1
|
Zhang S, Gao Z, Dong K, Wang Y, Lv W, Wang R, Guo F, Liu J, Yang X. Functional analysis of novel cystatins from Haemaphysalis doenitzi and evaluation of their roles in cypermethrin and λ-cyhalothrin resistance. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106075. [PMID: 39277388 DOI: 10.1016/j.pestbp.2024.106075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 09/17/2024]
Abstract
Currently, the primary strategy for tick control relies on chemical agents. Pyrethrins, which are botanically derived compounds, have demonstrated efficacy in controlling ticks without posing a risk to human or animal health. However, research into pyrethrins' metabolic mechanisms remains sparse. Cystatin, as a reversible binding inhibitor of cysteine protease, may be involved in the initiation of pyrethrin detoxification of Haemaphysalis doenitzi. In this study, two novel cystatins were cloned, HDcyst-3 and HDcyst-4, the relative expression of which was highest in the Malpighian tubules compared with the tick midguts, salivary glands, and ovaries. Prokaryotic expression and in vitro studies revealed that cystatins effectively inhibit the enzymatic activities of cathepsins B and S. RNAi results showed that the reduction of cystatins significantly decreased the engorgement weight, egg mass weight, and egg hatching rate of adult female ticks, and prolonged feeding time by two days. The control rate of rHDcyst-3 and rHDcyst-4 protein vaccination against female adults were 55.9% and 63.2%, respectively. In addition, the tick immersion test showed that cypermethrin and λ-cyhalothrin had significant acaricidal effects against adult unfed H. doenitzi. The qPCR result indicated that compared with the control group, the expression of HDcyst-3 and HDcyst-4 was markedly decreased in the sublethal cypermethrin and λ-cyhalothrin group at LC50. Enzyme activity showed that cypermethrin and λ-cyhalothrin could significantly induce the activities of glutathione S-transferase (GST), carboxylesterase (CarE), and acetylcholinesterase (AchE). The aforementioned results provided indirect evidence that cystatin plays an important role in pyrethrin detoxification and provides a theoretical basis for future acaricide experiments and pest management.
Collapse
Affiliation(s)
- Songbo Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Zhihua Gao
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Kexin Dong
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Yikui Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Wenxia Lv
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Runying Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Feidi Guo
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Jianing Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Xiaolong Yang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China..
| |
Collapse
|
2
|
Liu J, Xu S, Huang C, Shen J, Yu S, Yu Y, Sun Q, Dai Q. Synthesis and activity evaluation of selenazole-coupled CPI-1 irreversible bifunctional inhibitors for botulinum toxin A light chain. Bioorg Med Chem Lett 2022; 73:128913. [PMID: 35914651 DOI: 10.1016/j.bmcl.2022.128913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 11/02/2022]
Abstract
A series of novel conjugates of benzoselenazole or selenazole and CPI-1 were designed, synthesized, and evaluated for inhibitory activities against the botulinum neurotoxin A (BoNT/A) light chain (LC) and BoNT/A in vivo. The results show that these compounds exhibit potent inhibitory activities to the LC with IC50 of 0.5-4.1 µM. The reaction kinetics and the mass spectra of the reaction products of LC with benzoselenazole- or selenazole- coupled CPI-1 demonstrate that the benzoselenazole group of most inhibitors is coupled to the LC of BoNT/A. These data indicate that the CPI-1 conjugates can inhibit both the active center of BoNT/A LC as well as Cys165, therefore functioning as irreversible bifunctional inhibitors. The detoxification activities in vivo show that one of the benzoselenazole-CPI-1 compounds prolongs the survival time of mice challenged by 2 × LD50 of BoNT/A. This work provides a new strategy to design potent antidotes of BoNT/A.
Collapse
|
3
|
Shen J, Liu J, Yu S, Yu Y, Huang C, Xiong X, Yue J, Dai Q. Diaminodiacid bridge improves enzymatic and in vivo inhibitory activity of peptide CPI-1 against botulinum toxin serotype A. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Chen AY, Adamek RN, Dick BL, Credille CV, Morrison CN, Cohen SM. Targeting Metalloenzymes for Therapeutic Intervention. Chem Rev 2019; 119:1323-1455. [PMID: 30192523 PMCID: PMC6405328 DOI: 10.1021/acs.chemrev.8b00201] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metalloenzymes are central to a wide range of essential biological activities, including nucleic acid modification, protein degradation, and many others. The role of metalloenzymes in these processes also makes them central for the progression of many diseases and, as such, makes metalloenzymes attractive targets for therapeutic intervention. Increasing awareness of the role metalloenzymes play in disease and their importance as a class of targets has amplified interest in the development of new strategies to develop inhibitors and ultimately useful drugs. In this Review, we provide a broad overview of several drug discovery efforts focused on metalloenzymes and attempt to map out the current landscape of high-value metalloenzyme targets.
Collapse
Affiliation(s)
- Allie Y Chen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Rebecca N Adamek
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Benjamin L Dick
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Cy V Credille
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Christine N Morrison
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Seth M Cohen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| |
Collapse
|
5
|
Natural Compounds and Their Analogues as Potent Antidotes against the Most Poisonous Bacterial Toxin. Appl Environ Microbiol 2018; 84:AEM.01280-18. [PMID: 30389764 DOI: 10.1128/aem.01280-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/28/2018] [Indexed: 01/30/2023] Open
Abstract
Botulinum neurotoxins (BoNTs), the most poisonous proteins known to humankind, are a family of seven (serotype A to G) immunologically distinct proteins synthesized primarily by different strains of the anaerobic bacterium Clostridium botulinum Being the causative agents of botulism, the toxins block neurotransmitter release by specifically cleaving one of the three soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins, thereby inducing flaccid paralysis. The development of countermeasures and therapeutics against BoNTs is a high-priority research area for public health because of their extreme toxicity and potential for use as biowarfare agents. Extensive research has focused on designing antagonists that block the catalytic activity of BoNTs. In this study, we screened 300 small natural compounds and their analogues extracted from Indian plants for their activity against BoNT serotype A (BoNT/A) as well as its light chain (LCA) using biochemical and cellular assays. One natural compound, a nitrophenyl psoralen (NPP), was identified to be a specific inhibitor of LCA with an in vitro 50% inhibitory concentration (IC50) value of 4.74 ± 0.03 µM. NPP was able to rescue endogenous synaptosome-associated protein 25 (SNAP-25) from cleavage by BoNT/A in human neuroblastoma cells with an IC50 of 12.2 ± 1.7 µM, as well as to prolong the time to the blocking of neutrally elicited twitch tensions in isolated mouse phrenic nerve-hemidiaphragm preparations.IMPORTANCE The long-lasting endopeptidase activity of BoNT is a critical biological activity inside the nerve cell, as it prompts proteolysis of the SNARE proteins, involved in the exocytosis of the neurotransmitter acetylcholine. Thus, the BoNT endopeptidase activity is an appropriate clinical target for designing new small-molecule antidotes against BoNT with the potential to reverse the paralysis syndrome of botulism. In principle, small-molecule inhibitors (SMIs) can gain entry into BoNT-intoxicated cells if they have a suitable octanol-water partition coefficient (log P) value and other favorable characteristics (P. Leeson, Nature 481:455-456, 2012, https://doi.org/10.1038/481455a). Several efforts have been made in the past to develop SMIs, but inhibitors effective under in vitro conditions have not in general been effective in vivo or in cellular models (L. M. Eubanks, M. S. Hixon, W. Jin, S. Hong, et al., Proc Natl Acad Sci U S A 104:2602-2607, 2007, https://doi.org/10.1073/pnas.0611213104). The difference between the in vitro and cellular efficacy presumably results from difficulties experienced by the compounds in crossing the cell membrane, in conjunction with poor bioavailability and high cytotoxicity. The screened nitrophenyl psoralen (NPP) effectively antagonized BoNT/A in both in vitro and ex vivo assays. Importantly, NPP inhibited the BoNT/A light chain but not other general zinc endopeptidases, such as thermolysin, suggesting high selectivity for its target. Small-molecule (nonpeptidic) inhibitors have better oral bioavailability, better stability, and better tissue and cell permeation than antitoxins or peptide inhibitors.
Collapse
|
6
|
Bremer PT, Pellett S, Carolan JP, Tepp WH, Eubanks LM, Allen KN, Johnson EA, Janda KD. Metal Ions Effectively Ablate the Action of Botulinum Neurotoxin A. J Am Chem Soc 2017; 139:7264-7272. [PMID: 28475321 PMCID: PMC5612488 DOI: 10.1021/jacs.7b01084] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Botulinum neurotoxin serotype A (BoNT/A) causes a debilitating and potentially fatal illness known as botulism. The toxin is also a bioterrorism threat, yet no pharmacological antagonist to counteract its effects has reached clinical approval. Existing strategies to negate BoNT/A intoxication have looked to antibodies, peptides, or organic small molecules as potential therapeutics. In this work, a departure from the traditional drug discovery mindset was pursued, in which the enzyme's susceptibility to metal ions was exploited. A screen of a series of metal salts showed marked inhibitory activity of group 11 and 12 metals against the BoNT/A light chain (LC) protease. Enzyme kinetics revealed that copper (I) and (II) cations displayed noncompetitive inhibition of the LC (Ki ≈ 1 μM), while mercury (II) cations were 10-fold more potent. Crystallographic and mutagenesis studies elucidated a key binding interaction between Cys165 on BoNT/A LC and the inhibitory metals. As potential copper prodrugs, ligand-copper complexes were examined in a cell-based model and were found to prevent BoNT/A cleavage of the endogenous protein substrate, SNAP-25, even at low μM concentrations of complexes. Further investigation of the complexes suggested a bioreductive mechanism causing intracellular release of copper, which directly inhibited the BoNT/A protease. In vivo experiments demonstrated that copper (II) dithiocarbamate and bis(thiosemicarbazone) complexes could delay BoNT/A-mediated lethality in a rodent model, indicating their potential for treating the harmful effects of BoNT/A intoxication. Our studies illustrate that metals can be therapeutically viable enzyme inhibitors; moreover, enzymes that share homology with BoNT LCs may be similarly targeted with metals.
