang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China.,State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua He
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tatyana Belenkaya
- Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Xinhua Lin
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China .,Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
13
|
Endothelial heparan sulfate deficiency reduces inflammation and fibrosis in murine diabetic nephropathy. J Transl Med 2018; 98:427-438. [PMID: 29330473 PMCID: PMC6247417 DOI: 10.1038/s41374-017-0015-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/22/2017] [Accepted: 12/14/2017] [Indexed: 01/08/2023] Open
Abstract
Inflammation plays a vital role in the development of diabetic nephropathy, but the underlying regulatory mechanisms are only partially understood. Our previous studies demonstrated that, during acute inflammation, endothelial heparan sulfate (HS) contributes to the adhesion and transendothelial migration of leukocytes into perivascular tissues by direct interaction with L-selectin and the presentation of bound chemokines. In the current study, we aimed to assess the role of endothelial HS on chronic renal inflammation and fibrosis in a diabetic nephropathy mouse model. To reduce sulfation of HS specifically in the endothelium, we generated Ndst1 f/f Tie2Cre + mice in which N-deacetylase/N-sulfotransferase-1 (Ndst1), the gene that initiates HS sulfation modifications in HS biosynthesis, was expressly ablated in endothelium. To induce diabetes, age-matched male Ndst1 f/f Tie2Cre - (wild type) and Ndst1 f/f Tie2Cre + mice on a C57Bl/6J background were injected intraperitoneally with streptozotocin (STZ) (50 mg/kg) on five consecutive days (N = 10-11/group). Urine and plasma were collected. Four weeks after diabetes induction the animals were sacrificed and kidneys were analyzed by immunohistochemistry and qRT-PCR. Compared to healthy controls, diabetic Ndst1 f/f Tie2Cre - mice showed increased glomerular macrophage infiltration, mannose binding lectin complement deposition and glomerulosclerosis, whereas these pathological reactions were prevented significantly in the diabetic Ndst1 f/f Tie2Cre + animals (all three p < 0.01). In addition, the expression of the podocyte damage marker desmin was significantly higher in the Ndst1 f/f Tie2Cre - group compared to the Ndst1 f/f Tie2Cre + animals (p < 0.001), although both groups had comparable numbers of podocytes. In the cortical tubulo-interstitium, similar analyses show decreased interstitial macrophage accumulation in the diabetic Ndst1 f/f Tie2Cre + animals compared to the diabetic Ndst1 f/f Tie2Cre - mice (p < 0.05). Diabetic Ndst1 f/f Tie2Cre + animals also showed reduced interstitial fibrosis as evidenced by reduced density of αSMA-positive myofibroblasts (p < 0.01), diminished collagen III deposition (p < 0.001) and reduced mRNA expression of collagen I (p < 0.001) and fibronectin (p < 0.001). Our studies indicate a pivotal role of endothelial HS in the development of renal inflammation and fibrosis in diabetic nephropathy in mice. These results suggest that HS is a possible target for therapy in diabetic nephropathy.
Collapse
|
14
|
Jao TM, Li YL, Lin SW, Tzeng ST, Yu IS, Yen SJ, Tsai MH, Yang YC. Alteration of colonic epithelial cell differentiation in mice deficient for glucosaminyl N-deacetylase/N-sulfotransferase 4. Oncotarget 2018; 7:84938-84950. [PMID: 27793051 PMCID: PMC5356710 DOI: 10.18632/oncotarget.12915] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/14/2016] [Indexed: 12/12/2022] Open
Abstract
Glucosaminyl N-deacetylase/N-sulfotransferases (NDSTs) are the first enzymes that mediate the initiation of heparan sulfate sulfation. We previously identified NDST4 as a putative tumor suppressor in human colorectal cancer. In the study, we generated an Ndst4 knockout (Ndst4-/-) mouse strain and explored its phenotypic characteristics, particularly in the development of colonic epithelial homeostasis. The Ndst4-deficient mice were viable and fertile, and their life spans were similar to those of wild-type littermates. No gross behavioral or morphological differences were observed between the Ndst4-/- and wild-type mice, and no significant changes were determined in the hematological or serum biochemical parameters of the Ndst4-/- mice. Ndst4 RNA transcripts were expressed in the brain, lung, gastrointestinal tract, pancreas, and ovary. However, Ndst4-null mice exhibited no gross or histological abnormalities in the studied organs, except for the colon. Although no alterations were observed in the crypt length or number of proliferating cells, the Ndst4-/- mice exhibited an increased number of goblet cells and a decreased number of colonocytes in the proximal colon compared with the wild-type mice. Moreover, Ndst4 deficiency increased the basal level of apoptosis in the colonic epithelium. Taken together, we established, for the first time, an Ndst4-/- mouse strain and revealed the involvement of Ndst4 in the development and homeostasis of colonic epithelium. Accordingly, NDST4 in human colon might direct the biosynthesis of specific heparan sulfate proteoglycans that are essential for the maintenance of colonic epithelial homeostasis. Thus, the loss of its function may result in the tumorigenesis and progression of colorectal cancer.
Collapse
Affiliation(s)
- Tzu-Ming Jao
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ya-Lin Li
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shu-Wha Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Sheng-Tai Tzeng
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - I-Shing Yu
- Laboratory Animal Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Sou-Jhy Yen
- Department of Surgery, Cardinal Tien Hospital, New Taipei City, Taiwan
| | - Ming-Hong Tsai
- Department of Surgery, Cardinal Tien Hospital, New Taipei City, Taiwan.,School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Ya-Chien Yang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
15
|
Oshima K, Haeger SM, Hippensteel JA, Herson PS, Schmidt EP. More than a biomarker: the systemic consequences of heparan sulfate fragments released during endothelial surface layer degradation (2017 Grover Conference Series). Pulm Circ 2017; 8:2045893217745786. [PMID: 29199903 PMCID: PMC5731723 DOI: 10.1177/2045893217745786] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Advances in tissue fixation and imaging techniques have yielded increasing appreciation for the glycosaminoglycan-rich endothelial glycocalyx and its in vivo manifestation, the endothelial surface layer (ESL). Pathological loss of the ESL during critical illness promotes local endothelial dysfunction and, consequently, organ injury. Glycosaminoglycan fragments, such as heparan sulfate, are released into the plasma of animals and humans after ESL degradation and have thus served as a biomarker of endothelial injury. The development of state-of-the-art glycomic techniques, however, has revealed that these circulating heparan sulfate fragments are capable of influencing growth factor and other signaling pathways distant to the site of ESL injury. This review summarizes the current state of knowledge concerning the local (i.e. endothelial injury) and systemic (i.e. para- or endocrine) consequences of ESL degradation and identifies opportunities for future, novel investigations.
Collapse
Affiliation(s)
- Kaori Oshima
- 1 129263 Department of Medicine, University of Colorado Denver, Aurora, CO, USA
| | - Sarah M Haeger
- 1 129263 Department of Medicine, University of Colorado Denver, Aurora, CO, USA
| | | | - Paco S Herson
- 2 129263 Department of Anesthesiology, University of Colorado Denver, Aurora, CO, USA
| | - Eric P Schmidt
- 1 129263 Department of Medicine, University of Colorado Denver, Aurora, CO, USA.,3 Department of Medicine, Denver Health Medical Center, Denver, CO, USA
| |
Collapse
|
16
|
Armstrong L, Tarailo-Graovac M, Sinclair G, Seath KI, Wasserman WW, Ross CJ, van Karnebeek CDM. A girl with developmental delay, ataxia, cranial nerve palsies, severe respiratory problems in infancy-Expanding NDST1 syndrome. Am J Med Genet A 2017; 173:712-715. [PMID: 28211985 DOI: 10.1002/ajmg.a.37621] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/22/2016] [Indexed: 11/10/2022]
Abstract
NDST1 encodes an enzyme involved in the first steps in the synthesis of heparan sulfate chains, proteoglycans that are regulators found on the cell surface and in the extracellular matrix. Eight individuals homozygous for one of four family-specific missense mutations in the sulfotransferase domain of the enzyme have been described. They have intellectual disability. Some additionally had hypotonia, ataxia. seizures, and/or short stature, but none had history of respiratory problems. No humans with homozygous null mutations are known. ndst1b (orthologous to NDST1) morpholino knockdown in zebrafish (Danio rerio) causes delayed development, craniofacial cartilage abnormalities, shortened body and pectoral fin length. Ndst1 homozygous null mice have craniofacial abnormalities and die within the first 10 h of life of respiratory failure. We report a girl upon whom deep phenotyping, extensive genetic and biochemical investigations, and exome sequencing were performed. She had cranial nerves dysfunction, gastroesophageal reflux, history of a seizure, ataxia, developmental delays, head sparing failure to thrive, and minor malformations including distinctive facial features and a bifid uvula. Compound heterozygous mutations in NDST1 were identified, in the heparan sulfate N deacetylatase domain of one allele and the sulfotransferase domain of the other allele. This report expands the phenotypic spectrum of Ndst1 deficiency in humans. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Linlea Armstrong
- Provincial Medical Genetics Program, B.C. Women's Hospital & Health Centre, Vancouver, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada.,Treatable Intellectual Disability Endeavour in British Columbia, Vancouver, Canada
| | - Maja Tarailo-Graovac
- BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada.,Treatable Intellectual Disability Endeavour in British Columbia, Vancouver, Canada.,Department of Medical Genetics, B.C. Women's Hospital & Health Centre, Vancouver, Canada.,Center for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Graham Sinclair
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada.,Treatable Intellectual Disability Endeavour in British Columbia, Vancouver, Canada
| | - Kimberly I Seath
- Provincial Medical Genetics Program, B.C. Women's Hospital & Health Centre, Vancouver, Canada.,Department of Medical Genetics, B.C. Women's Hospital & Health Centre, Vancouver, Canada
| | - Wyeth W Wasserman
- BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada.,Treatable Intellectual Disability Endeavour in British Columbia, Vancouver, Canada.,Department of Medical Genetics, B.C. Women's Hospital & Health Centre, Vancouver, Canada.,Center for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Colin J Ross
- BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada.,Treatable Intellectual Disability Endeavour in British Columbia, Vancouver, Canada.,Department of Medical Genetics, B.C. Women's Hospital & Health Centre, Vancouver, Canada.,Center for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Clara D M van Karnebeek
- BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada.,Treatable Intellectual Disability Endeavour in British Columbia, Vancouver, Canada.,Department of Medical Genetics, B.C. Women's Hospital & Health Centre, Vancouver, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, Canada.,Department of Pediatrics, Academic Medical Centre, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Papy-Garcia D, Albanese P. Heparan sulfate proteoglycans as key regulators of the mesenchymal niche of hematopoietic stem cells. Glycoconj J 2017; 34:377-391. [PMID: 28577070 DOI: 10.1007/s10719-017-9773-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 05/01/2017] [Accepted: 05/04/2017] [Indexed: 12/21/2022]
Abstract
The complex microenvironment that surrounds hematopoietic stem cells (HSCs) in the bone marrow niche involves different coordinated signaling pathways. The stem cells establish permanent interactions with distinct cell types such as mesenchymal stromal cells, osteoblasts, osteoclasts or endothelial cells and with secreted regulators such as growth factors, cytokines, chemokines and their receptors. These interactions are mediated through adhesion to extracellular matrix compounds also. All these signaling pathways are important for stem cell fates such as self-renewal, proliferation or differentiation, homing and mobilization, as well as for remodeling of the niche. Among these complex molecular cues, this review focuses on heparan sulfate (HS) structures and functions and on the role of enzymes involved in their biosynthesis and turnover. HS associated to core protein, constitute the superfamily of heparan sulfate proteoglycans (HSPGs) present on the cell surface and in the extracellular matrix of all tissues. The key regulatory effects of major medullar HSPGs are described, focusing on their roles in the interactions between hematopoietic stem cells and their endosteal niche, and on their ability to interact with Heparin Binding Proteins (HBPs). Finally, according to the relevance of HS moieties effects on this complex medullar niche, we describe recent data that identify HS mimetics or sulfated HS signatures as new glycanic tools and targets, respectively, for hematopoietic and mesenchymal stem cell based therapeutic applications.
Collapse
Affiliation(s)
- Dulce Papy-Garcia
- CRRET Laboratory, Université Paris Est, EA 4397 Université Paris Est Créteil, ERL CNRS 9215, F-94010, Créteil, France
| | - Patricia Albanese
- CRRET Laboratory, Université Paris Est, EA 4397 Université Paris Est Créteil, ERL CNRS 9215, F-94010, Créteil, France.
| |
Collapse
|
18
|
Patel VN, Pineda DL, Hoffman MP. The function of heparan sulfate during branching morphogenesis. Matrix Biol 2017; 57-58:311-323. [PMID: 27609403 PMCID: PMC5329135 DOI: 10.1016/j.matbio.2016.09.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/18/2016] [Accepted: 09/01/2016] [Indexed: 02/08/2023]
Abstract
Branching morphogenesis is a fundamental process in the development of diverse epithelial organs such as the lung, kidney, liver, pancreas, prostate, salivary, lacrimal and mammary glands. A unifying theme during organogenesis is the importance of epithelial cell interactions with the extracellular matrix (ECM) and growth factors (GFs). The diverse developmental mechanisms giving rise to these epithelial organs involve many organ-specific GFs, but a unifying paradigm during organogenesis is the regulation of GF activity by heparan sulfates (HS) on the cell surface and in the ECM. This primarily involves the interactions of GFs with the sulfated side-chains of HS proteoglycans. HS is one of the most diverse biopolymers and modulates GF binding and signaling at the cell surface and in the ECM of all tissues. Here, we review what is known about how HS regulates branching morphogenesis of epithelial organs with emphasis on the developing salivary gland, which is a classic model to investigate epithelial-ECM interactions. We also address the structure, biosynthesis, turnover and function of HS during organogenesis. Understanding the regulatory mechanisms that control HS dynamics may aid in the development of therapeutic interventions for diseases and novel strategies for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Vaishali N Patel
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, United States
| | - Dallas L Pineda
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, United States
| | - Matthew P Hoffman
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
19
|
Langford R, Hurrion E, Dawson PA. Genetics and pathophysiology of mammalian sulfate biology. J Genet Genomics 2017; 44:7-20. [DOI: 10.1016/j.jgg.2016.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 08/08/2016] [Accepted: 08/11/2016] [Indexed: 12/23/2022]
|
20
|
Deligny A, Dierker T, Dagälv A, Lundequist A, Eriksson I, Nairn AV, Moremen KW, Merry CLR, Kjellén L. NDST2 (N-Deacetylase/N-Sulfotransferase-2) Enzyme Regulates Heparan Sulfate Chain Length. J Biol Chem 2016; 291:18600-18607. [PMID: 27387504 DOI: 10.1074/jbc.m116.744433] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Indexed: 01/09/2023] Open
Abstract
Analysis of heparan sulfate synthesized by HEK 293 cells overexpressing murine NDST1 and/or NDST2 demonstrated that the amount of heparan sulfate was increased in NDST2- but not in NDST1-overexpressing cells. Altered transcript expression of genes encoding other biosynthetic enzymes or proteoglycan core proteins could not account for the observed changes. However, the role of NDST2 in regulating the amount of heparan sulfate synthesized was confirmed by analyzing heparan sulfate content in tissues isolated from Ndst2(-/-) mice, which contained reduced levels of the polysaccharide. Detailed disaccharide composition analysis showed no major structural difference between heparan sulfate from control and Ndst2(-/-) tissues, with the exception of heparan sulfate from spleen where the relative amount of trisulfated disaccharides was lowered in the absence of NDST2. In vivo transcript expression levels of the heparan sulfate-polymerizing enzymes Ext1 and Ext2 were also largely unaffected by NDST2 levels, pointing to a mode of regulation other than increased gene transcription. Size estimation of heparan sulfate polysaccharide chains indicated that increased chain lengths in NDST2-overexpressing cells alone could explain the increased heparan sulfate content. A model is discussed where NDST2-specific substrate modification stimulates elongation resulting in increased heparan sulfate chain length.
