1
|
Burke R, Nicotra D, Phelan J, Downey F, McCabe PF, Kacprzyk J. Spermine and spermidine inhibit or induce programmed cell death in Arabidopsis thaliana in vitro and in vivo in a dose-dependent manner. FEBS J 2024; 291:3665-3685. [PMID: 38808914 DOI: 10.1111/febs.17165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/19/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024]
Abstract
Polyamines are ubiquitous biomolecules with a number of established functions in eukaryotic cells. In plant cells, polyamines have previously been linked to abiotic and biotic stress tolerance, as well as to the modulation of programmed cell death (PCD), with contrasting reports on their pro-PCD and pro-survival effects. Here, we used two well-established platforms for the study of plant PCD, Arabidopsis thaliana suspension cultures cells and the root hair assay, to examine the roles of the polyamines spermine and spermidine in the regulation of PCD. Using these systems for precise quantification of cell death rates, we demonstrate that both polyamines can trigger PCD when applied exogenously at higher doses, whereas at lower concentrations they inhibit PCD induced by both biotic and abiotic stimuli. Furthermore, we show that concentrations of polyamines resulting in inhibition of PCD generated a transient ROS burst in our experimental system, and activated the expression of oxidative stress- and pathogen response-associated genes. Finally, we examined PCD responses in existing Arabidopsis polyamine synthesis mutants, and identified a subtle PCD phenotype in Arabidopsis seedlings deficient in thermo-spermine. The presented data show that polyamines can have a role in PCD regulation; however, that role is dose-dependent and consequently they may act as either inhibitors, or inducers, of PCD in Arabidopsis.
Collapse
Affiliation(s)
- Rory Burke
- School of Biology and Environmental Science, University College Dublin, Ireland
| | - Daniele Nicotra
- School of Biology and Environmental Science, University College Dublin, Ireland
- Department of Agriculture, Food and Environment, University of Catania, Italy
| | - Jim Phelan
- School of Biology and Environmental Science, University College Dublin, Ireland
| | - Frances Downey
- School of Biology and Environmental Science, University College Dublin, Ireland
| | - Paul F McCabe
- School of Biology and Environmental Science, University College Dublin, Ireland
| | - Joanna Kacprzyk
- School of Biology and Environmental Science, University College Dublin, Ireland
| |
Collapse
|
2
|
Takahashi Y. ACL5 acquired strict thermospermine synthesis activity during the emergence of vascular plants. THE NEW PHYTOLOGIST 2024; 242:2669-2681. [PMID: 38587066 DOI: 10.1111/nph.19733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/15/2024] [Indexed: 04/09/2024]
Abstract
Norspermine (Nspm), one of the uncommon polyamines (PAs), was detected in bryophytes and lycophytes; therefore, the aminopropyltransferases involved in the synthesis of Nspm were investigated. The enzymatic activity was evaluated by the transient high expression of various aminopropyltransferase genes in Nicotiana benthamiana, followed by quantification of PA distribution in the leaves using gas chromatography-mass spectrometry. The bryophyte orthologues of ACL5, which is known to synthesise thermospermine (Tspm) in flowering plants, were found to have strong Nspm synthesis activity. In addition, two ACL5 orthologous with different substrate specificities were conserved in Selaginella moellendorffii, one of which was involved in Tspm synthesis and the other in Nspm synthesis. Therefore, further detailed analysis using these two factors revealed that the β-hairpin structural region consisting of β-strands 1 and 2 at the N-terminus of ACL5 is involved in substrate specificity. Through functional analysis of a total of 40 ACL5 genes in 33 organisms, including algae, it was shown that ACL5 has changed its substrate specificity several times during plant evolution and diversification. Furthermore, it was strongly suggested that ACL5 acquired strict Tspm synthesis activity during the emergence of vascular plants, especially through major changes around the β-hairpin structural region.
Collapse
Affiliation(s)
- Yoshihiro Takahashi
- Department of Life Science, Faculty of Life Science, Kyushu Sangyo University, 2-3-1 Matsukadai Higashi-ku, Fukuoka, 813-8503, Japan
| |
Collapse
|
3
|
Furumoto T, Yamaoka S, Kohchi T, Motose H, Takahashi T. Thermospermine Is an Evolutionarily Ancestral Phytohormone Required for Organ Development and Stress Responses in Marchantia Polymorpha. PLANT & CELL PHYSIOLOGY 2024; 65:460-471. [PMID: 38179828 PMCID: PMC11020214 DOI: 10.1093/pcp/pcae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/06/2024]
Abstract
Thermospermine suppresses auxin-inducible xylem differentiation, whereas its structural isomer, spermine, is involved in stress responses in angiosperms. The thermospermine synthase, ACAULIS5 (ACL5), is conserved from algae to land plants, but its physiological functions remain elusive in non-vascular plants. Here, we focused on MpACL5, a gene in the liverwort Marchantia polymorpha, that rescued the dwarf phenotype of the acl5 mutant in Arabidopsis. In the Mpacl5 mutants generated by genome editing, severe growth retardation was observed in the vegetative organ, thallus, and the sexual reproductive organ, gametangiophore. The mutant gametangiophores exhibited remarkable morphological defects such as short stalks, fasciation and indeterminate growth. Two gametangiophores fused together, and new gametangiophores were often initiated from the old ones. Furthermore, Mpacl5 showed altered responses to heat and salt stresses. Given the absence of spermine in bryophytes, these results suggest that thermospermine has a dual primordial function in organ development and stress responses in M. polymorpha. The stress response function may have eventually been assigned to spermine during land plant evolution.
Collapse
Affiliation(s)
- Takuya Furumoto
- Department of Biological Science, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Tsushimanaka 3-1-1, Okayama, 700-8530 Japan
| | - Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | - Hiroyasu Motose
- Department of Biological Science, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Tsushimanaka 3-1-1, Okayama, 700-8530 Japan
| | - Taku Takahashi
- Department of Biological Science, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Tsushimanaka 3-1-1, Okayama, 700-8530 Japan
| |
Collapse
|
4
|
Kawade K, Tabeta H, Ferjani A, Hirai MY. The Roles of Functional Amino Acids in Plant Growth and Development. PLANT & CELL PHYSIOLOGY 2023; 64:1482-1493. [PMID: 37489637 DOI: 10.1093/pcp/pcad071] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/04/2023] [Accepted: 07/03/2023] [Indexed: 07/26/2023]
Abstract
Plants incorporate acquired carbon and nitrogen into amino acid metabolism, whereby the building blocks of proteins and the precursors of various metabolites are produced. This fundamental demand requires tight amino acid metabolism to sustain physiological homeostasis. There is increasing evidence that amino acid metabolism undergoes plastic alteration to orchestrate specific growth and developmental events. Consequently, there has been a gradual exploration of the interface at which amino acid metabolism and plant morphogenesis are mutually affected. This research progress offers an opportunity to explore amino acid metabolism, with the goal to understand how it can be modulated to serve special cellular needs and regulate specific growth and developmental pathways. Continuous improvements in the sensitivity and coverage of metabolomics technology, along with the development of chemoinformatics, have allowed the investigation of these research questions. In this review, we summarize the roles of threonine, serine, arginine and γ-aminobutyric acid as representative examples of amino acids relevant to specific developmental processes in plants ('functional amino acids'). Our objective is to expand perspectives regarding amino acid metabolism beyond the conventional view that it is merely life-supporting machinery.
Collapse
Affiliation(s)
- Kensuke Kawade
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama, 338-8570 Japan
- Metabolic Systems Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan
| | | | - Ali Ferjani
- Department of Biology, Tokyo Gakugei University, 4-1-1 Nukuikita-machi, Koganei, Tokyo, 184-8501 Japan
- Metabolic Systems Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902 Japan
| | - Masami Yokota Hirai
- Metabolic Systems Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan
| |
Collapse
|
5
|
Li X, Yan Z, Zhang M, Wang J, Xin P, Cheng S, Kou L, Zhang X, Wu S, Chu J, Yi C, Ye K, Wang B, Li J. SnoRNP is essential for thermospermine-mediated development in Arabidopsis thaliana. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2-11. [PMID: 36385591 DOI: 10.1007/s11427-022-2235-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 10/27/2022] [Indexed: 11/18/2022]
Abstract
Polyamines have been discovered for hundreds of years and once considered as a class of phytohormones. Polyamines play critical roles in a range of developmental processes. However, the molecular mechanisms of polyamine signaling pathways remain poorly understood. Here, we measured the contents of main types of polyamines, and found that endogenous level of thermospermine (T-Spm) in Arabidopsis thaliana is comparable to those of classic phytohormones and is significantly lower than those of putrescine (Put), spermidine (Spd), and spermine (Spm). We further found a nodule-like structure around the junction area connecting the shoot and root of the T-Spm biosynthetic mutant acl5 and obtained more than 50 suppressors of acl5nodule structure (san) through suppressor screening. An in-depth study of two san suppressors revealed that NAP57 and NOP56, core components of box H/ACA and C/D snoRNPs, were essential for T-Spm-mediated nodule-like structure formation and plant height. Furthermore, analyses of rRNA modifications showed that the overall levels of pseudouridylation and 2'-O-methylation were compromised in san1 and san2 respectively. Taken together, these results establish a strong genetic relationship between rRNA modification and T-Spm-mediated growth and development, which was previously undiscovered in all organisms.
Collapse
Affiliation(s)
- Xilong Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zongyun Yan
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Meiling Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Jiayin Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Peiyong Xin
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shujing Cheng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Liquan Kou
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoting Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Songlin Wu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Jinfang Chu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Keqiong Ye
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Bing Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100039, China.
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100039, China. .,Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
| |
Collapse
|
6
|
Putrescine: A Key Metabolite Involved in Plant Development, Tolerance and Resistance Responses to Stress. Int J Mol Sci 2022; 23:ijms23062971. [PMID: 35328394 PMCID: PMC8955586 DOI: 10.3390/ijms23062971] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 02/06/2023] Open
Abstract
Putrescine (Put) is the starting point of the polyamines (PAs) pathway and the most common PA in higher plants. It is synthesized by two main pathways (from ornithine and arginine), but recently a third pathway from citrulline was reported in sesame plants. There is strong evidence that Put may play a crucial role not only in plant growth and development but also in the tolerance responses to the major stresses affecting crop production. The main strategies to investigate the involvement of PA in plant systems are based on the application of competitive inhibitors, exogenous PAs treatments, and the most efficient approaches based on mutant and transgenic plants. Thus, in this article, the recent advances in understanding the role of this metabolite in plant growth promotion and protection against abiotic and biotic stresses will be discussed to provide an overview for future research.
Collapse
|
7
|
Tang G, Xia H, Liang J, Ma Z, Liu W. Spermidine Is Critical for Growth, Development, Environmental Adaptation, and Virulence in Fusarium graminearum. Front Microbiol 2021; 12:765398. [PMID: 34867896 PMCID: PMC8640359 DOI: 10.3389/fmicb.2021.765398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Putrescine, spermidine, and spermine are the most common natural polyamines. Polyamines are ubiquitous organic cations of low molecular weight and have been well characterized for the cell function and development processes of organisms. However, the physiological functions of polyamines remain largely obscure in plant pathogenic fungi. Fusarium graminearum causes Fusarium head blight (FHB) and leads to devastating yield losses and quality reduction by producing various kinds of mycotoxins. Herein, we genetically analyzed the gene function of the polyamine biosynthesis pathway and evaluated the role of the endogenous polyamines in the growth, development, and virulence of F. graminearum. Our results found that deletion of spermidine biosynthesis gene FgSPE3 caused serious growth defects, reduced asexual and sexual reproduction, and increased sensitivity to various stresses. More importantly, ΔFgspe3 exhibited significantly decreased mycotoxin deoxynivalenol (DON) production and weak virulence in host plants. Additionally, the growth and virulence defects of ΔFgspe3 could be rescued by exogenous application of 5 mM spermidine. Furthermore, RNA-seq displayed that FgSpe3 participated in many essential biological pathways including DNA, RNA, and ribosome synthetic process. To our knowledge, these results indicate that spermidine is essential for growth, development, DON production, and virulence in Fusarium species, which provides a potential target to control FHB.
Collapse
Affiliation(s)
- Guangfei Tang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Haoxue Xia
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingting Liang
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
8
|
Salazar-Díaz K, Dong Y, Papdi C, Ferruzca-Rubio EM, Olea-Badillo G, Ryabova LA, Dinkova TD. TOR senses and regulates spermidine metabolism during seedling establishment and growth in maize and Arabidopsis. iScience 2021; 24:103260. [PMID: 34765910 PMCID: PMC8571727 DOI: 10.1016/j.isci.2021.103260] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 04/23/2021] [Accepted: 10/11/2021] [Indexed: 12/14/2022] Open
Abstract
Spermidine (Spd) is a nitrogen sink and signaling molecule that plays pivotal roles in eukaryotic cell growth and must be finetuned to meet various energy demands. In eukaryotes, target of rapamycin (TOR) is a central nutrient sensor, especially N, and a master-regulator of growth and development. Here, we discovered that Spd stimulates the growth of maize and Arabidopsis seedlings through TOR signaling. Inhibition of Spd biosynthesis led to TOR inactivation and growth defects. Furthermore, disruption of a TOR complex partner RAPTOR1B abolished seedling growth stimulation by Spd. Strikingly, TOR activated by Spd promotes translation of key metabolic enzyme upstream open reading frame (uORF)-containing mRNAs, PAO and CuAO, by facilitating translation reinitiation and providing feedback to polyamine metabolism and TOR activation. The Spd-TOR relay protected young-age seedlings of maize from expeditious stress heat shock. Our results demonstrate Spd is an upstream effector of TOR kinase in planta and provide its potential application for crop protection. Spermidine (Spd) stimulates growth of maize and Arabidopsis by activating TOR signaling TOR stimulates translation efficiency of uORF-containing mRNAs involved in Spd catabolism TOR provides feedback to polyamine homeostasis in response to excess of Spd The Spd-TOR signaling axis protects maize seedlings from expeditious heat stress
Collapse
Affiliation(s)
- Kenia Salazar-Díaz
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Yihan Dong
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084 Strasbourg, France
| | - Csaba Papdi
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084 Strasbourg, France
| | - Ernesto Miguel Ferruzca-Rubio
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Grecia Olea-Badillo
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Lyubov A Ryabova
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084 Strasbourg, France
| | - Tzvetanka D Dinkova
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| |
Collapse
|
9
|
Alhag A, Song J, Dahro B, Wu H, Khan M, Salih H, Liu JH. Genome-wide identification and expression analysis of Polyamine Uptake Transporter gene family in sweet orange (Citrus sinensis). PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:1157-1166. [PMID: 34374185 DOI: 10.1111/plb.13302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/26/2021] [Indexed: 06/13/2023]
Abstract
Polyamine uptake transporter (PUT) plays important roles in polyamine homeostasis, but knowledge regarding PUT family genes in sweet orange (Citrus sinensis) remains elusive. Herein, our study aimed to perform a genome-wide identification of the PUT gene family in C. sinensis. A total of eight putative PUT genes (CsPUT1-CsPUT8) were identified in the sweet orange genome and distributed on three chromosomes. The CsPUT genes were divided into two major groups according to the phylogenetic tree analysis, with high similarities in protein domains and gene structure organization. The CsPUT genes were differentially expressed in different tissues, with the highest transcript levels being in the flowers and roots. Interestingly, the CsPUT genes were significantly induced by polyamines, putrescine, spermidine and spermine, indicating that CsPUT were possibly associated with intracellular polyamine transport and uptake. In addition, CsPUT showed differential expression in callus treated with ABA, cold, salt or osmotic shock. CsPUT4 was selected as a candidate for functional analysis of PUT. Overexpression of CsPUT4 elevated endogenous polyamine content and led to enhanced cold tolerance in transgenic callus cultures. Overall, these data provide valuable information for better understanding the potential biological functions of PUT genes in future.
Collapse
Affiliation(s)
- A Alhag
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
- University of Bakht Al Ruda, Ministry of Higher Education and Scientific Research, Khartoum, Sudan
| | - J Song
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - B Dahro
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - H Wu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - M Khan
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - H Salih
- Crop Sciences, Faculty of Agriculture, Zalingei University, Central Darfur, Zalingei, Sudan
| | - J-H Liu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
10
|
Xu J, Yang J, Xu Z, Zhao D, Hu X. Exogenous spermine-induced expression of SlSPMS gene improves salinity-alkalinity stress tolerance by regulating the antioxidant enzyme system and ion homeostasis in tomato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 157:79-92. [PMID: 33096513 DOI: 10.1016/j.plaphy.2020.09.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
The study tested the function of exogenous spermine (Spm) in resisting salinity-alkalinity stress in tomato seedlings and found that tomato Spm synthase gene (SlSPMS) was involved in this regulation. The tomato seedlings cultivated in normal conditions or salinity-alkalinity conditions were irrigated with 100 ml one strength Hoagland nutrient solution 100 ml mixed solution (5 ml 300 mmol/L NaCl, 45 ml 300 mmol/L Na2SO4, 45 ml 300 mmol/L NaHCO3, and 5 ml 300 mmol/L Na2CO3 (pH = 8.90)) every 2 days, respectively. The 0.5 mM Spm pretreatment improved superoxide dismutase (SOD; EC 1.15.1.1) activity, catalase (CAT; EC 1.11.1.6) activity, ascorbate peroxidase (APX; EC 1.11.1.11) activity, and glutathione reductase (GR; EC 1.6.4.2) activity and decreased endogenous hydrogen peroxide (H2O2) content, malondialdehyde (MDA) content, and relative electrical conductivity (REC) in tomato leaves. Na+ content declined and K+ concentration rose in tomato seedlings when pre-treated with Spm. However the results showed that under salinity-alkalinity stress, silencing of SlSPMS with virus-induced gene silencing had lower antioxidant enzyme activities and higher Na+ content and lower K+ content than normal tomato seedlings, meaning that they had low salinity-alkalinity tolerance. Exogenous Spm could not reconstruct the tolerance to salinity-alkalinity stress in SlSPMS gene-silencing tomato seedlings. Taken together, exogenous Spm could induce the expression level of SlSPMS, which regulated the antioxidant enzyme system and ion homeostasis in tomato seedlings living in salinity-alkalinity environment, thereby improving the ability of tomato seedlings to resist salinity-alkalinity stress.
Collapse
Affiliation(s)
- Jiwen Xu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China
| | - Jianyu Yang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China
| | - Zijian Xu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China
| | - Dingkang Zhao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China
| | - Xiaohui Hu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
11
|
Dever TE, Ivanov IP, Sachs MS. Conserved Upstream Open Reading Frame Nascent Peptides That Control Translation. Annu Rev Genet 2020; 54:237-264. [PMID: 32870728 DOI: 10.1146/annurev-genet-112618-043822] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cells utilize transcriptional and posttranscriptional mechanisms to alter gene expression in response to environmental cues. Gene-specific controls, including changing the translation of specific messenger RNAs (mRNAs), provide a rapid means to respond precisely to different conditions. Upstream open reading frames (uORFs) are known to control the translation of mRNAs. Recent studies in bacteria and eukaryotes have revealed the functions of evolutionarily conserved uORF-encoded peptides. Some of these uORF-encoded nascent peptides enable responses to specific metabolites to modulate the translation of their mRNAs by stalling ribosomes and through ribosome stalling may also modulate the level of their mRNAs. In this review, we highlight several examples of conserved uORF nascent peptides that stall ribosomes to regulate gene expression in response to specific metabolites in bacteria, fungi, mammals, and plants.
Collapse
Affiliation(s)
- Thomas E Dever
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA; ,
| | - Ivaylo P Ivanov
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA; ,
| | - Matthew S Sachs
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA;
| |
Collapse
|
12
|
Shinohara S, Okamoto T, Motose H, Takahashi T. Salt hypersensitivity is associated with excessive xylem development in a thermospermine-deficient mutant of Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:374-383. [PMID: 31257654 DOI: 10.1111/tpj.14448] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 06/13/2019] [Accepted: 06/18/2019] [Indexed: 05/21/2023]
Abstract
In Arabidopsis, spermine is produced in most tissues and has been implicated in stress response, while its structural isomer thermospermine is only in xylem precursor cells. Studies on acaulis5 (acl5), a mutant defective in the biosynthesis of thermospermine, have revealed that thermospermine plays a repressive role in xylem development through enhancement of mRNA translation of the SAC51 family. In contrast, the pao5 mutant defective in the degradation of thermospermine has high levels of thermospermine and shows increased salt tolerance, suggesting a role of thermospermine in salt stress response. Here we compared acl5 with a mutant of spermine synthase, spms, in terms of abiotic stress tolerance and found that acl5 was much more sensitive to sodium than the wild-type and spms. A double-mutant of acl5 and sac51-d, which suppresses the excessive xylem phenotype of acl5, recovered normal sensitivity, while a quadruple T-DNA insertion mutant of the SAC51 family, which has an increased thermospermine level but shows excessive xylem development, showed increased salt sensitivity, unlike pao5. Together with the result that the salt tolerance of both wild-type and acl5 seedlings was improved by long-term treatment with thermospermine, we suggest a correlation of the salt tolerance with reduced xylem development rather than with the thermospermine level. We further found that the mutants containing high thermospermine levels showed increased tolerance to drought and heat stress, suggesting another role of thermospermine that may be common with that of spermine and secondary to that in restricting excess xylem development associated with salt hypersensitivity.
Collapse
Affiliation(s)
- Shiori Shinohara
- Division of Earth, Life, and Molecular Sciences, Graduate School of Natural Science and Technology, Okayama University, 700-8530, Okayama, Japan
| | - Takashi Okamoto
- Division of Earth, Life, and Molecular Sciences, Graduate School of Natural Science and Technology, Okayama University, 700-8530, Okayama, Japan
| | - Hiroyasu Motose
- Division of Earth, Life, and Molecular Sciences, Graduate School of Natural Science and Technology, Okayama University, 700-8530, Okayama, Japan
| | - Taku Takahashi
- Division of Earth, Life, and Molecular Sciences, Graduate School of Natural Science and Technology, Okayama University, 700-8530, Okayama, Japan
| |
Collapse
|
13
|
polyamine uptake transporter 2 (put2) and decaying seeds enhance phyA-mediated germination by overcoming PIF1 repression of germination. PLoS Genet 2019; 15:e1008292. [PMID: 31339933 PMCID: PMC6682160 DOI: 10.1371/journal.pgen.1008292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 08/05/2019] [Accepted: 07/07/2019] [Indexed: 01/03/2023] Open
Abstract
Red light promotes germination after activating phytochrome phyB, which destabilizes the germination repressor PIF1. Early upon seed imbibition, canopy light, unfavorable for photosynthesis, represses germination by stabilizing PIF1 after inactivating phyB. Paradoxically, later upon imbibition, canopy light stimulates germination after activating phytochrome phyA. phyA-mediated germination is poorly understood and, intriguingly, is inefficient, compared to phyB-mediated germination, raising the question of its physiological significance. A genetic screen identified polyamine uptake transporter 2 (put2) mutants that overaccumulate polyamines, a class of antioxidant polycations implicated in numerous cellular functions, which we found promote phyA-mediated germination. In WT seeds, our data suggest that canopy light represses polyamines accumulation through PIF1 while red light promotes polyamines accumulation. We show that canopy light also downregulates PIF1 levels, through phyA; however, PIF1 reaccumulates rapidly, which limits phyA-mediated germination. High polyamines levels in decaying seeds bypass PIF1 repression of germination and stimulate phyA-mediated germination, suggesting an adaptive mechanism promoting survival when viability is compromised.
Collapse
|
14
|
Marco F, Busó E, Lafuente T, Carrasco P. Spermine Confers Stress Resilience by Modulating Abscisic Acid Biosynthesis and Stress Responses in Arabidopsis Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:972. [PMID: 31417589 PMCID: PMC6684778 DOI: 10.3389/fpls.2019.00972] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/11/2019] [Indexed: 05/19/2023]
Abstract
Polyamines (PAs) constitute a group of low molecular weight aliphatic amines that have been implicated as key players in growth and development processes, as well as in the response to biotic and abiotic stresses. Transgenic plants overexpressing PA-biosynthetic genes show increased tolerance to abiotic stress. Therein, abscisic acid (ABA) is the hormone involved in plant responses to environmental stresses such as drought or high salinity. An increase in the level of free spermine (Spm) in transgenic Arabidopsis plants resulted in increased levels of endogenous ABA and promoted, in a Spm-dependent way, transcription of different ABA inducible genes. This phenotype was only partially reversed by blocking ABA biosynthesis, indicating an ABA independent response mediated by Spm. Moreover, the phenotype was reproduced by adding Spm to Col0 wild-type Arabidopsis plants. In contrast, Spm-deficient mutants showed a lower tolerance to salt stress. These results indicate that Spm plays a key role in modulating plant stress responses.
Collapse
Affiliation(s)
- Francisco Marco
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Valencia, Spain
| | | | - Teresa Lafuente
- Departamento de Biotecnologia de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Valencia, Spain
| | - Pedro Carrasco
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Valencia, Spain
- *Correspondence: Pedro Carrasco,
| |
Collapse
|
15
|
Vuosku J, Karppinen K, Muilu-Mäkelä R, Kusano T, Sagor GHM, Avia K, Alakärppä E, Kestilä J, Suokas M, Nickolov K, Hamberg L, Savolainen O, Häggman H, Sarjala T. Scots pine aminopropyltransferases shed new light on evolution of the polyamine biosynthesis pathway in seed plants. ANNALS OF BOTANY 2018; 121:1243-1256. [PMID: 29462244 PMCID: PMC5946884 DOI: 10.1093/aob/mcy012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 04/18/2018] [Indexed: 05/21/2023]
Abstract
Background and Aims Polyamines are small metabolites present in all living cells and play fundamental roles in numerous physiological events in plants. The aminopropyltransferases (APTs), spermidine synthase (SPDS), spermine synthase (SPMS) and thermospermine synthase (ACL5), are essential enzymes in the polyamine biosynthesis pathway. In angiosperms, SPMS has evolved from SPDS via gene duplication, whereas in gymnosperms APTs are mostly unexplored and no SPMS gene has been reported. The present study aimed to investigate the functional properties of the SPDS and ACL5 proteins of Scots pine (Pinus sylvestris L.) in order to elucidate the role and evolution of APTs in higher plants. Methods Germinating Scots pine seeds and seedlings were analysed for polyamines by high-performance liquid chromatography (HPLC) and the expression of PsSPDS and PsACL5 genes by in situ hybridization. Recombinant proteins of PsSPDS and PsACL5 were produced and investigated for functional properties. Also gene structures, promoter regions and phylogenetic relationships of PsSPDS and PsACL5 genes were analysed. Key Results Scots pine tissues were found to contain spermidine, spermine and thermospermine. PsSPDS enzyme catalysed synthesis of both spermidine and spermine. PsACL5 was found to produce thermospermine, and PsACL5 gene expression was localized in the developing procambium in embryos and tracheary elements in seedlings. Conclusions Contrary to previous views, our results demonstrate that SPMS activity is not a novel feature developed solely in the angiosperm lineage of seed plants but also exists as a secondary property in the Scots pine SPDS enzyme. The discovery of bifunctional SPDS from an evolutionarily old conifer reveals the missing link in the evolution of the polyamine biosynthesis pathway. The finding emphasizes the importance of pre-existing secondary functions in the evolution of new enzyme activities via gene duplication. Our results also associate PsACL5 with the development of vascular structures in Scots pine.
Collapse
Affiliation(s)
- Jaana Vuosku
- University of Oulu, Department of Ecology and Genetics, Oulu, Finland
| | - Katja Karppinen
- University of Oulu, Department of Ecology and Genetics, Oulu, Finland
| | - Riina Muilu-Mäkelä
- Natural Resources Institute Finland, Bio-based Business and Industry, Parkano, Finland
| | - Tomonobu Kusano
- Tohoku University, Graduate School of Life Sciences, Sendai, Miyagi, Japan
| | - G H M Sagor
- Tohoku University, Graduate School of Life Sciences, Sendai, Miyagi, Japan
| | - Komlan Avia
- University of Oulu, Department of Ecology and Genetics, Oulu, Finland
- UMI 3614 Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Universités, UPMC, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, Station Biologique Roscoff, Roscoff, France
| | - Emmi Alakärppä
- University of Oulu, Department of Ecology and Genetics, Oulu, Finland
| | - Johanna Kestilä
- University of Oulu, Department of Ecology and Genetics, Oulu, Finland
| | - Marko Suokas
- University of Oulu, Department of Ecology and Genetics, Oulu, Finland
| | - Kaloian Nickolov
- University of Oulu, Department of Ecology and Genetics, Oulu, Finland
| | - Leena Hamberg
- Natural Resources Institute Finland, Management and Production of Renewable Resources, Vantaa, Finland
| | - Outi Savolainen
- University of Oulu, Department of Ecology and Genetics, Oulu, Finland
| | - Hely Häggman
- University of Oulu, Department of Ecology and Genetics, Oulu, Finland
| | - Tytti Sarjala
- Natural Resources Institute Finland, Bio-based Business and Industry, Parkano, Finland
| |
Collapse
|
16
|
Abstract
Themospermine is a structural isomer of spermine and is present in some bacteria and most of plants. An Arabidopsis mutant, acaulis5 (acl5), that is defective in the biosynthesis of thermospermine displays excessive proliferation of xylem vessels with dwarfed growth. Recent studies using acl5 and its suppressor mutants that recover the growth without thermospermine have revealed that thermospermine plays a key role in the negative control of the proliferation of xylem vessels through enhancing translation of specific mRNAs that contain a conserved upstream open-reading-frame (uORF) in the 5' leader region.
Collapse
Affiliation(s)
- Taku Takahashi
- Division of Earth, Life, and Molecular Sciences, Graduate School of Natural Science and Technology, Okayama University, Tsushimanaka 3-1-1, kita-ku, 700-8530, Okayama, Japan.
| |
Collapse
|
17
|
Abstract
Plant mutants in polyamine pathway genes are ideal for investigating their roles in stress responses. Here we describe easy-to-perform methods for phenotyping Arabidopsis mutants under abiotic stress. These include measurements of root growth, chlorophyll content, water loss, electrolyte leakage, and content of the reactive oxygen species hydrogen peroxide (H2O2) and superoxide anion (O2-). Growth of Arabidopsis seedlings is described that enables transfer to different media for stress treatment without damaging roots.
Collapse
Affiliation(s)
- Thomas Berberich
- Laboratory Center, Senckenberg Biodiversity and Climate Research Center (SBiK-F), Georg-Voigt-Str. 14-16, 60325, Frankfurt am Main, Germany.
| | - G H M Sagor
- Department of Genetics & Plant Breeding, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Tomonobu Kusano
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi, 980-8577, Japan
| |
Collapse
|
18
|
Aloisi I, Cai G, Faleri C, Navazio L, Serafini-Fracassini D, Del Duca S. Spermine Regulates Pollen Tube Growth by Modulating Ca 2+-Dependent Actin Organization and Cell Wall Structure. FRONTIERS IN PLANT SCIENCE 2017; 8:1701. [PMID: 29033970 PMCID: PMC5627395 DOI: 10.3389/fpls.2017.01701] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/15/2017] [Indexed: 05/25/2023]
Abstract
Proper growth of the pollen tube depends on an elaborate mechanism that integrates several molecular and cytological sub-processes and ensures a cell shape adapted to the transport of gametes. This growth mechanism is controlled by several molecules among which cytoplasmic and apoplastic polyamines. Spermine (Spm) has been correlated with various physiological processes in pollen, including structuring of the cell wall and modulation of protein (mainly cytoskeletal) assembly. In this work, the effects of Spm on the growth of pear pollen tubes were analyzed. When exogenous Spm (100 μM) was supplied to germinating pollen, it temporarily blocked tube growth, followed by the induction of apical swelling. This reshaping of the pollen tube was maintained also after growth recovery, leading to a 30-40% increase of tube diameter. Apical swelling was also accompanied by a transient increase in cytosolic calcium concentration and alteration of pH values, which were the likely cause for major reorganization of actin filaments and cytoplasmic organelle movement. Morphological alterations of the apical and subapical region also involved changes in the deposition of pectin, cellulose, and callose in the cell wall. Thus, results point to the involvement of Spm in cell wall construction as well as cytoskeleton organization during pear pollen tube growth.
Collapse
Affiliation(s)
- Iris Aloisi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Claudia Faleri
- Department of Life Sciences, University of Siena, Siena, Italy
| | | | | | - Stefano Del Duca
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
19
|
Merchante C, Stepanova AN, Alonso JM. Translation regulation in plants: an interesting past, an exciting present and a promising future. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:628-653. [PMID: 28244193 DOI: 10.1111/tpj.13520] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 05/19/2023]
Abstract
Changes in gene expression are at the core of most biological processes, from cell differentiation to organ development, including the adaptation of the whole organism to the ever-changing environment. Although the central role of transcriptional regulation is solidly established and the general mechanisms involved in this type of regulation are relatively well understood, it is clear that regulation at a translational level also plays an essential role in modulating gene expression. Despite the large number of examples illustrating the critical role played by translational regulation in determining the expression levels of a gene, our understanding of the molecular mechanisms behind such types of regulation has been slow to emerge. With the recent development of high-throughput approaches to map and quantify different critical parameters affecting translation, such as RNA structure, protein-RNA interactions and ribosome occupancy at the genome level, a renewed enthusiasm toward studying translation regulation is warranted. The use of these new powerful technologies in well-established and uncharacterized translation-dependent processes holds the promise to decipher the likely complex and diverse, but also fascinating, mechanisms behind the regulation of translation.
Collapse
Affiliation(s)
- Catharina Merchante
- Departamento de Biologia Molecular y Bioquimica, Universidad de Malaga-Instituto de Hortofruticultura Subtropical y Mediterranea, IHSM-UMA-CSIC, Malaga, Andalucía, Spain
| | - Anna N Stepanova
- Department of Plant and Microbial Biology, Genetics Graduate Program, North Carolina State University, Raleigh, NC, 27607, USA
| | - Jose M Alonso
- Department of Plant and Microbial Biology, Genetics Graduate Program, North Carolina State University, Raleigh, NC, 27607, USA
| |
Collapse
|
20
|
Biosynthesis of polyamines and polyamine-containing molecules. Biochem J 2016; 473:2315-29. [DOI: 10.1042/bcj20160185] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/22/2016] [Indexed: 12/16/2022]
Abstract
Polyamines are evolutionarily ancient polycations derived from amino acids and are pervasive in all domains of life. They are essential for cell growth and proliferation in eukaryotes and are essential, important or dispensable for growth in bacteria. Polyamines present a useful scaffold to attach other moieties to, and are often incorporated into specialized metabolism. Life has evolved multiple pathways to synthesize polyamines, and structural variants of polyamines have evolved in bacteria, archaea and eukaryotes. Among the complex biosynthetic diversity, patterns of evolutionary reiteration can be distinguished, revealing evolutionary recycling of particular protein folds and enzyme chassis. The same enzyme activities have evolved from multiple protein folds, suggesting an inevitability of evolution of polyamine biosynthesis. This review discusses the different biosynthetic strategies used in life to produce diamines, triamines, tetra-amines and branched and long-chain polyamines. It also discusses the enzymes that incorporate polyamines into specialized metabolites and attempts to place polyamine biosynthesis in an evolutionary context.
Collapse
|
21
|
Zhou C, Ma Z, Zhu L, Xiao X, Xie Y, Zhu J, Wang J. Rhizobacterial Strain Bacillus megaterium BOFC15 Induces Cellular Polyamine Changes that Improve Plant Growth and Drought Resistance. Int J Mol Sci 2016; 17:ijms17060976. [PMID: 27338359 PMCID: PMC4926508 DOI: 10.3390/ijms17060976] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/31/2016] [Accepted: 06/03/2016] [Indexed: 12/11/2022] Open
Abstract
Plant-growth-promoting rhizobacteria can improve plant growth, development, and stress adaptation. However, the underlying mechanisms are still largely unclear. We investigated the effects of Bacillusmegaterium BOFC15 on Arabidopsis plants. BOFC15 produced and secreted spermidine (Spd), a type of polyamine (PA) that plays an important role in plant growth. Moreover, BOFC15 induced changes in the cellular PAs of plants that promoted an increase of free Spd and spermine levels. However, these effects were remarkably abolished by the addition of dicyclohexylamine (DCHA), a Spd biosynthetic inhibitor. Additionally, the inoculation with BOFC15 remarkably increased plant biomass, improved root system architecture, and augmented photosynthetic capacity. Inoculated plants also displayed stronger ability to tolerate drought stress than non-inoculated (control) plants. Abscisic acid (ABA) content was notably higher in the inoculated plants than in the control plants under drought stress and polyethylene glycol (PEG)-induced stress conditions. However, the BOFC15-induced ABA synthesis was markedly inhibited by DCHA. Thus, microbial Spd participated in the modulation of the ABA levels. The Spd-producing BOFC15 improved plant drought tolerance, which was associated with altered cellular ABA levels and activated adaptive responses.
Collapse
Affiliation(s)
- Cheng Zhou
- School of Life Science and Technology, Tongji University, Shanghai 200092, China.
- Key Laboratory of Bio-Organic Fertilizer Creation, Ministry of Agriculture, Anhui Science and Technology University, Bengbu 233100, China.
| | - Zhongyou Ma
- Key Laboratory of Bio-Organic Fertilizer Creation, Ministry of Agriculture, Anhui Science and Technology University, Bengbu 233100, China.
| | - Lin Zhu
- School of Life Science and Technology, Tongji University, Shanghai 200092, China.
| | - Xin Xiao
- Key Laboratory of Bio-Organic Fertilizer Creation, Ministry of Agriculture, Anhui Science and Technology University, Bengbu 233100, China.
| | - Yue Xie
- Key Laboratory of Bio-Organic Fertilizer Creation, Ministry of Agriculture, Anhui Science and Technology University, Bengbu 233100, China.
| | - Jian Zhu
- School of Life Science and Technology, Tongji University, Shanghai 200092, China.
| | - Jianfei Wang
- Key Laboratory of Bio-Organic Fertilizer Creation, Ministry of Agriculture, Anhui Science and Technology University, Bengbu 233100, China.
| |
Collapse
|
22
|
Dalton HL, Blomstedt CK, Neale AD, Gleadow R, DeBoer KD, Hamill JD. Effects of down-regulating ornithine decarboxylase upon putrescine-associated metabolism and growth in Nicotiana tabacum L. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3367-81. [PMID: 27126795 PMCID: PMC4892731 DOI: 10.1093/jxb/erw166] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Transgenic plants of Nicotiana tabacum L. homozygous for an RNAi construct designed to silence ornithine decarboxylase (ODC) had significantly lower concentrations of nicotine and nornicotine, but significantly higher concentrations of anatabine, compared with vector-only controls. Silencing of ODC also led to significantly reduced concentrations of polyamines (putrescine, spermidine and spermine), tyramine and phenolamides (caffeoylputrescine and dicaffeoylspermidine) with concomitant increases in concentrations of amino acids ornithine, arginine, aspartate, glutamate and glutamine. Root transcript levels of S-adenosyl methionine decarboxylase, S-adenosyl methionine synthase and spermidine synthase (polyamine synthesis enzymes) were reduced compared with vector controls, whilst transcript levels of arginine decarboxylase (putrescine synthesis), putrescine methyltransferase (nicotine production) and multi-drug and toxic compound extrusion (alkaloid transport) proteins were elevated. In contrast, expression of two other key proteins required for alkaloid synthesis, quinolinic acid phosphoribosyltransferase (nicotinic acid production) and a PIP-family oxidoreductase (nicotinic acid condensation reactions), were diminished in roots of odc-RNAi plants relative to vector-only controls. Transcriptional and biochemical differences associated with polyamine and alkaloid metabolism were exacerbated in odc-RNAi plants in response to different forms of shoot damage. In general, apex removal had a greater effect than leaf wounding alone, with a combination of these injury treatments producing synergistic responses in some cases. Reduced expression of ODC appeared to have negative effects upon plant growth and vigour with some leaves of odc-RNAi lines being brittle and bleached compared with vector-only controls. Together, results of this study demonstrate that ornithine decarboxylase has important roles in facilitating both primary and secondary metabolism in Nicotiana.
Collapse
Affiliation(s)
- Heidi L Dalton
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Cecilia K Blomstedt
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Alan D Neale
- Deakin University, Centre for Regional and Rural Futures (CeRRF), Geelong, Victoria 3216, Australia
| | - Ros Gleadow
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Kathleen D DeBoer
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA 6009, Australia
| | - John D Hamill
- Deakin University, Centre for Regional and Rural Futures (CeRRF), Geelong, Victoria 3216, Australia
| |
Collapse
|
23
|
Tsaniklidis G, Kotsiras A, Tsafouros A, Roussos PA, Aivalakis G, Katinakis P, Delis C. Spatial and temporal distribution of genes involved in polyamine metabolism during tomato fruit development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 100:27-36. [PMID: 26773542 DOI: 10.1016/j.plaphy.2016.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 01/04/2016] [Accepted: 01/04/2016] [Indexed: 05/20/2023]
Abstract
Polyamines are organic compounds involved in various biological roles in plants, including cell growth and organ development. In the present study, the expression profile, the accumulation of free polyamines and the transcript localisation of the genes involved in Put metabolism, such as Ornithine decarboxylase (ODC), Arginine decarboxylase (ADC) and copper containing Amine oxidase (CuAO), were examined during Solanum lycopersicum cv. Chiou fruit development and maturation. Moreover, the expression of genes coding for enzymes involved in higher polyamine metabolism, including Spermidine synthase (SPDS), Spermine synthase (SPMS), S-adenosylmethionine decarboxylase (SAMDC) and Polyamine oxidase (PAO), were studied. Most genes participating in PAs biosynthesis and metabolism exhibited an increased accumulation of transcripts at the early stages of fruit development. In contrast, CuAO and SPMS were mostly expressed later, during the development stages of the fruits where a massive increase in fruit volume occurs, while the SPDS1 gene exhibited a rather constant expression with a peak at the red ripe stage. Although Put, Spd and Spm were all exhibited decreasing levels in developing immature fruits, Put levels maxed late during fruit ripening. In contrast to Put both Spd and Spm levels continue to decrease gradually until full ripening. It is worth noticing that in situ RNA-RNA hybridisation is reported for the first time in tomato fruits. The localisation of ADC2, ODC1 and CuAO gene transcripts at tissues such as the locular parenchyma and the vascular bundles fruits, supports the theory that all genes involved in Put biosynthesis and catabolism are mostly expressed in fast growing tissues. The relatively high expression levels of CuAO at the ImG4 stage of fruit development (fruits with a diameter of 3 cm), mature green and breaker stages could possibly be attributed to the implication of polyamines in physiological processes taking place during fruit ripening.
Collapse
Affiliation(s)
- Georgios Tsaniklidis
- Agricultural University of Athens, Department of Natural Resources Development and Agricultural Engineering, Iera Odos 75, 11855 Votanikos, Athens, Greece.
| | - Anastasios Kotsiras
- Technological Educational Institute of Peloponnese, School of Agricultural Technology and Food Technology and Nutrition, Department of Agricultural Technology, 24100 Antikalamos, Kalamata, Greece.
| | - Athanasios Tsafouros
- Agricultural University of Athens, Department of Natural Resources Development and Agricultural Engineering, Iera Odos 75, 11855 Votanikos, Athens, Greece.
| | - Peter A Roussos
- Agricultural University of Athens, Department of Natural Resources Development and Agricultural Engineering, Iera Odos 75, 11855 Votanikos, Athens, Greece.
| | - Georgios Aivalakis
- Agricultural University of Athens, Department of Natural Resources Development and Agricultural Engineering, Iera Odos 75, 11855 Votanikos, Athens, Greece.
| | - Panagiotis Katinakis
- Agricultural University of Athens, Department of Natural Resources Development and Agricultural Engineering, Iera Odos 75, 11855 Votanikos, Athens, Greece.
| | - Costas Delis
- Technological Educational Institute of Peloponnese, School of Agricultural Technology and Food Technology and Nutrition, Department of Agricultural Technology, 24100 Antikalamos, Kalamata, Greece.
| |
Collapse
|
24
|
Salo HM, Sarjala T, Jokela A, Häggman H, Vuosku J. Moderate stress responses and specific changes in polyamine metabolism characterize Scots pine somatic embryogenesis. TREE PHYSIOLOGY 2016; 36:392-402. [PMID: 26786537 PMCID: PMC4885945 DOI: 10.1093/treephys/tpv136] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 11/29/2015] [Indexed: 05/02/2023]
Abstract
Somatic embryogenesis (SE) is one of the methods with the highest potential for the vegetative propagation of commercially important coniferous species. However, many conifers, including Scots pine (Pinus sylvestris L.), are recalcitrant to SE and a better understanding of the mechanisms behind the SE process is needed. In Scots pine SE cultures, embryo production is commonly induced by the removal of auxin, addition of abscisic acid (ABA) and the desiccation of cell masses by polyethylene glycol (PEG). In the present study, we focus on the possible link between the induction of somatic embryo formation and cellular stress responses such as hydrogen peroxide protection, DNA repair, changes in polyamine (PA) metabolism and autophagy. Cellular PA contents and the expression of the PA metabolism genes arginine decarboxylase (ADC), spermidine synthase (SPDS), thermospermine synthase (ACL5) and diamine oxidase (DAO) were analyzed, as well as the expression of catalase (CAT), DNA repair genes (RAD51, KU80) and autophagy-related genes (ATG5, ATG8) throughout the induction of somatic embryo formation in Scots pine SE cultures. Among the embryo-producing SE lines, the expression of ADC, SPDS, ACL5, DAO, CAT, RAD51, KU80 and ATG8 showed consistent profiles. Furthermore, the overall low expression of the stress-related genes suggests that cells in those SE lines were not stressed but recognized the ABA+PEG treatment as a signal to trigger the embryogenic pathway. In those SE lines that were unable to produce embryos, cells seemed to experience the ABA+PEG treatment mostly as osmotic stress and activated a wide range of stress defense mechanisms. Altogether, our results suggest that the direction to the embryogenic pathway is connected with cellular stress responses in Scots pine SE cultures. Thus, the manipulation of stress response pathways may provide a way to enhance somatic embryo production in recalcitrant Scots pine SE lines.
Collapse
Affiliation(s)
- Heikki M Salo
- Genetics and Physiology Department, University of Oulu, PO Box 3000, FI-90014 Oulu, Finland
| | - Tytti Sarjala
- Natural Resources Institute Finland (Luke), Parkano Unit, FI-39700 Parkano, Finland
| | - Anne Jokela
- Genetics and Physiology Department, University of Oulu, PO Box 3000, FI-90014 Oulu, Finland
| | - Hely Häggman
- Genetics and Physiology Department, University of Oulu, PO Box 3000, FI-90014 Oulu, Finland
| | - Jaana Vuosku
- Genetics and Physiology Department, University of Oulu, PO Box 3000, FI-90014 Oulu, Finland Natural Resources Institute Finland (Luke), Rovaniemi Unit, FI-96300 Rovaniemi, Finland
| |
Collapse
|
25
|
Chemical control of xylem differentiation by thermospermine, xylemin, and auxin. Sci Rep 2016; 6:21487. [PMID: 26879262 PMCID: PMC4754900 DOI: 10.1038/srep21487] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/25/2016] [Indexed: 12/14/2022] Open
Abstract
The xylem conducts water and minerals from the root to the shoot and provides mechanical strength to the plant body. The vascular precursor cells of the procambium differentiate to form continuous vascular strands, from which xylem and phloem cells are generated in the proper spatiotemporal pattern. Procambium formation and xylem differentiation are directed by auxin. In angiosperms, thermospermine, a structural isomer of spermine, suppresses xylem differentiation by limiting auxin signalling. However, the process of auxin-inducible xylem differentiation has not been fully elucidated and remains difficult to manipulate. Here, we found that an antagonist of spermidine can act as an inhibitor of thermospermine biosynthesis and results in excessive xylem differentiation, which is a phenocopy of a thermospermine-deficient mutant acaulis5 in Arabidopsis thaliana. We named this compound xylemin owing to its xylem-inducing effect. Application of a combination of xylemin and thermospermine to wild-type seedlings negates the effect of xylemin, whereas co-treatment with xylemin and a synthetic proauxin, which undergoes hydrolysis to release active auxin, has a synergistic inductive effect on xylem differentiation. Thus, xylemin may serve as a useful transformative chemical tool not only for the study of thermospermine function in various plant species but also for the control of xylem induction and woody biomass production.
Collapse
|
26
|
Tong W, Imai A, Tabata R, Shigenobu S, Yamaguchi K, Yamada M, Hasebe M, Sawa S, Motose H, Takahashi T. Polyamine Resistance Is Increased by Mutations in a Nitrate Transporter Gene NRT1.3 (AtNPF6.4) in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2016; 7:834. [PMID: 27379127 PMCID: PMC4904021 DOI: 10.3389/fpls.2016.00834] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/27/2016] [Indexed: 05/19/2023]
Abstract
Polyamines are small basic compounds present in all living organisms and act in a variety of biological processes. However, the mechanism of polyamine sensing, signaling and response in relation to other metabolic pathways remains to be fully addressed in plant cells. As one approach, we isolated Arabidopsis mutants that show increased resistance to spermine in terms of chlorosis. We show here that two of the mutants have a point mutation in a nitrate transporter gene of the NRT1/PTR family (NPF), NRT1.3 (AtNPF6.4). These mutants also exhibit increased resistance to putrescine and spermidine while loss-of-function mutants of the two closest homologs of NRT1.3, root-specific NRT1.1 (AtNPF6.3) and petiole-specific NRT1.4 (AtNPF6.2), were shown to have a normal sensitivity to polyamines. When the GUS reporter gene was expressed under the control of the NRT1.3 promoter, GUS staining was observed in leaf mesophyll cells and stem cortex cells but not in the epidermis, suggesting that NRT1.3 specifically functions in parenchymal tissues. We further found that the aerial part of the mutant seedling has normal levels of polyamines but shows reduced uptake of norspermidine compared with the wild type. These results suggest that polyamine transport or metabolism is associated with nitrate transport in the parenchymal tissue of the shoot.
Collapse
Affiliation(s)
- Wurina Tong
- Graduate School of Natural Science and Technology, Okayama UniversityOkayama, Japan
| | - Akihiro Imai
- National Institute for Basic BiologyOkazaki, Japan
| | - Ryo Tabata
- Graduate School of Science and Technology, Kumamoto UniversityKumamoto, Japan
| | | | | | - Masashi Yamada
- National Institute for Basic BiologyOkazaki, Japan
- Department of Biology, Duke UniversityDurham, NC, USA
| | | | - Shinichiro Sawa
- Graduate School of Science and Technology, Kumamoto UniversityKumamoto, Japan
| | - Hiroyasu Motose
- Graduate School of Natural Science and Technology, Okayama UniversityOkayama, Japan
| | - Taku Takahashi
- Graduate School of Natural Science and Technology, Okayama UniversityOkayama, Japan
- *Correspondence: Taku Takahashi,
| |
Collapse
|
27
|
Mo H, Wang X, Zhang Y, Yang J, Ma Z. Cotton ACAULIS5 is involved in stem elongation and the plant defense response to Verticillium dahliae through thermospermine alteration. PLANT CELL REPORTS 2015; 34:1975-1985. [PMID: 26209974 DOI: 10.1007/s00299-015-1844-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 07/09/2015] [Accepted: 07/14/2015] [Indexed: 05/25/2023]
Abstract
Overexpression of GhACL5 , an ACAULIS5 from cotton, in Arabidopsis increased plant height and T-Spm level. Silencing of GhACL5 in cotton exhibited a dwarf phenotype and reduced resistance to Verticillium dahliae. The Arabidopsis thaliana gene ACAULIS5 (ACL5), for which inactivation causes a defect in stem elongation, encodes thermospermine (T-Spm) synthase. However, limited information is available about improvement in plant height by the overexpression of ACL5 gene, and the biological functions of ACL5 genes in response to biotic stress. Here, this study reports that constitutive expression of the cotton ACL5 gene (GhACL5) in Arabidopsis thaliana significantly increased plant height and elevated the level of T-Spm. Silencing of that gene in cotton reduced the amount of T-Spm and led to a severe dwarf phenotype. Expression of GhACL5 was induced upon treatment with the fungal pathogen Verticillium dahliae and plant hormones salicylic acid, jasmonic acid, and ethylene in resistant cotton plants, but gene silencing in cotton enhanced their susceptibility to V. dahliae infection. Furthermore, T-Spm exposure effectively inhibited V. dahliae growth in vitro. In summary, GhACL5 expression is related to in planta levels of T-Spm and is involved in stem elongation and defense responses against V. dahliae.
Collapse
Affiliation(s)
- Huijuan Mo
- North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Xingfen Wang
- North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Yan Zhang
- North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Jun Yang
- North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Zhiying Ma
- North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
28
|
Zhu X, Li Q, Hu J, Wang M, Li X. Molecular Cloning and Characterization of Spermine Synthesis Gene Associated with Cold Tolerance in Tea Plant (Camellia sinensis). Appl Biochem Biotechnol 2015; 177:1055-68. [PMID: 26276446 DOI: 10.1007/s12010-015-1796-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/02/2015] [Indexed: 10/23/2022]
Abstract
Spermine synthase (SPMS, EC 2.5.1.22), enzyme of spermine (Spm) biosynthesis, has been shown to be related to stress response. In this study, attempts were made to clone and characterize a gene encoding SPMS from tea plant (Camellia sinensis). The effect of exogenous application of Spm in C. sinensis subjected to low-temperature stress was also investigated. A full-length SPMS complementary DNA (cDNA) (CsSPMS) with an open reading frame of 1113 bp was cloned using reverse transcription-PCR and rapid amplification of cDNA ends (RACE) techniques from cultivar "Yingshuang". The CsSPMS gene, which encoded a 371 amino acid polypeptide, in four cultivars is highly homologous. Quantitative real-time PCR indicated that the CsSPMS gene shows tissue-specific expression, mainly in the leaf and root of tea plant. The expression analysis demonstrated that the CsSPMS gene is quickly induced by cold stress and had similar trends in four cultivars. Spm-supplemented "Baicha" cultivar contains higher endogenous polyamines compared to the control, coupling with higher expression levels of ADC and SPMS. In addition, activities of peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), as well as free proline content in the Spm-supplemented samples were higher than the control during the experiment course or at a given time point, indicating that Spm exerted a positive effect on antioxidant systems. Moreover, Agrobacterium-mediated expression of CsSPMS in tobacco leaves showed relatively higher cold tolerance. Taken together, these findings will enhance the understanding of the relationships among CsSPMS gene regulatory, polyamines accumulation, and cold tolerance in tea plant.
Collapse
Affiliation(s)
- Xujun Zhu
- College of Horticulture, Nanjing Agricultural University, Weigang No.1, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Qinghui Li
- College of Horticulture, Nanjing Agricultural University, Weigang No.1, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Jingyan Hu
- College of Horticulture, Nanjing Agricultural University, Weigang No.1, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Mingle Wang
- College of Horticulture, Nanjing Agricultural University, Weigang No.1, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Xinghui Li
- College of Horticulture, Nanjing Agricultural University, Weigang No.1, Nanjing, Jiangsu Province, 210095, People's Republic of China.
| |
Collapse
|
29
|
Imamura T, Fujita K, