1
|
Daniel-Mozo M, Rombolá-Caldentey B, Mendoza I, Ragel P, De Luca A, Carranco R, Alcaide AM, Ausili A, Cubero B, Schumacher K, Quintero FJ, Albert A, Pardo JM. The vacuolar K +/H + exchangers and calmodulin-like CML18 constitute a pH-sensing module that regulates K + status in Arabidopsis. SCIENCE ADVANCES 2024; 10:eadp7658. [PMID: 39536104 PMCID: PMC11559620 DOI: 10.1126/sciadv.adp7658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024]
Abstract
Shifts in cytosolic pH have been recognized as key signaling events and mounting evidence supports the interdependence between H+ and Ca2+ signaling in eukaryotic cells. Among the cellular pH-stats, K+/H+ exchange at various membranes is paramount in plant cells. Vacuolar K+/H+ exchangers of the NHX (Na+,K+/H+ exchanger) family control luminal pH and, together with K+ and H+ transporters at the plasma membrane, have been suggested to also regulate cytoplasmic pH. We show the regulation of vacuolar K+/H+ exchange by cytoplasmic pH and the calmodulin-like protein CML18 in Arabidopsis. The crystal structure and physicochemical properties of CML18 indicate that this protein senses pH shifts. Interaction of CML18 with tonoplast exchangers NHX1 and NHX2 was favored at acidic pH, a physiological condition elicited by K+ starvation in Arabidopsis roots, whereas excess K+ produced cytoplasmic alkalinization and CML18 dissociation. These results imply that the pH-responsive NHX-CML18 module is an essential component of the cellular K+- and pH-stats.
Collapse
Affiliation(s)
- Miguel Daniel-Mozo
- Instituto de Química Física Blas Cabrera, Consejo Superior de Investigaciones Científicas, Madrid 28006, Spain
| | - Belén Rombolá-Caldentey
- Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Cientificas and University of Seville, Seville 41092, Spain
| | - Imelda Mendoza
- Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Cientificas and University of Seville, Seville 41092, Spain
| | - Paula Ragel
- Centre for Organismal Studies, University of Heidelberg, Heidelberg 69120, Germany
| | - Anna De Luca
- Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Cientificas and University of Seville, Seville 41092, Spain
| | - Raul Carranco
- Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Cientificas and University of Seville, Seville 41092, Spain
| | - Ana M. Alcaide
- Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Cientificas and University of Seville, Seville 41092, Spain
| | - Alessio Ausili
- Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Cientificas and University of Seville, Seville 41092, Spain
| | - Beatriz Cubero
- Instituto de Recursos Naturales y Agrobiología, Consejo Superior de Investigaciones Cientificas, Seville 41012, Spain
| | - Karin Schumacher
- Centre for Organismal Studies, University of Heidelberg, Heidelberg 69120, Germany
| | - Francisco J. Quintero
- Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Cientificas and University of Seville, Seville 41092, Spain
| | - Armando Albert
- Instituto de Química Física Blas Cabrera, Consejo Superior de Investigaciones Científicas, Madrid 28006, Spain
| | - José M. Pardo
- Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Cientificas and University of Seville, Seville 41092, Spain
| |
Collapse
|
2
|
Salazar OR, Chen K, Melino VJ, Reddy MP, Hřibová E, Čížková J, Beránková D, Arciniegas Vega JP, Cáceres Leal LM, Aranda M, Jaremko L, Jaremko M, Fedoroff NV, Tester M, Schmöckel SM. SOS1 tonoplast neo-localization and the RGG protein SALTY are important in the extreme salinity tolerance of Salicornia bigelovii. Nat Commun 2024; 15:4279. [PMID: 38769297 PMCID: PMC11106269 DOI: 10.1038/s41467-024-48595-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/07/2024] [Indexed: 05/22/2024] Open
Abstract
The identification of genes involved in salinity tolerance has primarily focused on model plants and crops. However, plants naturally adapted to highly saline environments offer valuable insights into tolerance to extreme salinity. Salicornia plants grow in coastal salt marshes, stimulated by NaCl. To understand this tolerance, we generated genome sequences of two Salicornia species and analyzed the transcriptomic and proteomic responses of Salicornia bigelovii to NaCl. Subcellular membrane proteomes reveal that SbiSOS1, a homolog of the well-known SALT-OVERLY-SENSITIVE 1 (SOS1) protein, appears to localize to the tonoplast, consistent with subcellular localization assays in tobacco. This neo-localized protein can pump Na+ into the vacuole, preventing toxicity in the cytosol. We further identify 11 proteins of interest, of which SbiSALTY, substantially improves yeast growth on saline media. Structural characterization using NMR identified it as an intrinsically disordered protein, localizing to the endoplasmic reticulum in planta, where it can interact with ribosomes and RNA, stabilizing or protecting them during salt stress.
Collapse
Affiliation(s)
- Octavio R Salazar
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Ke Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Vanessa J Melino
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Muppala P Reddy
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Eva Hřibová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 77900, Olomouc, Czech Republic
| | - Jana Čížková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 77900, Olomouc, Czech Republic
| | - Denisa Beránková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 77900, Olomouc, Czech Republic
| | - Juan Pablo Arciniegas Vega
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Lina María Cáceres Leal
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Manuel Aranda
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Lukasz Jaremko
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Mariusz Jaremko
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Nina V Fedoroff
- Department of Biology, Penn State University, University Park, PA, 16801, US
| | - Mark Tester
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| | - Sandra M Schmöckel
- Department Physiology of Yield Stability, Institute of Crop Science, University of Hohenheim, Fruwirthstr. 21, 70599, Stuttgart, Germany
| |
Collapse
|
3
|
Blatt MR. A charged existence: A century of transmembrane ion transport in plants. PLANT PHYSIOLOGY 2024; 195:79-110. [PMID: 38163639 PMCID: PMC11060664 DOI: 10.1093/plphys/kiad630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/01/2023] [Indexed: 01/03/2024]
Abstract
If the past century marked the birth of membrane transport as a focus for research in plants, the past 50 years has seen the field mature from arcane interest to a central pillar of plant physiology. Ion transport across plant membranes accounts for roughly 30% of the metabolic energy consumed by a plant cell, and it underpins virtually every aspect of plant biology, from mineral nutrition, cell expansion, and development to auxin polarity, fertilization, plant pathogen defense, and senescence. The means to quantify ion flux through individual transporters, even single channel proteins, became widely available as voltage clamp methods expanded from giant algal cells to the fungus Neurospora crassa in the 1970s and the cells of angiosperms in the 1980s. Here, I touch briefly on some key aspects of the development of modern electrophysiology with a focus on the guard cells of stomata, now without dispute the premier plant cell model for ion transport and its regulation. Guard cells have proven to be a crucible for many technical and conceptual developments that have since emerged into the mainstream of plant science. Their study continues to provide fundamental insights and carries much importance for the global challenges that face us today.
Collapse
Affiliation(s)
- Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| |
Collapse
|
4
|
Graus D, Li K, Rathje JM, Ding M, Krischke M, Müller MJ, Cuin TA, Al-Rasheid KAS, Scherzer S, Marten I, Konrad KR, Hedrich R. Tobacco leaf tissue rapidly detoxifies direct salt loads without activation of calcium and SOS signaling. THE NEW PHYTOLOGIST 2023; 237:217-231. [PMID: 36128659 DOI: 10.1111/nph.18501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Salt stress is a major abiotic stress, responsible for declining agricultural productivity. Roots are regarded as hubs for salt detoxification, however, leaf salt concentrations may exceed those of roots. How mature leaves manage acute sodium chloride (NaCl) stress is mostly unknown. To analyze the mechanisms for NaCl redistribution in leaves, salt was infiltrated into intact tobacco leaves. It initiated pronounced osmotically-driven leaf movements. Leaf downward movement caused by hydro-passive turgor loss reached a maximum within 2 h. Salt-driven cellular water release was accompanied by a transient change in membrane depolarization but not an increase in cytosolic calcium ion (Ca2+ ) level. Nonetheless, only half an hour later, the leaves had completely regained turgor. This recovery phase was characterized by an increase in mesophyll cell plasma membrane hydrogen ion (H+ ) pumping, a salt uptake-dependent cytosolic alkalization, and a return of the apoplast osmolality to pre-stress levels. Although, transcript numbers of abscisic acid- and Salt Overly Sensitive pathway elements remained unchanged, salt adaptation depended on the vacuolar H+ /Na+ -exchanger NHX1. Altogether, tobacco leaves can detoxify sodium ions (Na+ ) rapidly even under massive salt loads, based on pre-established posttranslational settings and NHX1 cation/H+ antiport activity. Unlike roots, signaling and processing of salt stress in tobacco leaves does not depend on Ca2+ signaling.
Collapse
Affiliation(s)
- Dorothea Graus
- Institute for Molecular Plant Physiology and Biophysics, University of Wuerzburg, Julius von-Sachs Platz 2, D-97082, Würzburg, Germany
| | - Kunkun Li
- Institute for Molecular Plant Physiology and Biophysics, University of Wuerzburg, Julius von-Sachs Platz 2, D-97082, Würzburg, Germany
| | - Jan M Rathje
- Institute for Molecular Plant Physiology and Biophysics, University of Wuerzburg, Julius von-Sachs Platz 2, D-97082, Würzburg, Germany
| | - Meiqi Ding
- Institute for Molecular Plant Physiology and Biophysics, University of Wuerzburg, Julius von-Sachs Platz 2, D-97082, Würzburg, Germany
| | - Markus Krischke
- Institute for Pharmaceutical Biology, University of Wuerzburg, Julius von-Sachs Platz 2, D-97082, Würzburg, Germany
| | - Martin J Müller
- Institute for Pharmaceutical Biology, University of Wuerzburg, Julius von-Sachs Platz 2, D-97082, Würzburg, Germany
| | - Tracey Ann Cuin
- Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, Tas., 7005, Australia
| | - Khaled A S Al-Rasheid
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Sönke Scherzer
- Institute for Molecular Plant Physiology and Biophysics, University of Wuerzburg, Julius von-Sachs Platz 2, D-97082, Würzburg, Germany
| | - Irene Marten
- Institute for Molecular Plant Physiology and Biophysics, University of Wuerzburg, Julius von-Sachs Platz 2, D-97082, Würzburg, Germany
| | - Kai R Konrad
- Institute for Molecular Plant Physiology and Biophysics, University of Wuerzburg, Julius von-Sachs Platz 2, D-97082, Würzburg, Germany
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, University of Wuerzburg, Julius von-Sachs Platz 2, D-97082, Würzburg, Germany
| |
Collapse
|
5
|
Run Y, Cheng X, Dou W, Dong Y, Zhang Y, Li B, Liu T, Xu H. Wheat potassium transporter TaHAK13 mediates K + absorption and maintains potassium homeostasis under low potassium stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1103235. [PMID: 36618640 PMCID: PMC9816385 DOI: 10.3389/fpls.2022.1103235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Potassium (K) is an essential nutrient for plant physiological processes. Members of the HAK/KUP/KT gene family act as potassium transporters, and the family plays an important role in potassium uptake and utilization in plants. In this study, the TaHAK13 gene was cloned from wheat and its function characterized. Real-time quantitative PCR (RT-qPCR) revealed that TaHAK13 expression was induced by environmental stress and up-regulated under drought (PEG6000), low potassium (LK), and salt (NaCl) stress. GUS staining indicated that TaHAK13 was mainly expressed in the leaf veins, stems, and root tips in Arabidopsis thaliana, and expression varied with developmental stage. TaHAK13 mediated K+ absorption when heterologously expressed in yeast CY162 strains, and its activity was slightly stronger than that of a TaHAK1 positive control. Subcellular localization analysis illustrated that TaHAK13 was located to the plasma membrane. When c(K+) ≤0.01 mM, the root length and fresh weight of TaHAK13 transgenic lines (athak5/TaHAK13, Col/TaHAK13) were significantly higher than those of non-transgenic lines (athak5, Col). Non-invasive micro-test technology (NMT) indicated that the net K influx of the transgenic lines was also higher than that of the non-transgenic lines. This suggests that TaHAK13 promotes K+ absorption, especially in low potassium media. Membrane-based yeast two-hybrid (MbY2H) and luciferase complementation assays (LCA) showed that TaHAK13 interacted with TaNPF5.10 and TaNPF6.3. Our findings have helped to clarify the biological functions of TaHAK13 and established a theoretical framework to dissect its function in wheat.