Collapse
Affiliation(s)
- Audrey Deligny
- From the Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden and
| | - Tabea Dierker
- From the Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden and
| | - Anders Dagälv
- From the Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden and
| | - Anders Lundequist
- From the Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden and
| | - Inger Eriksson
- From the Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden and
| | - Alison V Nairn
- the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Kelley W Moremen
- the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Catherine L R Merry
- From the Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden and
| | - Lena Kjellén
- From the Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden and
| |
Collapse
|
21
|
Coulson-Thomas VJ. The role of heparan sulphate in development: the ectodermal story. Int J Exp Pathol 2016; 97:213-29. [PMID: 27385054 DOI: 10.1111/iep.12180] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/24/2016] [Indexed: 12/27/2022] Open
Abstract
Heparan sulphate (HS) is ubiquitously expressed and is formed of repeating glucosamine and glucuronic/iduronic acid units which are generally highly sulphated. HS is found in tissues bound to proteins forming HS proteoglycans (HSPGs) which are present on the cell membrane or in the extracellular matrix. HSPGs influence a variety of biological processes by interacting with physiologically important proteins, such as morphogens, creating storage pools, generating morphogen gradients and directly mediating signalling pathways, thereby playing vital roles during development. This review discusses the vital role HS plays in the development of tissues from the ectodermal lineage. The ectodermal layer differentiates to form the nervous system (including the spine, peripheral nerves and brain), eye, epidermis, skin appendages and tooth enamel.
Collapse
|
22
|
Haeger SM, Yang Y, Schmidt EP. Heparan Sulfate in the Developing, Healthy, and Injured Lung. Am J Respir Cell Mol Biol 2016; 55:5-11. [PMID: 26982577 PMCID: PMC4942210 DOI: 10.1165/rcmb.2016-0043tr] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/11/2016] [Indexed: 11/24/2022] Open
Abstract
Remarkable progress has been achieved in understanding the regulation of gene expression and protein translation, and how aberrancies in these template-driven processes contribute to disease pathogenesis. However, much of cellular physiology is controlled by non-DNA, nonprotein mediators, such as glycans. The focus of this Translational Review is to highlight the importance of a specific glycan polymer-the glycosaminoglycan heparan sulfate (HS)-on lung health and disease. We demonstrate how HS contributes to lung physiology and pathophysiology via its actions as both a structural constituent of the lung parenchyma as well as a regulator of cellular signaling. By highlighting current uncertainties in HS biology, we identify opportunities for future high-impact pulmonary and critical care translational investigations.
Collapse
Affiliation(s)
- Sarah M. Haeger
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado; and
| | - Yimu Yang
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado; and
| | - Eric P. Schmidt
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado; and
- Department of Medicine, Denver Health Medical Center, Denver, Colorado
| |
Collapse
|
23
|
Abstract
Glycosaminoglycans (GAGs) are complex linear polysaccharides expressed in intracellular compartments, at the cell surface, and in the extracellular environment where they interact with various molecules to regulate many cellular processes implicated in health and disease. Subversion of GAGs is a pathogenic strategy shared by a wide variety of microbial pathogens, including viruses, bacteria, parasites, and fungi. Pathogens use GAGs at virtually every major portals of entry to promote their attachment and invasion of host cells, movement from one cell to another, and to protect themselves from immune attack. Pathogens co-opt fundamental activities of GAGs to accomplish these tasks. This ingenious strategy to subvert essential activities of GAGs likely prevented host organisms from deleting or inactivating these mechanisms during their evolution. The goal of this review is to provide a mechanistic overview of our current understanding of how microbes subvert GAGs at major steps of pathogenesis, using select GAG-pathogen interactions as representative examples.
Collapse
Affiliation(s)
- Rafael S Aquino
- Division of Respiratory Diseases and 2Division of Newborn Medicine, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Pyong Woo Park
- Division of Respiratory Diseases Children's Hospital, Harvard Medical School, Boston, MA 02115, USA and Division of Newborn Medicine, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA,
| |
Collapse
|
24
|
Zhang X, Wang F, Sheng J. "Coding" and "Decoding": hypothesis for the regulatory mechanism involved in heparan sulfate biosynthesis. Carbohydr Res 2016; 428:1-7. [PMID: 27088396 DOI: 10.1016/j.carres.2016.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 03/30/2016] [Accepted: 04/05/2016] [Indexed: 01/24/2023]
Abstract
Heparan sulfate (HS) is widely distributed in mammalian tissues in the form of HS proteoglycans, which play essential roles in various physiological and pathological processes. In contrast to the template-guided processes involved in the synthesis of DNA and proteins, HS biosynthesis is not believed to involve a template. However, it appears that the final structure of HS chains was strictly regulated. Herein, we report research based hypothesis that two major steps, namely "coding" and "decoding" steps, are involved in the biosynthesis of HS, which strictly regulate its chemical structure and biological activity. The "coding" process in this context is based on the distribution of sulfate moieties on the amino groups of the glucosamine residues in the HS chains. The sulfation of these amine groups is catalyzed by N-deacetylase/N-sulfotransferase, which has four isozymes. The composition and distribution of sulfate groups and iduronic acid residues on the glycan chains of HS are determined by several other modification enzymes, which can recognize these coding sequences (i.e., the "decoding" process). The degree and pattern of the sulfation and epimerization in the HS chains determines the extent of their interactions with several different protein factors, which further influences their biological activity.
Collapse
Affiliation(s)
- Xu Zhang
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Fengshan Wang
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China; National Glycoengineering Research Center, Shandong University, Jinan 250012, China.
| | - Juzheng Sheng
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| |
Collapse
|
25
|
Gomes AM, Sinkeviciute D, Multhaupt HAB, Yoneda A, Couchman JR. Syndecan Heparan Sulfate Proteoglycans: Regulation, Signaling and Impact on Tumor Biology. TRENDS GLYCOSCI GLYC 2016; 28:E79-E90. [DOI: 10.4052/tigg.1422.1e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Angélica Maciel Gomes
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen
| | - Dovile Sinkeviciute
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen
| | - Hinke A. B. Multhaupt
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen
| | - Atsuko Yoneda
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences
| | - John R. Couchman
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen
- Dept. Biomedical Sciences, University of Copenhagen, Biocenter
| |
Collapse
|
26
|
Gomes AM, Sinkeviciute D, Multhaupt HAB, Yoneda A, Couchman JR. Syndecan Heparan Sulfate Proteoglycans: Regulation, Signaling and Impact on Tumor Biology. TRENDS GLYCOSCI GLYC 2016. [DOI: 10.4052/tigg.1422.1j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Angélica Maciel Gomes
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen
| | - Dovile Sinkeviciute
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen
| | - Hinke A. B. Multhaupt
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen
| | - Atsuko Yoneda
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences
| | - John R. Couchman
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen
- Dept. Biomedical Sciences, University of Copenhagen, Biocenter
| |
Collapse
|
27
|
Mižíková I, Morty RE. The Extracellular Matrix in Bronchopulmonary Dysplasia: Target and Source. Front Med (Lausanne) 2015; 2:91. [PMID: 26779482 PMCID: PMC4688343 DOI: 10.3389/fmed.2015.00091] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/08/2015] [Indexed: 12/22/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a common complication of preterm birth that contributes significantly to morbidity and mortality in neonatal intensive care units. BPD results from life-saving interventions, such as mechanical ventilation and oxygen supplementation used to manage preterm infants with acute respiratory failure, which may be complicated by pulmonary infection. The pathogenic pathways driving BPD are not well-delineated but include disturbances to the coordinated action of gene expression, cell-cell communication, physical forces, and cell interactions with the extracellular matrix (ECM), which together guide normal lung development. Efforts to further delineate these pathways have been assisted by the use of animal models of BPD, which rely on infection, injurious mechanical ventilation, or oxygen supplementation, where histopathological features of BPD can be mimicked. Notable among these are perturbations to ECM structures, namely, the organization of the elastin and collagen networks in the developing lung. Dysregulated collagen deposition and disturbed elastin fiber organization are pathological hallmarks of clinical and experimental BPD. Strides have been made in understanding the disturbances to ECM production in the developing lung, but much still remains to be discovered about how ECM maturation and turnover are dysregulated in aberrantly developing lungs. This review aims to inform the reader about the state-of-the-art concerning the ECM in BPD, to highlight the gaps in our knowledge and current controversies, and to suggest directions for future work in this exciting and complex area of lung development (patho)biology.
Collapse
Affiliation(s)
- Ivana Mižíková
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Pulmonology, Department of Internal Medicine, University of Giessen and Marburg Lung Center, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Pulmonology, Department of Internal Medicine, University of Giessen and Marburg Lung Center, Giessen, Germany
| |
Collapse
|
28
|
Ferreras L, Sheerin NS, Kirby JA, Ali S. Mechanisms of Renal Graft Chronic Injury and Progression to Interstitial Fibrosis. CURRENT TRANSPLANTATION REPORTS 2015. [DOI: 10.1007/s40472-015-0069-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Dou W, Xu Y, Pagadala V, Pedersen LC, Liu J. Role of Deacetylase Activity of N-Deacetylase/N-Sulfotransferase 1 in Forming N-Sulfated Domain in Heparan Sulfate. J Biol Chem 2015; 290:20427-37. [PMID: 26109066 DOI: 10.1074/jbc.m115.664409] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Indexed: 01/03/2023] Open
Abstract
Heparan sulfate (HS) is a highly sulfated polysaccharide that plays important physiological roles. The biosynthesis of HS involves a series of enzymes, including glycosyltransferases (or HS polymerase), epimerase, and sulfotransferases. N-Deacetylase/N-Sulfotransferase isoform 1 (NDST-1) is a critical enzyme in this pathway. NDST-1, a bifunctional enzyme, displays N-deacetylase and N-sulfotransferase activities to convert an N-acetylated glucosamine residue to an N-sulfo glucosamine residue. Here, we report the cooperative effects between N-deacetylase and N-sulfotransferase activities. Using baculovirus expression in insect cells, we obtained three recombinant proteins: full-length NDST-1 and the individual N-deacetylase and N-sulfotransferase domains. Structurally defined oligosaccharide substrates were synthesized to test the substrate specificities of the enzymes. We discovered that N-deacetylation is the limiting step and that interplay between the N-sulfotransferase and N-deacetylase accelerates the reaction. Furthermore, combining the individually expressed N-deacetylase and N-sulfotransferase domains produced different sulfation patterns when compared with that made by the NDST-1 enzyme. Our data demonstrate the essential role of domain cooperation within NDST-1 in producing HS with specific domain structures.
Collapse
Affiliation(s)
- Wenfang Dou
- From the Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, the Laboratory of Pharmaceutical Engineering, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China, and
| | - Yongmei Xu
- From the Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Vijayakanth Pagadala
- From the Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Lars C Pedersen
- the Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Jian Liu
- From the Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599,
| |
Collapse
|
30
|
Filipek-Górniok B, Carlsson P, Haitina T, Habicher J, Ledin J, Kjellén L. The NDST gene family in zebrafish: role of NDST1B in pharyngeal arch formation. PLoS One 2015; 10:e0119040. [PMID: 25767878 PMCID: PMC4359090 DOI: 10.1371/journal.pone.0119040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 01/27/2015] [Indexed: 12/31/2022] Open
Abstract
Heparan sulfate (HS) proteoglycans are ubiquitous components of the extracellular matrix and plasma membrane of metazoans. The sulfation pattern of the HS glycosaminoglycan chain is characteristic for each tissue and changes during development. The glucosaminyl N-deacetylase/N-sulfotransferase (NDST) enzymes catalyze N-deacetylation and N-sulfation during HS biosynthesis and have a key role in designing the sulfation pattern. We here report on the presence of five NDST genes in zebrafish. Zebrafish ndst1a, ndst1b, ndst2a and ndst2b represent duplicated mammalian orthologues of NDST1 and NDST2 that arose through teleost specific genome duplication. Interestingly, the single zebrafish orthologue ndst3, is equally similar to tetrapod Ndst3 and Ndst4. It is likely that a local duplication in the common ancestor of lobe-finned fish and tetrapods gave rise to these two genes. All zebrafish Ndst genes showed distinct but partially overlapping expression patterns during embryonic development. Morpholino knockdown of ndst1b resulted in delayed development, craniofacial cartilage abnormalities, shortened body and pectoral fin length, resembling some of the features of the Ndst1 mouse knockout.
Collapse
Affiliation(s)
- Beata Filipek-Górniok
- Dept. of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Husargatan 3, PO Box 582, SE-751 23, Uppsala, Sweden
| | - Pernilla Carlsson
- Dept. of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Husargatan 3, PO Box 582, SE-751 23, Uppsala, Sweden
| | - Tatjana Haitina
- Dept. of Organismal Biology, Science for Life Laboratory, Uppsala University, Norbyvägen 18A, SE-752 36, Uppsala, Sweden
| | - Judith Habicher
- Dept. of Organismal Biology, Science for Life Laboratory, Uppsala University, Norbyvägen 18A, SE-752 36, Uppsala, Sweden
| | - Johan Ledin
- Dept. of Organismal Biology, Science for Life Laboratory, Uppsala University, Norbyvägen 18A, SE-752 36, Uppsala, Sweden
| | - Lena Kjellén
- Dept. of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Husargatan 3, PO Box 582, SE-751 23, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
31
|
He DX, Gu XT, Li YR, Jiang L, Jin J, Ma X. Methylation-regulated miR-149 modulates chemoresistance by targeting GlcNAc N-deacetylase/N-sulfotransferase-1 in human breast cancer. FEBS J 2014; 281:4718-30. [PMID: 25156775 DOI: 10.1111/febs.13012] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 07/16/2014] [Accepted: 08/20/2014] [Indexed: 02/06/2023]
Abstract
Dysregulation of microRNA is strongly implicated in the chemoresistance of cancer. In this study, we found that miR-149 was downregulated and involved in chemoresistance in adriamycin (ADM)-resistant human breast cancer cells (MCF-7/ADM). Downregulation of miR-149 was related to hypermethylation of its 5'-UTR; this methylation also affected the expression of the glypican 1 gene, which is both the host and the target gene of miR-149. Furthermore, we found that miR-149 modulated chemoresistance through targeting the expression of GlcNAc N-deacetylase/N-sulfotransferase-1 (NDST1). With downregulated miR-149, NDST1 expression was increased in chemoresistant MCF-7/ADM cells versus control MCF-7 wild-type cells. The increased NDST1 then activated a heparan sulfate-related pathway involving activation of heparanase. Finally, expression of miR-149 and NDST1 was confirmed in clinical chemoresistant samples of breast cancers receiving anthracycline/taxane-based chemotherapies. The high expression of NDST1 was also an unfavorable predictor for distant relapse-free survival in Her2 and basal breast cancers. Taken together, our findings demonstrate that miR-149 is regulated by methylation, and is a modulator of cancer chemoresistance by targeting NDST1.