Collapse
Affiliation(s)
- Paul T. Bremer
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Sabine Pellett
- Department of Bacteriology, University of Wisconsin, 1550 Linden Drive, Madison, Wisconsin 53706, USA
| | - James P. Carolan
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA
| | - William H. Tepp
- Department of Bacteriology, University of Wisconsin, 1550 Linden Drive, Madison, Wisconsin 53706, USA
| | - Lisa M. Eubanks
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Karen N. Allen
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA
| | - Eric A. Johnson
- Department of Bacteriology, University of Wisconsin, 1550 Linden Drive, Madison, Wisconsin 53706, USA
| | - Kim D. Janda
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
7
|
Pirazzini M, Rossetto O. Challenges in searching for therapeutics against Botulinum Neurotoxins. Expert Opin Drug Discov 2017; 12:497-510. [DOI: 10.1080/17460441.2017.1303476] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Affiliation(s)
- Megan Garland
- Cancer
Biology Program, ‡Department of Pathology, §Department of Microbiology and Immunology, and ∥Department of
Chemical and Systems Biology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, United States
| | - Sebastian Loscher
- Cancer
Biology Program, ‡Department of Pathology, §Department of Microbiology and Immunology, and ∥Department of
Chemical and Systems Biology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, United States
| | - Matthew Bogyo
- Cancer
Biology Program, ‡Department of Pathology, §Department of Microbiology and Immunology, and ∥Department of
Chemical and Systems Biology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, United States
| |
Collapse
|
9
|
Kumar G, Agarwal R, Swaminathan S. Small molecule non-peptide inhibitors of botulinum neurotoxin serotype E: Structure-activity relationship and a pharmacophore model. Bioorg Med Chem 2016; 24:3978-3985. [PMID: 27353886 DOI: 10.1016/j.bmc.2016.06.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 06/15/2016] [Accepted: 06/17/2016] [Indexed: 10/21/2022]
Abstract
Botulinum neurotoxins (BoNTs) are the most poisonous biological substance known to humans. They cause flaccid paralysis by blocking the release of acetylcholine at the neuromuscular junction. Here, we report a number of small molecule non-peptide inhibitors of BoNT serotype E. The structure-activity relationship and a pharmacophore model are presented. Although non-peptidic in nature, these inhibitors mimic key features of the uncleavable substrate peptide Arg-Ile-Met-Glu (RIME) of the SNAP-25 protein. Among the compounds tested, most of the potent inhibitors bear a zinc-chelating moiety connected to a hydrophobic and aromatic moiety through a carboxyl or amide linker. All of them show low micromolar IC50 values.
Collapse
Affiliation(s)
- Gyanendra Kumar
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Rakhi Agarwal
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | | |
Collapse
|
10
|
Bompiani KM, Caglič D, Krutein MC, Benoni G, Hrones M, Lairson LL, Bian H, Smith GR, Dickerson TJ. High-Throughput Screening Uncovers Novel Botulinum Neurotoxin Inhibitor Chemotypes. ACS COMBINATORIAL SCIENCE 2016; 18:461-74. [PMID: 27314875 DOI: 10.1021/acscombsci.6b00033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Botulism is caused by potent and specific bacterial neurotoxins that infect host neurons and block neurotransmitter release. Treatment for botulism is limited to administration of an antitoxin within a short time window, before the toxin enters neurons. Alternatively, current botulism drug development targets the toxin light chain, which is a zinc-dependent metalloprotease that is delivered into neurons and mediates long-term pathology. Several groups have identified inhibitory small molecules, peptides, or aptamers, although no molecule has advanced to the clinic due to a lack of efficacy in advanced models. Here we used a homogeneous high-throughput enzyme assay to screen three libraries of drug-like small molecules for new chemotypes that modulate recombinant botulinum neurotoxin light chain activity. High-throughput screening of 97088 compounds identified numerous small molecules that activate or inhibit metalloprotease activity. We describe four major classes of inhibitory compounds identified, detail their structure-activity relationships, and assess their relative inhibitory potency. A previously unreported chemotype in any context of enzyme inhibition is described with potent submicromolar inhibition (Ki = 200-300 nM). Additional detailed kinetic analyses and cellular cytotoxicity assays indicate the best compound from this series is a competitive inhibitor with cytotoxicity values around 4-5 μM. Given the potency and drug-like character of these lead compounds, further studies, including cellular activity assays and DMPK analysis, are justified.
Collapse
Affiliation(s)
- Kristin M. Bompiani
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Dejan Caglič
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Michelle C. Krutein
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Galit Benoni
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Morgan Hrones
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Luke L. Lairson
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Haiyan Bian
- Fox Chase Chemical Diversity Center, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Garry R. Smith
- Fox Chase Chemical Diversity Center, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Tobin J. Dickerson
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
11
|
Zhou Y, McGillick BE, Teng YHG, Haranahalli K, Ojima I, Swaminathan S, Rizzo RC. Identification of small molecule inhibitors of botulinum neurotoxin serotype E via footprint similarity. Bioorg Med Chem 2016; 24:4875-4889. [PMID: 27543389 DOI: 10.1016/j.bmc.2016.07.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/15/2016] [Accepted: 07/16/2016] [Indexed: 11/15/2022]
Abstract
Botulinum neurotoxins (BoNT) are among the most poisonous substances known, and of the 7 serotypes (A-G) identified thus far at least 4 can cause death in humans. The goal of this work was identification of inhibitors that specifically target the light chain catalytic site of the highly pathogenic but lesser-studied E serotype (BoNT/E). Large-scale computational screening, employing the program DOCK, was used to perform atomic-level docking of 1.4 million small molecules to prioritize those making favorable interactions with the BoNT/E site. In particular, 'footprint similarity' (FPS) scoring was used to identify compounds that could potentially mimic features on the known substrate tetrapeptide RIME. Among 92 compounds purchased and experimentally tested, compound C562-1101 emerged as the most promising hit with an apparent IC50 value three-fold more potent than that of the first reported BoNT/E small molecule inhibitor NSC-77053. Additional analysis showed the predicted binding pose of C562-1101 was geometrically and energetically stable over an ensemble of structures generated by molecular dynamic simulations and that many of the intended interactions seen with RIME were maintained. Several analogs were also computationally designed and predicted to have further molecular mimicry thereby demonstrating the potential utility of footprint-based scoring protocols to help guide hit refinement.
Collapse
Affiliation(s)
- Yuchen Zhou
- Department of Applied Mathematics & Statistics, Stony Brook University, Stony Brook, NY 11794, United States
| | - Brian E McGillick
- Graduate Program in Biochemistry & Structural Biology, Stony Brook University, Stony Brook, NY 11794, United States; Biology Department, Brookhaven National Laboratory, Upton, NY 11973, United States
| | - Yu-Han Gary Teng
- Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, NY 11794, United States; Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, United States
| | | | - Iwao Ojima
- Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, NY 11794, United States; Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, United States
| | | | - Robert C Rizzo
- Department of Applied Mathematics & Statistics, Stony Brook University, Stony Brook, NY 11794, United States; Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, NY 11794, United States; Laufer Center for Physical & Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, United States.
| |
Collapse
|
12
|
Kumaran D, Adler M, Levit M, Krebs M, Sweeney R, Swaminathan S. Interactions of a potent cyclic peptide inhibitor with the light chain of botulinum neurotoxin A: Insights from X-ray crystallography. Bioorg Med Chem 2015; 23:7264-73. [PMID: 26522088 DOI: 10.1016/j.bmc.2015.10.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/09/2015] [Accepted: 10/16/2015] [Indexed: 10/22/2022]
Abstract
The seven antigenically distinct serotypes (A-G) of botulinum neurotoxin (BoNT) are responsible for the deadly disease botulism. BoNT serotype A (BoNT/A) exerts its lethal action by cleaving the SNARE protein SNAP-25, leading to inhibition of neurotransmitter release, flaccid paralysis and autonomic dysfunction. BoNTs are dichain proteins consisting of a ∼ 100 kDa heavy chain and a ∼ 50 kDa light chain; the former is responsible for neurospecific binding, internalization and translocation, and the latter for cleavage of neuronal SNARE proteins. Because of their extreme toxicity and history of weaponization, the BoNTs are regarded as potential biowarfare/bioterrorism agents. No post-symptomatic therapeutic interventions are available for BoNT intoxication other than intensive care; therefore it is imperative to develop specific antidotes against this neurotoxin. To this end, a cyclic peptide inhibitor (CPI-1) was evaluated in a FRET assay for its ability to inhibit BoNT/A light chain (Balc). CPI was found to be highly potent, exhibiting a Ki of 12.3 nM with full-length Balc448 and 39.2 nM using a truncated crystallizable form of the light chain (Balc424). Cocrystallization studies revealed that in the Balc424-CPI-1 complex, the inhibitor adopts a helical conformation, occupies a high percentage of the active site cavity and interacts in an amphipathic manner with critical active site residues. The data suggest that CPI-1 prevents SNAP-25 from accessing the Balc active site by blocking both the substrate binding path at the surface and the Zn(2+) binding region involved in catalysis. This differs from linear peptide inhibitors described to date which block only the latter.
Collapse
Affiliation(s)
- Desigan Kumaran
- Biological, Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, NY 11973, United States
| | - Michael Adler
- Analytical Toxicology Division, U.S. Army Medical Research Institute of Chemical Defense (USAMRICD), Aberdeen Proving Ground, MD 21010, United States.
| | - Matthew Levit
- Analytical Toxicology Division, U.S. Army Medical Research Institute of Chemical Defense (USAMRICD), Aberdeen Proving Ground, MD 21010, United States
| | - Michael Krebs
- Analytical Toxicology Division, U.S. Army Medical Research Institute of Chemical Defense (USAMRICD), Aberdeen Proving Ground, MD 21010, United States
| | - Richard Sweeney
- Research Division, USAMRICD, Aberdeen Proving Ground, MD 21010, United States
| | - Subramanyam Swaminathan
- Biological, Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, NY 11973, United States
| |
Collapse
|
13
|
Videnović M, Opsenica DM, Burnett J, Gomba L, Nuss JE, Selaković Ž, Konstantinović J, Krstić M, Šegan S, Zlatović M, Sciotti RJ, Bavari S, Šolaja BA. Second generation steroidal 4-aminoquinolines are potent, dual-target inhibitors of the botulinum neurotoxin serotype A metalloprotease and P. falciparum malaria. J Med Chem 2014; 57:4134-53. [PMID: 24742203 PMCID: PMC4032193 DOI: 10.1021/jm500033r] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Indexed: 01/25/2023]
Abstract
Significantly more potent second generation 4-amino-7-chloroquinoline (4,7-ACQ) based inhibitors of the botulinum neurotoxin serotype A (BoNT/A) light chain were synthesized. Introducing an amino group at the C(3) position of the cholate component markedly increased potency (IC50 values for such derivatives ranged from 0.81 to 2.27 μM). Two additional subclasses were prepared: bis(steroidal)-4,7-ACQ derivatives and bis(4,7-ACQ)cholate derivatives; both classes provided inhibitors with nanomolar-range potencies (e.g., the Ki of compound 67 is 0.10 μM). During BoNT/A challenge using primary neurons, select derivatives protected SNAP-25 by up to 89%. Docking simulations were performed to rationalize the compounds' in vitro potencies. In addition to specific residue contacts, coordination of the enzyme's catalytic zinc and expulsion of the enzyme's catalytic water were a consistent theme. With respect to antimalarial activity, the compounds provided better IC90 activities against chloroquine resistant (CQR) malaria than CQ, and seven compounds were more active than mefloquine against CQR strain W2.
Collapse
Affiliation(s)
- Milica Videnović
- Faculty
of Chemistry, University of Belgrade, Studentski trg 16, P.O. Box 51, 11158, Belgrade, Serbia
| | - Dejan M. Opsenica
- Institute
of Chemistry, Technology, and Metallurgy, University of Belgrade, Njegoseva 12, 11000 Belgrade, Serbia
| | - James
C. Burnett
- Computational
Drug Development Group, Leidos Biomedical
Research, Inc., FNLCR at Frederick, P.O.
Box B, Frederick, Maryland 21701, United States
| | - Laura Gomba
- Department
of Bacteriology, United States Army Medical
Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, Maryland 21702, United States
| | - Jonathan E. Nuss
- Department
of Bacteriology, United States Army Medical
Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, Maryland 21702, United States
| | - Života Selaković
- Faculty
of Chemistry, University of Belgrade, Studentski trg 16, P.O. Box 51, 11158, Belgrade, Serbia
| | - Jelena Konstantinović
- Faculty
of Chemistry Innovative Centre, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Maja Krstić
- Faculty
of Chemistry, University of Belgrade, Studentski trg 16, P.O. Box 51, 11158, Belgrade, Serbia
| | - Sandra Šegan
- Institute
of Chemistry, Technology, and Metallurgy, University of Belgrade, Njegoseva 12, 11000 Belgrade, Serbia
| | - Mario Zlatović
- Faculty
of Chemistry, University of Belgrade, Studentski trg 16, P.O. Box 51, 11158, Belgrade, Serbia
| | - Richard J. Sciotti
- Division
of Experimental Therapeutics, Walter Reed
Army Institute of Research, Silver
Spring, Maryland 20910, United States
| | - Sina Bavari
- Target
Discovery and Experimental Microbiology, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, Maryland 21702, United States
| | - Bogdan A. Šolaja
- Faculty
of Chemistry, University of Belgrade, Studentski trg 16, P.O. Box 51, 11158, Belgrade, Serbia
| |
Collapse
|
14
|
Mizanur RM, Stafford RG, Ahmed SA. Cleavage of SNAP25 and its shorter versions by the protease domain of serotype A botulinum neurotoxin. PLoS One 2014; 9:e95188. [PMID: 24769566 PMCID: PMC4000213 DOI: 10.1371/journal.pone.0095188] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 03/25/2014] [Indexed: 11/18/2022] Open
Abstract
Various substrates, catalysts, and assay methods are currently used to screen inhibitors for their effect on the proteolytic activity of botulinum neurotoxin. As a result, significant variation exists in the reported results. Recently, we found that one source of variation was the use of various catalysts, and have therefore evaluated its three forms. In this paper, we characterize three substrates under near uniform reaction conditions using the most active catalytic form of the toxin. Bovine serum albumin at varying optimum concentrations stimulated enzymatic activity with all three substrates. Sodium chloride had a stimulating effect on the full length synaptosomal-associated protein of 25 kDa (SNAP25) and its 66-mer substrates but had an inhibitory effect on the 17-mer substrate. We found that under optimum conditions, full length SNAP25 was a better substrate than its shorter 66-mer or 17-mer forms both in terms of kcat, Km, and catalytic efficiency kcat/Km. Assay times greater than 15 min introduced large variations and significantly reduced the catalytic efficiency. In addition to characterizing the three substrates, our results identify potential sources of variations in previous published results, and underscore the importance of using well-defined reaction components and assay conditions.
Collapse
Affiliation(s)
- Rahman M. Mizanur
- Department of Cell Biology and Biochemistry, Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Robert G. Stafford
- Department of Cell Biology and Biochemistry, Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - S. Ashraf Ahmed
- Department of Cell Biology and Biochemistry, Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| |
Collapse
|
15
|
Patel K, Cai S, Singh BR. Current strategies for designing antidotes against botulinum neurotoxins. Expert Opin Drug Discov 2014; 9:319-33. [DOI: 10.1517/17460441.2014.884066] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Kruti Patel
- University of Massachusetts Dartmouth, Department of Chemistry and Biochemistry, North Dartmouth, MA 02747, USA
| | - Shuowei Cai
- University of Massachusetts Dartmouth, Department of Chemistry and Biochemistry, North Dartmouth, MA 02747, USA
| | - Bal Ram Singh
- University of Massachusetts Dartmouth, Department of Chemistry and Biochemistry, North Dartmouth, MA 02747, USA
- Institute of Advanced Sciences and Prime Bio, Inc., Botulinum Research Center, 166 Chase Road, North Dartmouth, MA 02747, USA
| |
Collapse
|
16
|
Opsenica I, Filipovic V, Nuss JE, Gomba LM, Opsenica D, Burnett JC, Gussio R, Solaja BA, Bavari S. The synthesis of 2,5-bis(4-amidinophenyl)thiophene derivatives providing submicromolar-range inhibition of the botulinum neurotoxin serotype A metalloprotease. Eur J Med Chem 2012; 53:374-9. [PMID: 22516424 PMCID: PMC3361628 DOI: 10.1016/j.ejmech.2012.03.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 02/22/2012] [Accepted: 03/25/2012] [Indexed: 10/28/2022]
Abstract
Botulinum neurotoxins (BoNTs), composed of a family of seven serotypes (categorized A-G), are the deadliest of known biological toxins. The activity of the metalloprotease, light chain (LC) component of the toxins is responsible for causing the life-threatening paralysis associated with the disease botulism. Herein we report significantly more potent analogs of novel, lead BoNT serotype A LC inhibitor 2,5-bis(4-amidinophenyl)thiophene (K(i) = 10.88 μM ± 0.90 μM). Specifically, synthetic modifications involved simultaneously replacing the lead inhibitor's terminal bis-amidines with secondary amines and the systematic tethering of 4-amino-7-chloroquinoline substituents to provide derivatives with K(i) values ranging from 0.302 μM (± 0.03 μM) to 0.889μM (± 0.11 μM).
Collapse
Affiliation(s)
- Igor Opsenica
- Faculty of Chemistry, University of Belgrade, Studentski trg16, P.O. Box 51, Belgrade, Serbia
| | - Vuk Filipovic
- Faculty of Chemistry, University of Belgrade, Studentski trg16, P.O. Box 51, Belgrade, Serbia
| | - Jon E. Nuss
- United States Army Medical Research Institute of Infectious Diseases, Department of Bacteriology, 1425 Porter Street, Frederick, MD 21702, USA
| | - Laura M. Gomba
- United States Army Medical Research Institute of Infectious Diseases, Department of Bacteriology, 1425 Porter Street, Frederick, MD 21702, USA
| | - Dejan Opsenica
- Institute of Chemistry, Technology, and Metallurgy, 12 Njegoseva 12, 11001, P.O. Box 473, Belgrade, Serbia
| | - James C. Burnett
- SAIC-Frederick, Inc., National Cancer Institute at Frederick, Target Structure-Based Drug Discovery Group, P.O. Box B, Frederick, MD 21702, USA
| | - Rick Gussio
- National Cancer Institute at Frederick, Developmental Therapeutics Program, P.O. Box B, Frederick, MD 21702, USA
| | - Bogdan A. Solaja
- Faculty of Chemistry, University of Belgrade, Studentski trg16, P.O. Box 51, Belgrade, Serbia
| | - Sina Bavari
- Chief, Target Discovery and Experimental Microbiology, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD 21702, USA
| |
Collapse
|
17
|
Edupuganti OP, Ovsepian SV, Wang J, Zurawski TH, Schmidt JJ, Smith L, Lawrence GW, Dolly JO. Targeted delivery into motor nerve terminals of inhibitors for SNARE-cleaving proteases via liposomes coupled to an atoxic botulinum neurotoxin. FEBS J 2012; 279:2555-67. [PMID: 22607388 DOI: 10.1111/j.1742-4658.2012.08638.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A targeted drug carrier (TDC) is described for transferring functional proteins or peptides into motor nerve terminals, a pivotal locus for therapeutics to treat neuromuscular disorders. It exploits the pronounced selectivity of botulinum neurotoxin type B (BoNT/B) for interacting with acceptors on these cholinergic nerve endings and becoming internalized. The gene encoding an innocuous BoNT/B protease-inactive mutant (BoTIM) was fused to that for core streptavidin, expressed in Escherichia coli and the purified protein was conjugated to surface-biotinylated liposomes. Such decorated liposomes, loaded with fluorescein as traceable cargo, acquired pronounced specificity for motor nerve terminals in isolated mouse hemidiaphragms and facilitated the intraneuronal transfer of the fluor, as revealed by confocal microscopy. Delivery of the protease light chain of botulinum neurotoxin type A (BoNT/A) via this TDC accelerated the onset of neuromuscular paralysis, indicative of improved translocation of this enzyme into the presynaptic cytosol with subsequent proteolytic inactivation of synaptosomal-associated protein of molecular mass 25 kDa (SNAP-25), an exocytotic soluble N-ethyl-maleimide-sensitive factor attachment protein receptor (SNARE) essential for neurotransmitter release. BoTIM-coupled liposomes, loaded with peptide inhibitors of proteases, yielded considerable attenuation of the neuroparalytic effects of BoNT/A or BoNT/F as a result of their cytosolic transfer, the first in situ demonstration of the ability of designer antiproteases to suppress the symptoms of botulism ex vivo. Delivery of the BoNT/A inhibitor by liposomes targeted with the full-length BoTIM proved more effective than that mediated by its C-terminal neuroacceptor-binding domain. This demonstrated versatility of TDC for nonviral cargo transfer into cholinergic nerve endings has unveiled its potential for direct delivery of functional targets into motor nerve endings.
Collapse
Affiliation(s)
- Om P Edupuganti
- International Centre for Neurotherapeutics, Dublin City University, Dublin, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Toth S, Brueggmann EE, Oyler GA, Smith LA, Hines HB, Ahmed SA. Tyrosine phosphorylation of botulinum neurotoxin protease domains. Front Pharmacol 2012; 3:102. [PMID: 22675300 PMCID: PMC3366388 DOI: 10.3389/fphar.2012.00102] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 05/07/2012] [Indexed: 01/17/2023] Open
Abstract
Botulinum neurotoxins are most potent of all toxins. Their N-terminal light chain domain (Lc) translocates into peripheral cholinergic neurons to exert its endoproteolytic action leading to muscle paralysis. Therapeutic development against these toxins is a major challenge due to their in vitro and in vivo structural differences. Although three-dimensional structures and reaction mechanisms are very similar, the seven serotypes designated A through G vastly vary in their intracellular catalytic stability. To investigate if protein phosphorylation could account for this difference, we employed Src-catalyzed tyrosine phosphorylation of the Lc of six serotypes namely LcA, LcB, LcC1, LcD, LcE, and LcG. Very little phosphorylation was observed with LcD and LcE but LcA, LcB, and LcG were maximally phosphorylated by Src. Phosphorylation of LcA, LcB, and LcG did not affect their secondary and tertiary structures and thermostability significantly. Phosphorylation of Y250 and Y251 made LcA resistant to autocatalysis and drastically reduced its kcat/Km for catalysis. A tyrosine residue present near the essential cysteine at the C-terminal tail of LcA, LcB, and LcG was readily phosphorylated in vitro. Inclusion of a competitive inhibitor protected Y426 of LcA from phosphorylation, shedding light on the role of the C-terminus in the enzyme’s substrate or product binding.
Collapse
Affiliation(s)
- Stephen Toth
- Integrated Toxicology Division, Department of Biochemistry and Cell Biology, United States Army Medical Research Institute of Infectious Diseases Fort Detrick, MD, USA
| | | | | | | | | | | |
Collapse
|
19
|
Structure-Based Drug Discovery for Botulinum Neurotoxins. Curr Top Microbiol Immunol 2012; 364:197-218. [DOI: 10.1007/978-3-642-33570-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Time-dependent botulinum neurotoxin serotype A metalloprotease inhibitors. Bioorg Med Chem 2011; 19:7338-48. [PMID: 22082667 DOI: 10.1016/j.bmc.2011.10.062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 10/13/2011] [Accepted: 10/19/2011] [Indexed: 11/21/2022]
Abstract
Botulinum neurotoxins (BoNTs) are the most lethal of biological substances, and are categorized as class A biothreat agents by the Centers for Disease Control and Prevention. There are currently no drugs to treat the deadly flaccid paralysis resulting from BoNT intoxication. Among the seven BoNT serotypes, the development of therapeutics to counter BoNT/A is a priority (due to its long half-life in the neuronal cytosol and its ease of production). In this regard, the BoNT/A enzyme light chain (LC) component, a zinc metalloprotease responsible for the intracellular cleavage of synaptosomal-associated protein of 25 kDa, is a desirable target for developing post-BoNT/A intoxication rescue therapeutics. In an earlier study, we reported the high throughput screening of a library containing 70,000 compounds, and uncovered a novel class of benzimidazole acrylonitrile-based BoNT/A LC inhibitors. Herein, we present both structure-activity relationships and a proposed mechanism of action for this novel inhibitor chemotype.
Collapse
|
21
|
Abstract
The seven serotypes of Clostridium botulinum neurotoxins (A-G) are the deadliest poison known to humans. They share significant sequence homology and hence possess similar structure-function relationships. Botulinum neurotoxins (BoNT) act via a four-step mechanism, viz., binding and internalization to neuronal cells, translocation of the catalytic domain into the cytosol and finally cleavage of one of the three soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) causing blockage of neurotransmitter release leading to flaccid paralysis. Crystal structures of three holotoxins, BoNT/A, B and E, are available to date. Although the individual domains are remarkably similar, their domain organization is different. These structures have helped in correlating the structural and functional domains. This has led to the determination of structures of individual domains and combinations of them. Crystal structures of catalytic domains of all serotypes and several binding domains are now available. The catalytic domains are zinc endopeptidases and share significant sequence and structural homology. The active site architecture and the catalytic mechanism are similar although the binding mode of individual substrates may be different, dictating substrate specificity and peptide cleavage selectivity. Crystal structures of catalytic domains with substrate peptides provide clues to specificity and selectivity unique to BoNTs. Crystal structures of the receptor domain in complex with ganglioside or the protein receptor have provided information about the binding of botulinum neurotoxin to the neuronal cell. An overview of the structure-function relationship correlating the 3D structures with biochemical and biophysical data and how they can be used for structure-based drug discovery is presented here.
Collapse
|
22
|
Fighting bacterial infections—Future treatment options. Drug Resist Updat 2011; 14:125-39. [DOI: 10.1016/j.drup.2011.02.001] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 01/31/2011] [Accepted: 01/31/2011] [Indexed: 12/13/2022]
|
23
|
Opsenica I, Burnett JC, Gussio R, Opsenica D, Todorović N, Lanteri CA, Sciotti RJ, Gettayacamin M, Basilico N, Taramelli D, Nuss JE, Wanner L, Panchal RG, Šolaja BA, Bavari S. A chemotype that inhibits three unrelated pathogenic targets: the botulinum neurotoxin serotype A light chain, P. falciparum malaria, and the Ebola filovirus. J Med Chem 2011; 54:1157-69. [PMID: 21265542 PMCID: PMC3056319 DOI: 10.1021/jm100938u] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A 1,7-bis(alkylamino)diazachrysene-based small molecule was previously identified as an inhibitor of the botulinum neurotoxin serotype A light chain metalloprotease. Subsequently, a variety of derivatives of this chemotype were synthesized to develop structure-activity relationships, and all are inhibitors of the BoNT/A LC. Three-dimensional analyses indicated that half of the originally discovered 1,7-DAAC structure superimposed well with 4-amino-7-chloroquinoline-based antimalarial agents. This observation led to the discovery that several of the 1,7-DAAC derivatives are potent in vitro inhibitors of Plasmodium falciparum and, in general, are more efficacious against CQ-resistant strains than against CQ-susceptible strains. In addition, by inhibiting β-hematin formation, the most efficacious 1,7-DAAC-based antimalarials employ a mechanism of action analogous to that of 4,7-ACQ-based antimalarials and are well tolerated by normal cells. One candidate was also effective when administered orally in a rodent-based malaria model. Finally, the 1,7-DAAC-based derivatives were examined for Ebola filovirus inhibition in an assay employing Vero76 cells, and three provided promising antiviral activities and acceptably low toxicities.
Collapse
Affiliation(s)
- Igor Opsenica
- Faculty of Chemistry, University of Belgrade, Studentski trg 16, P.O. Box 51, 11158, Belgrade, Serbia
| | - James C. Burnett
- Target Structure-Based Drug Discovery Group, SAIC-Frederick, Inc., National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA
| | - Rick Gussio
- Developmental Therapeutics Program, National Cancer Institute at Frederick, P.O. Box B, F.V.C. 310, Frederick, MD 21702, USA
| | - Dejan Opsenica
- Institute of Chemistry, Technology, and Metallurgy, Belgrade, Serbia
| | - Nina Todorović
- Institute of Chemistry, Technology, and Metallurgy, Belgrade, Serbia
| | - Charlotte A. Lanteri
- Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Richard J. Sciotti
- Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Montip Gettayacamin
- United States Army Medical Component, Armed Forces Research Institute of Medical Science, Department of Veterinary Medicine, Bangkok, Thailand
| | - Nicoletta Basilico
- Dipartimento di Sanità Pubblica- Microbiologia-Virologia, Università di Milano, Via Pascal 36, 20133 Milano, Italy
| | - Donatella Taramelli
- Dipartimento di Sanità Pubblica- Microbiologia-Virologia, Università di Milano, Via Pascal 36, 20133 Milano, Italy
| | - Jonathan E. Nuss
- United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD 21702; USA
| | - Laura Wanner
- United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD 21702; USA
| | - Rekha G. Panchal
- United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD 21702; USA
| | - Bogdan A. Šolaja
- Faculty of Chemistry, University of Belgrade, Studentski trg 16, P.O. Box 51, 11158, Belgrade, Serbia
| | - Sina Bavari
- United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD 21702; USA
| |
Collapse
|
24
|
Hale M, Oyler G, Swaminathan S, Ahmed SA. Basic tetrapeptides as potent intracellular inhibitors of type A botulinum neurotoxin protease activity. J Biol Chem 2010; 286:1802-11. [PMID: 20961849 DOI: 10.1074/jbc.m110.146464] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Botulinum neurotoxins (BoNT) are the most potent of all toxins that cause flaccid muscle paralysis leading to death. They are also potential biothreat agents. A systematic investigation of various short peptide inhibitors of the BoNT protease domain with a 17-residue peptide substrate led to arginine-arginine-glycine-cysteine having a basic tetrapeptide structure as the most potent inhibitor. When assayed in the presence of dithiothreitol (DTT), the inhibitory effect was drastically reduced. Replacing the terminal cysteine with one hydrophobic residue eliminated the DTT effect but with two hydrophobic residues made the pentapeptide a poor inhibitor. Replacing the first arginine with cysteine or adding an additional cysteine at the N terminus did not improve inhibition. When assessed using mouse brain lysates, the tetrapeptides also inhibited BoNT/A cleavage of the endogenous SNAP-25. The peptides penetrated the neuronal cell lines, N2A and BE(2)-M17, without adversely affecting metabolic functions as measured by ATP production and P-38 phosphorylation. Biological activity of the peptides persisted within cultured chick motor neurons and rat and mouse cerebellar neurons for more than 40 h and inhibited BoNT/A protease action inside the neurons in a dose- and time-dependent fashion. Our results define a tetrapeptide as the smallest peptide inhibitor in the backdrop of a large substrate protein of 200+ amino acids having multiple interaction regions with its cognate enzyme. The inhibitors should also be valuable candidates for drug development.
Collapse
Affiliation(s)
- Martha Hale
- Department Cell Biology and Biochemistry, Integrated Toxicology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21702, USA
| | | | | | | |
Collapse
|
25
|
Nuss JE, Dong Y, Wanner LM, Ruthel G, Wipf P, Gussio R, Vennerstrom JL, Bavari S, Burnett JC. Pharmacophore Refinement Guides the Rational Design of Nanomolar-Range Inhibitors of the Botulinum Neurotoxin Serotype A Metalloprotease. ACS Med Chem Lett 2010; 1:301-305. [PMID: 21116458 DOI: 10.1021/ml100056v] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are the deadliest of microbial toxins. The enzymes' Zinc(II) metalloprotease, referred to as the light chain (LC) component, inhibits acetylcholine release into neuromuscular junctions, resulting in the disease botulism. Currently, no therapies counter BoNT poisoning post-neuronal intoxication; however, it is hypothesized that small molecules may be used to inhibit BoNT LC activity in the neuronal cytosol. Herein, we describe the pharmacophore-based design and chemical synthesis of potent (non-Zinc(II) chelating) small molecule (non-peptidic) inhibitors (SMNPIs) of the BoNT serotype A LC (the most toxic of the BoNT serotype LCs). Specifically, the three-dimensional superimpositions of 2-[4-(4-amidinephenoxy)-phenyl]-indole-6-amidine-based SMNPI regioisomers (K(i) = 0.600 μM (± 0.100 μM)), with a novel lead bis-[3-amide-5-(imidazolino)-phenyl]-terephthalamide (BAIPT)-based SMNPI (K(i) = 8.52 μM (± 0.53 μM)), resulted in a refined 4-zone pharmacophore. The refined model guided the design of BAIPT-based SMNPIs possessing K(i) values = 0.572 μM (± 0.041 μM) and 0.900 μM (± 0.078 μM).
Collapse
Affiliation(s)
- Jonathan E. Nuss
- United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702
| | - Yuxiang Dong
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Laura M. Wanner
- United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702
| | - Gordon Ruthel
- United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702
| | - Peter Wipf
- Department of Chemistry and Combinatorial Chemistry Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Rick Gussio
- Developmental Therapeutics Program, National Cancer Institute at Frederick, Frederick, Maryland 21702
| | - Jonathan L. Vennerstrom
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Sina Bavari
- United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702
| | - James C. Burnett
- Target Structure-Based Drug Discovery Group, SAIC-Frederick, Inc., National Cancer Institute at Frederick, Frederick, Maryland 21702
| |
Collapse
|
26
|
Zuniga JE, Hammill JT, Drory O, Nuss JE, Burnett JC, Gussio R, Wipf P, Bavari S, Brunger AT. Iterative structure-based peptide-like inhibitor design against the botulinum neurotoxin serotype A. PLoS One 2010; 5:e11378. [PMID: 20614028 PMCID: PMC2894858 DOI: 10.1371/journal.pone.0011378] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 06/08/2010] [Indexed: 11/26/2022] Open
Abstract
The botulinum neurotoxin serotype A light chain (BoNT/A LC) protease is the catalytic component responsible for the neuroparalysis that is characteristic of the disease state botulism. Three related peptide-like molecules (PLMs) were designed using previous information from co-crystal structures, synthesized, and assayed for in vitro inhibition against BoNT/A LC. Our results indicate these PLMS are competitive inhibitors of the BoNT/A LC protease and their Ki values are in the nM-range. A co-crystal structure for one of these inhibitors was determined and reveals that the PLM, in accord with the goals of our design strategy, simultaneously involves both ionic interactions via its P1 residue and hydrophobic contacts by means of an aromatic group in the P2′ position. The PLM adopts a helical conformation similar to previously determined co-crystal structures of PLMs, although there are also major differences to these other structures such as contacts with specific BoNT/A LC residues. Our structure further demonstrates the remarkable plasticity of the substrate binding cleft of the BoNT/A LC protease and provides a paradigm for iterative structure-based design and development of BoNT/A LC inhibitors.
Collapse
Affiliation(s)
- Jorge E. Zuniga
- Howard Hughes Medical Institute and Departments of Molecular and Cellular Physiology, Neurology and Neurological Science, Structural Biology, and Photon Science, Stanford University, Stanford, California, United States of America
| | - Jared T. Hammill
- Center for Chemical Methodologies and Library Development, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Omri Drory
- Howard Hughes Medical Institute and Departments of Molecular and Cellular Physiology, Neurology and Neurological Science, Structural Biology, and Photon Science, Stanford University, Stanford, California, United States of America
| | - Jonathan E. Nuss
- Division of Bacteriology, Department of Immunology, Target Identification, and Translational Research, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - James C. Burnett
- Target Structure-Based Drug Discovery Group, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Rick Gussio
- Information Technology Branch, Developmental Therapeutics Program, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Peter Wipf
- Center for Chemical Methodologies and Library Development, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (PW); (ATB)
| | - Sina Bavari
- Division of Bacteriology, Department of Immunology, Target Identification, and Translational Research, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Axel T. Brunger
- Howard Hughes Medical Institute and Departments of Molecular and Cellular Physiology, Neurology and Neurological Science, Structural Biology, and Photon Science, Stanford University, Stanford, California, United States of America
- * E-mail: (PW); (ATB)
| |
Collapse
|
27
|
Thyagarajan B, Potian JG, Garcia CC, Hognason K, Čapková K, Moe ST, Jacobson AR, Janda KD, McArdle JJ. Effects of hydroxamate metalloendoprotease inhibitors on botulinum neurotoxin A poisoned mouse neuromuscular junctions. Neuropharmacology 2010; 58:1189-98. [PMID: 20211192 PMCID: PMC2867082 DOI: 10.1016/j.neuropharm.2010.02.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 02/17/2010] [Indexed: 11/16/2022]
Abstract
Currently the only therapy for botulinum neurotoxin A (BoNT/A) poisoning is antitoxin. Antidotes that are effective after BoNT/A has entered the motor nerve terminals would dramatically benefit BoNT/A therapy. Inhibition of proteolytic activity of BoNT/A light chain by metalloendoprotease inhibitors (MEIs) is under development. We tested the effects of MEIs on in vitro as well as in vivo BoNT/A poisoned mouse nerve-muscle preparations (NMPs). The K(i) for inhibition of BoNT/A metalloendoprotease was 0.40 and 0.36 muM, respectively, for 2,4-dichlorocinnamic acid hydroxamate (DCH) and its methyl derivative, ABS 130. Acute treatment of nerve-muscle preparations with 10 pM BoNT/A inhibited nerve-evoked muscle twitches, reduced mean quantal content, and induced failures of endplate currents (EPCs). Bath application of 10 muM DCH or 5 muM ABS 130 reduced failures, increased the quantal content of EPCs, and partially restored muscle twitches after a delay of 40-90 min. The restorative effects of DCH and ABS 130, as well as 3,4 diaminopyridine (DAP) on twitch tension were greater at 22 degrees C compared to 37 degrees C. Unlike DAP, neither DCH nor ABS 130 increased Ca(2+) levels in cholinergic Neuro 2a cells. Injection of MEIs into mouse hind limbs before or after BoNT/A injection neither prevented the toe spread reflex inhibition nor improved muscle functions. We suggest that hydroxamate MEIs partially restore neurotransmission of acutely BoNT/A poisoned nerve-muscle preparations in vitro in a temperature dependent manner without increasing the Ca(2+) levels within motor nerve endings.
Collapse
Affiliation(s)
- Baskaran Thyagarajan
- Department of Pharmacology and Physiology, UMDNJ – New Jersey Medical School, Newark, NJ 07103
| | - Joseph G. Potian
- Department of Pharmacology and Physiology, UMDNJ – New Jersey Medical School, Newark, NJ 07103
| | - Carmen C. Garcia
- Department of Pharmacology and Physiology, UMDNJ – New Jersey Medical School, Newark, NJ 07103
| | - Kormakur Hognason
- Department of Pharmacology and Physiology, UMDNJ – New Jersey Medical School, Newark, NJ 07103
| | - Kateřina Čapková
- Department of Chemistry, The Skaggs Institute for Chemical Biology and the Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, CA 92037
| | | | | | - Kim D. Janda
- Department of Chemistry, The Skaggs Institute for Chemical Biology and the Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, CA 92037
| | - Joseph J. McArdle
- Department of Pharmacology and Physiology, UMDNJ – New Jersey Medical School, Newark, NJ 07103
| |
Collapse
|
28
|
Li B, Pai R, Cardinale SC, Butler MM, Peet NP, Moir DT, Bavari S, Bowlin TL. Synthesis and biological evaluation of botulinum neurotoxin a protease inhibitors. J Med Chem 2010; 53:2264-76. [PMID: 20155918 DOI: 10.1021/jm901852f] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
NSC 240898 was previously identified as a botulinum neurotoxin A light chain (BoNT/A LC) endopeptidase inhibitor by screening the National Cancer Institute Open Repository diversity set. Two types of analogues have been synthesized and shown to inhibit BoNT/A LC in a FRET-based enzyme assay, with confirmation in an HPLC-based assay. These two series of compounds have also been evaluated for inhibition of anthrax lethal factor (LF), an unrelated metalloprotease, to examine enzyme specificity of the BoNT/A LC inhibition. The most potent inhibitor against BoNT/A LC in these two series is compound 12 (IC(50) = 2.5 microM, FRET assay), which is 4.4-fold more potent than the lead structure and 11.2-fold more selective for BoNT/A LC versus the anthrax LF metalloproteinase. Structure-activity relationship studies have revealed structural features important to potency and enzyme specificity.
Collapse
Affiliation(s)
- Bing Li
- Microbiotix Inc, One Innovation Drive, Worcester, Massachusetts 01605, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Larsen JC. U.S. Army Botulinum Neurotoxin (BoNT) Medical Therapeutics Research Program: past accomplishments and future directions. Drug Dev Res 2009. [DOI: 10.1002/ddr.20304] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Moe ST, Thompson AB, Smith GM, Fredenburg RA, Stein RL, Jacobson AR. Botulinum neurotoxin serotype A inhibitors: small-molecule mercaptoacetamide analogs. Bioorg Med Chem 2009; 17:3072-9. [PMID: 19329331 DOI: 10.1016/j.bmc.2009.03.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 03/05/2009] [Accepted: 03/06/2009] [Indexed: 01/14/2023]
Abstract
Botulinum neurotoxin elicits its paralytic activity through a zinc-dependant metalloprotease that cleaves proteins involved in neurotransmitter release. Currently, no drugs are available to reverse the effects of botulinum intoxication. Herein we report the design of a novel series of mercaptoacetamide small-molecule inhibitors active against botulinum neurotoxin serotype A. These analogs show low micromolar inhibitory activity against the isolated enzyme. Structure-activity relationship studies for a series of mercaptoacetamide analogs of 5-amino-3-phenylpyrazole reveal components essential for potent inhibitory activity.
Collapse
Affiliation(s)
- Scott T Moe
- Absolute Science, Inc., Lexington, MA 02421, United States
| | | | | | | | | | | |
Collapse
|
31
|
Pharmacophore-guided lead optimization: the rational design of a non-zinc coordinating, sub-micromolar inhibitor of the botulinum neurotoxin serotype a metalloprotease. Bioorg Med Chem Lett 2009; 19:5811-3. [PMID: 19703771 DOI: 10.1016/j.bmcl.2009.01.111] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 01/07/2009] [Indexed: 11/22/2022]
Abstract
Botulinum neurotoxins, responsible for the neuroparalytic syndrome botulism, are the deadliest of known biological toxins. The work described in this study was based on a three-zone pharmacophore model for botulinum neurotoxin serotype A light chain inhibition. Specifically, the pharmacophore defined a separation between the overlaps of several different, non-zinc(II)-coordinating small molecule chemotypes, enabling the design and synthesis of a new structural hybrid possessing a Ki=600 nM (+/-100 nM).
Collapse
|
32
|
Hermone AR, Burnett JC, Nuss JE, Tressler LE, Nguyen TL, Solaja BA, Vennerstrom JL, Schmidt JJ, Wipf P, Bavari S, Gussio R. Three-dimensional database mining identifies a unique chemotype that unites structurally diverse botulinum neurotoxin serotype A inhibitors in a three-zone pharmacophore. ChemMedChem 2009; 3:1905-12. [PMID: 19006141 DOI: 10.1002/cmdc.200800241] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A search query consisting of two aromatic centers and two cationic centers was defined based on previously identified small molecule inhibitors of the botulinum neurotoxin serotype A light chain (BoNT/A LC) and used to mine the National Cancer Institute Open Repository. Ten small molecule hits were identified, and upon testing, three demonstrated inhibitory activity. Of these, one was structurally unique, possessing a rigid diazachrysene scaffold. The steric limitations of the diazachrysene imposed a separation between the overlaps of previously identified inhibitors, revealing an extended binding mode. As a result, the pharmacophore for BoNT/A LC inhibition has been modified to encompass three zones. To demonstrate the utility of this model, a novel three-zone inhibitor was mined and its activity was confirmed.
Collapse
Affiliation(s)
- Ann R Hermone
- Target Structure-Based Drug Discovery Group, SAIC-Frederick, Inc. National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Willis B, Eubanks LM, Dickerson TJ, Janda KD. The strange case of the botulinum neurotoxin: using chemistry and biology to modulate the most deadly poison. Angew Chem Int Ed Engl 2008; 47:8360-79. [PMID: 18844202 DOI: 10.1002/anie.200705531] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the classic novella "The Strange Case of Dr. Jekyll and Mr. Hyde", Robert Louis Stevenson paints a stark picture of the duality of good and evil within a single man. Botulinum neurotoxin (BoNT), the most potent known toxin, possesses an analogous dichotomous nature: It shows a pronounced morbidity and mortality, but it is used with great effect in much lower doses in a wide range of clinical scenarios. Recently, tremendous strides have been made in the basic understanding of the structure and function of BoNT, which have translated into widespread efforts towards the discovery of biomacromolecules and small molecules that specifically modulate BoNT activity. Particular emphasis has been placed on the identification of inhibitors that can counteract BoNT exposure in the event of a bioterrorist attack. This Review summarizes the current advances in the development of therapeutics, including vaccines, peptides, and small-molecule inhibitors, for the prevention and treatment of botulism.
Collapse
Affiliation(s)
- Bert Willis
- Department of Chemistry, Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
34
|
Willis B, Eubanks L, Dickerson T, Janda K. Der seltsame Fall des Botulinum-Neurotoxins: chemische und biologische Modulierung des tödlichsten aller Gifte. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200705531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Substrate binding mode and its implication on drug design for botulinum neurotoxin A. PLoS Pathog 2008; 4:e1000165. [PMID: 18818739 PMCID: PMC2533696 DOI: 10.1371/journal.ppat.1000165] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 08/28/2008] [Indexed: 11/19/2022] Open
Abstract
The seven antigenically distinct serotypes of Clostridium botulinum neurotoxins, the causative agents of botulism, block the neurotransmitter release by specifically cleaving one of the three SNARE proteins and induce flaccid paralysis. The Centers for Disease Control and Prevention (CDC) has declared them as Category A biowarfare agents. The most potent among them, botulinum neurotoxin type A (BoNT/A), cleaves its substrate synaptosome-associated protein of 25 kDa (SNAP-25). An efficient drug for botulism can be developed only with the knowledge of interactions between the substrate and enzyme at the active site. Here, we report the crystal structures of the catalytic domain of BoNT/A with its uncleavable SNAP-25 peptide (197)QRATKM(202) and its variant (197)RRATKM(202) to 1.5 A and 1.6 A, respectively. This is the first time the structure of an uncleavable substrate bound to an active botulinum neurotoxin is reported and it has helped in unequivocally defining S1 to S5' sites. These substrate peptides make interactions with the enzyme predominantly by the residues from 160, 200, 250 and 370 loops. Most notably, the amino nitrogen and carbonyl oxygen of P1 residue (Gln197) chelate the zinc ion and replace the nucleophilic water. The P1'-Arg198, occupies the S1' site formed by Arg363, Thr220, Asp370, Thr215, Ile161, Phe163 and Phe194. The S2' subsite is formed by Arg363, Asn368 and Asp370, while S3' subsite is formed by Tyr251, Leu256, Val258, Tyr366, Phe369 and Asn388. P4'-Lys201 makes hydrogen bond with Gln162. P5'-Met202 binds in the hydrophobic pocket formed by the residues from the 250 and 200 loop. Knowledge of interactions between the enzyme and substrate peptide from these complex structures should form the basis for design of potent inhibitors for this neurotoxin.
Collapse
|
36
|
Solaja BA, Opsenica D, Smith KS, Milhous WK, Terzić N, Opsenica I, Burnett JC, Nuss J, Gussio R, Bavari S. Novel 4-aminoquinolines active against chloroquine-resistant and sensitive P. falciparum strains that also inhibit botulinum serotype A. J Med Chem 2008; 51:4388-91. [PMID: 18637666 DOI: 10.1021/jm800737y] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report on the initial result of the coupling of 4-amino-7-chloroquinoline with steroidal and adamantane constituents to provide small molecules with excellent in vitro antimalarial activities (IC90 (W2) down to 6.74 nM). The same entities also inhibit the botulinum neurotoxin serotype A light chain metalloprotease at low micromolar levels (7-31 microM). Interestingly, structural features imparting increased antimalarial activity also provide increased metalloprotease inhibition, thus allowing for simultaneous compound optimizations against distinct targets.
Collapse
Affiliation(s)
- Bogdan A Solaja
- Faculty of Chemistry, UniVersity of Belgrade, Belgrade, Serbia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Jacobsen FE, Lewis JA, Cohen SM. The design of inhibitors for medicinally relevant metalloproteins. ChemMedChem 2008; 2:152-71. [PMID: 17163561 DOI: 10.1002/cmdc.200600204] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A number of metalloproteins are important medicinal targets for conditions ranging from pathogenic infections to cancer. Many but not all of these metalloproteins contain a zinc(II) ion in the protein active site. Small-molecule inhibitors of these metalloproteins are designed to bind directly to the active site metal ions. In this review several metalloproteins of interest are discussed, including matrix metalloproteinases (MMPs), histone deacetylases (HDACs), anthrax lethal factor (LF), and others. Different strategies that have been employed to design effective inhibitors against these proteins are described, with an effort to highlight the strengths and drawbacks of each approach. An emphasis is placed on examining the bioinorganic chemistry of these metal active sites and how a better understanding of the coordination chemistry in these systems may lead to improved inhibitors. It is hoped that this review will help inspire medicinal, biological, and inorganic chemists to tackle this important problem by considering all aspects of metalloprotein inhibitor design.
Collapse
Affiliation(s)
- Faith E Jacobsen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0358, USA
| | | | | |
Collapse
|
38
|
Silvaggi NR, Wilson D, Tzipori S, Allen KN. Catalytic features of the botulinum neurotoxin A light chain revealed by high resolution structure of an inhibitory peptide complex. Biochemistry 2008; 47:5736-45. [PMID: 18457419 DOI: 10.1021/bi8001067] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The Clostridium botulinum neurotoxin serotype A light chain (BoNT/A-LC) is a Zn(II)-dependent metalloprotease that blocks the release of acetylcholine at the neuromuscular junction by cleaving SNAP-25, one of the SNARE proteins required for exocytosis. Because of the potential for use of the toxin in bioterrorism and the increasingly widespread application of the toxin in the medical field, there is significant interest in the development of small-molecule inhibitors of the metalloprotease. Efforts to design such inhibitors have not benefited from knowledge of how peptides bind to the active site since the enzyme-peptide structures available previously either were not occupied in the vicinity of the catalytic Zn(II) ion or did not represent the product of SNAP-25 substrate cleavage. Herein we report the 1.4 A-resolution X-ray crystal structure of a complex between the BoNT/A-LC and the inhibitory peptide N-Ac-CRATKML, the first structure of the light chain with an inhibitory peptide bound at the catalytic Zn(II) ion. The peptide is bound with the Cys S gamma atom coordinating the metal ion. Surprisingly, the cysteine sulfur is oxidized to the sulfenic acid form. Given the unstable nature of this species in solution, is it likely that oxidation occurs on the enzyme. In addition to the peptide-bound structure, we report two structures of the unliganded light chain with and without the Zn(II) cofactor bound at 1.25 and 1.20 A resolution, respectively. The two structures are nearly identical, confirming that the Zn(II) ion plays a purely catalytic role. Additionally, the structure of the Zn(II)-bound uncomplexed enzyme allows identification of the catalytic water molecule and a second water molecule that occupies the same position as the peptidic oxygen in the tetrahedral intermediate. This observation suggests that the enzyme active site is prearranged to stabilize the tetrahedral intermediate of the protease reaction.
Collapse
Affiliation(s)
- Nicholas R Silvaggi
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
39
|
Kumaran D, Rawat R, Ludivico ML, Ahmed SA, Swaminathan S. Structure- and substrate-based inhibitor design for Clostridium botulinum neurotoxin serotype A. J Biol Chem 2008; 283:18883-91. [PMID: 18434312 DOI: 10.1074/jbc.m801240200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The seven antigenically distinct serotypes of Clostridium botulinum neurotoxins cleave specific soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex proteins and block the release of neurotransmitters that cause flaccid paralysis and are considered potential bioweapons. Botulinum neurotoxin type A is the most potent among the clostridial neurotoxins, and to date there is no post-exposure therapeutic intervention available. To develop inhibitors leading to drug design, it is imperative that critical interactions between the enzyme and the substrate near the active site are known. Although enzyme-substrate interactions at exosites away from the active site are mapped in detail for botulinum neurotoxin type A, information about the active site interactions is lacking. Here, we present the crystal structures of botulinum neurotoxin type A catalytic domain in complex with four inhibitory substrate analog tetrapeptides, viz. RRGC, RRGL, RRGI, and RRGM at resolutions of 1.6-1.8 A. These structures show for the first time the interactions between the substrate and enzyme at the active site and delineate residues important for substrate stabilization and catalytic activity. We show that OH of Tyr(366) and NH(2) of Arg(363) are hydrogen-bonded to carbonyl oxygens of P1 and P1' of the substrate analog and position it for catalytic activity. Most importantly, the nucleophilic water is replaced by the amino group of the N-terminal residue of the tetrapeptide. Furthermore, the S1' site is formed by Phe(194), Thr(215), Thr(220), Asp(370), and Arg(363). The K(i) of the best inhibitory tetrapeptide is 157 nm.
Collapse
Affiliation(s)
- Desigan Kumaran
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | | | | | | | | |
Collapse
|
40
|
Hines HB, Kim AD, Stafford RG, Badie SS, Brueggeman EE, Newman DJ, Schmidt JJ. Use of a recombinant fluorescent substrate with cleavage sites for all botulinum neurotoxins in high-throughput screening of natural product extracts for inhibitors of serotypes A, B, and E. Appl Environ Microbiol 2008; 74:653-9. [PMID: 18083881 PMCID: PMC2227718 DOI: 10.1128/aem.01690-07] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 11/26/2007] [Indexed: 11/20/2022] Open
Abstract
The seven serotypes of botulinum neurotoxin (BoNTs) are zinc metalloproteases that cleave and inactivate proteins critical for neurotransmission. The synaptosomal protein of 25 kDa (SNAP-25) is cleaved by BoNTs A, C, and E, while vesicle-associated membrane protein (VAMP) is the substrate for BoNTs B, D, F, and G. BoNTs not only are medically useful drugs but also are potential bioterrorist and biowarfare threat agents. Because BoNT protease activity is required for toxicity, inhibitors of that activity might be effective for antibotulinum therapy. To expedite inhibitor discovery, we constructed a hybrid gene encoding (from the N terminus to the C terminus, with respect to the expressed product) green fluorescent protein, then a SNAP-25 fragment encompassing residues Met-127 to Gly-206, and then VAMP residues Met-1 to Lys-94. Cysteine was added as the C terminus. The expressed product, which contained the protease cleavage sites for all seven botulinum serotypes, was purified and coupled covalently through the C-terminal sulfhydryl group to maleimide-activated 96-well plates. The substrate was readily cleaved by BoNTs A, B, D, E, and F. Using this assay and an automated 96-well pipettor, we screened 528 natural product extracts for inhibitors of BoNT A, B, and E protease activities. Serotype-specific inhibition was found in 30 extracts, while 5 others inhibited two serotypes.
Collapse
Affiliation(s)
- Harry B Hines
- Department of Cell Biology and Biochemistry, Integrated Toxicology Division, USAMRIID, Frederick, MD 21702-5011, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Eubanks LM, Dickerson TJ. Investigating novel therapeutic targets and molecular mechanisms to treat botulinum neurotoxin A intoxication. Future Microbiol 2008; 2:677-87. [PMID: 18041908 DOI: 10.2217/17460913.2.6.677] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Botulinum neurotoxin (BoNT) has recently catapulted into the public consciousness in two seemingly disparate roles: potential use as a biological weapon and treatment of neuromuscular disorders. This bacterially produced protein is the most potent toxin known to humans, with a lethal dose estimated at approximately 1 ng/kg of body weight. BoNT intoxication occurs via a multistep process that includes recognition of peripheral neuronal cell membrane receptors, endocytosis and translocation of the light chain metalloprotease into the cytosol, and catalytic cleavage of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins critical for vesicle fusion and neurotransmitter release. Each of these distinct steps has been studied at the molecular level and is a valid target for the development of pharmacological interventions to prevent the considerable mortality associated with botulism. Alternatively, clinical uses of BoNT continue to expand at an ever-increasing rate; however, further optimization of BoNT therapy is critical to maximize efficacy.
Collapse
Affiliation(s)
- Lisa M Eubanks
- The Scripps Research Institute, Department of Chemistry, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | |
Collapse
|
42
|
Antimicrobial Peptides: New Recognition Molecules for Detecting Botulinum Toxins. SENSORS 2007; 7:2808-2824. [PMID: 28903262 PMCID: PMC3965214 DOI: 10.3390/s7112808] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Accepted: 11/14/2007] [Indexed: 11/20/2022]
Abstract
Many organisms secrete antimicrobial peptides (AMPs) for protection against harmful microbes. The present study describes detection of botulinum neurotoxoids A, B and E using AMPs as recognition elements in an array biosensor. While AMP affinities were similar to those for anti-botulinum antibodies, differences in binding patterns were observed and can potentially be used for identification of toxoid serotype. Furthermore, some AMPs also demonstrated superior detection sensitivity compared to antibodies: toxoid A could be detected at 3.5 LD50 of the active toxin in a 75-min assay, whereas toxoids B and E were detected at 14 and 80 LD50 for their respective toxins.
Collapse
|
43
|
Silvaggi NR, Boldt GE, Hixon MS, Kennedy JP, Tzipori S, Janda KD, Allen KN. Structures of Clostridium botulinum Neurotoxin Serotype A Light Chain complexed with small-molecule inhibitors highlight active-site flexibility. ACTA ACUST UNITED AC 2007; 14:533-42. [PMID: 17524984 DOI: 10.1016/j.chembiol.2007.03.014] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 02/07/2007] [Accepted: 03/14/2007] [Indexed: 11/19/2022]
Abstract
The potential for the use of Clostridial neurotoxins as bioweapons makes the development of small-molecule inhibitors of these deadly toxins a top priority. Recently, screening of a random hydroxamate library identified a small-molecule inhibitor of C. botulinum Neurotoxin Serotype A Light Chain (BoNT/A-LC), 4-chlorocinnamic hydroxamate, a derivative of which has been shown to have in vivo efficacy in mice and no toxicity. We describe the X-ray crystal structures of BoNT/A-LC in complexes with two potent small-molecule inhibitors. The structures of the enzyme with 4-chlorocinnamic hydroxamate or 2,4-dichlorocinnamic hydroxamate bound are compared to the structure of the enzyme complexed with L-arginine hydroxamate, an inhibitor with modest affinity. Taken together, this suite of structures provides surprising insights into the BoNT/A-LC active site, including unexpected conformational flexibility at the S1' site that changes the electrostatic environment of the binding pocket. Information gained from these structures will inform the design and optimization of more effective small-molecule inhibitors of BoNT/A-LC.
Collapse
Affiliation(s)
- Nicholas R Silvaggi
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Purcell AL, Hoard-Fruchey HM. A capillary electrophoresis method to assay catalytic activity of botulinum neurotoxin serotypes: Implications for substrate specificity. Anal Biochem 2007; 366:207-17. [PMID: 17548044 DOI: 10.1016/j.ab.2007.04.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 04/26/2007] [Accepted: 04/29/2007] [Indexed: 10/23/2022]
Abstract
The potent botulinum neurotoxin inhibits neurotransmitter release at cholinergic nerve terminals, causing a descending flaccid paralysis characteristic of the disease botulism. The currently expanding medical use of the neurotoxin to treat several disorders, as well as the potential misuse of the neurotoxin as an agent in biowarfare, has made understanding of the nature of the toxin's catalytic activity and development of inhibitors critical. To study the catalytic activity of botulinum neurotoxin more thoroughly and characterize potential inhibitors, we have developed a capillary electrophoresis method to measure catalytic activity of different serotypes of botulinum neurotoxin using peptides derived from the native substrates. This assay requires only a minute amount of sample (25 nl), is relatively rapid (15 min/sample), and allows the determination of enzyme kinetic constants for a more sophisticated characterization of inhibitors and neurotoxin catalytic activity. Using this method, we can measure activity of five of the seven serotypes of botulinum neurotoxin (A, B, E, F, and G) with two peptide substrates. Botulinum neurotoxin serotypes C and D did not cleave our peptides, lending insight into potential substrate requirements among the serotypes.
Collapse
Affiliation(s)
- Angela L Purcell
- Division of Analytical Toxicology, Neurobehavioral Toxicology Branch, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA.
| | | |
Collapse
|
45
|
Burnett JC, Opsenica D, Sriraghavan K, Panchal RG, Ruthel G, Hermone AR, Nguyen TL, Kenny TA, Lane DJ, McGrath CF, Schmidt JJ, Vennerstrom JL, Gussio R, Solaja BA, Bavari S. A Refined Pharmacophore Identifies Potent 4-Amino-7-chloroquinoline-Based Inhibitors of the Botulinum Neurotoxin Serotype A Metalloprotease. J Med Chem 2007; 50:2127-36. [PMID: 17417831 DOI: 10.1021/jm061446e] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We previously identified structurally diverse small molecule (non-peptidic) inhibitors (SMNPIs) of the botulinum neurotoxin serotype A (BoNT/A) light chain (LC). Of these, several (including antimalarial drugs) contained a 4-amino-7-chloroquinoline (ACQ) substructure and a separate positive ionizable amine component. The same antimalarials have also been found to interfere with BoNT/A translocation into neurons, via pH elevation of the toxin-mediated endosome. Thus, this structural class of small molecules may serve as dual-function BoNT/A inhibitors. In this study, we used a refined pharmacophore for BoNT/A LC inhibition to identify four new, potent inhibitors of this structural class (IC50's ranged from 3.2 to 17 muM). Molecular docking indicated that the binding modes for the new SMNPIs are consistent with those of other inhibitors that we have identified, further supporting our structure-based pharmacophore. Finally, structural motifs of the new SMNPIs, as well as two structure-based derivatives, were examined for activity, providing valuable information about pharmacophore component contributions to inhibition.
Collapse
Affiliation(s)
- James C Burnett
- SAIC-Frederick, Inc., Target Structure-Based Drug Discovery Group, Frederick, Frederick, Inc., National Cancer Institute at Frederick, P.O. Box B, F.V.C. 310, Frederick, Maryland 21702, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Eubanks LM, Hixon MS, Jin W, Hong S, Clancy CM, Tepp WH, Baldwin MR, Malizio CJ, Goodnough MC, Barbieri JT, Johnson EA, Boger DL, Dickerson TJ, Janda KD. An in vitro and in vivo disconnect uncovered through high-throughput identification of botulinum neurotoxin A antagonists. Proc Natl Acad Sci U S A 2007; 104:2602-7. [PMID: 17293454 PMCID: PMC1815229 DOI: 10.1073/pnas.0611213104] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Among the agents classified as "Category A" by the U.S. Centers for Disease Control and Prevention, botulinum neurotoxin (BoNT) is the most toxic protein known, with microgram quantities of the protein causing severe morbidity and mortality by oral or i.v. routes. Given that this toxin easily could be used in a potential bioterrorist attack, countermeasures urgently are needed to counteract the pathophysiology of BoNT. At a molecular level, BoNT exerts its paralytic effects through intracellular cleavage of vesicle docking proteins and subsequent organism-wide autonomic dysfunction. In an effort to identify small molecules that would disrupt the interaction between the light-chain metalloprotease of BoNT serotype A and its cognate substrate, a multifaceted screening effort was undertaken. Through the combination of in vitro screening against an optimized variant of the light chain involving kinetic analysis, cellular protection assays, and in vivo mouse toxicity assays, molecules that prevent BoNT/A-induced intracellular substrate cleavage and extend the time to death of animals challenged with lethal toxin doses were identified. Significantly, the two most efficacious compounds in vivo showed less effective activity in cellular assays intended to mimic BoNT exposure; indeed, one of these compounds was cytotoxic at concentrations three orders of magnitude below its effective dose in animals. These two lead compounds have surprisingly simple molecular structures and are readily amenable to optimization efforts for improvements in their biological activity. The findings validate the use of high-throughput screening protocols to define previously unrecognized chemical scaffolds for the development of therapeutic agents to treat BoNT exposure.
Collapse
Affiliation(s)
- Lisa M. Eubanks
- Departments of *Chemistry and
- The Skaggs Institute for Chemical Biology, and
- The Worm Institute of Research and Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Mark S. Hixon
- Departments of *Chemistry and
- The Skaggs Institute for Chemical Biology, and
- The Worm Institute of Research and Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Wei Jin
- Departments of *Chemistry and
- The Skaggs Institute for Chemical Biology, and
| | - Sukwon Hong
- Departments of *Chemistry and
- The Skaggs Institute for Chemical Biology, and
| | - Colin M. Clancy
- Food Research Institute, University of Wisconsin, 1925 Willow Drive, Madison, WI 53706
| | - William H. Tepp
- Food Research Institute, University of Wisconsin, 1925 Willow Drive, Madison, WI 53706
| | - Michael R. Baldwin
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226; and
| | | | | | - Joseph T. Barbieri
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226; and
| | - Eric A. Johnson
- Food Research Institute, University of Wisconsin, 1925 Willow Drive, Madison, WI 53706
| | - Dale L. Boger
- Departments of *Chemistry and
- The Skaggs Institute for Chemical Biology, and
| | - Tobin J. Dickerson
- Departments of *Chemistry and
- The Skaggs Institute for Chemical Biology, and
- The Worm Institute of Research and Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- **To whom correspondence may be addressed. E-mail: or
| | - Kim D. Janda
- Departments of *Chemistry and
- Immunology
- The Skaggs Institute for Chemical Biology, and
- The Worm Institute of Research and Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- **To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
47
|
Cai F, Adrion CB, Keller JE. Comparison of extracellular and intracellular potency of botulinum neurotoxins. Infect Immun 2006; 74:5617-24. [PMID: 16988237 PMCID: PMC1594926 DOI: 10.1128/iai.00552-06] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Levels of botulinum neurotoxin (BoNT) proteolytic activity were compared using a cell-free assay and living neurons to measure extracellular and intracellular enzymatic activity. Within the cell-free reaction model, BoNT serotypes A and E (BoNT/A and BoNT/E, respectively) were reversibly inhibited by chelating Zn2+ with N,N,N',N'-tetrakis (2-pyridylmethyl) ethylenediamine (TPEN). BoNT/E required relatively long incubation with TPEN to achieve total inhibition, whereas BoNT/A was inhibited immediately upon mixing. When naïve Zn2+-containing BoNTs were applied to cultured neurons, the cellular action of each BoNT was rapidly inhibited by subsequent addition of TPEN, which is membrane permeable. Excess Zn2+ added to the culture medium several hours after poisoning fully restored intracellular toxin activity. Unlike TPEN, EDTA irreversibly inhibited both BoNT/A and -E within the cell-free in vitro reaction. Excess Zn2+ did not reactivate the EDTA-treated toxins. However, application of EDTA-treated BoNT/A or -E to cultured neurons demonstrated normal toxin action in terms of both blocking neurotransmission and SNAP-25 proteolysis. Different concentrations of EDTA produced toxin preparations with incrementally reduced in vitro proteolytic activities, which, when applied to living neurons showed undiminished cellular potency. This suggests that EDTA renders the BoNT proteolytic domain conformationally inactive when tested with the cell-free reaction, but this change is corrected during entry into neurons. The effect of EDTA is unrelated to Zn2+ because TPEN could be applied to living cells before or after poisoning to produce rapid and reversible inhibition of both BoNTs. Therefore, bound Zn2+ is not required for toxin entry into neurons, and removal of Zn2+ from cytosolic BoNTs does not irreversibly alter toxin structure or function. We conclude that EDTA directly alters both BoNTs in a manner that is independent of Zn2+.
Collapse
Affiliation(s)
- Fang Cai
- Laboratory of Bacterial Toxins, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
48
|
Burnett JC, Ruthel G, Stegmann CM, Panchal RG, Nguyen TL, Hermone AR, Stafford RG, Lane DJ, Kenny TA, McGrath CF, Wipf P, Stahl AM, Schmidt JJ, Gussio R, Brunger AT, Bavari S. Inhibition of metalloprotease botulinum serotype A from a pseudo-peptide binding mode to a small molecule that is active in primary neurons. J Biol Chem 2006; 282:5004-5014. [PMID: 17092934 DOI: 10.1074/jbc.m608166200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An efficient research strategy integrating empirically guided, structure-based modeling and chemoinformatics was used to discover potent small molecule inhibitors of the botulinum neurotoxin serotype A light chain. First, a modeled binding mode for inhibitor 2-mercapto-3-phenylpropionyl-RATKML (K(i) = 330 nM) was generated, and required the use of a molecular dynamic conformer of the enzyme displaying the reorientation of surface loops bordering the substrate binding cleft. These flexible loops are conformationally variable in x-ray crystal structures, and the model predicted that they were pivotal for providing complementary binding surfaces and solvent shielding for the pseudo-peptide. The docked conformation of 2-mercapto-3-phenylpropionyl-RATKML was then used to refine our pharmacophore for botulinum serotype A light chain inhibition. Data base search queries derived from the pharmacophore were employed to mine small molecule (non-peptidic) inhibitors from the National Cancer Institute's Open Repository. Four of the inhibitors possess K(i) values ranging from 3.0 to 10.0 microM. Of these, NSC 240898 is a promising lead for therapeutic development, as it readily enters neurons, exhibits no neuronal toxicity, and elicits dose-dependent protection of synaptosomal-associated protein (of 25 kDa) in a primary culture of embryonic chicken neurons. Isothermal titration calorimetry showed that the interaction between NSC 240898 and the botulinum A light chain is largely entropy-driven, and occurs with a 1:1 stoichiometry and a dissociation constant of 4.6 microM.
Collapse
Affiliation(s)
- James C Burnett
- Target Structure-based Drug Discovery Group, SAIC-Frederick, Inc., and the National Cancer Institute-Frederick, Frederick, Maryland 21702
| | - Gordon Ruthel
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland 21702
| | - Christian M Stegmann
- Howard Hughes Medical Institute (HHMI) and Departments of Molecular and Cellular Physiology, Neurology and Neurological Sciences, and the Stanford Synchrotron Radiation Laboratory, Stanford University, School of Medicine, Stanford, California 94305, and the
| | - Rekha G Panchal
- Target Structure-based Drug Discovery Group, SAIC-Frederick, Inc., and the National Cancer Institute-Frederick, Frederick, Maryland 21702
| | - Tam L Nguyen
- Target Structure-based Drug Discovery Group, SAIC-Frederick, Inc., and the National Cancer Institute-Frederick, Frederick, Maryland 21702
| | - Ann R Hermone
- Target Structure-based Drug Discovery Group, SAIC-Frederick, Inc., and the National Cancer Institute-Frederick, Frederick, Maryland 21702
| | - Robert G Stafford
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland 21702
| | - Douglas J Lane
- Target Structure-based Drug Discovery Group, SAIC-Frederick, Inc., and the National Cancer Institute-Frederick, Frederick, Maryland 21702
| | - Tara A Kenny
- Target Structure-based Drug Discovery Group, SAIC-Frederick, Inc., and the National Cancer Institute-Frederick, Frederick, Maryland 21702
| | - Connor F McGrath
- Target Structure-based Drug Discovery Group, SAIC-Frederick, Inc., and the National Cancer Institute-Frederick, Frederick, Maryland 21702
| | - Peter Wipf
- Combinatorial Chemistry Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Andrea M Stahl
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland 21702
| | - James J Schmidt
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland 21702
| | - Rick Gussio
- Information Technology Branch, Developmental Therapeutics Program, National Cancer Institute-Frederick, Frederick, Maryland 21702
| | - Axel T Brunger
- Howard Hughes Medical Institute (HHMI) and Departments of Molecular and Cellular Physiology, Neurology and Neurological Sciences, and the Stanford Synchrotron Radiation Laboratory, Stanford University, School of Medicine, Stanford, California 94305, and the.
| | - Sina Bavari
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland 21702.
| |
Collapse
|
49
|
Boldt GE, Kennedy JP, Hixon MS, McAllister LA, Barbieri JT, Tzipori S, Janda KD. Synthesis, characterization and development of a high-throughput methodology for the discovery of botulinum neurotoxin a inhibitors. ACTA ACUST UNITED AC 2006; 8:513-21. [PMID: 16827563 PMCID: PMC2644723 DOI: 10.1021/cc060010h] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Botulinum neurotoxins (BoNTs), etiological agents of the deadly food poisoning disease botulism, are the most toxic proteins currently known. Although only a few hundred cases of botulism are reported in the United States annually, there is growing interest in BoNTs attributable to their potential use as biological warfare agents. Neurotoxicity results from cleavage of the soluble NSF-attachment protein receptor complex proteins of the presynaptic vesicles by the BoNT light chain subunit, a Zn endopeptidase. Few effective inhibitors of BoNT/A LC (light chain) activity are known, and the discovery process is hampered by the lack of an efficient high-throughput assay for screening compound libraries. To alleviate this bottleneck, we have synthesized the peptide SNAPtide and have developed a robust assay for the high-throughput evaluation of BoNT/A LC inhibitors. Key aspects for the development of this optimized assay include the addition of a series of detergents, cosolvents, and salts, including 0.01% w/v Tween 20 to increase BoNT/A LC catalysis, stability, and ease of small molecule screening. To evaluate the effectiveness of the assay, a series of hydroxamate-based small molecules were synthesized and examined with BoNT/A LC. The methodology described is superior to other assays reported to date for the high-throughput identification of BoNT/A inhibitors.
Collapse
Affiliation(s)
- Grant E. Boldt
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, and Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jack P. Kennedy
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, and Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Mark S. Hixon
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, and Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Laura A. McAllister
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, and Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Joseph T. Barbieri
- The Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Saul Tzipori
- The Division of Infectious Diseases, Department of Biomedical Sciences, Tufts University Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | - Kim D. Janda
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, and Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
- To whom correspondence should be addressed. Tel.: +1-858-784-2516; fax: +1-858-784-2595; e-mail:
| |
Collapse
|
50
|
Dickerson TJ, Janda KD. The use of small molecules to investigate molecular mechanisms and therapeutic targets for treatment of botulinum neurotoxin A intoxication. ACS Chem Biol 2006; 1:359-69. [PMID: 17163773 DOI: 10.1021/cb600179d] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Botulinum neurotoxins (BoNTs) are agents responsible for botulism, a disease characterized by peripheral neuromuscular blockade and subsequent flaccid paralysis. The potent paralytic ability of these toxins has resulted in their use as a therapeutic; however, BoNTs are also classified by the Centers for Disease Control and Prevention as one of the six highest-risk threat agents of bioterrorism. Consequently, a thorough understanding of the molecular mechanism of BoNT toxicity is crucial before effective inhibitors and, ultimately, an approved drug can be developed. In this article, we systematically detail BoNT intoxication by examining each of the discrete steps in this process. Additionally, rationally designed strategies for combating the toxicity of the most potent BoNT serotype are evaluated.
Collapse
Affiliation(s)
- Tobin J Dickerson
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, and Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | |
Collapse
|