Collapse
|
6
|
Cao Y, Song H, Zhang L. New Insight into Plant Saline-Alkali Tolerance Mechanisms and Application to Breeding. Int J Mol Sci 2022; 23:ijms232416048. [PMID: 36555693 PMCID: PMC9781758 DOI: 10.3390/ijms232416048] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/02/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Saline-alkali stress is a widespread adversity that severely affects plant growth and productivity. Saline-alkaline soils are characterized by high salt content and high pH values, which simultaneously cause combined damage from osmotic stress, ionic toxicity, high pH and HCO3-/CO32- stress. In recent years, many determinants of salt tolerance have been identified and their regulatory mechanisms are fairly well understood. However, the mechanism by which plants respond to comprehensive saline-alkali stress remains largely unknown. This review summarizes recent advances in the physiological, biochemical and molecular mechanisms of plants tolerance to salinity or salt- alkali stress. Focused on the progress made in elucidating the regulation mechanisms adopted by plants in response to saline-alkali stress and present some new views on the understanding of plants in the face of comprehensive stress. Plants generally promote saline-alkali tolerance by maintaining pH and Na+ homeostasis, while the plants responding to HCO3-/CO32- stress are not exactly the same as high pH stress. We proposed that pH-tolerant or sensitive plants have evolved distinct mechanisms to adapt to saline-alkaline stress. Finally, we highlight the areas that require further research to reveal the new components of saline-alkali tolerance in plants and present the current and potential application of key determinants in breed improvement and molecular breeding.
Collapse
|
7
|
Jin T, An J, Xu H, Chen J, Pan L, Zhao R, Wang N, Gai J, Li Y. A soybean sodium/hydrogen exchanger GmNHX6 confers plant alkaline salt tolerance by regulating Na +/K + homeostasis. FRONTIERS IN PLANT SCIENCE 2022; 13:938635. [PMID: 36204047 PMCID: PMC9531905 DOI: 10.3389/fpls.2022.938635] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Alkaline soil has a high pH due to carbonate salts and usually causes more detrimental effects on crop growth than saline soil. Sodium hydrogen exchangers (NHXs) are pivotal regulators of cellular Na+/K+ and pH homeostasis, which is essential for salt tolerance; however, their role in alkaline salt tolerance is largely unknown. Therefore, in this study, we investigated the function of a soybean NHX gene, GmNHX6, in plant response to alkaline salt stress. GmNHX6 encodes a Golgi-localized sodium/hydrogen exchanger, and its transcript abundance is more upregulated in alkaline salt tolerant soybean variety in response to NaHCO3 stress. Ectopic expression of GmNHX6 in Arabidopsis enhanced alkaline salt tolerance by maintaining high K+ content and low Na+/K+ ratio. Overexpression of GmNHX6 also improved soybean tolerance to alkaline salt stress. A single nucleotide polymorphism in the promoter region of NHX6 is associated with the alkaline salt tolerance in soybean germplasm. A superior promoter of GmNHX6 was isolated from an alkaline salt tolerant soybean variety, which showed stronger activity than the promoter from an alkaline salt sensitive soybean variety in response to alkali stress, by luciferase transient expression assays. Our results suggested soybean NHX6 gene plays an important role in plant tolerance to alkaline salt stress.
Collapse
|
8
|
Xu Y, Fu X. Reprogramming of Plant Central Metabolism in Response to Abiotic Stresses: A Metabolomics View. Int J Mol Sci 2022; 23:5716. [PMID: 35628526 PMCID: PMC9143615 DOI: 10.3390/ijms23105716] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 12/15/2022] Open
Abstract
Abiotic stresses rewire plant central metabolism to maintain metabolic and energy homeostasis. Metabolites involved in the plant central metabolic network serve as a hub for regulating carbon and energy metabolism under various stress conditions. In this review, we introduce recent metabolomics techniques used to investigate the dynamics of metabolic responses to abiotic stresses and analyze the trend of publications in this field. We provide an updated overview of the changing patterns in central metabolic pathways related to the metabolic responses to common stresses, including flooding, drought, cold, heat, and salinity. We extensively review the common and unique metabolic changes in central metabolism in response to major abiotic stresses. Finally, we discuss the challenges and some emerging insights in the future application of metabolomics to study plant responses to abiotic stresses.
Collapse
Affiliation(s)
- Yuan Xu
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Xinyu Fu
- Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
9
|
Pabuayon ICM, Jiang J, Qian H, Chung JS, Shi H. Gain-of-function mutations of AtNHX1 suppress sos1 salt sensitivity and improve salt tolerance in Arabidopsis. STRESS BIOLOGY 2021; 1:14. [PMID: 37676545 PMCID: PMC10441915 DOI: 10.1007/s44154-021-00014-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/31/2021] [Indexed: 09/08/2023]
Abstract
Soil salinity severely hampers agricultural productivity. Under salt stress, excess Na+ accumulation causes cellular damage and plant growth retardation, and membrane Na+ transporters play central roles in Na+ uptake and exclusion to mitigate these adverse effects. In this study, we performed sos1 suppressor mutant (named sup) screening to uncover potential genetic interactors of SOS1 and additional salt tolerance mechanisms. Map-based cloning and sequencing identified a group of mutants harboring dominant gain-of-function mutations in the vacuolar Na+/H+ antiporter gene AtNHX1. The gain-of-function variants of AtNHX1 showed enhanced transporter activities in yeast cells and increased salt tolerance in Arabidopsis wild type plants. Ion content measurements indicated that at the cellular level, these gain-of-function mutations resulted in increased cellular Na+ accumulation likely due to enhanced vacuolar Na+ sequestration. However, the gain-of-function suppressor mutants showed reduced shoot Na+ but increased root Na+ accumulation under salt stress, indicating a role of AtNHX1 in limiting Na+ translocation from root to shoot. We also identified another group of sos1 suppressors with loss-of-function mutations in the Na+ transporter gene AtHKT1. Loss-of-function mutations in AtHKT1 and gain-of-function mutations in AtNHX1 additively suppressed sos1 salt sensitivity, which indicates that the three transporters, SOS1, AtNHX1 and AtHKT1 function independently but coordinately in controlling Na+ homeostasis and salt tolerance in Arabidopsis. Our findings provide valuable information about the target amino acids in NHX1 for gene editing to improve salt tolerance in crops.
Collapse
Affiliation(s)
| | - Jiafu Jiang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79424, USA
- Current address: State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongjia Qian
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79424, USA
| | - Jung-Sung Chung
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79424, USA
- Current address: Department of Agronomy, Gyeongsang National University, Jinju, 52828, South Korea
| | - Huazhong Shi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79424, USA.
| |
Collapse
|
10
|
Kong M, Luo M, Li J, Feng Z, Zhang Y, Song W, Zhang R, Wang R, Wang Y, Zhao J, Tao Y, Zhao Y. Genome-wide identification, characterization, and expression analysis of the monovalent cation-proton antiporter superfamily in maize, and functional analysis of its role in salt tolerance. Genomics 2021; 113:1940-1951. [PMID: 33895282 DOI: 10.1016/j.ygeno.2021.04.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/11/2021] [Accepted: 04/19/2021] [Indexed: 11/16/2022]
Abstract
Na+, K+ and pH homeostasis are important for plant life and they are controlled by the monovalent cation proton antiporter (CPA) superfamily. The roles of ZmCPAs in salt tolerance are not fully elucidated. In this study, we identified 35 ZmCPAs comprising 13 Na+/H+ exchangers (ZmNHXs), 16 cation/H+ exchanger (ZmCHXs), and 6 K+ efflux antiporters (ZmKEAs). All ZmCPAs have transmembrane domains and most of them were localized to plasma membrane or tonoplast. ZmCHXs were specifically highly expressed in anthers, while ZmNHXs and ZmKEAs showed high expression in various tissues. ZmNHX5 and ZmKEA2 were up-regulated in maize seedlings under both NaCl and KCl stresses. Yeast complementation experiments revealed the roles of ZmNHX5, ZmKEA2 in NaCl tolerance. Analysis of the maize mutants further validated the salt tolerance functions of ZmNHX5 and ZmKEA2. Our study highlights comprehensive information of ZmCPAs and provides new gene targets for salt tolerance maize breeding.
Collapse
Affiliation(s)
- Mengsi Kong
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, Hebei, China; Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100079, China
| | - Meijie Luo
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100079, China
| | - Jingna Li
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100079, China
| | - Zhen Feng
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100079, China; Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yunxia Zhang
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100079, China
| | - Wei Song
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100079, China
| | - Ruyang Zhang
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100079, China
| | - Ronghuan Wang
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100079, China
| | - Yuandong Wang
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100079, China
| | - Jiuran Zhao
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100079, China.
| | - Yongsheng Tao
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, Hebei, China.
| | - Yanxin Zhao
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100079, China.
| |
Collapse
|
11
|
Klejchova M, Silva-Alvim FAL, Blatt MR, Alvim JC. Membrane voltage as a dynamic platform for spatiotemporal signaling, physiological, and developmental regulation. PLANT PHYSIOLOGY 2021; 185:1523-1541. [PMID: 33598675 PMCID: PMC8133626 DOI: 10.1093/plphys/kiab032] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/11/2021] [Indexed: 05/10/2023]
Abstract
Membrane voltage arises from the transport of ions through ion-translocating ATPases, ion-coupled transport of solutes, and ion channels, and is an integral part of the bioenergetic "currency" of the membrane. The dynamics of membrane voltage-so-called action, systemic, and variation potentials-have also led to a recognition of their contributions to signal transduction, both within cells and across tissues. Here, we review the origins of our understanding of membrane voltage and its place as a central element in regulating transport and signal transmission. We stress the importance of understanding voltage as a common intermediate that acts both as a driving force for transport-an electrical "substrate"-and as a product of charge flux across the membrane, thereby interconnecting all charge-carrying transport across the membrane. The voltage interconnection is vital to signaling via second messengers that rely on ion flux, including cytosolic free Ca2+, H+, and the synthesis of reactive oxygen species generated by integral membrane, respiratory burst oxidases. These characteristics inform on the ways in which long-distance voltage signals and voltage oscillations give rise to unique gene expression patterns and influence physiological, developmental, and adaptive responses such as systemic acquired resistance to pathogens and to insect herbivory.
Collapse
Affiliation(s)
- Martina Klejchova
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Fernanda A L Silva-Alvim
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
- Author for communication:
| | - Jonas Chaves Alvim
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
12
|
Karim R, Bouchra B, Fatima G, Abdelkarim FM, Laila S. Plant NHX Antiporters: From Function to Biotechnological Application, with Case Study. Curr Protein Pept Sci 2020; 22:60-73. [PMID: 33143624 DOI: 10.2174/1389203721666201103085151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/17/2020] [Accepted: 09/06/2020] [Indexed: 11/22/2022]
Abstract
Salt stress is one of the major abiotic stresses that negatively affect crops worldwide. Plants have evolved a series of mechanisms to cope with the limitations imposed by salinity. Molecular mechanisms, including the upregulation of cation transporters such as the Na+/H+ antiporters, are one of the processes adopted by plants to survive in saline environments. NHX antiporters are involved in salt tolerance, development, cell expansion, growth performance and disease resistance of plants. They are integral membrane proteins belonging to the widely distributed CPA1 sub-group of monovalent cation/H+ antiporters and provide an important strategy for ionic homeostasis in plants under saline conditions. These antiporters are known to regulate the exchange of sodium and hydrogen ions across the membrane and are ubiquitous to all eukaryotic organisms. With the genomic approach, previous studies reported that a large number of proteins encoding Na+/H+ antiporter genes have been identified in many plant species and successfully introduced into desired species to create transgenic crops with enhanced tolerance to multiple stresses. In this review, we focus on plant antiporters and all the aspects from their structure, classification, function to their in silico analysis. On the other hand, we performed a genome-wide search to identify the predicted NHX genes in Argania spinosa L. We highlighted for the first time the presence of four putative NHX (AsNHX1-4) from the Argan tree genome, whose phylogenetic analysis revealed their classification in one distinct vacuolar cluster. The essential information of the four putative NHXs, such as gene structure, subcellular localization and transmembrane domains was analyzed.