Collapse
Affiliation(s)
- Dong-Xu He
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | | | | | | | | | | |
Collapse
|
32
|
Mizumoto S, Yamada S, Sugahara K. Human genetic disorders and knockout mice deficient in glycosaminoglycan. BIOMED RESEARCH INTERNATIONAL 2014; 2014:495764. [PMID: 25126564 PMCID: PMC4122003 DOI: 10.1155/2014/495764] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/08/2014] [Indexed: 12/20/2022]
Abstract
Glycosaminoglycans (GAGs) are constructed through the stepwise addition of respective monosaccharides by various glycosyltransferases and maturated by epimerases and sulfotransferases. The structural diversity of GAG polysaccharides, including their sulfation patterns and sequential arrangements, is essential for a wide range of biological activities such as cell signaling, cell proliferation, tissue morphogenesis, and interactions with various growth factors. Studies using knockout mice of enzymes responsible for the biosynthesis of the GAG side chains of proteoglycans have revealed their physiological functions. Furthermore, mutations in the human genes encoding glycosyltransferases, sulfotransferases, and related enzymes responsible for the biosynthesis of GAGs cause a number of genetic disorders including chondrodysplasia, spondyloepiphyseal dysplasia, and Ehlers-Danlos syndromes. This review focused on the increasing number of glycobiological studies on knockout mice and genetic diseases caused by disturbances in the biosynthetic enzymes for GAGs.
Collapse
Affiliation(s)
- Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Kazuyuki Sugahara
- Laboratory of Proteoglycan Signaling and Therapeutics, Frontier Research Center for Post-Genomic Science and Technology, Graduate School of Life Science, Hokkaido University, West-11, North-21, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| |
Collapse
|
33
|
Ge XN, Ha SG, Rao A, Greenberg YG, Rushdi MN, Esko JD, Rao SP, Sriramarao P. Endothelial and leukocyte heparan sulfates regulate the development of allergen-induced airway remodeling in a mouse model. Glycobiology 2014; 24:715-27. [PMID: 24794009 DOI: 10.1093/glycob/cwu035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Heparan sulfate (HS) proteoglycans (HSPGs) participate in several aspects of inflammation because of their ability to bind to growth factors, chemokines, interleukins and extracellular matrix proteins as well as promote inflammatory cell trafficking and migration. We investigated whether HSPGs play a role in the development of airway remodeling during chronic allergic asthma using mice deficient in endothelial- and leukocyte-expressed N-deacetylase/N-sulfotransferase-1 (Ndst1), an enzyme involved in modification reactions during HS biosynthesis. Ndst1-deficient and wild-type (WT) mice exposed to repetitive allergen (ovalbumin [OVA]) challenge were evaluated for the development of airway remodeling. Chronic OVA-challenged WT mice exhibited increased HS expression in the lungs along with airway eosinophilia, mucus hypersecretion, peribronchial fibrosis, increased airway epithelial thickness and smooth muscle mass. In OVA-challenged Ndst1-deficient mice, lung eosinophil and macrophage infiltration as well as airway mucus accumulation, peribronchial fibrosis and airway epithelial thickness were significantly lower than in allergen-challenged WT mice along with a trend toward decreased airway smooth muscle mass. Leukocyte and endothelial Ndst 1 deficiency also resulted in significantly decreased expression of IL-13 as well as remodeling-associated mediators such as VEGF, FGF-2 and TGF-β1 in the lung tissue. At a cellular level, exposure to eotaxin-1 failed to induce TGF-β1 expression by Ndst1-deficient eosinophils relative to WT eosinophils. These studies suggest that leukocyte and endothelial Ndst1-modified HS contribute to the development of allergen-induced airway remodeling by promoting recruitment of inflammatory cells as well as regulating expression of pro-remodeling factors such as IL-13, VEGF, TGF-β1 and FGF-2 in the lung.
Collapse
Affiliation(s)
- Xiao Na Ge
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | - Sung Gil Ha
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | - Amrita Rao
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | - Yana G Greenberg
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | - Muaz Nik Rushdi
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | - Jeffrey D Esko
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Savita P Rao
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | - P Sriramarao
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
34
|
Nadanaka S, Purunomo E, Takeda N, Tamura JI, Kitagawa H. Heparan sulfate containing unsubstituted glucosamine residues: biosynthesis and heparanase-inhibitory activity. J Biol Chem 2014; 289:15231-43. [PMID: 24753252 DOI: 10.1074/jbc.m113.545343] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Degradation of heparan sulfate (HS) in the extracellular matrix by heparanase is linked to the processes of tumor invasion and metastasis. Thus, a heparanase inhibitor can be a potential anticancer drug. Because HS with unsubstituted glucosamine residues accumulates in heparanase-expressing breast cancer cells, we assumed that these HS structures are resistant to heparanase and can therefore be utilized as a heparanase inhibitor. As expected, chemically synthetic HS-tetrasaccharides containing unsubstituted glucosamine residues, GlcAβ1-4GlcNH3 (+)(6-O-sulfate)α1-4GlcAβ1-4GlcNH3 (+)(6-O-sulfate), inhibited heparanase activity and suppressed invasion of breast cancer cells in vitro. Bifunctional NDST-1 (N-deacetylase/N-sulfotransferase-1) catalyzes the modification of N-acetylglucosamine residues within HS chains, and the balance of N-deacetylase and N-sulfotransferase activities of NDST-1 is thought to be a determinant of the generation of unsubstituted glucosamine. We also report here that EXTL3 (exostosin-like 3) controls N-sulfotransferase activity of NDST-1 by forming a complex with NDST-1 and contributes to generation of unsubstituted glucosamine residues.
Collapse
Affiliation(s)
- Satomi Nadanaka
- From the Department of Biochemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, Hyogo 658-8558, Japan
| | - Eko Purunomo
- From the Department of Biochemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, Hyogo 658-8558, Japan
| | - Naoko Takeda
- the Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyamacho-Minami, Tottori 680-8552, Japan, and
| | - Jun-ichi Tamura
- the Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyamacho-Minami, Tottori 680-8552, Japan, and the Department of Regional Environment, Faculty of Regional Sciences, Tottori University, Tottori, Tottori 680-8551, Japan
| | - Hiroshi Kitagawa
- From the Department of Biochemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, Hyogo 658-8558, Japan,
| |
Collapse
|
35
|
Pan Y, Carbe C, Kupich S, Pickhinke U, Ohlig S, Frye M, Seelige R, Pallerla SR, Moon AM, Lawrence R, Esko JD, Zhang X, Grobe K. Heparan sulfate expression in the neural crest is essential for mouse cardiogenesis. Matrix Biol 2013; 35:253-65. [PMID: 24200809 DOI: 10.1016/j.matbio.2013.10.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 10/26/2013] [Accepted: 10/26/2013] [Indexed: 11/16/2022]
Abstract
Impaired heparan sulfate (HS) synthesis in vertebrate development causes complex malformations due to the functional disruption of multiple HS-binding growth factors and morphogens. Here, we report developmental heart defects in mice bearing a targeted disruption of the HS-generating enzyme GlcNAc N-deacetylase/GlcN N-sulfotransferase 1 (NDST1), including ventricular septal defects (VSD), persistent truncus arteriosus (PTA), double outlet right ventricle (DORV), and retroesophageal right subclavian artery (RERSC). These defects closely resemble cardiac anomalies observed in mice made deficient in the cardiogenic regulator fibroblast growth factor 8 (FGF8). Consistent with this, we show that HS-dependent FGF8/FGF-receptor2C assembly and FGF8-dependent ERK-phosphorylation are strongly reduced in NDST1(-/-) embryonic cells and tissues. Moreover, WNT1-Cre/LoxP-mediated conditional targeting of NDST function in neural crest cells (NCCs) revealed that their impaired HS-dependent development contributes strongly to the observed cardiac defects. These findings raise the possibility that defects in HS biosynthesis may contribute to congenital heart defects in humans that represent the most common type of birth defect.
Collapse
Affiliation(s)
- Yi Pan
- Institute of Nutritional Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Christian Carbe
- Department of Medical and Molecular Genetics, Indiana University of Medicine, Indianapolis, IN 46202, USA
| | - Sabine Kupich
- Institut für Physiologische Chemie und Pathobiochemie, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| | - Ute Pickhinke
- Institut für Physiologische Chemie und Pathobiochemie, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| | - Stefanie Ohlig
- Institut für Physiologische Chemie und Pathobiochemie, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany; Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| | - Maike Frye
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| | - Ruth Seelige
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| | - Srinivas R Pallerla
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| | - Anne M Moon
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Roger Lawrence
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093-0687, USA
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093-0687, USA
| | - Xin Zhang
- Department of Medical and Molecular Genetics, Indiana University of Medicine, Indianapolis, IN 46202, USA
| | - Kay Grobe
- Institut für Physiologische Chemie und Pathobiochemie, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany; Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany.
| |
Collapse
|
36
|
van Wijk XMR, van Kuppevelt TH. Heparan sulfate in angiogenesis: a target for therapy. Angiogenesis 2013; 17:443-62. [PMID: 24146040 DOI: 10.1007/s10456-013-9401-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 10/15/2013] [Indexed: 01/02/2023]
Abstract
Heparan sulfate (HS), a long linear polysaccharide of alternating disaccharide residues, interacts with a wide variety of proteins, including many angiogenic factors. The involvement of HS in signaling of pro-angiogenic factors (e.g. vascular endothelial growth factor and fibroblast growth factor 2), as well as interaction with anti-angiogenic factors (e.g. endostatin), warrants its role as an important modifier of (tumor) angiogenesis. This review summarizes our current understanding of the role of HS in angiogenic growth factor signaling, and discusses therapeutic strategies to target HS and modulate angiogenesis.
Collapse
Affiliation(s)
- Xander M R van Wijk
- Department of Biochemistry (280), Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, PO. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | |
Collapse
|
37
|
Sugar T, Wassenhove-McCarthy DJ, Esko JD, van Kuppevelt TH, Holzman L, McCarthy KJ. Podocyte-specific deletion of NDST1, a key enzyme in the sulfation of heparan sulfate glycosaminoglycans, leads to abnormalities in podocyte organization in vivo. Kidney Int 2013; 85:307-18. [PMID: 23924956 PMCID: PMC4624314 DOI: 10.1038/ki.2013.281] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 05/03/2013] [Accepted: 05/23/2013] [Indexed: 01/18/2023]
Abstract
Heparan sulfate proteoglycans have been shown to modulate podocyte adhesion to- and pedicel organization on- the glomerular basement membrane. Recent studies showed that foot process effacement developed in a mutant mouse model whose podocytes were unable to assemble heparan sulfate glycosaminoglycan chains. This study, a further refinement, explored the role of heparan N-sulfation on podocyte behavior. A novel mutant mouse (Ndst1-/-) was developed, having podocyte-specific deletion of NDST1, the enzyme responsible for N-sulfation of heparan sulfate chains. Podocytes having this mutation had foot process effacement and abnormal adhesion to Bowman's capsule. Although glomerular hypertrophy did develop in the kidneys of mutant animals, mesangial expansion was not seen. The lack of heparan N-sulfation did not affect the expression of agrin or perlecan proteoglycan core proteins. Loss of N-sulfation did not result in significant proteinuria, but the increase in the albumin/creatinine ratio was coincident with the development of the enlarged lysosomes in the proximal tubules. Thus, although the renal phenotype of the Ndst1-/- mouse is mild, the data show that heparan chain N-sulfation plays a key role in podocyte organization.
Collapse
Affiliation(s)
- Terrel Sugar
- Department of Cell Biology and Anatomy, LSU Health Sciences Center, Shreveport, Louisiana, USA
| | | | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, San Diego, California, USA
| | - Toin H van Kuppevelt
- Department of Biochemistry, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Lawrence Holzman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kevin J McCarthy
- 1] Department of Cell Biology and Anatomy, LSU Health Sciences Center, Shreveport, Louisiana, USA [2] Department of Pathology, LSU Health Sciences Center, Shreveport, Louisiana, USA
| |
Collapse
|
38
|
Abstract
Heparan sulphate (HS) polysaccharides are covalently attached to the core proteins of various proteoglycans at cell surfaces and in the extracellular matrix. They are composed of alternating units of hexuronic acid and glucosamine, with sulphate substituents in complex and variable yet cell-specific patterns. Whereas HS is produced by virtually all cells in the body, heparin, a highly sulphated HS variant, is confined to connective-tissue-type mast cells. The polysaccharides interact with a multitude of proteins, mainly through ionic binding, and thereby control key processes in development and homoeostasis. Similar interactions also implicate HS in various pathophysiological settings, including cancer, amyloid diseases, infectious diseases, inflammatory conditions and some developmental disorders. Prospects for the development of HS-based drugs, which are still largely unrealized, are discussed.
Collapse
Affiliation(s)
- U Lindahl
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
39
|
Tamm C, Kjellén L, Li JP. Heparan sulfate biosynthesis enzymes in embryonic stem cell biology. J Histochem Cytochem 2012; 60:943-9. [PMID: 23042480 DOI: 10.1369/0022155412465090] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Embryonic stem (ES) cells are derived from the inner cell mass of the blastocyst and can give rise to all cell types in the body. The fate of ES cells depends on the signals they receive from their surrounding environment, which either promote self-renewal or initiate differentiation. Heparan sulfate proteoglycans are macromolecules found on the cell surface and in the extracellular matrix. Acting as low-affinity receptors on the cell surface, heparan sulfate (HS) side chains modulate the functions of numerous growth factors and morphogens, having wide impact on the extracellular information received by cells. ES cells lacking HS fail to differentiate but can be induced to do so by adding heparin. ES cells defective in various components of the HS biosynthesis machinery, thus expressing differently flawed HS, exhibit lineage-specific effects. Here we discuss recent studies on the biological functions of HS in ES cell developmental processes. Since ES cells have significant potential applications in tissue/cell engineering for cell replacement therapies, understanding the functional mechanisms of HS in manipulating ES cell growth in vitro is of utmost importance, if the stem cell regenerative medicine from scientific fiction ever will be made real.
Collapse
Affiliation(s)
- Christoffer Tamm
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| | | | | |
Collapse
|
40
|
Smooth muscle specific deletion of Ndst1 leads to decreased vessel luminal area and no change in blood pressure in conscious mice. J Cardiovasc Transl Res 2012; 5:274-9. [PMID: 22555965 DOI: 10.1007/s12265-012-9369-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 04/19/2012] [Indexed: 12/22/2022]
Abstract
Heparan sulfate proteoglycans are abundant matrix and membrane molecules. Smooth muscle specific deletion of one heparan sulfate biosynthetic enzyme, N-deacetylase-N-sulfotransferase1 leads to decreased vascular smooth muscle cell proliferation, and vascular wall thickness. We hypothesized that this may lead to changes in blood pressure in conscious mice. Blood pressure was measured via telemetry in SM22αCre(+)Ndst1(-/-)(n = 4) and wild type (n = 8) mice. Aorta and thoracodorsal artery luminal area is significantly smaller in SM22αCre(+)Ndst1(-/-) (n = 4-8, P = 0.02, P = 0.0002) compared to wild type (n = 7) mice. Diurnal differences were observed in both cohorts for systolic, diastolic, mean arterial blood pressure, and heart rate (P < 0.001 from T test). No significant differences were found in the above parameters between the cohorts in either light or dark times using a linear mixed model. In conclusion, deletion of N-deacetylase-N-sulfotransferase1 in smooth muscle did not influence any of the blood pressure parameters measured despite significant decrease in aorta and thoracodorsal artery luminal area.
Collapse
|
41
|
Forsberg M, Holmborn K, Kundu S, Dagälv A, Kjellén L, Forsberg-Nilsson K. Undersulfation of heparan sulfate restricts differentiation potential of mouse embryonic stem cells. J Biol Chem 2012; 287:10853-62. [PMID: 22298785 PMCID: PMC3322844 DOI: 10.1074/jbc.m111.337030] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heparan sulfate proteoglycans, present on cell surfaces and in the extracellular matrix, interact with growth factors and morphogens to influence growth and differentiation of cells. The sulfation pattern of the heparan sulfate chains formed during biosynthesis in the Golgi compartment will determine the interaction potential of the proteoglycan. The glucosaminyl N-deacetylase/N-sulfotransferase (NDST) enzymes have a key role during biosynthesis, greatly influencing total sulfation of the heparan sulfate chains. The differentiation potential of mouse embryonic stem cells lacking both NDST1 and NDST2 was studied using in vitro differentiation protocols, expression of differentiation markers, and assessment of the ability of the cells to respond to growth factors. The results show that NDST1 and NDST2 are dispensable for mesodermal differentiation into osteoblasts but necessary for induction of adipocytes and neural cells. Gene expression analysis suggested a differentiation block at the primitive ectoderm stage. Also, GATA4, a primitive endoderm marker, was expressed by these cells. The addition of FGF4 or FGF2 together with heparin rescued the differentiation potential to neural progenitors and further to mature neurons and glia. Our results suggest that the embryonic stem cells lacking both NDST1 and NDST2, expressing a very low sulfated heparan sulfate, can take the initial step toward differentiation into all three germ layers. Except for their potential for mesodermal differentiation into osteoblasts, the cells are then arrested in a primitive ectoderm and/or endoderm stage.
Collapse
Affiliation(s)
- Maud Forsberg
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, 751 23 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
42
|
Otto NJ, Green DE, Masuko S, Mayer A, Tanner ME, Linhardt RJ, DeAngelis PL. Structure/function analysis of Pasteurella multocida heparosan synthases: toward defining enzyme specificity and engineering novel catalysts. J Biol Chem 2012; 287:7203-12. [PMID: 22235128 DOI: 10.1074/jbc.m111.311704] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Pasteurella multocida heparosan synthases, PmHS1 and PmHS2, are homologous (∼65% identical) bifunctional glycosyltransferase proteins found in Type D Pasteurella. These unique enzymes are able to generate the glycosaminoglycan heparosan by polymerizing sugars to form repeating disaccharide units from the donor molecules UDP-glucuronic acid (UDP-GlcUA) and UDP-N-acetylglucosamine (UDP-GlcNAc). Although these isozymes both generate heparosan, the catalytic phenotypes of these isozymes are quite different. Specifically, during in vitro synthesis, PmHS2 is better able to generate polysaccharide in the absence of exogenous acceptor (de novo synthesis) than PmHS1. Additionally, each of these enzymes is able to generate polysaccharide using unnatural sugar analogs in vitro, but they exhibit differences in the substitution patterns of the analogs they will employ. A series of chimeric enzymes has been generated consisting of various portions of both of the Pasteurella heparosan synthases in a single polypeptide chain. In vitro radiochemical sugar incorporation assays using these purified chimeric enzymes have shown that most of the constructs are enzymatically active, and some possess novel characteristics including the ability to produce nearly monodisperse polysaccharides with an expanded range of sugar analogs. Comparison of the kinetic properties and the sequences of the wild-type enzymes with the chimeric enzymes has enabled us to identify regions that may be responsible for some aspects of both donor binding specificity and acceptor usage. In combination with previous work, these approaches have enabled us to better understand the structure/function relationship of this unique family of glycosyltransferases.
Collapse
Affiliation(s)
- Nigel J Otto
- Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73126, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Dagälv A, Holmborn K, Kjellén L, Abrink M. Lowered expression of heparan sulfate/heparin biosynthesis enzyme N-deacetylase/n-sulfotransferase 1 results in increased sulfation of mast cell heparin. J Biol Chem 2011; 286:44433-40. [PMID: 22049073 DOI: 10.1074/jbc.m111.303891] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Deficiency of the heparan sulfate biosynthesis enzyme N-deacetylase/N-sulfotransferase 1 (NDST1) in mice causes severely disturbed heparan sulfate biosynthesis in all organs, whereas lack of NDST2 only affects heparin biosynthesis in mast cells (MCs). To investigate the individual and combined roles of NDST1 and NDST2 during MC development, in vitro differentiated MCs derived from mouse embryos and embryonic stem cells, respectively, have been studied. Whereas MC development will not occur in the absence of both NDST1 and NDST2, lack of NDST2 alone results in the generation of defective MCs. Surprisingly, the relative amount of heparin produced in NDST1(+/-) and NDST1(-/-) MCs is higher (≈30%) than in control MCs where ≈95% of the (35)S-labeled glycosaminoglycans produced is chondroitin sulfate. Lowered expression of NDST1 also results in a higher sulfate content of the heparin synthesized and is accompanied by increased levels of stored MC proteases. A model of the GAGosome, a hypothetical Golgi enzyme complex, is used to explain the results.
Collapse
Affiliation(s)
- Anders Dagälv
- Department of Medical Biochemistry and Microbiology, Uppsala University, and Biomedical Sciences and Veterinary Public Health, SLU, SE-751 23 Uppsala, Sweden
| | | | | | | |
Collapse
|
44
|
Sarrazin S, Lamanna WC, Esko JD. Heparan sulfate proteoglycans. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a004952. [PMID: 21690215 DOI: 10.1101/cshperspect.a004952] [Citation(s) in RCA: 1066] [Impact Index Per Article: 76.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Heparan sulfate proteoglycans are found at the cell surface and in the extracellular matrix, where they interact with a plethora of ligands. Over the last decade, new insights have emerged regarding the mechanism and biological significance of these interactions. Here, we discuss changing views on the specificity of protein-heparan sulfate binding and the activity of HSPGs as receptors and coreceptors. Although few in number, heparan sulfate proteoglycans have profound effects at the cellular, tissue, and organismal level.
Collapse
Affiliation(s)
- Stephane Sarrazin
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
45
|
Abstract
Heparan sulfate proteoglycans are found at the cell surface and in the extracellular matrix, where they interact with a plethora of ligands. Over the last decade, new insights have emerged regarding the mechanism and biological significance of these interactions. Here, we discuss changing views on the specificity of protein-heparan sulfate binding and the activity of HSPGs as receptors and coreceptors. Although few in number, heparan sulfate proteoglycans have profound effects at the cellular, tissue, and organismal level.
Collapse
Affiliation(s)
- Stephane Sarrazin
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
46
|
Thompson SM, Connell MG, van Kuppevelt TH, Xu R, Turnbull JE, Losty PD, Fernig DG, Jesudason EC. Structure and epitope distribution of heparan sulfate is disrupted in experimental lung hypoplasia: a glycobiological epigenetic cause for malformation? BMC DEVELOPMENTAL BIOLOGY 2011; 11:38. [PMID: 21672206 PMCID: PMC3127989 DOI: 10.1186/1471-213x-11-38] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 06/14/2011] [Indexed: 12/14/2022]
Abstract
BACKGROUND Heparan sulfate (HS) is present on the surface of virtually all mammalian cells and is a major component of the extracellular matrix (ECM), where it plays a pivotal role in cell-cell and cell-matrix cross-talk through its large interactome. Disruption of HS biosynthesis in mice results in neonatal death as a consequence of malformed lungs, indicating that HS is crucial for airway morphogenesis. Neonatal mortality (~50%) in newborns with congenital diaphragmatic hernia (CDH) is principally associated with lung hypoplasia and pulmonary hypertension. Given the importance of HS for lung morphogenesis, we investigated developmental changes in HS structure in normal and hypoplastic lungs using the nitrofen rat model of CDH and semi-synthetic bacteriophage ('phage) display antibodies, which identify distinct HS structures. RESULTS The pulmonary pattern of elaborated HS structures is developmentally regulated. For example, the HS4E4V epitope is highly expressed in sub-epithelial mesenchyme of E15.5 - E17.5 lungs and at a lower level in more distal mesenchyme. However, by E19.5, this epitope is expressed similarly throughout the lung mesenchyme.We also reveal abnormalities in HS fine structure and spatiotemporal distribution of HS epitopes in hypoplastic CDH lungs. These changes involve structures recognised by key growth factors, FGF2 and FGF9. For example, the EV3C3V epitope, which was abnormally distributed in the mesenchyme of hypoplastic lungs, is recognised by FGF2. CONCLUSIONS The observed spatiotemporal changes in HS structure during normal lung development will likely reflect altered activities of many HS-binding proteins regulating lung morphogenesis. Abnormalities in HS structure and distribution in hypoplastic lungs can be expected to perturb HS:protein interactions, ECM microenvironments and crucial epithelial-mesenchyme communication, which may contribute to lung dysmorphogenesis. Indeed, a number of epitopes correlate with structures recognised by FGFs, suggesting a functional consequence of the observed changes in HS in these lungs. These results identify a novel, significant molecular defect in hypoplastic lungs and reveals HS as a potential contributor to hypoplastic lung development in CDH. Finally, these results afford the prospect that HS-mimetic therapeutics could repair defective signalling in hypoplastic lungs, improve lung growth, and reduce CDH mortality.
Collapse
Affiliation(s)
- Sophie M Thompson
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Sheng J, Liu R, Xu Y, Liu J. The dominating role of N-deacetylase/N-sulfotransferase 1 in forming domain structures in heparan sulfate. J Biol Chem 2011; 286:19768-76. [PMID: 21454625 PMCID: PMC3103355 DOI: 10.1074/jbc.m111.224311] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2011] [Revised: 03/06/2011] [Indexed: 02/06/2023] Open
Abstract
Heparan sulfate (HS) is a highly sulfated polysaccharide participated in essential physiological functions from regulating cell growth to blood coagulation. HS contains sulfated domains known as N-S domains and low sulfate domains known as N-Ac domains. The distribution of the domain structures is likely governed by the action of glucosaminyl N-deacetylase/N-sulfotransferase (NDST). Here, we sought to determine the substrate specificity of NDST using model substrates and recombinant NDST protein. We discovered that NDST-1 carries out the modification in a highly ordered fashion. The enzyme sulfates the substrate from the nonreducing end toward the reducing end consecutively, leading to the product with a cluster of N-sulfo glucosamine residues. Furthermore, a preexisting N-sulfo glucosamine residue prevents the action of NDST-1 at the residues immediately located at the nonreducing end, allowing the formation of an N-Ac domain. Our results provide the long sought evidence for understanding the formation of sulfated versus nonsulfated domains in the HS isolated from cells and tissues. The study demonstrates the regulating role of NDST-1 in mapping the sulfation patterns of HS.
Collapse
Affiliation(s)
- Juzheng Sheng
- From the Division of Medicinal Chemistry and Natural Products, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Renpeng Liu
- From the Division of Medicinal Chemistry and Natural Products, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Yongmei Xu
- From the Division of Medicinal Chemistry and Natural Products, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Jian Liu
- From the Division of Medicinal Chemistry and Natural Products, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
48
|
Whitelock J, Melrose J. Heparan sulfate proteoglycans in healthy and diseased systems. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 3:739-51. [PMID: 21462353 DOI: 10.1002/wsbm.149] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Heparin and heparan sulfate (HS) are glycosaminoglycans (GAGs) that are synthesized in the tissues and organs of mammals. They are synthesized and attached to a core protein as proteoglycans through serine-glycine concensus motifs along the core protein. These GAGs are linear polysaccharides composed of repeating disaccharide saccharide units that are variously modified along their length. As a consequence of these modifications naturally occurring heparin and HS are extremely heterogeneous in their structures. A diverse range of proteins bind heparin and HS. The types of proteins that bind are dictated by the structure of the HS or heparin chains with which they are interacting. Heparan sulfates play major roles in tissue development and in maintaining homeostasis within healthy individuals. Recent genetic studies illustrate that alterations in their structural organization can have important consequences often giving rise to, or directly causing, a disease situation. A greater understanding of the repertoire of proteins with which heparin and HS interact and the diseases that can be caused by perturbations in the structures of heparin and HS proteoglycan may provide insights into possible therapeutic interventions. These issues are discussed with a focus on musculoskeletal phenotypes and diseases.
Collapse
Affiliation(s)
- John Whitelock
- Graduate School of Biomedical Engineering, The University of New South Wales, Kensington, New South Wales, Australia.
| | | |
Collapse
|
49
|
Garcia CM, Huang J, Madakashira BP, Liu Y, Rajagopal R, Dattilo L, Robinson ML, Beebe DC. The function of FGF signaling in the lens placode. Dev Biol 2011; 351:176-85. [PMID: 21223962 DOI: 10.1016/j.ydbio.2011.01.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 12/30/2010] [Accepted: 01/04/2011] [Indexed: 10/18/2022]
Abstract
Previous studies suggested that FGF signaling is important for lens formation. However, the times at which FGFs act to promote lens formation, the FGFs that are involved, the cells that secrete them and the mechanisms by which FGF signaling may promote lens formation are not known. We found that transcripts encoding several FGF ligands and the four classical FGF receptors are detectable in the lens-forming ectoderm at the time of lens induction. Conditional deletion of Fgfr1 and Fgfr2 from this tissue resulted in the formation of small lens rudiments that soon degenerated. Lens placodes lacking Fgfr1 and 2 were thinner than in wild-type embryos. Deletion of Fgfr2 increased cell death from the initiation of placode formation and concurrent deletion of Fgfr1 enhanced this phenotype. Fgfr1/2 conditional knockout placode cells expressed lower levels of proteins known to be regulated by FGF receptor signaling, but proteins known to be important for lens formation were present at normal levels in the remaining placode cells, including the transcription factors Pax6, Sox2 and FoxE3 and the lens-preferred protein αA-crystallin. Previous studies identified a genetic interaction between BMP and FGF signaling in lens formation and conditional deletion of Bmpr1a caused increased cell death in the lens placode, resulting in the formation of smaller lenses. In the present study, conditional deletion of both Bmpr1a and Fgfr2 increased cell death beyond that seen in Fgfr2(CKO) placodes and prevented lens formation. These results suggest that the primary role of autocrine or paracrine FGF signaling is to provide essential survival signals to lens placode cells. Because apoptosis was already increased at the onset of placode formation in Fgfr1/2 conditional knockout placode cells, FGF signaling was functionally absent during the period of lens induction by the optic vesicle. Since the expression of proteins required for lens formation was not altered in the knockout placode cells, we can conclude that FGF signaling from the optic vesicle is not required for lens induction.
Collapse
Affiliation(s)
- Claudia M Garcia
- Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Kramer KL. Specific sides to multifaceted glycosaminoglycans are observed in embryonic development. Semin Cell Dev Biol 2010; 21:631-7. [PMID: 20599516 PMCID: PMC2923045 DOI: 10.1016/j.semcdb.2010.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 06/21/2010] [Accepted: 06/24/2010] [Indexed: 11/19/2022]
Abstract
Ubiquitously found in the extracellular matrix and attached to the surface of most cells, glycosaminoglycans (GAGs) mediate many intercellular interactions. Originally described in 1889 as the primary carbohydrate in cartilage and then in 1916 as a coagulation inhibitor from liver, various GAGs have since been identified as key regulators of normal physiology. GAGs are critical mediators of differentiation, migration, tissue morphogenesis, and organogenesis during embryonic development. While GAGs are simple polysaccharide chains, many GAGs acquire a considerable degree of complexity by extensive modifications involving sulfation and epimerization. Embryos that lack specific GAG modifying enzymes have distinct developmental defects, illuminating the importance of GAG complexity. Revealing how these complex molecules specifically function in the embryo has often required additional approaches, the results of which suggest that GAG modifications might instructively mediate embryonic development.
Collapse
Affiliation(s)
- Kenneth L Kramer
- Genetics and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1583, USA.
| |
Collapse
|