1
|
Joseph RE, Urakova N, Werling KL, Metz HC, Montanari K, Rasgon JL. Culex tarsalis Is a Competent Host of the Insect-Specific Alphavirus Eilat Virus (EILV). J Virol 2023; 97:e0196022. [PMID: 37098948 PMCID: PMC10231209 DOI: 10.1128/jvi.01960-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/13/2023] [Indexed: 04/27/2023] Open
Abstract
Eilat virus (EILV) is an insect-specific alphavirus that has the potential to be developed into a tool to combat mosquito-borne pathogens. However, its mosquito host range and transmission routes are not well understood. Here, we fill this gap by investigating EILV's host competence and tissue tropism in five mosquito species: Aedes aegypti, Culex tarsalis, Anopheles gambiae, Anopheles stephensi, and Anopheles albimanus. Of the tested species, C. tarsalis was the most competent host for EILV. The virus was found in C. tarsalis ovaries, but no vertical or venereal transmission was observed. Culex tarsalis also transmitted EILV via saliva, suggesting the potential for horizontal transmission between an unknown vertebrate or invertebrate host. We found that reptile (turtle and snake) cell lines were not competent for EILV infection. We tested a potential invertebrate host (Manduca sexta caterpillars) but found they were not susceptible to EILV infection. Together, our results suggest that EILV could be developed as a tool to target pathogenic viruses that use Culex tarsalis as a vector. Our work sheds light on the infection and transmission dynamics of a poorly understood insect-specific virus and reveals it may infect a broader range of mosquito species than previously recognized. IMPORTANCE The recent discovery of insect-specific alphaviruses presents opportunities both to study the biology of virus host range and to develop them into tools against pathogenic arboviruses. Here, we characterize the host range and transmission of Eilat virus in five mosquito species. We find that Culex tarsalis-a vector of harmful human pathogens, including West Nile virus-is a competent host of Eilat virus. However, how this virus is transmitted between mosquitoes remains unclear. We find that Eilat virus infects the tissues necessary for both vertical and horizontal transmission-a crucial step in discerning how Eilat virus maintains itself in nature.
Collapse
Affiliation(s)
- Renuka E. Joseph
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, USA
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, Pennsylvania, USA
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Nadya Urakova
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kristine L. Werling
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, USA
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, Pennsylvania, USA
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Hillery C. Metz
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kaylee Montanari
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jason L. Rasgon
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, USA
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, Pennsylvania, USA
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
2
|
de Rezende AG, Fernández Núñez EG, Astray RM, Puglia ALP, Pereira CA, Jorge SAC. An optimization study for expression of the rabies virus glycoprotein (RVGP) in mammalian cell lines using the Semliki Forest virus (SFV). J Biotechnol 2019; 304:63-69. [PMID: 31442500 DOI: 10.1016/j.jbiotec.2019.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/06/2019] [Accepted: 08/19/2019] [Indexed: 11/24/2022]
Abstract
The Semliki Forest virus (SFV) viral vector has been widely used for transient protein expression. This study aimed to analyze comprehensively the capacity of SFV vector to express rabies lyssavirus glycoprotein (RVGP) in mammalian cells. The assessed parameters were transfection strategy, multiplicity of infection (MOI), harvest time and mammalian cell host. Two transfection approaches, electroporation and lipofection were evaluated to obtain the recombinant SFV, and the electroporation was found to be the most effective. Viral quantification by RT-qPCR was performed to elucidate the relation between the amount of recombinant virus utilized in the infection process and the production levels of the heterologous protein. Four different multiplicities of infection (MOIs = 1; 10; 15; 50) were evaluated using five mammalian cell lines: BHK-21, HuH-7, Vero, L929, and HEK-293T. Protein expression was assessed at two harvest times after infection (24 and 48 h). The recombinant protein generated was characterized by western blot, dot blot, and indirect immunofluorescence (IIF), while its concentration was determined by enzyme-linked immunosorbent assay (ELISA). Similar expression patterns were observed in cell lines BHK-21, HEK-293T, L929, and Vero, with higher RVGP production in the first 24 h. The BHK-21 cells showed yields of up to 4.3 μg per 106 cells when lower MOIs (1 and 10) were used. The HEK-293 T cells also showed similar production (4.3 μg per 106 cells) with MOI of 1, while the L929 and Vero cell lines showed lower expression rates of 2.82 and 1.26 μg per 106 cells, respectively. These cell lines showed lower expression levels at 48 h after infection compared to 24 h. Controversially, in the case of the HuH-7 cell line, RVGP production was higher at 48 h after infection (4.0 μg per 106 cells) and using MOIs of 15 and 50. This work may contribute to optimize the RVGP production using SFV system in mammalian cells. This study can also substantiate for example, the development of approaches that use of SFV for applications for other protein expressions and suggests values for relevant parameters and cell lines of this biotechnique.
Collapse
Affiliation(s)
| | - Eutimio Gustavo Fernández Núñez
- Laboratório de Células Animais, Departamento de Engenharia Química, Escola Politécnica, Universidade de São Paulo, São Paulo, SP, Brazil; Escola de Artes, Ciências e Humanidades (EACH), Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
3
|
Lundstrom K. Self-Replicating RNA Viruses for RNA Therapeutics. Molecules 2018; 23:molecules23123310. [PMID: 30551668 PMCID: PMC6321401 DOI: 10.3390/molecules23123310] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 12/23/2022] Open
Abstract
Self-replicating single-stranded RNA viruses such as alphaviruses, flaviviruses, measles viruses, and rhabdoviruses provide efficient delivery and high-level expression of therapeutic genes due to their high capacity of RNA replication. This has contributed to novel approaches for therapeutic applications including vaccine development and gene therapy-based immunotherapy. Numerous studies in animal tumor models have demonstrated that self-replicating RNA viral vectors can generate antibody responses against infectious agents and tumor cells. Moreover, protection against challenges with pathogenic Ebola virus was obtained in primates immunized with alphaviruses and flaviviruses. Similarly, vaccinated animals have been demonstrated to withstand challenges with lethal doses of tumor cells. Furthermore, clinical trials have been conducted for several indications with self-amplifying RNA viruses. In this context, alphaviruses have been subjected to phase I clinical trials for a cytomegalovirus vaccine generating neutralizing antibodies in healthy volunteers, and for antigen delivery to dendritic cells providing clinically relevant antibody responses in cancer patients, respectively. Likewise, rhabdovirus particles have been subjected to phase I/II clinical trials showing good safety and immunogenicity against Ebola virus. Rhabdoviruses have generated promising results in phase III trials against Ebola virus. The purpose of this review is to summarize the achievements of using self-replicating RNA viruses for RNA therapy based on preclinical animal studies and clinical trials in humans.
Collapse
|
4
|
Benureau Y, Colin P, Staropoli I, Gonzalez N, Garcia-Perez J, Alcami J, Arenzana-Seisdedos F, Lagane B. Guidelines for cloning, expression, purification and functional characterization of primary HIV-1 envelope glycoproteins. J Virol Methods 2016; 236:184-195. [PMID: 27451265 DOI: 10.1016/j.jviromet.2016.07.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/13/2016] [Accepted: 07/19/2016] [Indexed: 12/14/2022]
Abstract
The trimeric HIV-1 envelope (Env) glycoproteins gp120 and gp41 mediate virus entry into target cells by engaging CD4 and the coreceptors CCR5 or CXCR4 at the cell surface and driving membrane fusion. Receptor/gp120 interactions regulate the virus life cycle, HIV infection transmission and pathogenesis. Env is also the target of neutralizing antibodies. Efforts have thus been made to produce soluble HIV-1 glycoproteins to develop vaccines and study the role and mechanisms of HIV/receptor interactions. However, production and purification of Env glycoproteins and their functional assessment has to cope with multiple obstacles. These include difficulties in amplifying and cloning env sequences and setting up receptor binding assays that are suitable for studies on large collections of glycoproteins, flexible enough to adapt to Env and receptor structural heterogeneities, and allow recapitulating the receptor binding properties of virion-associated Env trimers. Here we identify these difficulties and present protocols to produce primary gp120 and determination of their binding properties to receptors. The receptor binding assays confirmed that the produced glycoproteins are competent for binding CD4 and undergo proper CD4-induced conformational changes required for interaction with CCR5. These assays may help elucidate the role of gp120/receptor interactions in the pathophysiology of HIV infection and develop HIV-1 entry inhibitors.
Collapse
Affiliation(s)
- Yann Benureau
- INSERM U1108, Institut Pasteur, 75015 Paris, France; Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015 Paris, France.
| | - Philippe Colin
- INSERM U1108, Institut Pasteur, 75015 Paris, France; Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015 Paris, France.
| | - Isabelle Staropoli
- INSERM U1108, Institut Pasteur, 75015 Paris, France; Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015 Paris, France.
| | - Nuria Gonzalez
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain.
| | - Javier Garcia-Perez
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain.
| | - Jose Alcami
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain.
| | - Fernando Arenzana-Seisdedos
- INSERM U1108, Institut Pasteur, 75015 Paris, France; Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015 Paris, France.
| | - Bernard Lagane
- INSERM U1108, Institut Pasteur, 75015 Paris, France; Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015 Paris, France.
| |
Collapse
|
5
|
Artificial neural network associated to UV/Vis spectroscopy for monitoring bioreactions in biopharmaceutical processes. Bioprocess Biosyst Eng 2015; 38:1045-54. [DOI: 10.1007/s00449-014-1346-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 12/19/2014] [Indexed: 12/13/2022]
|
6
|
Willig KI, Steffens H, Gregor C, Herholt A, Rossner MJ, Hell SW. Nanoscopy of filamentous actin in cortical dendrites of a living mouse. Biophys J 2014; 106:L01-3. [PMID: 24411266 DOI: 10.1016/j.bpj.2013.11.1119] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 11/12/2013] [Accepted: 11/13/2013] [Indexed: 01/03/2023] Open
Abstract
We demonstrate superresolution fluorescence microscopy (nanoscopy) of protein distributions in a mammalian brain in vivo. Stimulated emission depletion microscopy reveals the morphology of the filamentous actin in dendritic spines down to 40 μm in the molecular layer of the visual cortex of an anesthetized mouse. Consecutive recordings at 43-70 nm resolution reveal dynamical changes in spine morphology.
Collapse
Affiliation(s)
- Katrin I Willig
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany; Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany.
| | - Heinz Steffens
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Carola Gregor
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Alexander Herholt
- Department of Molecular Neurobiology and Department of Psychiatry, Ludwig-Maximilians-University, München, Germany
| | - Moritz J Rossner
- Department of Molecular Neurobiology and Department of Psychiatry, Ludwig-Maximilians-University, München, Germany
| | - Stefan W Hell
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany; Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany.
| |
Collapse
|
7
|
Alphavirus-based vaccines. Viruses 2014; 6:2392-415. [PMID: 24937089 PMCID: PMC4074933 DOI: 10.3390/v6062392] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 12/18/2022] Open
Abstract
Alphavirus vectors have demonstrated high levels of transient heterologous gene expression both in vitro and in vivo and, therefore, possess attractive features for vaccine development. The most commonly used delivery vectors are based on three single-stranded encapsulated alphaviruses, namely Semliki Forest virus, Sindbis virus and Venezuelan equine encephalitis virus. Alphavirus vectors have been applied as replication-deficient recombinant viral particles and, more recently, as replication-proficient particles. Moreover, in vitro transcribed RNA, as well as layered DNA vectors have been applied for immunization. A large number of highly immunogenic viral structural proteins expressed from alphavirus vectors have elicited strong neutralizing antibody responses in multispecies animal models. Furthermore, immunization studies have demonstrated robust protection against challenges with lethal doses of virus in rodents and primates. Similarly, vaccination with alphavirus vectors expressing tumor antigens resulted in prophylactic protection against challenges with tumor-inducing cancerous cells. As certain alphaviruses, such as Chikungunya virus, have been associated with epidemics in animals and humans, attention has also been paid to the development of vaccines against alphaviruses themselves. Recent progress in alphavirus vector development and vaccine technology has allowed conducting clinical trials in humans.
Collapse
|
8
|
Leme J, Fernández Núñez EG, de Almeida Parizotto L, Chagas WA, dos Santos ES, Caricati ATP, de Rezende AG, da Costa BLV, Monteiro DCV, Boldorini VLL, Jorge SAC, Astray RM, Pereira CA, Caricati CP, Tonso A. A multivariate calibration procedure for UV/VIS spectrometric monitoring of BHK-21 cell metabolism and growth. Biotechnol Prog 2013; 30:241-8. [DOI: 10.1002/btpr.1847] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jaci Leme
- Laboratório Especial de Pesquisa e Desenvolvimento em Imunológicos Veterinários, Instituto Butantan. Av. Vital Brasil, 1500; Butantã 05503-900 São Paulo SP-Brazil
| | - Eutimio Gustavo Fernández Núñez
- Dept. de Engenharia Química, Laboratório de Células Animais, Escola Politécnica; Universidade de São Paulo. Av. Prof. Luciano Gualberto; trav. 3, 380, Butantã 05508-900 São Paulo SP-Brazil
- Dept. de Ciências Biológicas; Universidade Estadual Paulista “Júlio de Mesquita Filho” Campus-Assis, Avenida Dom Antonio 2100, Bairro Parque Universitário; 19806-900 Assis SP - Brasil
| | - Letícia de Almeida Parizotto
- Dept. de Engenharia Química, Laboratório de Células Animais, Escola Politécnica; Universidade de São Paulo. Av. Prof. Luciano Gualberto; trav. 3, 380, Butantã 05508-900 São Paulo SP-Brazil
| | - Wagner Antonio Chagas
- Laboratório Especial de Pesquisa e Desenvolvimento em Imunológicos Veterinários, Instituto Butantan. Av. Vital Brasil, 1500; Butantã 05503-900 São Paulo SP-Brazil
| | - Erica Salla dos Santos
- Laboratório Especial de Pesquisa e Desenvolvimento em Imunológicos Veterinários, Instituto Butantan. Av. Vital Brasil, 1500; Butantã 05503-900 São Paulo SP-Brazil
| | - Aline Tojeira Prestia Caricati
- Laboratório Especial de Pesquisa e Desenvolvimento em Imunológicos Veterinários, Instituto Butantan. Av. Vital Brasil, 1500; Butantã 05503-900 São Paulo SP-Brazil
| | | | - Bruno Labate Vale da Costa
- Dept. de Engenharia Química, Laboratório de Células Animais, Escola Politécnica; Universidade de São Paulo. Av. Prof. Luciano Gualberto; trav. 3, 380, Butantã 05508-900 São Paulo SP-Brazil
- Laboratório de Biotecnologia Industrial, Núcleo de Bionanomanufatura; Instituto de Pesquisas Tecnológicas do Estado de São Paulo, Av. Prof. Almeida Prado 532 Cid. Universitária - Butantã; 05508-901 São Paulo SP-Brazil
| | | | - Vera Lucia Lopes Boldorini
- Laboratório de Imunologia Viral; Instituto Butantan. Av. Vital Brasil; 1500 Butantã 05503-900 São Paulo SP-Brazil
| | - Soraia Attie Calil Jorge
- Laboratório de Imunologia Viral; Instituto Butantan. Av. Vital Brasil; 1500 Butantã 05503-900 São Paulo SP-Brazil
| | - Renato Mancini Astray
- Laboratório de Imunologia Viral; Instituto Butantan. Av. Vital Brasil; 1500 Butantã 05503-900 São Paulo SP-Brazil
| | - Carlos Augusto Pereira
- Dept. de Engenharia Química, Laboratório de Células Animais, Escola Politécnica; Universidade de São Paulo. Av. Prof. Luciano Gualberto; trav. 3, 380, Butantã 05508-900 São Paulo SP-Brazil
- Laboratório de Imunologia Viral; Instituto Butantan. Av. Vital Brasil; 1500 Butantã 05503-900 São Paulo SP-Brazil
| | - Celso Pereira Caricati
- Laboratório Especial de Pesquisa e Desenvolvimento em Imunológicos Veterinários, Instituto Butantan. Av. Vital Brasil, 1500; Butantã 05503-900 São Paulo SP-Brazil
| | - Aldo Tonso
- Dept. de Engenharia Química, Laboratório de Células Animais, Escola Politécnica; Universidade de São Paulo. Av. Prof. Luciano Gualberto; trav. 3, 380, Butantã 05508-900 São Paulo SP-Brazil
| |
Collapse
|
9
|
Puglia ALP, Rezende AG, Jorge SAC, Wagner R, Pereira CA, Astray RM. Quantitative RT-PCR for titration of replication-defective recombinant Semliki Forest virus. J Virol Methods 2013; 193:647-52. [PMID: 23933080 DOI: 10.1016/j.jviromet.2013.07.058] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/17/2013] [Accepted: 07/22/2013] [Indexed: 11/24/2022]
Abstract
Virus titration may constitute a drawback in the development and use of replication-defective viral vectors like Semliki Forest virus (SFV). The standardization and validation of a reverse transcription quantitative PCR (qRT-PCR) method for SFV titration is presented here. The qRT-PCR target is located within the nsp1 gene of the non-structural polyprotein SFV region (SFV RNA), which allows the strategy to be used for several different recombinant SFV constructs. Titer determinations were carried out by performing virus titration and infection assays with SFVs containing an RNA coding region for the rabies virus glycoprotein (RVGP) or green fluorescent protein (GFP). Results showed that the standardized qRT-PCR is applicable for different SFV constructs, and showed good reproducibility. To evaluate the correlation between the amount of functional SFV RNA in a virus lot and its infectivity in BHK-21 cell cultures, a temperature mediated titer decrease was performed and successfully quantitated by qRT-PCR. When used for cell infection at the same multiplicity of infection (MOI), the temperature treated SFV-RVGP samples induced the same levels of RVGP expression. Similarly, when different SFV-GFP lots with different virus titers, as accessed by qRT-PCR, were used for cell infection at the same MOI, the cultures showed comparable amounts of fluorescent cells. The data demonstrate a good correlation between the amount of virus used for infection, as measured by its SFV RNA, and the protein synthesis in the cells. In conclusion, the qRT-PCR method developed here is accurate and enables the titration of replication-defective SFV vectors, an essential aid for viral vector development as well as for establishment of production bioprocesses.
Collapse
Affiliation(s)
- Ana L P Puglia
- Laboratório de Imunologia Viral, Instituto Butantan, Av. Vital Brasil 1500, CP 05503-900 São Paulo, Brazil.
| | | | | | | | | | | |
Collapse
|
10
|
Thon JN, Italiano JE. Visualization and manipulation of the platelet and megakaryocyte cytoskeleton. Methods Mol Biol 2012; 788:109-125. [PMID: 22130704 DOI: 10.1007/978-1-61779-307-3_9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Driven by the application of immunofluorescence (IF) microscopy and modern molecular biology approaches to cytoskeletal manipulation, the last 5 years have yielded considerable progress to our understanding of the molecular mechanisms governing megakaryocyte development and platelet biogenesis. Such studies have visualized endomitotic spindle dynamics, characterized the maturation of the -demarcation membrane system, delineated the mechanics of organelle transport and microtubule assembly in living megakaryocytes, described the process of platelet production in vivo, and revealed factors contributing to and the mechanisms driving proplatelet production and platelet release. Here, we describe methods to (1) culture megakaryocytes from murine fetal livers, (2) manipulate the tubulin and actin cytoskeleton of both platelets and cultured megakaryocytes, and (3) examine these by live-cell microscopy and fixed-cell immunofluorescence microscopy.
Collapse
Affiliation(s)
- Jonathan N Thon
- Hematology Division, Brigham and Women's Hospital, Boston, MA, USA
| | | |
Collapse
|
11
|
Ramos L, Kopec LA, Sweitzer SM, Fornwald JA, Zhao H, McAllister P, McNulty DE, Trill JJ, Kane JF. Rapid expression of recombinant proteins in modified CHO cells using the baculovirus system. Cytotechnology 2011; 38:37-41. [PMID: 19003084 DOI: 10.1023/a:1021189628274] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Baculovirus containing the mammalianCMV promoter, in place of the insect polyhedronpromoter (BacMam), has been used to transientlytransfect COS, CHO and CHOE1a (CHO cells expressing theE1a transcriptional activator). Using this system forthe expression of a cellular adhesion factor (SAF-3) Fcfusion protein in CHOE1a, we found that levels ofexpression were highest with a MOI of 100, 20mM sodiumbutyrate, at 34 degrees C. Production increased furtherif the cells were resuspended in fresh medium, about3 x 10(6) cells ml(-1), prior to addition of the virus. These conditions were used to express 3 secretedproteins, SAF-3-Fc, CD40-hexa his and Asp 2-Fc, and, at2 to 6 days post infection, protein levels ranged from4 ug ml(-1) to 25 ug ml(-1). Based on these results, theBacMam system represents a viable technique forproducing protein at ug ml(-1) levels in a relatively shortperiod of time.
Collapse
|
12
|
Wagner W, McCroskery S, Hammer JA. An efficient method for the long-term and specific expression of exogenous cDNAs in cultured Purkinje neurons. J Neurosci Methods 2011; 200:95-105. [PMID: 21708190 DOI: 10.1016/j.jneumeth.2011.06.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 06/13/2011] [Indexed: 01/10/2023]
Abstract
We present a simple and efficient method for expressing cDNAs in Purkinje neurons (PNs) present in heterogeneous mouse cerebellar cultures. The method combines the transfection of freshly dissociated cerebellar cells via nucleofection with the use of novel expression plasmids containing a fragment of the L7 (Pcp2) gene that, within the cerebellum, drives PN-specific expression. The efficiency of PN transfection (determined 13 days post nucleofection) is approximately 70%. Double and triple transfections are routinely achieved at slightly lower efficiencies. Expression in PNs is obvious after one week in culture and still strong after three weeks, by which time these neurons are well-developed. Moreover, high-level expression is restricted almost exclusively to the PNs present in these mixed cultures, which greatly facilitates the characterization of PN-specific functions. As proof of principle, we used this method to visualize (1) the morphology of living PNs expressing mGFP, (2) the localization and dynamics of the dendritic spine proteins PSD-93 and Homer-3a tagged with mGFP and (3) the interaction of live PNs expressing mGFP with other cerebellar neurons expressing mCherry from a β-Actin promoter plasmid. Finally, we created a series of L7-plasmids containing different fluorescent protein cDNAs that are suited for the expression of cDNAs of interest as N- and C-terminally tagged fluorescent fusion proteins. In summary, this procedure allows for the highly efficient, long-term, and specific expression of multiple cDNAs in differentiated PNs, and provides a favorable alternative to two procedures (viral transduction, ballistic gene delivery) used previously to express genes in cultured PNs.
Collapse
Affiliation(s)
- Wolfgang Wagner
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
13
|
Romero-Fernandez W, Garriga P, Borroto-Escuela DO. Overproduction of human M₃ muscarinic acetylcholine receptor: an approach toward structural studies. Biotechnol Prog 2011; 27:838-45. [PMID: 21548142 DOI: 10.1002/btpr.615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 11/18/2010] [Indexed: 11/10/2022]
Abstract
Human M(3) muscarinic acetylcholine receptor (M3R), present in both the central and the peripheral nervous system, is involved in several neurodegenerative and autoimmune diseases. Recently, M3R overexpression has been suggested to play a role in certain forms of cancer, showing promise as a new potential pharmacological target. However, the lack of structural information hampered to develop a new potent selective and potent antagonist. We describe here different strategies for overexpressing functional M3R on the perspective of future biophysical studies. To achieve this goal, four tagged M3R genes were engineered and codon optimized. Different heterologous expression systems, including mammalian cells and viral transfection, were employed to overexpress M3R. Although codon optimization resulted in only twofold to threefold increase of M3R expression, we found that epitope tagging of the synthetic M3R, especially with hemagglutinin and Flag epitope tags, could improve M3R expression levels. On the other hand, viral transfection led to a yield of 27 pmol/mg protein that is the highest level reported so far for this receptor subtype in mammalian cells. Taking together several of the strategies used can help increasing M3R expression, not only to start purification efforts but also for secondary structural analysis trial and functional analyses.
Collapse
Affiliation(s)
- Wilber Romero-Fernandez
- Centre de Biotecnologia Molecular, Dept. d'Enginyeria Química, Universitat Politècnica de Catalunya, Terrassa 08222, Spain
| | | | | |
Collapse
|
14
|
Corpus callosum: a favorable target for rSFV-mediated gene transfer to rat brain with broad and efficient expression. J Mol Neurosci 2010; 42:255-60. [PMID: 20461495 DOI: 10.1007/s12031-010-9386-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2010] [Accepted: 04/27/2010] [Indexed: 10/19/2022]
Abstract
Recombinant Semliki Forest virus (rSFV), as a new kind of neurotropic vector system, has great potential of gene therapy for stroke. However, very little is known about its transduction characteristics in cerebral cortex or corpus callosum (CC) in vivo, which are common targets for gene transfer in experimental stroke therapy. Here, we investigate and compare rSFV-mediated gene expression at above two brain regions in rat; 2.0 x 10(7) IU of rSFV encoding green fluorescent protein (rSFV-GFP) was locally injected into CC or cerebral cortex in two groups. At 36 h following injection, the number of GFP-positive cells, GFP distribution volume, and GFP expression level were examined in the rat brain of each group using continuous frozen sections and enzyme-linked immunosorbent assay. rSFV vector displayed noticeably different transduction patterns in CC and cerebral cortex in vivo. CC injection of vector increased GFP-positive cell number by 802%, GFP transduction volume by 958%, and GFP expression level by 508% compared with cortical injection (all P < 0.01). We concluded that rSFV CC delivery significantly enhances transduction efficiency in rat brain with its ability to achieve transgene extensive transduction and abundant expression, and CC may be a favorable target for improving rSFV-based gene delivery efficiency to brain.
Collapse
|
15
|
Faurez F, Dory D, Le Moigne V, Gravier R, Jestin A. Biosafety of DNA vaccines: New generation of DNA vectors and current knowledge on the fate of plasmids after injection. Vaccine 2010; 28:3888-95. [DOI: 10.1016/j.vaccine.2010.03.040] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 03/09/2010] [Accepted: 03/21/2010] [Indexed: 12/16/2022]
|
16
|
Papale A, Cerovic M, Brambilla R. Viral vector approaches to modify gene expression in the brain. J Neurosci Methods 2009; 185:1-14. [PMID: 19699233 DOI: 10.1016/j.jneumeth.2009.08.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 08/13/2009] [Accepted: 08/14/2009] [Indexed: 12/31/2022]
Abstract
The use of viral vectors as gene transfer tools for the central nervous system has seen a significant growth in the last decade. Improvements in the safety, efficiency and specificity of vectors for clinical applications have proven to be beneficial also for basic neuroscience research. This review will discuss the viral systems currently available to neuroscientists and some of the recent achievements in the study of synaptic function, memory and drug addiction.
Collapse
Affiliation(s)
- Alessandro Papale
- Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Foundation and University, Milano, Italy
| | | | | |
Collapse
|
17
|
Rambani K, Vukasinovic J, Glezer A, Potter SM. Culturing thick brain slices: an interstitial 3D microperfusion system for enhanced viability. J Neurosci Methods 2009; 180:243-54. [PMID: 19443039 DOI: 10.1016/j.jneumeth.2009.03.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2008] [Revised: 03/18/2009] [Accepted: 03/18/2009] [Indexed: 01/08/2023]
Abstract
Brain slice preparations are well-established models for a wide spectrum of in vitro investigations in the neuroscience discipline. However, these investigations are limited to acute preparations or thin organotypic culture preparations due to the lack of a successful method that allows culturing of thick organotypic brain slices. Thick brain slice cultures suffer necrosis due to ischemia deep in the tissue resulting from a destroyed circulatory system and subsequent diffusion-limited supply of nutrients and oxygen. Although thin organotypic brain slice cultures can be successfully cultured using a well-established roller-tube method (a monolayer organotypic culture) (Gahwiler B H. Organotypic monolayer cultures of nervous tissue. J Neurosci Methods. 1981; 4: 329-342) or a membrane-insert method (up to 1-4 cell layers, <150 microm) (Stoppini L, Buchs PA, Muller D. A simple method for organotypic cultures of neural tissue. J Neurosci Methods 1991; 37: 173-182), these methods fail to support thick tissue preparations. A few perfusion methods (using submerged or interface/microfluidic chambers) have been reported to enhance the longevity (up to few hours) of acute slice preparations (up to 600 microm thick) (Hass HL, Schaerer B, Vosmansky M. A simple perfusion chamber for study of nervous tissue slices in vitro. J Neurosci Methods 1979; 1: 323-325; Nicoll RA, Alger BE. A simple chamber for recording from submerged brain slices. J Neurosci Methods 1981; 4: 153-156; Passeraub PA, Almeida AC, Thakor NV. Design, microfabrication and characterization of a microfluidic chamber for the perfusion of brain tissue slices. J Biomed Dev 2003; 5: 147-155). Here, we report a unique interstitial microfluidic perfusion technique to culture thick (700 microm) organotypic brain slices. The design of the custom-made microperfusion chamber facilitates laminar, interstitial perfusion of oxygenated nutrient medium throughout the tissue thickness with concomitant removal of depleted medium and catabolites. We examined the utility of this perfusion method to enhance the viability of the thick organotypic brain slice cultures after 2 days and 5 days in vitro (DIV). We investigated the range of amenable flow rates that enhance the viability of 700 microm thick organotypic brain slices compared to the unperfused control cultures. Our perfusion method allows up to 84.6% viability (p<0.01) and up to 700 microm thickness, even after 5 DIV. Our results also confirm that these cultures are functionally active and have their in vivo cyto-architecture preserved. Prolonged viability of thick organotypic brain slice cultures will benefit scientists investigating network properties of intact organotypic neuronal networks in a reliable and repeatable manner.
Collapse
Affiliation(s)
- Komal Rambani
- Laboratory for Neuroengineering, Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, NW, Atlanta, GA 30332, USA
| | | | | | | |
Collapse
|
18
|
Rodriguez-Madoz JR, Prieto J, Smerdou C. Biodistribution and tumor infectivity of semliki forest virus vectors in mice: effects of re-administration. Mol Ther 2007; 15:2164-71. [PMID: 17667947 DOI: 10.1038/sj.mt.6300274] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Semliki Forest virus (SFV)-based vectors have broad tropism, with the ability to infect cells from various origins, including those from tumors. These vectors express cytokines after intra-tumoral (IT) injection, and have therefore been used for inducing efficient anti-tumoral responses in several tumor models. We were interested in studying whether SFV vectors could escape from tumors after IT injection and whether they could target tumors if administered systemically. We analyzed the biodistribution of an SFV vector expressing luciferase (SFV-Luc) after intravenous (IV), intraperitoneal (IP), and IT administration in immunocompetent mice. SFV-Luc systemic inoculation led to high infectivity in heart and lung, and moderate levels of infectivity in spleen, kidney, and gonads, without gender being a factor in the outcome. Tumor-specific infection, without the vector spreading to other tissues, was achieved only by IT inoculation. We also investigated the effect of SFV pre-inoculation on subsequent vector administrations. Systemic inoculation with one dose of 10(7) vp (viral particles), or two doses of 10(6) vp of SFV-LacZ given with a 20-day interval between the doses, was able to strongly inhibit luciferase expression in animals re-inoculated systemically with SFV-Luc, correlating with high sera neutralizing antibodies titers. However, IT pre-inoculation with 10(8) vp of SFV-LacZ impaired tumor re-infection only moderately, thereby indicating that tumors can be treated with several doses of SFV vectors.
Collapse
Affiliation(s)
- Juan R Rodriguez-Madoz
- Division of Gene Therapy, School of Medicine, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | | | | |
Collapse
|
19
|
Abstract
This protocol describes a method for making and culturing rat hippocampal organotypic slices on membrane inserts. Supplementary videos are included to demonstrate visually the different steps of the procedure. Cultured hippocampal slices has been increasingly used as a model for synaptic studies of the brain as they allow examination of mid to long term manipulations in a preparation where the gross cytoarchitecture of the hippocampus is preserved. Combining techniques such as molecular biology, electrophysiology and immunohistochemistry to study physiological or pathological processes can easily be applied to organotypic slices. The technique described here can be used to make organotypic slices from other parts of the brain, other rodent species and from a range of ages. This protocol can be completed in 3 h.
Collapse
Affiliation(s)
- Anna De Simoni
- Department of Physiology, University College London, Gower Street, London WCIE 6BT, UK.
| | | |
Collapse
|
20
|
Bähr M, Lingor P. Brain repair: Experimental treatment strategies, neuroprotective and repair strategies in the lesioned adult CNS. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 557:148-63. [PMID: 16955709 DOI: 10.1007/0-387-30128-3_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Mathias Bähr
- Department of Neurology, University of Göttingen, Germany
| | | |
Collapse
|
21
|
Structural Genomics. CELL ENGINEERING 2007. [PMCID: PMC7122701 DOI: 10.1007/1-4020-5252-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Drug discovery based on structural knowledge has proven useful as several structure-based medicines are already on the market. Structural genomics aims at studying a large number of gene products including whole genomes, topologically similar proteins, protein families and protein subtypes in parallel. Particularly, therapeutically relevant targets have been selected for structural genomics initiatives. In this context, integral membrane proteins, which represent 60–70% of the current drug targets, have been of major interest. Paradoxically, membrane proteins present the last frontier to conquer in structural biology as some 100 high resolution structures among the 30,000 entries in public structural databases are available. The modest success rate on membrane proteins relates to the difficulties in their expression, purification and crystallography. To facilitate technology development large networks providing expertise in molecular biology, protein biochemistry and structural biology have been established. The privately funded MePNet program has studied 100 G protein-coupled receptors, which resulted in high level expression of a large number of receptors at structural biology compatible levels. Currently, selected GPCRs have been purified and subjected to crystallization attempts
Collapse
|
22
|
Shukla AK, Haase W, Reinhart C, Michel H. Heterologous expression and comparative characterization of the human neuromedin U subtype II receptor using the methylotrophic yeast Pichia pastoris and mammalian cells. Int J Biochem Cell Biol 2007; 39:931-42. [PMID: 17445746 DOI: 10.1016/j.biocel.2007.01.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Revised: 12/21/2006] [Accepted: 01/08/2007] [Indexed: 11/19/2022]
Abstract
Neuromedin U (a neuropeptide) plays regulatory roles in feeding, anxiety, smooth muscle contraction, blood flow and pain. The physiological actions of NmU are mediated via two recently identified G protein-coupled receptors namely the neuromedin U type 1 receptor (NmU(1)R) and the neuromedin U type 2 receptor (NmU(2)R). Despite their crucial roles in cell physiology, structural information on these receptors is limited, mainly due to their low expression levels in native tissues. Here, we report the overexpression of the human NmU(2)R in the methylotrophic yeast Pichia pastoris and baby hamster kidney (BHK) cells using the Semliki Forest virus (SFV) system. The recombinant receptor was expressed as a fusion protein with three different affinity tags namely, the Flag tag, the histidine 10 tag and the biotinylation domain of Propionobacterium shermanii. Expression level of the recombinant receptor was 6-9pmol/mg under optimized conditions, which is significantly higher than the expression level in the native tissues. The recombinant receptor binds to its endogenous ligand neuromedin U with high affinity (Kd=0.8-1.0nM) and the binding constant for the recombinant receptor is similar to that of the wild type NmU(2)R. Enzymatic deglycosylation suggested that the recombinant NmU(2)R was glycosylated in P. pastoris, but not in BHK cells. Confocal laser scanning microscopy and immunogold labelling experiment revealed that the recombinant receptor was predominantly localized in the intracellular membranes. To our knowledge, this is the first report of heterologous overexpression of an affinity tagged recombinant NmU(2)R and it should facilitate further characterization of this receptor.
Collapse
Affiliation(s)
- Arun Kumar Shukla
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438 Frankfurt am Main, Germany.
| | | | | | | |
Collapse
|
23
|
Ting JT, Kelley BG, Lambert TJ, Cook DG, Sullivan JM. Amyloid precursor protein overexpression depresses excitatory transmission through both presynaptic and postsynaptic mechanisms. Proc Natl Acad Sci U S A 2006; 104:353-8. [PMID: 17185415 PMCID: PMC1765464 DOI: 10.1073/pnas.0608807104] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Overexpression of the amyloid precursor protein (APP) in hippocampal neurons leads to elevated beta-amyloid peptide (Abeta) production and consequent depression of excitatory transmission. The precise mechanisms underlying APP-induced synaptic depression are poorly understood. Uncovering these mechanisms could provide insight into how neuronal function is compromised before cell death during the early stages of Alzheimer's disease. Here we verify that APP up-regulation leads to depression of transmission in cultured hippocampal autapses; and we perform whole-cell recording, FM imaging, and immunocytochemistry to identify the specific mechanisms accounting for this depression. We find that APP overexpression leads to postsynaptic silencing through a selective reduction of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated currents. This effect is likely mediated by Abeta because expression of mutant APP incapable of producing Abeta did not depress transmission. In addition, although we eliminate presynaptic silencing as a mechanism underlying APP-mediated inhibition of transmission, we did observe an Abeta-induced presynaptic deficit in vesicle recycling with sustained stimulation. These findings demonstrate that APP elevation disrupts both presynaptic and postsynaptic compartments.
Collapse
Affiliation(s)
- Jonathan T. Ting
- Department of *Physiology and Biophysics
- Graduate Program in Neurobiology and Behavior, University of Washington School of Medicine, Seattle, WA 98195; and
| | | | - Talley J. Lambert
- Graduate Program in Neurobiology and Behavior, University of Washington School of Medicine, Seattle, WA 98195; and
| | - David G. Cook
- Medicine, and
- Pharmacology and
- Veterans Affairs Medical Center Geriatric Research Education and Clinical Center, Seattle, WA 98108
| | - Jane M. Sullivan
- Department of *Physiology and Biophysics
- Graduate Program in Neurobiology and Behavior, University of Washington School of Medicine, Seattle, WA 98195; and
- To whom correspondence should be addressed at:
Department of Physiology and Biophysics, University of Washington School of Medicine, Box 357290, Seattle, WA 98195. E-mail:
| |
Collapse
|
24
|
Shukla AK, Reinhart C, Michel H. Comparative analysis of the human angiotensin II type 1a receptor heterologously produced in insect cells and mammalian cells. Biochem Biophys Res Commun 2006; 349:6-14. [PMID: 16963356 DOI: 10.1016/j.bbrc.2006.07.210] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Accepted: 07/28/2006] [Indexed: 12/01/2022]
Abstract
Angiotensin II type 1a receptor (AT1aR) is a member of GPCR superfamily and it plays crucial roles in the regulation of blood pressure, hormone secretion and renal functions. Here, we report functional overexpression and characterization of the human AT1aR in insect cells using the baculovirus system and in mammalian cells using the Semliki Forest virus system. The recombinant receptor was expressed at a level of 29-32 pmol/mg and it binds to angiontensin II with high affinity (Kd=0.98-1.1 nM). Angiotensin II stimulated accumulation of inositol phosphate and phosphorylation of MAP kinase was also observed, which indicated that the recombinant AT1aR could couple to endogenous Galphaq protein. Confocal laser scanning microscopy revealed that the recombinant receptor was predominantly localized in the plasma membrane and agonist induced internalization of the recombinant AT1aR was also observed. The recombinant AT1aR was expressed in glycosylated form and in vivo inhibition of glycosylation suppressed its surface expression.
Collapse
Affiliation(s)
- Arun Kumar Shukla
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438 Frankfurt am Main, Germany.
| | | | | |
Collapse
|
25
|
Krupka SS, Wiltschi B, Reuning U, Hölscher K, Hara M, Sinner EK. In vivo detection of membrane protein expression using surface plasmon enhanced fluorescence spectroscopy (SPFS). Biosens Bioelectron 2006; 22:260-7. [PMID: 16530398 DOI: 10.1016/j.bios.2006.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2005] [Revised: 10/28/2005] [Accepted: 01/05/2006] [Indexed: 11/26/2022]
Abstract
Surface plasmon enhanced fluorescence spectroscopy (SPFS) was applied for the detection of expression and functional incorporation of integral membrane proteins into plasma membranes of living cells in real time. A vesicular stomatitis virus (VSV) tagged mutant of photoreceptor bovine rhodopsin was generated for high level expression with the semliki forest virus (SFV) system. Adherent baby hamster kidney (BHK-21) cells were cultivated on fibronectin-coated gold surfaces and infected with genetically engineered virus driving the expression of rhodopsin. Using premixed fluorescently (Alexa Fluor 647) labeled anti-mouse secondary antibody and monoclonal anti-VSV primary antibody, expression of rhodopsin in BHK-21 cells was monitored by SPFS. Fluorescence enhancement by surface plasmons occurs exclusively in the close vicinity of the gold surface. Thus, only the Alexa Fluor 647 labeled antibodies binding to the VSV-tag at rhodopsin molecules exposed on the cell surface experienced fluorescence enhancement, whereas, unbound antibody molecules in the bulk solution were negligibly excited. With this novel technique, we successfully recorded an increase of fluorescence with proceeding rhodopsin expression. Thus, we were able to observe the incorporation of heterologously expressed rhodopsin in the plasma membrane of living cells in real time using a relatively simple and rapid method. We confirmed our results by comparison with conventional wide field fluorescence microscopy.
Collapse
Affiliation(s)
- Simone S Krupka
- Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Chikkanna-Gowda CP, Sheahan BJ, Fleeton MN, Atkins GJ. Regression of mouse tumours and inhibition of metastases following administration of a Semliki Forest virus vector with enhanced expression of IL-12. Gene Ther 2006; 12:1253-63. [PMID: 15944731 DOI: 10.1038/sj.gt.3302561] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Semliki Forest virus (SFV) vector is an RNA-based suicide expression vector that has been used experimentally for tumour therapy. Recently, a new enhanced vector pSFV10-E has been developed that expresses foreign genes at levels up to 10 times higher than the original vector. Interleukin-12 (IL-12), an immunomodulatory cytokine, plays a key role in the induction of T-helper1 responses. The two IL-12 gene subunits were cloned from mouse splenocytes and inserted into the pSFV10-E and pSFV10 (non-enhanced) vectors. Both constructs expressed and secreted biologically active murine IL-12. Administration of high titre rSFV10-E-IL12 particles intratumourally to treat implanted K-BALB tumours in BALB/c mice demonstrated complete tumour regression in comparison to control or rSFV10-IL12 treated groups. High titre rSFV10-E-IL12 particles were also effective in the CT26 tumour model. Histological and immunohistochemical studies revealed tumour necrosis in addition to aggressive influx of CD4+ and CD8+ T cells and other immune cells. Furthermore, inhibition of primary tumour growth and lung metastases of a metastatic (4T1) tumour model indicated the potential of high titres of rSFV10-E-IL12 particles as an efficient antitumour therapeutic agent.
Collapse
Affiliation(s)
- C P Chikkanna-Gowda
- Department of Microbiology, Moyne Institute, Trinity College, Dublin, Ireland
| | | | | | | |
Collapse
|
27
|
Abstract
The broad host cell range and high expression levels of transgenes are features that have made alphaviruses attractive for gene expression studies and gene therapy applications. Particularly, Semliki Forest virus vectors have been applied for large-scale production of recombinant membrane proteins for drug screening purposes and structural biology studies. The high preference of expression in neuronal cells has led to many applications of alphavirus vectors in neuroscience. Studies on localization and transport of recombinant proteins as well as electrophysiological recording have become feasible in primary cultures of neurons and hippocampal slice cultures. Alphaviruses have frequently been used as vaccine vectors for expression of antigens against viruses and tumors. Administration of recombinant viral particles, DNA plasmids or in vitro transcribed RNA has resulted in protection against challenges against lethal viruses and tumors in rodent and primate models. Intratumoral injections of alphavirus vectors expressing reporter and immunostimulatory genes have led to significant tumor regression in mouse models. Modifications of the viral envelope structure have generated targeted Sindbis virus vectors. Astonishingly, conventional Sindbis vectors have demonstrated tumor-specific targeting in animal models due to the high density of laminin receptors on cancer cells. Moreover, encaspulation of Semliki Forest virus vectors in liposomes has provided a means of achieving tumor targeting and protection against the host immune response. Much attention has also been given to the engineering of novel mutant alphavirus vectors with properties such as reduced cytotoxicity, prolonged duration of transgene expression and improved survival of host cells.
Collapse
Affiliation(s)
- K Lundstrom
- Regulon Inc./BioXtal, Epalinges, Switzerland
| |
Collapse
|
28
|
Hassaine G, Wagner R, Kempf J, Cherouati N, Hassaine N, Prual C, André N, Reinhart C, Pattus F, Lundstrom K. Semliki Forest virus vectors for overexpression of 101 G protein-coupled receptors in mammalian host cells. Protein Expr Purif 2006; 45:343-51. [PMID: 16055346 DOI: 10.1016/j.pep.2005.06.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2005] [Revised: 06/06/2005] [Accepted: 06/07/2005] [Indexed: 10/25/2022]
Abstract
Semliki Forest virus vectors were applied for the evaluation of 101 G protein-coupled receptors in three mammalian cell lines. Western blotting demonstrated that 95 of the 101 tested GPCRs showed positive signals. A large number of the GPCRs were expressed at high levels suggesting receptor yields in the range of 1 mg/L or higher, suitable for structural biology applications. Specific binding assays on a selected number of GPCRs were carried out to compare the correlation between total and functional protein expression. Ligands and additives supplemented to the cell culture medium were evaluated for expression enhancement. Selected GPCRs were also expressed from mutant SFV vectors providing enhanced protein expression and reduced host cell toxicity in attempts to further improve receptor yields.
Collapse
Affiliation(s)
- Gherici Hassaine
- BioXtal, Chemin des Croisettes 22, CH-1066 Epalinges, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Shukla AK, Haase W, Reinhart C, Michel H. Biochemical and pharmacological characterization of the human bradykinin subtype 2 receptor produced in mammalian cells using the Semliki Forest virus system. Biol Chem 2006; 387:569-76. [PMID: 16740128 DOI: 10.1515/bc.2006.073] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Bradykinin, a vasoactive peptide, plays a crucial role in many cardiovascular processes via activation of the bradykinin subtype 2 receptor (B2R). B2R, a member of the G protein-coupled receptor (GPCR) superfamily, is a potential drug target in the treatment of cardiovascular disorders, pain and inflammation. In this study, human B2R was expressed at high levels in baby hamster kidney (BHK) cells using Semliki Forest virus-based vectors. The recombinant receptor was produced as a fusion protein with affinity tags and an expression level of 11 pmol/mg (i.e., approx. 0.2 mg of active receptor per liter of culture) was obtained. Radioligand binding analysis revealed that the recombinant receptor binds to its endogenous ligand bradykinin with high affinity (Kd = 0.12 nM) and its pharmacological profile was similar to that of B2R in native tissues. Bradykinin-stimulated accumulation of inositol phosphate was observed in BHK cells expressing the recombinant receptor, which indicated the activation of endogenous G alpha(q) protein by the recombinant B2R. Confocal laser scanning microscopy and immunogold staining revealed that the recombinant receptor was predominantly localized intracellularly. To the best of our knowledge, this is the first report of an affinity-tagged recombinant B2R been expressed at high levels in BHK cells and extensively characterized.
Collapse
Affiliation(s)
- Arun Kumar Shukla
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max-von-Laue Str. 3, D-60438 Frankfurt/Main, Germany
| | | | | | | |
Collapse
|
30
|
Abstract
Gene therapy potentially represents one of the most important developments in modern medicine. Gene therapy, especially of cancer, has created exciting and elusive areas of therapeutic research in the past decade. In fact, the first gene therapy performed in a human was not against cancer but was performed to a 14 year old child suffering from adenosine deaminase (ADA) deficiency. In addition to cancer gene therapy there are many other diseases and disorders where gene therapy holds exciting and promising opportunities. These include amongst others gene therapy within the central nervous system and the cardiovascular system. Improvements of the efficiency and safety of gene therapy is the major goal of gene therapy development. After the death of Jesse Gelsinger, the first patient in whom death could be directly linked to the viral vector used for the treatment, ethical doubts were raised about the feasibility of gene therapy in humans. Therefore, the ability to direct gene transfer vectors to specific target cells is also a crucial task to be solved and will be important not only to achieve a therapeutic effect but also to limit potential adverse effects.
Collapse
Affiliation(s)
- T Wirth
- A I Virtanen Institute, University of Kuopio, Finland
| | | |
Collapse
|
31
|
Abstract
The calyx of Held serves as a model for synaptic transmission in the mammalian central nervous system. While offering unique access to the biophysics of presynaptic function, studies addressing the molecular mechanisms of neurotransmitter exocytosis in this model have been mainly limited to pharmacological interventions. To overcome this experimental limitation we used stereotaxic delivery of viral gene shuttles to rapidly and selectively manipulate protein composition in the calyx terminal in vivo. Sindbis or Semliki Forest viruses encoding enhanced green fluorescent protein (EGFP) were injected into the ventral cochlear nucleus (VCN) of rats (postnatal days 7-21) and yielded bright fluorescence in cells of the VCN, including globular bushy cells with their axon and calyx terminal. Fluorescence imaging and three dimensional reconstructions visualized developmental changes in calyx morphology. Small cytoplasmic and synaptic vesicle proteins were successfully overexpressed in the calyx. We extended two-photon microscopy to obtain simultaneous fluorescence and infrared scanning gradient contrast images, allowing for efficient patch-clamp recordings from EGFP-labelled calyces in acute brain slices (postnatal days 9-14). Recordings of spontaneous miniature excitatory postsynaptic currents and short-term depression in synapses overexpressing EGFP or synaptophysin-EGFP revealed normal synaptic function. Thus, Sindbis and Semliki Forest virus-directed overexpression of proteins in the calyx of Held provides a new avenue for molecular structure-function studies of mammalian central synapses.
Collapse
Affiliation(s)
- Verena C Wimmer
- Abteilung Zellphysiologie, Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
32
|
Sen S, Jaakola VP, Heimo H, Engström M, Larjomaa P, Scheinin M, Lundstrom K, Goldman A. Functional expression and direct visualization of the human α2B-adrenergic receptor and α2B-AR-green fluorescent fusion protein in mammalian cell using Semliki Forest virus vectors. Protein Expr Purif 2003; 32:265-75. [PMID: 14965773 DOI: 10.1016/j.pep.2003.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2003] [Revised: 08/05/2003] [Indexed: 11/29/2022]
Abstract
The alpha 2B -adrenergic receptor ( alpha 2B -AR), a member of the G protein-coupled receptor (GPCR) superfamily, was expressed at high levels from Semliki Forest virus (SFV) vectors in mammalian cells. Constructs were engineered by fusing enhanced green fluorescent protein (eGFP) and the SFV capsid to opposite ends of the alpha 2B -AR. The receptor fusions alpha 2B -AR-eGFP and CAP- alpha 2B -AR expressed in CHO-K1 cells generated alpha 2B values of 176 and 122pmol/mg of membrane protein, respectively, and showed similar ligand binding characteristics, alpha 2B -AR subtype-selectivity, and G protein activation as reported for stable expression in CHO-K1 cells. Cryo-electron microscopy and eGFP-based fluorescence indicated the same subcellular receptor distribution. SFV expression is well suited for studies on the pharmacology, biochemistry, and cell biology of GPCRs, and for large-scale recombinant protein production in mammalian suspension culture to generate sufficient receptor quantities for structural biology.
Collapse
Affiliation(s)
- Saurabh Sen
- Institute of Biotechnology (Biocenter 3), University of Helsinki, P.O. Box 65, Viikinkaari 1, FIN-00014 Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Alphavirus vectors demonstrate high expression of heterologous proteins in a broad range of host cells. Replication-deficient as well as replication-competent variants exist. Systemic delivery of many viral antigens has elicited strong antibody responses in immunized mice and primates, and protection against challenges with lethal viruses was obtained. Similarly, prophylactic vaccination was established against tumor challenges. Attention has been paid to the engineering of improved targeting to immunologically active cells, such as dendritic cells. In the area of gene therapy, intratumoral injections of alphavirus vectors have resulted in potentially promising tumor rejection. Moreover, encapsulation of alphavirus particles into liposomes demonstrated efficient tumor targeting in mice with severe combined immunodeficiency, which permitted the initiation of clinical trials for patients with advanced kidney carcinoma and melanoma.
Collapse
|
34
|
Visualization of microtubule growth in cultured neurons via the use of EB3-GFP (end-binding protein 3-green fluorescent protein). J Neurosci 2003. [PMID: 12684451 DOI: 10.1523/jneurosci.23-07-02655.2003] [Citation(s) in RCA: 493] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Several microtubule binding proteins, including CLIP-170 (cytoplasmic linker protein-170), CLIP-115, and EB1 (end-binding protein 1), have been shown to associate specifically with the ends of growing microtubules in non-neuronal cells, thereby regulating microtubule dynamics and the binding of microtubules to protein complexes, organelles, and membranes. When fused to GFP (green fluorescent protein), these proteins, which collectively are called +TIPs (plus end tracking proteins), also serve as powerful markers for visualizing microtubule growth events. Here we demonstrate that endogenous +TIPs are present at distal ends of microtubules in fixed neurons. Using EB3-GFP as a marker of microtubule growth in live cells, we subsequently analyze microtubule dynamics in neurons. Our results indicate that microtubules grow slower in neurons than in glia and COS-1 cells. The average speed and length of EB3-GFP movements are comparable in cell bodies, dendrites, axons, and growth cones. In the proximal region of differentiated dendrites approximately 65% of EB3-GFP movements are directed toward the distal end, whereas 35% are directed toward the cell body. In more distal dendritic regions and in axons most EB3-GFP dots move toward the growth cone. This difference in directionality of EB3-GFP movements in dendrites and axons reflects the highly specific microtubule organization in neurons. Together, these results suggest that local microtubule polymerization contributes to the formation of the microtubule network in all neuronal compartments. We propose that similar mechanisms underlie the specific association of CLIPs and EB1-related proteins with the ends of growing microtubules in non-neuronal and neuronal cells.
Collapse
|
35
|
Lundstrom K. Semliki Forest virus vectors for rapid and high-level expression of integral membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1610:90-6. [PMID: 12586383 DOI: 10.1016/s0005-2736(02)00721-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Semliki Forest virus (SFV) vectors have been applied for the expression of recombinant integral membrane proteins in a wide range of mammalian host cells. More than 50 G protein-coupled receptors (GPCRs), several ion channels and other types of transmembrane or membrane-associated proteins have been expressed at high levels. The establishment of large-scale SFV technology has facilitated the production of large quantities of recombinant receptors, which have then been subjected to drug screening programs and structure-function studies on purified receptors. The recent Membrane Protein Network (MePNet) structural genomics initiative, where 100 GPCRs are overexpressed from SFV vectors, will further provide new methods and technologies for expression, solubilization, purification and crystallization of GPCRs.
Collapse
|
36
|
Virus-based vectors for gene expression in mammalian cells: Semliki Forest virus. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s0167-7306(03)38013-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
37
|
Xia Z, Hufeisen SJ, Gray JA, Roth BL. The PDZ-binding domain is essential for the dendritic targeting of 5-HT2A serotonin receptors in cortical pyramidal neurons in vitro. Neuroscience 2003; 122:907-20. [PMID: 14643760 DOI: 10.1016/s0306-4522(03)00589-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The 5-HT(2A) serotonin receptor represents an important molecular target for atypical antipsychotic drugs and for most hallucinogens. In the mammalian cerebral cortex, 5-HT(2A) receptors are enriched in pyramidal neurons, within which 5-HT(2A) receptors are preferentially sorted to the apical dendrites. In primary cortical cultures, 5-HT(2A) receptors are sorted to dendrites and not found in the axons of pyramidal neurons. We identified a sorting motif that mediates the preferential targeting of 5-HT(2A) receptors to the dendrites of cortical pyramidal neurons in vitro. We constructed green fluorescent protein-tagged 5-HT(2A) receptors wherein potential sorting motifs were disrupted, and subsequently employed either the Semliki Forest virus or calcium phosphate for the transient expression of recombinant 5-HT(2A) receptors in cultured cortical pyramidal neurons. Using dual-labeling immunofluorescent confocal microscopy, we quantified the axonal and dendritic sorting patterns of endogenous and recombinant 5-HT(2A) receptors. We discovered that disruption of the PDZ-binding domain of the 5-HT(2A) receptor greatly attenuates the dendritic targeting of 5-HT(2A) receptors without inappropriately sorting 5-HT(2A) receptors to axons. The PDZ-binding domain is therefore a necessary signal for the preferential targeting of the 5-HT(2A) receptor to the dendritic compartment of cultured cortical pyramidal neurons, the first such role ascribed to this protein-protein interaction motif of any G protein-coupled receptor.
Collapse
Affiliation(s)
- Z Xia
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
38
|
Lundstrom K. Semliki forest virus-based expression for versatile use in receptor research. J Recept Signal Transduct Res 2002; 22:229-40. [PMID: 12503618 DOI: 10.1081/rrs-120014598] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Semliki Forest virus (SFV) vectors have been generated for highly efficient studies on gene expression in a variety of mammalian host cells, including immortalized cell lines as well as primary cells in culture. Moreover, SFV expression has been scaled up for mammalian suspension cultures in spinner flasks and bioreactors for production of large quantities of recombinant proteins for drug screening and purification. The strong preference of expression in neuronal cells in primary cell cultures, in organotypic hippocampal slices and in vivo has made SFV vectors attractive for neurobiological studies. Additionally, the engineering of novel, less cytotoxic and temperature-sensitive SFV mutant vectors has further increased their application range.
Collapse
Affiliation(s)
- Kenneth Lundstrom
- Regulon Inc., Biopole Epalinges, Les Croisettes 22, CH-1066 Epalinges/Lausanne, Switzerland.
| |
Collapse
|
39
|
Hartley O. The use of phage display in the study of receptors and their ligands. J Recept Signal Transduct Res 2002; 22:373-92. [PMID: 12503628 DOI: 10.1081/rrs-120014608] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Phage display technology presents a rapid means by which proteins and peptides that bind specifically to predefined molecular targets can be isolated from extremely complex combinatorial libraries. There are several important ways by which phage display can provide impetus to receptor-based research. Firstly, phage display can be applied, alongside transcriptome and proteome expression profiling techniques, to the identification and characterisation of receptors whose expression is specific to either a cell lineage, a tissue or a disease state. Secondly, specific monoclonal antibodies that enable researchers to identify, localize and quantify receptors can be produced very rapidly (weeks). Thirdly, it should be possible to apply phage display to the matching of orphan ligands and receptors. Finally, phage display can be used to identify proteins and peptides that modulate receptor activity. As well as being useful in the study of receptor function, biologically active proteins and peptides could also be used therapeutically, or as leads for drug design. Hence phage display is ready to play a central role in the study of receptors in the post-genome era. This review outlines the ways in which phage display has been applied to the study of receptor-ligand systems, and discusses how new developments in the technology may be of even greater utility to the field in the next decade.
Collapse
Affiliation(s)
- Oliver Hartley
- Département de Biochimie Medicale, Centre Médicale Universitaire, 1 rue Michel Servet, CH-1211 Genève 4, Switzerland.
| |
Collapse
|