Collapse
Affiliation(s)
- Rabeh Karim
- Team of Microbiology and Molecular Biology, Plant and Microbial Biotechnology, Biodiversity and Environment Research Center, Faculty of Sciences, Mohammed V University, Rabat, B.P. 1014 RP, Morocco
| | - Belkadi Bouchra
- Team of Microbiology and Molecular Biology, Plant and Microbial Biotechnology, Biodiversity and Environment Research Center, Faculty of Sciences, Mohammed V University, Rabat, B.P. 1014 RP, Morocco
| | - Gaboun Fatima
- Plant Breeding Unit, National Institute for Agronomic Research, Regional Center of Rabat, B.P. 6356-Rabat-Instituts, Morocco
| | - Filali-Maltouf Abdelkarim
- Team of Microbiology and Molecular Biology, Plant and Microbial Biotechnology, Biodiversity and Environment Research Center, Faculty of Sciences, Mohammed V University, Rabat, B.P. 1014 RP, Morocco
| | - Sbabou Laila
- Team of Microbiology and Molecular Biology, Plant and Microbial Biotechnology, Biodiversity and Environment Research Center, Faculty of Sciences, Mohammed V University, Rabat, B.P. 1014 RP, Morocco
| |
Collapse
|
13
|
Isayenkov SV, Dabravolski SA, Pan T, Shabala S. Phylogenetic Diversity and Physiological Roles of Plant Monovalent Cation/H + Antiporters. FRONTIERS IN PLANT SCIENCE 2020; 11:573564. [PMID: 33123183 PMCID: PMC7573149 DOI: 10.3389/fpls.2020.573564] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/02/2020] [Indexed: 05/23/2023]
Abstract
The processes of plant nutrition, stress tolerance, plant growth, and development are strongly dependent on transport of mineral nutrients across cellular membranes. Plant membrane transporters are key components of these processes. Among various membrane transport proteins, the monovalent cation proton antiporter (CPA) superfamily mediates a broad range of physiological and developmental processes such as ion and pH homeostasis, development of reproductive organs, chloroplast operation, and plant adaptation to drought and salt stresses. CPA family includes plasma membrane-bound Na+/H+ exchanger (NhaP) and intracellular Na+/H+ exchanger NHE (NHX), K+ efflux antiporter (KEA), and cation/H+ exchanger (CHX) family proteins. In this review, we have completed the phylogenetic inventory of CPA transporters and undertaken a comprehensive evolutionary analysis of their development. Compared with previous studies, we have significantly extended the range of plant species, including green and red algae and Acrogymnospermae into phylogenetic analysis. Our data suggest that the multiplication and complexation of CPA isoforms during evolution is related to land colonisation by higher plants and associated with an increase of different tissue types and development of reproductive organs. The new data extended the number of clades for all groups of CPAs, including those for NhaP/SOS, NHE/NHX, KEA, and CHX. We also critically evaluate the latest findings on the biological role, physiological functions and regulation of CPA transporters in relation to their structure and phylogenetic position. In addition, the role of CPA members in plant tolerance to various abiotic stresses is summarized, and the future priority directions for CPA studies in plants are discussed.
Collapse
Affiliation(s)
- Stanislav V. Isayenkov
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
- Department of Plant Food Products and Biofortification, Institute of Food Biotechnology and Genomics NAS of Ukraine, Kyiv, Ukraine
| | - Siarhei A. Dabravolski
- Department of Clinical Diagnostics, Vitebsk State Academy of Veterinary Medicine [UO VGAVM], Vitebsk, Belarus
| | - Ting Pan
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
14
|
Wang Z, Hong Y, Zhu G, Li Y, Niu Q, Yao J, Hua K, Bai J, Zhu Y, Shi H, Huang S, Zhu JK. Loss of salt tolerance during tomato domestication conferred by variation in a Na + /K + transporter. EMBO J 2020; 39:e103256. [PMID: 32134151 DOI: 10.15252/embj.2019103256] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 11/09/2022] Open
Abstract
Domestication has resulted in reduced salt tolerance in tomato. To identify the genetic components causing this deficiency, we performed a genome-wide association study (GWAS) for root Na+ /K+ ratio in a population consisting of 369 tomato accessions with large natural variations. The most significant variations associated with root Na+ /K+ ratio were identified within the gene SlHAK20 encoding a member of the clade IV HAK/KUP/KT transporters. We further found that SlHAK20 transports Na+ and K+ and regulates Na+ and K+ homeostasis under salt stress conditions. A variation in the coding sequence of SlHAK20 was found to be the causative variant associated with Na+ /K+ ratio and confer salt tolerance in tomato. Knockout mutations in tomato SlHAK20 and the rice homologous genes resulted in hypersensitivity to salt stress. Together, our study uncovered a previously unknown molecular mechanism of salt tolerance responsible for the deficiency in salt tolerance in cultivated tomato varieties. Our findings provide critical information for molecular breeding to improve salt tolerance in tomato and other crops.
Collapse
Affiliation(s)
- Zhen Wang
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yechun Hong
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Guangtao Zhu
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,The AGISCAAS-YNNU Joint Academy of Potato Sciences, Yunnan Normal University, Kunming, China
| | - Yumei Li
- The AGISCAAS-YNNU Joint Academy of Potato Sciences, Yunnan Normal University, Kunming, China
| | - Qingfeng Niu
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Juanjuan Yao
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Kai Hua
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jinjuan Bai
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yingfang Zhu
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,Collaborative Innovation Center of Crop Stress Biology, Institute of Plant Stress Biology, Henan University, Kaifeng, China
| | - Huazhong Shi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Sanwen Huang
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
15
|
Cagnac O, Baghour M, Jaime‐Pérez N, Aranda‐Sicilia MN, Sánchez‐Romero ME, Rodríguez‐Rosales MP, Venema K. Deletion of the N‐terminal domain of the yeast vacuolar (Na
+
,K
+
)/H
+
antiporter Vnx1p improves salt tolerance in yeast and transgenic
Arabidopsis. Yeast 2020; 37:173-185. [DOI: 10.1002/yea.3450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/11/2019] [Accepted: 11/22/2019] [Indexed: 12/29/2022] Open
Affiliation(s)
| | - Mourad Baghour
- Faculté Pluridisciplinaire de Nador Université Mohammed Premier Nador Morocco
| | | | | | | | | | - Kees Venema
- Estación Experimental del Zaidín CSIC Granada Spain
| |
Collapse
|
16
|
Li Q, Niu H, Xu K, Xu Q, Wang S, Liang X, Jiang Y, Niu J. GWAS for resistance against black point caused by Bipolaris sorokiniana in wheat. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2019.102859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
17
|
Zhang M, Zhang H, Zheng JX, Mo H, Xia KF, Jian SG. Functional Identification of Salt-Stress-Related Genes Using the FOX Hunting System from Ipomoea pes-caprae. Int J Mol Sci 2018; 19:ijms19113446. [PMID: 30400210 PMCID: PMC6274920 DOI: 10.3390/ijms19113446] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 10/09/2018] [Accepted: 10/31/2018] [Indexed: 01/02/2023] Open
Abstract
Ipomoea pes-caprae is a seashore halophytic plant and is therefore a good model for studying the molecular mechanisms underlying salt and stress tolerance in plant research. Here, we performed Full-length cDNA Over-eXpressor (FOX) gene hunting with a functional screening of a cDNA library using a salt-sensitive yeast mutant strain to isolate the salt-stress-related genes of I. pes-caprae (IpSR genes). The library was screened for genes that complemented the salt defect of yeast mutant AXT3 and could grow in the presence of 75 mM NaCl. We obtained 38 candidate salt-stress-related full-length cDNA clones from the I. pes-caprae cDNA library. The genes are predicted to encode proteins involved in water deficit, reactive oxygen species (ROS) scavenging, cellular vesicle trafficking, metabolic enzymes, and signal transduction factors. When combined with the quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analyses, several potential functional salt-tolerance-related genes were emphasized. This approach provides a rapid assay system for the large-scale screening of I. pes-caprae genes involved in the salt stress response and supports the identification of genes responsible for the molecular mechanisms of salt tolerance.
Collapse
Affiliation(s)
- Mei Zhang
- Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Hui Zhang
- Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
- University of the Chinese Academy of Sciences, Beijing 100039, China.
| | - Jie-Xuan Zheng
- Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
- University of the Chinese Academy of Sciences, Beijing 100039, China.
| | - Hui Mo
- Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Kuai-Fei Xia
- Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Shu-Guang Jian
- Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
18
|
Li N, Wang X, Ma B, Du C, Zheng L, Wang Y. Expression of a Na +/H + antiporter RtNHX1 from a recretohalophyte Reaumuria trigyna improved salt tolerance of transgenic Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2017; 218:109-120. [PMID: 28818757 DOI: 10.1016/j.jplph.2017.07.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/21/2017] [Accepted: 07/21/2017] [Indexed: 05/19/2023]
Abstract
Reaumuria trigyna is an endangered recretohalophyte and a small xeric shrub that is endemic to the eastern Alxa and western Ordos areas of Inner Mongolia, China. Using transcriptome data, we identified a 1662-bp open reading frame encoding a 553-amino-acid protein corresponding to a Na+/H+ antiporter (RtNHX1) from R. trigyna. RtNHX1 was rapidly up-regulated by NaCl and exogenous abscisic acid treatment and had different tissue-specific expression patterns before and after salt-stress treatment. Overexpression of RtNHX1 enhanced seed germination, biomass accumulation, chlorophyll content, and root elongation in transgenic Arabidopsis plants under salt stress and rescued the salt-sensitive deficiencies of the nhx1 mutant. POD and CAT enzyme activities, proline content, and RWC all increased significantly in salt-stressed transgenic Arabidopsis plants, whereas MDA content did not. Additionally, there was a corresponding upregulation of some antioxidant-enzyme, proline biosynthesis and other stress responsive genes (AtPOD1, AtCAT1, AtP5CS1, AtP5CS2, AtRD29A, AtRD29B, AtKIN1, and AtABI2). The transgenic Arabidopsis plants accumulated more K+ and less Na+ in their leaves and had lower Na+/K+ ratios than WT plants. This was reflected in the upregulation of some ion transport-related genes (AtAVP1, AtSOS1, AtKUP6, and AtKUP8). When RtNHX1 was expressed in the AXT3 yeast strain, the accumulation of Na+ and K+ in the vacuole increased and the Na+/K+ ratio decreased. These results reveal that R. trigyna RtNHX1 is a functional antiporter that sequesters Na+ and K+ in the vacuole and could confer salt tolerance on transgenic Arabidopsis plants by maintaining Na+/K+ homeostasis and enhancing osmotic and antioxidant regulatory capacity. These results suggest that RtNHX1 may be a good target for improving salt tolerance in plants.
Collapse
Affiliation(s)
- Ningning Li
- Key Laboratory of Herbage and Endemic Crop Biotechnology, and College of Life Sciences, Inner Mongolia University, Hohhot 010021, China.
| | - Xue Wang
- Key Laboratory of Herbage and Endemic Crop Biotechnology, and College of Life Sciences, Inner Mongolia University, Hohhot 010021, China.
| | - Binjie Ma
- Key Laboratory of Herbage and Endemic Crop Biotechnology, and College of Life Sciences, Inner Mongolia University, Hohhot 010021, China.
| | - Chao Du
- Key Laboratory of Herbage and Endemic Crop Biotechnology, and College of Life Sciences, Inner Mongolia University, Hohhot 010021, China.
| | - Linlin Zheng
- Key Laboratory of Herbage and Endemic Crop Biotechnology, and College of Life Sciences, Inner Mongolia University, Hohhot 010021, China.
| | - Yingchun Wang
- Key Laboratory of Herbage and Endemic Crop Biotechnology, and College of Life Sciences, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
19
|
Jia B, Sun M, DuanMu H, Ding X, Liu B, Zhu Y, Sun X. GsCHX19.3, a member of cation/H + exchanger superfamily from wild soybean contributes to high salinity and carbonate alkaline tolerance. Sci Rep 2017; 7:9423. [PMID: 28842677 PMCID: PMC5573395 DOI: 10.1038/s41598-017-09772-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/28/2017] [Indexed: 01/21/2023] Open
Abstract
Cation/H+ exchangers (CHX) are characterized to be involved in plant growth, development and stress responses. Although soybean genome sequencing has been completed, the CHX family hasn't yet been systematically analyzed, especially in wild soybean. Here, through Hidden Markov Model search against Glycine soja proteome, 34 GsCHXs were identified and phylogenetically clustered into five groups. Members within each group showed high conservation in motif architecture. Interestingly, according to our previous RNA-seq data, only Group IVa members exhibited highly induced expression under carbonate alkaline stress. Among them, GsCHX19.3 displayed the greatest up-regulation in response to carbonate alkaline stress, which was further confirmed by quantitative real-time PCR analysis. We also observed the ubiquitous expression of GsCHX19.3 in different tissues and its localization on plasma membrane. Moreover, we found that GsCHX19.3 expression in AXT4K, a yeast mutant lacking four ion transporters conferred resistance to low K+ at alkali pH, as well as carbonate stress. Consistently, in Arabidopsis, GsCHX19.3 overexpression increased plant tolerance both to high salt and carbonate alkaline stresses. Furthermore, we also confirmed that GsCHX19.3 transgenic lines showed lower Na+ concentration but higher K+/Na+ values under salt-alkaline stress. Taken together, our findings indicated that GsCHX19.3 contributed to high salinity and carbonate alkaline tolerance.
Collapse
Affiliation(s)
- Bowei Jia
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, P.R. China
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, P.R. China
| | - Mingzhe Sun
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, P.R. China
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, P.R. China
| | - Huizi DuanMu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, P.R. China
| | - Xiaodong Ding
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, P.R. China
| | - Beidong Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, Medicinaregatan, 9ES-413 90, Gothenburg, Sweden
| | - Yanming Zhu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, P.R. China.
| | - Xiaoli Sun
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, P.R. China.
| |
Collapse
|
20
|
Chen X, Lu X, Shu N, Wang D, Wang S, Wang J, Guo L, Guo X, Fan W, Lin Z, Ye W. GhSOS1, a plasma membrane Na+/H+ antiporter gene from upland cotton, enhances salt tolerance in transgenic Arabidopsis thaliana. PLoS One 2017; 12:e0181450. [PMID: 28723926 PMCID: PMC5517032 DOI: 10.1371/journal.pone.0181450] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/30/2017] [Indexed: 12/03/2022] Open
Abstract
Upland cotton (Gossypium hirsutum L.), an important source of natural fiber, can tolerate relatively high salinity and drought stresses. In the present study, a plasma membrane Na+/H+ antiporter gene, GhSOS1, was cloned from a salt-tolerant genotype of G. hirsutum, Zhong 9807. The expression level of GhSOS1 in cotton roots was significantly upregulated in the presence of high concentrations of NaCl (200 mM), while its transcript abundance was increased when exposed to low temperature and drought stresses. Localization analysis using onion epidermal cells showed that the GhSOS1 protein was localized to the plasma membrane. The overexpression of GhSOS1 in Arabidopsis enhanced tolerance to salt stress, as indicated by a lower MDA content and decreased Na+/K+ ratio in transgenic plants. Moreover, the transcript levels of stress-related genes were significantly higher in GhSOS1 overexpression lines than in wild-type plants under salt treatment. Hence, GhSOS1 may be a potential target gene for enhancing salt tolerance in transgenic plants.
Collapse
Affiliation(s)
- Xiugui Chen
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- National Key Laboratory of Crop Genetic Improvement, College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xuke Lu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Na Shu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Delong Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Shuai Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Junjuan Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Lixue Guo
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Xiaoning Guo
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Weili Fan
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Zhongxu Lin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Wuwei Ye
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- * E-mail:
| |
Collapse
|
21
|
Nongpiur RC, Singla-Pareek SL, Pareek A. Genomics Approaches For Improving Salinity Stress Tolerance in Crop Plants. Curr Genomics 2016; 17:343-57. [PMID: 27499683 PMCID: PMC4955028 DOI: 10.2174/1389202917666160331202517] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/28/2015] [Accepted: 08/04/2015] [Indexed: 11/22/2022] Open
Abstract
Salinity is one of the major factors which reduces crop production worldwide. Plant responses to salinity are highly complex and involve a plethora of genes. Due to its multigenicity, it has been difficult to attain a complete understanding of how plants respond to salinity. Genomics has progressed tremendously over the past decade and has played a crucial role towards providing necessary knowledge for crop improvement. Through genomics, we have been able to identify and characterize the genes involved in salinity stress response, map out signaling pathways and ultimately utilize this information for improving the salinity tolerance of existing crops. The use of new tools, such as gene pyramiding, in genetic engineering and marker assisted breeding has tremendously enhanced our ability to generate stress tolerant crops. Genome editing technologies such as Zinc finger nucleases, TALENs and CRISPR/Cas9 also provide newer and faster avenues for plant biologists to generate precisely engineered crops.
Collapse
Affiliation(s)
- Ramsong Chantre Nongpiur
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067,India
| | - Sneh Lata Singla-Pareek
- Plant Molecular Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi 110067,India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067,India
| |
Collapse
|
22
|
Gao J, Sun J, Cao P, Ren L, Liu C, Chen S, Chen F, Jiang J. Variation in tissue Na(+) content and the activity of SOS1 genes among two species and two related genera of Chrysanthemum. BMC PLANT BIOLOGY 2016; 16:98. [PMID: 27098270 PMCID: PMC4839091 DOI: 10.1186/s12870-016-0781-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 04/13/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND Chrysanthemum, a leading ornamental species, does not tolerate salinity stress, although some of its related species do. The current level of understanding regarding the mechanisms underlying salinity tolerance in this botanical group is still limited. RESULTS A comparison of the physiological responses to salinity stress was made between Chrysanthemum morifolium 'Jinba' and its more tolerant relatives Crossostephium chinense, Artemisia japonica and Chrysanthemum crassum. The stress induced a higher accumulation of Na(+) and more reduction of K(+) in C. morifolium than in C. chinense, C. crassum and A. japonica, which also showed higher K(+)/Na(+) ratio. Homologs of an Na(+)/H(+) antiporter (SOS1) were isolated from each species. The gene carried by the tolerant plants were more strongly induced by salt stress than those carried by the non-tolerant ones. When expressed heterologously, they also conferred a greater degree of tolerance to a yeast mutant lacking Na(+)-pumping ATPase and plasma membrane Na(+)/H(+) antiporter activity. The data suggested that the products of AjSOS1, CrcSOS1 and CcSOS1 functioned more effectively as Na (+) excluders than those of CmSOS1. Over expression of four SOS1s improves the salinity tolerance of transgenic plants and the overexpressing plants of SOS1s from salt tolerant plants were more tolerant than that from salt sensitive plants. In addition, the importance of certain AjSOS1 residues for effective ion transport activity and salinity tolerance was established by site-directed mutagenesis and heterologous expression in yeast. CONCLUSIONS AjSOS1, CrcSOS1 and CcSOS1 have potential as transgenes for enhancing salinity tolerance. Some of the mutations identified here may offer opportunities to better understand the mechanistic basis of salinity tolerance in the chrysanthemum complex.
Collapse
Affiliation(s)
- Jiaojiao Gao
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jing Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Peipei Cao
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Liping Ren
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Chen Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Sumei Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jiafu Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
23
|
Expression and characterization of the SOS1 Arabidopsis salt tolerance protein. Mol Cell Biochem 2016; 415:133-43. [DOI: 10.1007/s11010-016-2685-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 03/12/2016] [Indexed: 10/22/2022]
|
24
|
Cao B, Long D, Zhang M, Liu C, Xiang Z, Zhao A. Molecular characterization and expression analysis of the mulberry Na(+)/H(+) exchanger gene family. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 99:49-58. [PMID: 26730882 DOI: 10.1016/j.plaphy.2015.12.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 12/16/2015] [Accepted: 12/16/2015] [Indexed: 06/05/2023]
Abstract
Na(+)/H(+) exchangers (NHXs) have important roles in cellular pH, and Na(+) and K(+) homeostasis in plants. Mulberry is not only an important traditional economic woody plant known for its leaves, which are the exclusive food source of the silkworm Bombyx mori, but it can also adapt to many different adverse conditions, including saline environments. However, little is known about the NHXs in this important perennial tree. In this study, we identified and cloned seven putative NHX gene family members from Morus atropurpurea based on a genome-wide analysis of the Morus genome database. A phylogenetic analysis and genomic organization of mulberry NHXs suggested that the mulberry NHX family forms three distinct subgroups. Transcriptome data and real-time PCR of different mulberry varieties under normal culture conditions revealed that the mulberry NHX family has a different tissue-specific pattern in the two mulberry species. The MaNHX genes' expression analyses under different stresses (salt and drought) and signal molecules (abscisic acid, salicylic acid, hydrogen peroxide and methyl jasmonate) revealed that MaNHXs not only could be induced by salt, drought and abscisic acid as describe in the literature, but were also induced by other signal molecules, which indicated that MaNHX members exhibited diverse and complicated expression patterns in different mulberry tissues under various abiotic stresses, phytohormones and plant signaling molecules. Our results provide some insights into new and emerging cellular and physiological functions of this group of H(+)-coupled cation exchangers, beyond their function in salt tolerance, and also provide the basis for further characterizations of MaNHXs' physiological functions.
Collapse
Affiliation(s)
- Boning Cao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China
| | - Dingpei Long
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China
| | - Meng Zhang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China
| | - Changying Liu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China
| | - Zhonghuai Xiang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China
| | - Aichun Zhao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China.
| |
Collapse
|
25
|
Yenush L. Potassium and Sodium Transport in Yeast. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 892:187-228. [DOI: 10.1007/978-3-319-25304-6_8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
Wang L, Wu X, Liu Y, Qiu QS. AtNHX5 and AtNHX6 Control Cellular K+ and pH Homeostasis in Arabidopsis: Three Conserved Acidic Residues Are Essential for K+ Transport. PLoS One 2015; 10:e0144716. [PMID: 26650539 PMCID: PMC4674129 DOI: 10.1371/journal.pone.0144716] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/23/2015] [Indexed: 11/22/2022] Open
Abstract
AtNHX5 and AtNHX6, the endosomal Na+,K+/H+ antiporters in Arabidopsis, play an important role in plant growth and development. However, their function in K+ and pH homeostasis remains unclear. In this report, we characterized the function of AtNHX5 and AtNHX6 in K+ and H+ homeostasis in Arabidopsis. Using a yeast expression system, we found that AtNHX5 and AtNHX6 recovered tolerance to high K+ or salt. We further found that AtNHX5 and AtNHX6 functioned at high K+ at acidic pH while AtCHXs at low K+ under alkaline conditions. In addition, we showed that the nhx5 nhx6 double mutant contained less K+ and was sensitive to low K+ treatment. Overexpression of AtNHX5 or AtNHX6 gene in nhx5 nhx6 recovered root growth to the wild-type level. Three conserved acidic residues, D164, E188, and D193 in AtNHX5 and D165, E189, and D194 in AtNHX6, were essential for K+ homeostasis and plant growth. nhx5 nhx6 had a reduced vacuolar and cellular pH as measured with the fluorescent pH indicator BCECF or semimicroelectrode. We further show that AtNHX5 and AtNHX6 are localized to Golgi and TGN. Taken together, AtNHX5 and AtNHX6 play an important role in K+ and pH homeostasis in Arabidopsis. Three conserved acidic residues are essential for K+ transport.
Collapse
Affiliation(s)
- Liguang Wang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China, 73000
| | - Xuexia Wu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China, 73000
| | - Yafen Liu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China, 73000
| | - Quan-Sheng Qiu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China, 73000
| |
Collapse
|
27
|
Wu G, Wang G, Ji J, Tian X, Gao H, Zhao Q, Li J, Wang Y. Hydrophilic C terminus of Salicornia europaea vacuolar Na(+)/H(+) antiporter is necessary for its function. J Genet 2015; 93:425-30. [PMID: 25189237 DOI: 10.1007/s12041-014-0396-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Plant vacuolar Na(+)/H(+) antiporters play important roles in cellular ion homeostasis,vacuolar pH regulation and sequestration of Na(+) ions into the vacuole. Previous research showed that hydrophilic C-terminal region of Arabidopsis AtNHX1 negatively regulates the Na(+)/H(+) transporting activity. In this study, we truncated the hydrophilic C terminus of a vacuolar Na(+) /H(+) antiporter gene from Salicornia europaea (SeNHX1) to generate its derivative, SeNHX1-ΔC. Expression of SeNHX1 and SeNHX1-ΔC in yeast mutant showed that SeNHX1 significantly improved the tolerance to NaCl; however, the expression of SeNHX1-ΔC enormously decreased the tolerance to NaCl. Overall, these results suggest that the hydrophilic C-terminal region of SeNHX1 is required for Na(+)/H(+) exchanging activity of SeNHX1.
Collapse
Affiliation(s)
- Guangxia Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Wu G, Wang G, Ji J, Li Y, Gao H, Wu J, Guan W. A chimeric vacuolar Na(+)/H(+) antiporter gene evolved by DNA family shuffling confers increased salt tolerance in yeast. J Biotechnol 2015; 203:1-8. [PMID: 25784157 DOI: 10.1016/j.jbiotec.2015.02.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 02/22/2015] [Accepted: 02/25/2015] [Indexed: 01/08/2023]
Abstract
The vacuolar Na(+)/H(+) antiporter plays an important role in maintaining ionic homeostasis and the osmotic balance of the cell with the environment by sequestering excessive cytoplasmic Na(+) into the vacuole. However, the relatively low Na(+)/H(+) exchange efficiency of the identified Na(+)/H(+) antiporter could limit its application in the molecular breeding of salt tolerant crops. In this study, DNA family shuffling was used to create chimeric Na(+)/H(+) antiporters with improved transport activity. Two homologous Na(+)/H(+) antiporters from halophytes Salicornia europaea (SeNHX1) and Suaeda salsa (SsNHX1) were shuffled to generate a diverse gene library. Using a high-throughput screening system of yeast complementation, a novel chimeric protein SseNHX1 carrying 12 crossover positions and 2 point mutations at amino acid level was selected. Expression of SseNHX1 in yeast mutant exhibited approximately 46% and 22% higher salt tolerance ability in yeast growth test than that of SsNHX1and SeNHX1, respectively. Measurements of the ion contents demonstrated that SseNHX1 protein in yeast cells accumulated more Na(+) and slightly more K(+) than the parental proteins did. Furthermore, this chimera also conferred increased tolerance to LiCl and a similar tolerance to hygromycin B compared with the parental proteins in yeast.
Collapse
Affiliation(s)
- Guangxia Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, People's Republic of China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Gang Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, People's Republic of China.
| | - Jing Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yong Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Science, Beijing 100101, People's Republic of China
| | - Hailing Gao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Jiang Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China; Department of Agronomy, Tianjin Agricultural University, Tianjin 300384, People's Republic of China
| | - Wenzhu Guan
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
29
|
Park DS, Yu YM, Kim YJ, Maeng PJ. Negative regulation of the vacuole-mediated resistance to K(+) stress by a novel C2H2 zinc finger transcription factor encoded by aslA in Aspergillus nidulans. J Microbiol 2015; 53:100-10. [PMID: 25626364 DOI: 10.1007/s12275-015-4701-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/07/2015] [Accepted: 01/12/2015] [Indexed: 01/31/2023]
Abstract
In fungi and plants, vacuoles function as a storage and sequestration vessel for a wide variety of ions and are responsible for cytosolic ion homeostasis and responses to ionic shock. In the filamentous fungus Aspergillus nidulans, however, little is known about the molecular genetic mechanisms of vacuolar biogenesis and function. In the present study, we analyzed the function of the aslA gene (AN5583) encoding a novel C2H2-type zinc finger transcription factor (TF) in relation to K(+) stress resistance, vacuolar morphology, and vacuolar transporters. The mutant lacking aslA showed increased mycelial growth and decreased branching at high K(+) concentrations. Deletion of aslA also caused elevated K(+) stress-inducible expression of the genes, nhxA (AN2288), vnxA (AN6986), and vcxA (AN0471), encoding putative endosomal and vacuolar cation/H(+) exchangers, as well as cpyA and vpsA genes encoding the proteins involved in vacuolar biogenesis. Interestingly, vacuolar fragmentation induced by K(+) stress was alleviated by aslA deletion, resulting in persistence of unfragmented vacuoles. In the presence of bafilomycin, an inhibitor of vacuolar H(+)-ATPase, the mutant phenotype was suppressed in terms of growth rates and vacuolar morphology. These results together suggest that the C2H2-type zinc finger TF AslA attenuates the K(+) stress-inducible expression of the genes encoding the ion pumps involved in vacuolar sequestration of K(+) ions powered by vacuolar H(+)-ATPase, as well as the proteins that function in vacuolar biogenesis.
Collapse
Affiliation(s)
- Dong Soo Park
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, 305-764, Republic of Korea
| | | | | | | |
Collapse
|
30
|
Kong F, Li H, Sun P, Zhou Y, Mao Y. De novo assembly and characterization of the transcriptome of seagrass Zostera marina using Illumina paired-end sequencing. PLoS One 2014; 9:e112245. [PMID: 25423588 PMCID: PMC4244107 DOI: 10.1371/journal.pone.0112245] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 10/10/2014] [Indexed: 01/15/2023] Open
Abstract
Background The seagrass Zostera marina is a monocotyledonous angiosperm belonging to a polyphyletic group of plants that can live submerged in marine habitats. Zostera marina L. is one of the most common seagrasses and is considered a cornerstone of marine plant molecular ecology research and comparative studies. However, the mechanisms underlying its adaptation to the marine environment still remain poorly understood due to limited transcriptomic and genomic data. Principal Findings Here we explored the transcriptome of Z. marina leaves under different environmental conditions using Illumina paired-end sequencing. Approximately 55 million sequencing reads were obtained, representing 58,457 transcripts that correspond to 24,216 unigenes. A total of 14,389 (59.41%) unigenes were annotated by blast searches against the NCBI non-redundant protein database. 45.18% and 46.91% of the unigenes had significant similarity with proteins in the Swiss-Prot database and Pfam database, respectively. Among these, 13,897 unigenes were assigned to 57 Gene Ontology (GO) terms and 4,745 unigenes were identified and mapped to 233 pathways via functional annotation against the Kyoto Encyclopedia of Genes and Genomes pathway database (KEGG). We compared the orthologous gene family of the Z. marina transcriptome to Oryza sativa and Pyropia yezoensis and 11,667 orthologous gene families are specific to Z. marina. Furthermore, we identified the photoreceptors sensing red/far-red light and blue light. Also, we identified a large number of genes that are involved in ion transporters and channels including Na+ efflux, K+ uptake, Cl− channels, and H+ pumping. Conclusions Our study contains an extensive sequencing and gene-annotation analysis of Z. marina. This information represents a genetic resource for the discovery of genes related to light sensing and salt tolerance in this species. Our transcriptome can be further utilized in future studies on molecular adaptation to abiotic stress in Z. marina.
Collapse
Affiliation(s)
- Fanna Kong
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- * E-mail:
| | - Hong Li
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Peipei Sun
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yang Zhou
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yunxiang Mao
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| |
Collapse
|
31
|
Mishra S, Alavilli H, Lee BH, Panda SK, Sahoo L. Cloning and functional characterization of a vacuolar Na+/H+ antiporter gene from mungbean (VrNHX1) and its ectopic expression enhanced salt tolerance in Arabidopsis thaliana. PLoS One 2014; 9:e106678. [PMID: 25350285 PMCID: PMC4211658 DOI: 10.1371/journal.pone.0106678] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 07/02/2014] [Indexed: 12/04/2022] Open
Abstract
Plant vacuolar NHX exchangers play a significant role in adaption to salt stress by compartmentalizing excess cytosolic Na+ into vacuoles and maintaining cellular homeostasis and ionic equilibrium. We cloned an orthologue of the vacuolar Na+/H+ antiporter gene, VrNHX1 from mungbean (Vigna radiata), an important Asiatic grain legume. The VrNHX1 (Genbank Accession number JN656211.1) contains 2095 nucleotides with an open reading frame of 1629 nucleotides encoding a predicted protein of 542 amino acids with a deduced molecular mass of 59.6 kDa. The consensus amiloride binding motif (84LFFIYLLPPI93) was observed in the third putative transmembrane domain of VrNHX1. Bioinformatic and phylogenetic analysis clearly suggested that VrNHX1 had high similarity to those of orthologs belonging to Class-I clade of plant NHX exchangers in leguminous crops. VrNHX1 could be strongly induced by salt stress in mungbean as the expression in roots significantly increased in presence of 200 mM NaCl with concomitant accumulation of total [Na+]. Induction of VrNHX1 was also observed under cold and dehydration stress, indicating a possible cross talk between various abiotic stresses. Heterologous expression in salt sensitive yeast mutant AXT3 complemented for the loss of yeast vacuolar NHX1 under NaCl, KCl and LiCl stress indicating that VrNHX1 was the orthologue of ScNHX1. Further, AXT3 cells expressing VrNHX1 survived under low pH environment and displayed vacuolar alkalinization analyzed using pH sensitive fluorescent dye BCECF-AM. The constitutive and stress inducible expression of VrNHX1 resulted in enhanced salt tolerance in transgenic Arabidopsis thaliana lines. Our work suggested that VrNHX1 was a salt tolerance determinant in mungbean.
Collapse
Affiliation(s)
- Sagarika Mishra
- Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati, India
| | | | - Byeong-ha Lee
- Department of Life Science, Sogang University, Mapo-gu, Seoul, Korea
| | - Sanjib Kumar Panda
- Department of Life Sciences and Bioinformatics, Assam University, Silchar, India
- Department of Biochemistry & Molecular Biology, Noble Research Centre, Oklahoma State University, Stillwater, OK, United States of America
| | - Lingaraj Sahoo
- Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati, India
- * E-mail:
| |
Collapse
|
32
|
Wang L, Feng X, Zhao H, Wang L, An L, Qiu QS. Functional analysis of the Na+,K+/H+ antiporter PeNHX3 from the tree halophyte Populus euphratica in yeast by model-guided mutagenesis. PLoS One 2014; 9:e104147. [PMID: 25093858 PMCID: PMC4122410 DOI: 10.1371/journal.pone.0104147] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 07/08/2014] [Indexed: 01/08/2023] Open
Abstract
Na+,K+/H+ antiporters are H+-coupled cotransporters that are crucial for cellular homeostasis. Populus euphratica, a well-known tree halophyte, contains six Na+/H+ antiporter genes (PeNHX1-6) that have been shown to function in salt tolerance. However, the catalytic mechanisms governing their ion transport remain largely unknown. Using the crystal structure of the Na+/H+ antiporter from the Escherichia coli (EcNhaA) as a template, we built the three-dimensional structure of PeNHX3 from P. euphratica. The PeNHX3 model displays the typical TM4-TM11 assembly that is critical for ion binding and translocation. The PeNHX3 structure follows the 'positive-inside' rule and exhibits a typical physicochemical property of the transporter proteins. Four conserved residues, including Tyr149, Asn187, Asp188, and Arg356, are indentified in the TM4-TM11 assembly region of PeNHX3. Mutagenesis analysis showed that these reserved residues were essential for the function of PeNHX3: Asn187 and Asp188 (forming a ND motif) controlled ion binding and translocation, and Tyr149 and Arg356 compensated helix dipoles in the TM4-TM11 assembly. PeNHX3 mediated Na+, K+ and Li+ transport in a yeast growth assay. Domain-switch analysis shows that TM11 is crucial to Li+ transport. The novel features of PeNHX3 in ion binding and translocation are discussed.
Collapse
Affiliation(s)
- Liguang Wang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Xueying Feng
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Hong Zhao
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Lidong Wang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Lizhe An
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Quan-Sheng Qiu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
- * E-mail:
| |
Collapse
|
33
|
Li Q, Tang Z, Hu Y, Yu L, Liu Z, Xu G. Functional analyses of a putative plasma membrane Na+/H+ antiporter gene isolated from salt tolerant Helianthus tuberosus. Mol Biol Rep 2014; 41:5097-108. [PMID: 24771143 DOI: 10.1007/s11033-014-3375-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 04/11/2014] [Indexed: 10/25/2022]
Abstract
Jerusalem artichokes (Helianthus tuberosus L.) can tolerate relatively higher salinity, drought and heat stress. In this paper, we report the cloning of a Salt Overly Sensitive 1 (SOS1) gene encoding a plasma membrane Na(+)/H(+) antiporter from a highly salt-tolerant genotype of H. tuberosus, NY1, named HtSOS1 and characterization of its function in yeast and rice. The amino acid sequence of HtSOS1 showed 83.4% identity with the previously isolated SOS1 gene from the Chrysanthemum crassum. The mRNA level in the leaves of H. tuberosus was significantly up-regulated by presence of high concentrations of NaCl. Localization analysis using rice protoplast expression showed that the protein encoded by HtSOS1 was located in the plasma membrane. HtSOS1 partially suppressed the salt sensitive phenotypes of a salt sensitive yeast strain. In comparison with wild type (Oryza sativa L., ssp. Japonica. cv. Nipponbare), the transgenic rice expressed with HtSOS1 could exclude more Na(+) and accumulate more K(+). Expression of HtSOS1 decreased Na(+) content much larger in the shoot than in the roots, resulting in more water content in the transgenic rice than WT. These data suggested that HtSOS1 may be useful in transgenic approaches to improving the salinity tolerance of glycophyte.
Collapse
Affiliation(s)
- Qing Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | | | | | | | | | | |
Collapse
|
34
|
Tang RJ, Yang Y, Yang L, Liu H, Wang CT, Yu MM, Gao XS, Zhang HX. Poplar calcineurin B-like proteins PtCBL10A and PtCBL10B regulate shoot salt tolerance through interaction with PtSOS2 in the vacuolar membrane. PLANT, CELL & ENVIRONMENT 2014; 37:573-88. [PMID: 23941462 DOI: 10.1111/pce.12178] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 07/19/2013] [Accepted: 07/26/2013] [Indexed: 05/20/2023]
Abstract
The calcineurin B-like protein (CBL) family represents a unique group of calcium sensors in plants. In Arabidopsis, CBL10 functions as a shoot-specific regulator in salt tolerance. We have identified two CBL10 homologs, PtCBL10A and PtCBL10B, from the poplar (Populus trichocarpa) genome. While PtCBL10A was ubiquitously expressed at low levels, PtCBL10B was preferentially expressed in the green-aerial tissues of poplar. Both PtCBL10A and PtCBL10B were targeted to the tonoplast and expression of either one in the Arabidopsis cbl10 mutant could rescue its shoot salt-sensitive phenotype. Like PtSOS3, both PtCBL10s physically interacted with the salt-tolerance component PtSOS2. But in contrast to the SOS3-SOS2 complex at the plasma membrane, the PtCBL10-SOS2 interaction was primarily associated with vacuolar compartments. Furthermore, overexpression of either PtCBL10A or PtCBL10B conferred salt tolerance on transgenic poplar plants by maintaining ion homeostasis in shoot tissues under salinity stress. These results not only suggest a crucial role of PtCBL10s in shoot responses to salt toxicity in poplar, but also provide a molecular basis for genetic engineering of salt-tolerant tree species.
Collapse
Affiliation(s)
- Ren-Jie Tang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Zheng S, Pan T, Fan L, Qiu QS. A novel AtKEA gene family, homolog of bacterial K+/H+ antiporters, plays potential roles in K+ homeostasis and osmotic adjustment in Arabidopsis. PLoS One 2013; 8:e81463. [PMID: 24278440 PMCID: PMC3835744 DOI: 10.1371/journal.pone.0081463] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 10/13/2013] [Indexed: 12/28/2022] Open
Abstract
AtKEAs, homologs of bacterial KefB/KefC, are predicted to encode K+/H+ antiporters in Arabidopsis. The AtKEA family contains six genes forming two subgroups in the cladogram: AtKEA1-3 and AtKEA4-6. AtKEA1 and AtKEA2 have a long N-terminal domain; the full-length AtKEA1 was inactive in yeast. The transport activity was analyzed by expressing the AtKEA genes in yeast mutants lacking multiple ion carriers. AtKEAs conferred resistance to high K+ and hygromycin B but not to salt and Li+ stress. AtKEAs expressed in both the shoot and root of Arabidopsis. The expression of AtKEA1, -3 and -4 was enhanced under low K+ stress, whereas AtKEA2 and AtKEA5 were induced by sorbitol and ABA treatments. However, osmotic induction of AtKEA2 and AtKEA5 was not observed in aba2-3 mutants, suggesting an ABA regulated mechanism for their osmotic response. AtKEAs’ expression may not be regulated by the SOS pathway since their expression was not affected in sos mutants. The GFP tagging analysis showed that AtKEAs distributed diversely in yeast. The Golgi localization of AtKEA3 was demonstrated by both the stably transformed seedlings and the transient expression in protoplasts. Overall, AtKEAs expressed and localized diversely, and may play roles in K+ homeostasis and osmotic adjustment in Arabidopsis.
Collapse
Affiliation(s)
- Sheng Zheng
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Ting Pan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Ligang Fan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Quan-Sheng Qiu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
- *
| |
Collapse
|
36
|
Xu Y, Zhou Y, Hong S, Xia Z, Cui D, Guo J, Xu H, Jiang X. Functional characterization of a wheat NHX antiporter gene TaNHX2 that encodes a K(+)/H(+) exchanger. PLoS One 2013; 8:e78098. [PMID: 24223765 PMCID: PMC3815223 DOI: 10.1371/journal.pone.0078098] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 09/09/2013] [Indexed: 12/22/2022] Open
Abstract
The subcellular localization of a wheat NHX antiporter, TaNHX2, was studied in Arabidopsis protoplasts, and its function was evaluated using Saccharomyces cerevisiae as a heterologous expression system. Fluorescence patterns of TaNHX2-GFP fusion protein in Arabidopsis cells indicated that TaNHX2 localized at endomembranes. TaNHX2 has significant sequence homology to NHX sodium exchangers from Arabidopsis, is abundant in roots and leaves and is induced by salt or dehydration treatments. Western blot analysis showed that TaNHX2 could be expressed in transgenic yeast cells. Expressed TaNHX2 protein suppressed the salt sensitivity of a yeast mutant strain by increasing its K+ content when exposed to salt stress. TaNHX2 also increased the tolerance of the strain to potassium stress. However, the expression of TaNHX2 did not affect the sodium concentration in transgenic cells. Western blot analysis for tonoplast proteins indicated that the TaNHX2 protein localized at the tonoplast of transgenic yeast cells. The tonoplast vesicles from transgenic yeast cells displayed enhanced K+/H+ exchange activity but very little Na+/H+ exchange compared with controls transformed with the empty vector; Na+/H+ exchange was not detected with concentrations of less than 37.5 mM Na+ in the reaction medium. Our data suggest that TaNHX2 is a endomembrane-bound protein and may primarily function as a K+/H+ antiporter, which is involved in cellular pH regulation and potassium nutrition under normal conditions. Under saline conditions, the protein mediates resistance to salt stress through the intracellular compartmentalization of potassium to regulate cellular pH and K+ homeostasis.
Collapse
Affiliation(s)
- Yuanyuan Xu
- College of Agronomy/Key laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou, China
| | - Yang Zhou
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources/College of Agriculture, Hainan University, Haikou, China
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Sha Hong
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources/College of Agriculture, Hainan University, Haikou, China
| | - Zhihui Xia
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources/College of Agriculture, Hainan University, Haikou, China
| | - Dangqun Cui
- College of Agronomy/Key laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou, China
| | - Jianchun Guo
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Haixia Xu
- College of Agronomy/Key laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou, China
- * E-mail: (HX); (XJ)
| | - Xingyu Jiang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources/College of Agriculture, Hainan University, Haikou, China
- * E-mail: (HX); (XJ)
| |
Collapse
|
37
|
Lenassi M, Gostinčar C, Jackman S, Turk M, Sadowski I, Nislow C, Jones S, Birol I, Cimerman NG, Plemenitaš A. Whole genome duplication and enrichment of metal cation transporters revealed by de novo genome sequencing of extremely halotolerant black yeast Hortaea werneckii. PLoS One 2013; 8:e71328. [PMID: 23977017 PMCID: PMC3744574 DOI: 10.1371/journal.pone.0071328] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 06/27/2013] [Indexed: 01/14/2023] Open
Abstract
Hortaea werneckii, ascomycetous yeast from the order Capnodiales, shows an exceptional adaptability to osmotically stressful conditions. To investigate this unusual phenotype we obtained a draft genomic sequence of a H. werneckii strain isolated from hypersaline water of solar saltern. Two of its most striking characteristics that may be associated with a halotolerant lifestyle are the large genetic redundancy and the expansion of genes encoding metal cation transporters. Although no sexual state of H. werneckii has yet been described, a mating locus with characteristics of heterothallic fungi was found. The total assembly size of the genome is 51.6 Mb, larger than most phylogenetically related fungi, coding for almost twice the usual number of predicted genes (23333). The genome appears to have experienced a relatively recent whole genome duplication, and contains two highly identical gene copies of almost every protein. This is consistent with some previous studies that reported increases in genomic DNA content triggered by exposure to salt stress. In hypersaline conditions transmembrane ion transport is of utmost importance. The analysis of predicted metal cation transporters showed that most types of transporters experienced several gene duplications at various points during their evolution. Consequently they are present in much higher numbers than expected. The resulting diversity of transporters presents interesting biotechnological opportunities for improvement of halotolerance of salt-sensitive species. The involvement of plasma P-type H⁺ ATPases in adaptation to different concentrations of salt was indicated by their salt dependent transcription. This was not the case with vacuolar H⁺ ATPases, which were transcribed constitutively. The availability of this genomic sequence is expected to promote the research of H. werneckii. Studying its extreme halotolerance will not only contribute to our understanding of life in hypersaline environments, but should also identify targets for improving the salt- and osmotolerance of economically important plants and microorganisms.
Collapse
Affiliation(s)
- Metka Lenassi
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Ljubljana, Slovenia
- * E-mail:
| | - Cene Gostinčar
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Ljubljana, Slovenia
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Shaun Jackman
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Agency Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Martina Turk
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Ivan Sadowski
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Corey Nislow
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Steven Jones
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Agency Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Inanc Birol
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Agency Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Nina Gunde Cimerman
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Ljubljana, Slovenia
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Ana Plemenitaš
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
38
|
Baltierra F, Castillo M, Gamboa MC, Rothhammer M, Krauskopf E. Molecular characterization of a novel Na⁺/H⁺ antiporter cDNA from Eucalyptus globulus. Biochem Biophys Res Commun 2012; 430:535-40. [PMID: 23232113 DOI: 10.1016/j.bbrc.2012.11.118] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 11/30/2012] [Indexed: 02/04/2023]
Abstract
Environmental stress factors such as salt, drought and heat are known to affect plant productivity. However, high salinity is spreading throughout the world, currently affecting more than 45 millionha. One of the mechanisms that allow plants to withstand salt stress consists on vacuolar sequestration of Na(+), through a Na(+)/H(+) antiporter. We isolated a new vacuolar Na(+)/H(+) antiporter from Eucalyptus globulus from a cDNA library. The cDNA had a 1626 bp open reading frame encoding a predicted protein of 542 amino acids with a deduced molecular weight of 59.1 KDa. Phylogenetic and bioinformatic analyses indicated that EgNHX1 localized in the vacuole. To assess its role in Na(+) exchange, we performed complementation studies using the Na(+) sensitive yeast mutant strain Δnhx1. The results showed that EgNHX1 partially restored the salt sensitive phenotype of the yeast Δnhx1 strain. However, its overexpression in transgenic Arabidopsis confers tolerance in the presence of increasing NaCl concentrations while the wild type plants exhibited growth retardation. Expression profiles of Eucalyptus seedlings subjected to salt, drought, heat and ABA treatment were established. The results revealed that Egnhx1 was induced significantly only by drought. Together, these results suggest that the product of Egnhx1 from E. globulus is a functional vacuolar Na(+)/H(+) antiporter.
Collapse
|
39
|
Wang P, Li Z, Wei J, Zhao Z, Sun D, Cui S. A Na+/Ca2+ exchanger-like protein (AtNCL) involved in salt stress in Arabidopsis. J Biol Chem 2012; 287:44062-70. [PMID: 23148213 DOI: 10.1074/jbc.m112.351643] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Calcium ions (Ca(2+)) play a crucial role in many key physiological processes; thus, the maintenance of Ca(2+) homeostasis is of primary importance. Na(+)/Ca(2+) exchangers (NCXs) play an important role in Ca(2+) homeostasis in animal excitable cells. Bioinformatic analysis of the Arabidopsis genome suggested the existence of a putative NCX gene, Arabidopsis NCX-like (AtNCL), encoding a protein with an NCX-like structure and different from Ca(2+)/H(+) exchangers and Na(+)/H(+) exchangers previously identified in plant. AtNCL was identified to localize in the Arabidopsis cell membrane fraction, have the ability of binding Ca(2+), and possess NCX-like activity in a heterologous expression system of cultured mammalian CHO-K1 cells. AtNCL is broadly expressed in Arabidopsis, and abiotic stresses stimulated its transcript expression. Loss-of-function atncl mutants were less sensitive to salt stress than wild-type or AtNCL transgenic overexpression lines. In addition, the total calcium content in whole atncl mutant seedlings was higher than that in wild type by atomic absorption spectroscopy. The level of free Ca(2+) in the cytosol and Ca(2+) flux at the root tips of atncl mutant plants, as detected using transgenic aequorin and a scanning ion-selective electrode, required a longer recovery time following NaCl stress compared with that in wild type. All of these data suggest that AtNCL encodes a Na(+)/Ca(2+) exchanger-like protein that participates in the maintenance of Ca(2+) homeostasis in Arabidopsis. AtNCL may represent a new type of Ca(2+) transporter in higher plants.
Collapse
Affiliation(s)
- Peng Wang
- Hebei Key Laboratory of Molecular Cell Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Song A, Lu J, Jiang J, Chen S, Guan Z, Fang W, Chen F. Isolation and characterisation of Chrysanthemum crassum SOS1, encoding a putative plasma membrane Na(+) /H(+) antiporter. PLANT BIOLOGY (STUTTGART, GERMANY) 2012; 14:706-13. [PMID: 22404736 DOI: 10.1111/j.1438-8677.2011.00560.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A full-length cDNA homologue of SOS1 (salt overly sensitive 1) was isolated from the salinity-tolerant species Chrysanthemum crassum and found to encode a Na(+) /H(+) antiporter, using degenerate PCR and RACE-PCR. The 3752-bp sequence comprised a 3438 bp open reading frame, encoding a 127-kDa protein with 12 transmembrane domains within its N terminal portion, and a hydrophilic cytoplasmic tail in its C-terminal portion. CcSOS1 appears to be a plasma membrane protein, and shares ∼62% identity at the peptide level with its Arabidopsis thaliana homologue. Expression of CcSOS1 in the roots of C. crassum was sensitive to salinity stress, while in the leaves CcSOS1 was down-regulated in the presence of abscisic acid. CcSOS1 transcript abundance was reduced in both roots and leaves of plants exposed to low temperature, while it was increased in leaves (but not in roots) after drought stress. CcSOS1 expression was not regulated in the presence of CaCl2 . A heterologous complementation assay in yeast suggested that CcSOS1 directs Na(+) efflux, mimicking the function of the endogenous NHA1 protein. Thus CcSOS1 appears to encode a salinity-inducible plasma membrane Na(+) /H(+) antiporter. This gene may be useful in transgenic approaches to improving the salinity tolerance of related ornamental species.
Collapse
Affiliation(s)
- A Song
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - J Lu
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - J Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - S Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Z Guan
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - W Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - F Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
42
|
Zhang YM, Liu ZH, Wen ZY, Zhang HM, Yang F, Guo XL. The vacuolar Na +-H + antiport gene TaNHX2 confers salt tolerance on transgenic alfalfa (Medicago sativa). FUNCTIONAL PLANT BIOLOGY : FPB 2012; 39:708-716. [PMID: 32480822 DOI: 10.1071/fp12095] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 06/06/2012] [Indexed: 06/11/2023]
Abstract
TaNHX2, a vacuolar Na+-H+ antiport gene from wheat (Triticum aestivum L.), was transformed into alfalfa (Medicago sativa L.) via Agrobacterium-mediated transformation to evaluate the role of vacuolar energy providers in plant salt stress responses. PCR and Southern blotting analysis showed that the target gene was integrated into the Medicago genome. Reverse transcription-PCR indicated that gene TaNHX2 was expressed at the transcriptional level. The relative electrical conductivity in the T2 transgenic plants was lower and the osmotic potential was higher compared to the wild-type plants under salt stress conditions. The tonoplast H+-ATPase, H+-pyrophosphatase (PPase) hydrolysis activities and ATP-dependent proton pump activities in transgenic plants were all higher than those of wild-type plants, and the enzyme activities could be induced by salt stress. The PPi-dependent proton pump activities decreased when NaCl concentrations increased from 100mM to 200mM, especially in transgenic plants. The vacuolar Na+-H+ antiport activities of transgenic plants were 2-3 times higher than those of the wild -type plants under 0mM and 100mM NaCl stress. Na+-H+ antiport activity was not detectable for wild-type plants under 200mM NaCl, but for transgenic plants, it was further increased with an increment in salt stress intensity. These results demonstrated that expression of the foreign TaNHX2 gene enhanced salt tolerance in transgenic alfalfa.
Collapse
Affiliation(s)
- Yan-Min Zhang
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| | - Zi-Hui Liu
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| | - Zhi-Yu Wen
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| | - Hong-Mei Zhang
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| | - Fan Yang
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| | - Xiu-Lin Guo
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| |
Collapse
|
43
|
Qiu QS. Plant and yeast NHX antiporters: roles in membrane trafficking. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:66-72. [PMID: 22222113 DOI: 10.1111/j.1744-7909.2012.01097.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The plant NHX gene family encodes Na(+)/H(+) antiporters which are crucial for salt tolerance, potassium homeostasis and cellular pH regulation. Understanding the role of NHX antiporters in membrane trafficking is becoming an increasingly interesting subject of study. Membrane trafficking is a central cellular process during which proteins, lipids and polysaccharides are continuously exchanged among membrane compartments. Yeast ScNhx1p, a prevacuole/ vacuolar Na(+)/H(+) antiporter, plays an important role in regulating pH to control trafficking out of the endosome. Evidence begins to accumulate that plant NHX antiporters might function in regulating membrane trafficking in plants.
Collapse
Affiliation(s)
- Quan-Sheng Qiu
- School of Life Sciences, Lanzhou University, 222 South Tianshui Rd., Lanzhou 730000, China.
| |
Collapse
|
44
|
Chanroj S, Wang G, Venema K, Zhang MW, Delwiche CF, Sze H. Conserved and diversified gene families of monovalent cation/h(+) antiporters from algae to flowering plants. FRONTIERS IN PLANT SCIENCE 2012; 3:25. [PMID: 22639643 PMCID: PMC3355601 DOI: 10.3389/fpls.2012.00025] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 01/21/2012] [Indexed: 05/18/2023]
Abstract
All organisms have evolved strategies to regulate ion and pH homeostasis in response to developmental and environmental cues. One strategy is mediated by monovalent cation-proton antiporters (CPA) that are classified in two superfamilies. Many CPA1 genes from bacteria, fungi, metazoa, and plants have been functionally characterized; though roles of plant CPA2 genes encoding K(+)-efflux antiporter (KEA) and cation/H(+) exchanger (CHX) families are largely unknown. Phylogenetic analysis showed that three clades of the CPA1 Na(+)-H(+) exchanger (NHX) family have been conserved from single-celled algae to Arabidopsis. These are (i) plasma membrane-bound SOS1/AtNHX7 that share ancestry with prokaryote NhaP, (ii) endosomal AtNHX5/6 that is part of the eukaryote Intracellular-NHE clade, and (iii) a vacuolar NHX clade (AtNHX1-4) specific to plants. Early diversification of KEA genes possibly from an ancestral cyanobacterium gene is suggested by three types seen in all plants. Intriguingly, CHX genes diversified from three to four members in one subclade of early land plants to 28 genes in eight subclades of Arabidopsis. Homologs from Spirogyra or Physcomitrella share high similarity with AtCHX20, suggesting that guard cell-specific AtCHX20 and its closest relatives are founders of the family, and pollen-expressed CHX genes appeared later in monocots and early eudicots. AtCHX proteins mediate K(+) transport and pH homeostasis, and have been localized to intracellular and plasma membrane. Thus KEA genes are conserved from green algae to angiosperms, and their presence in red algae and secondary endosymbionts suggest a role in plastids. In contrast, AtNHX1-4 subtype evolved in plant cells to handle ion homeostasis of vacuoles. The great diversity of CHX genes in land plants compared to metazoa, fungi, or algae would imply a significant role of ion and pH homeostasis at dynamic endomembranes in the vegetative and reproductive success of flowering plants.
Collapse
Affiliation(s)
- Salil Chanroj
- Department of Cell Biology and Molecular Genetics, Maryland Agricultural Experiment Station, University of MarylandCollege Park, MD, USA
| | - Guoying Wang
- Department of Cell Biology and Molecular Genetics, Maryland Agricultural Experiment Station, University of MarylandCollege Park, MD, USA
| | - Kees Venema
- Departmento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Muren Warren Zhang
- Department of Cell Biology and Molecular Genetics, Maryland Agricultural Experiment Station, University of MarylandCollege Park, MD, USA
| | - Charles F. Delwiche
- Department of Cell Biology and Molecular Genetics, Maryland Agricultural Experiment Station, University of MarylandCollege Park, MD, USA
| | - Heven Sze
- Department of Cell Biology and Molecular Genetics, Maryland Agricultural Experiment Station, University of MarylandCollege Park, MD, USA
- *Correspondence: Heven Sze, Department of Cell Biology and Molecular Genetics, Maryland Agricultural Experiment Station, University of Maryland, Bioscience Research Building # 413, College Park, MD 20742, USA. e-mail:
| |
Collapse
|
45
|
Enhanced tolerance to NaCl and LiCl stresses by over-expressing Caragana korshinskii sodium/proton exchanger 1 (CkNHX1) and the hydrophilic C terminus is required for the activity of CkNHX1 in Atsos3-1 mutant and yeast. Biochem Biophys Res Commun 2011; 417:732-7. [PMID: 22197553 DOI: 10.1016/j.bbrc.2011.12.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 12/06/2011] [Indexed: 01/18/2023]
Abstract
Sodium/proton exchangers (NHX antiporters) play important roles in plant responses to salt stress. Previous research showed that hydrophilic C-terminal region of Arabidopsis AtNHX1 negatively regulates the Na(+)/H(+) transporting activity. In this study, CkNHX1 were isolated from Caragana korshinskii, a pea shrub with high tolerance to salt, drought, and cold stresses. Transcripts of CkNHX1 were detected predominantly in roots, and were significantly induced by NaCl stress in stems. Transgenic yeast and Arabidopsisthalianasos3-1 (Atsos3-1) mutant over-expressing CkNHX1 and its hydrophilic C terminus-truncated derivative, CkNHX1-ΔC, were generated and subjected to NaCl and LiCl stresses. Expression of CkNHX1 significantly enhanced the resistance to NaCl and LiCl stresses in yeast and Atsos3-1 mutant. Whereas, compared with expression of CkNHX1, the expression of CkNHX1-ΔC had much less effect on NaCl tolerance in Atsos3-1 and LiCl tolerance in yeast and Atsos3-1. All together, these results suggest that the predominant expression of CkNHX1 in roots might contribute to keep C. korshinskii adapting to the high salt condition in this plant's living environment; CkNHX1 could recover the phenotype of Atsos3-1 mutant; and the hydrophilic C-terminal region of CkNHX1 should be required for Na(+)/H(+) and Li(+)/H(+) exchanging activity of CkNHX1.
Collapse
|
46
|
Dhar R, Sägesser R, Weikert C, Yuan J, Wagner A. Adaptation of Saccharomyces cerevisiae to saline stress through laboratory evolution. J Evol Biol 2011; 24:1135-53. [PMID: 21375649 DOI: 10.1111/j.1420-9101.2011.02249.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Most laboratory evolution studies that characterize evolutionary adaptation genomically focus on genetically simple traits that can be altered by one or few mutations. Such traits are important, but they are few compared with complex, polygenic traits influenced by many genes. We know much less about complex traits, and about the changes that occur in the genome and in gene expression during their evolutionary adaptation. Salt stress tolerance is such a trait. It is especially attractive for evolutionary studies, because the physiological response to salt stress is well-characterized on the molecular and transcriptome level. This provides a unique opportunity to compare evolutionary adaptation and physiological adaptation to salt stress. The yeast Saccharomyces cerevisiae is a good model system to study salt stress tolerance, because it contains several highly conserved pathways that mediate the salt stress response. We evolved three replicate lines of yeast under continuous salt (NaCl) stress for 300 generations. All three lines evolved faster growth rate in high salt conditions than their ancestor. In these lines, we studied gene expression changes through microarray analysis and genetic changes through next generation population sequencing. We found two principal kinds of gene expression changes, changes in basal expression (82 genes) and changes in regulation (62 genes). The genes that change their expression involve several well-known physiological stress-response genes, including CTT1, MSN4 and HLR1. Next generation sequencing revealed only one high-frequency single-nucleotide change, in the gene MOT2, that caused increased fitness when introduced into the ancestral strain. Analysis of DNA content per cell revealed ploidy increases in all the three lines. Our observations suggest that evolutionary adaptation of yeast to salt stress is associated with genome size increase and modest expression changes in several genes.
Collapse
Affiliation(s)
- R Dhar
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
47
|
Li M, Li Y, Li H, Wu G. Overexpression of AtNHX5 improves tolerance to both salt and drought stress in Broussonetia papyrifera (L.) Vent. TREE PHYSIOLOGY 2011; 31:349-57. [PMID: 21512100 DOI: 10.1093/treephys/tpr003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Paper mulberry (Broussonetia papyrifera L. Vent) is well known for its bark fibers, which are used for making paper, cloth, rope, etc. It was found that, in addition to its well-documented role in the enhancement of plant salt tolerance, overexpression of the Na+/H+ antiporter (AtNHX5) gene in paper mulberry plants showed high drought tolerance. After exposure to water deficiency and salt stress, the wild-type (WT) plants all died, while the AtNHX5-overexpressing plants remained alive under high salt stress, and had a higher survival rate (>66%) under drought stress. Measurements of ion levels indicated that Na+ and K+ contents were all higher in AtNHX5-overexpressing leaves than in WT leaves in high saline conditions. The AtNHX5 plants had higher leaf water content and leaf chlorophyll contents, accumulated more proline and soluble sugars, and had less membrane damage than the WT plants under water deficiency and high saline conditions. Taken together, the results indicate that the AtNHX5 gene could enhance the tolerance of paper mulberry plants to multiple environmental stresses by promoting the accumulation of more effective osmolytes (ions, soluble sugars, proline) to counter the osmotic stress caused by abiotic factors.
Collapse
Affiliation(s)
- Meiru Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | | | | | | |
Collapse
|
48
|
Activation of the plasma membrane Na/H antiporter Salt-Overly-Sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory C-terminal domain. Proc Natl Acad Sci U S A 2011; 108:2611-6. [PMID: 21262798 DOI: 10.1073/pnas.1018921108] [Citation(s) in RCA: 259] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The plasma membrane sodium/proton exchanger Salt-Overly-Sensitive 1 (SOS1) is a critical salt tolerance determinant in plants. The SOS2-SOS3 calcium-dependent protein kinase complex up-regulates SOS1 activity, but the mechanistic details of this crucial event remain unresolved. Here we show that SOS1 is maintained in a resting state by a C-terminal auto-inhibitory domain that is the target of SOS2-SOS3. The auto-inhibitory domain interacts intramolecularly with an adjacent domain of SOS1 that is essential for activity. SOS1 is relieved from auto-inhibition upon phosphorylation of the auto-inhibitory domain by SOS2-SOS3. Mutation of the SOS2 phosphorylation and recognition site impeded the activation of SOS1 in vivo and in vitro. Additional amino acid residues critically important for SOS1 activity and regulation were identified in a genetic screen for hypermorphic alleles.
Collapse
|
49
|
Chen J, Xiao Q, Wu F, Dong X, He J, Pei Z, Zheng H. Nitric oxide enhances salt secretion and Na(+) sequestration in a mangrove plant, Avicennia marina, through increasing the expression of H(+)-ATPase and Na(+)/H(+) antiporter under high salinity. TREE PHYSIOLOGY 2010; 30:1570-85. [PMID: 21030403 DOI: 10.1093/treephys/tpq086] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Modulation of nitric oxide (NO) on ion homeostasis, by enhancing salt secretion in the salt glands and Na(+) sequestration into the vacuoles, was investigated in a salt-secreting mangrove tree, Avicennia marina (Forsk.) Vierh. The major results are as follows: (i) under 400 mM NaCl treatment, the application of 100 µM sodium nitroprusside (SNP), an NO donor, significantly increased the density of salt crystals and salt secretion rate of the leaves, along with maintaining a low Na(+) to K(+) ratio in the leaves. (ii) The measurement of element contents by X-ray microanalysis in the epidermis and transversal sections of A. marina leaves revealed that SNP (100 µM) significantly increased the accumulation of Na(+) in the epidermis and hypodermal cells, particularly the Na(+) to K(+) ratio in the salt glands, but no such effects were observed in the mesophyll cells. (iii) Using non-invasive micro-test technology (NMT), both long-term SNP (100 µM) and transient SNP (30 µM) treatments significantly increased net Na(+) efflux in the salt glands. On the contrary, NO synthesis inhibitors and scavenger reversed the effects of NO on Na(+) flux. These results indicate that NO enhanced salt secretion by increasing net Na(+) efflux in the salt glands. (iv) Western blot analysis demonstrated that 100 µM SNP stimulated protein expressions of plasma membrane (PM) H(+)-ATPase and vacuolar membrane Na(+)/H(+) antiporter. (v) To further clarify the molecular mechanism of the effects of NO on enhancing salt secretion and Na(+) sequestration, partial cDNA fragments of PM H(+)-ATPase (HA1), PM Na(+)/H(+) antiporter (SOS1) and vacuolar Na(+)/H(+) antiporter (NHX1) were isolated and transcriptional expression of HA1, SOS1, NHX1 and vacuolar H(+)-ATPase subunit c (VHA-c1) genes were analyzed using real-time quantitative polymerase chain reaction. The relative transcript abundance of the four genes were markedly increased in 100 µM SNP-treated A. marina. Moreover, the increase was reversed by NO synthesis inhibitors and scavenger. Taken together, our results strongly suggest that NO functions as a signal in salt resistance of A. marina by enhancing salt secretion and Na(+) sequestration, which depend on the increased expression of the H(+)-ATPase and Na(+)/H(+) antiporter.
Collapse
Affiliation(s)
- Juan Chen
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, School of Life Sciences, Xiamen University, Xiamen 361005, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
50
|
Teakle NL, Amtmann A, Real D, Colmer TD. Lotus tenuis tolerates combined salinity and waterlogging: maintaining O2 transport to roots and expression of an NHX1-like gene contribute to regulation of Na+ transport. PHYSIOLOGIA PLANTARUM 2010; 139:358-374. [PMID: 20444189 DOI: 10.1111/j.1399-3054.2010.01373.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Salinity and waterlogging interact to reduce growth for most crop and pasture species. The combination of these stresses often cause a large increase in the rate of Na(+) and Cl(-) transport to shoots; however, the mechanisms responsible for this are largely unknown. To identify mechanisms contributing to the adverse interaction between salinity and waterlogging, we compared two Lotus species with contrasting tolerances when grown under saline (200 mM NaCl) and O(2)-deficient (stagnant) treatments. Measurements of radial O(2) loss (ROL) under stagnant conditions indicated that more O(2) reaches root tips of Lotus tenuis, compared with Lotus corniculatus. Better internal aeration would contribute to maintaining Na(+) and Cl(-) transport processes in roots of L. tenuis exposed to stagnant-plus-NaCl treatments. L. tenuis root Na(+) concentrations after stagnant-plus-NaCl treatment (200 mM) were 17% higher than L. corniculatus, with 55% of the total plant Na(+) being accumulated in roots, compared with only 39% for L. corniculatus. L. tenuis accumulated more Na(+) in roots, presumably in vacuoles, thereby reducing transport to the shoot (25% lower than L. corniculatus). A candidate gene for vacuole Na(+) accumulation, an NHX1-like gene, was cloned from L. tenuis and identity established via sequencing and yeast complementation. Transcript levels of NHX1 in L. tenuis roots under stagnant-plus-NaCl treatment were the same as for aerated NaCl, whereas L. corniculatus roots had reduced transcript levels. Enhanced O(2) transport to roots enables regulation of Na(+) transport processes in L. tenuis roots, contributing to tolerance to combined salinity and waterlogging stresses.
Collapse
Affiliation(s)
- Natasha L Teakle
- School of Plant Biology, Faculty of Natural and Agricultural Sciences, The University of Western Australia, Crawley, WA 6009, Australia.
| | | | | | | |
Collapse
|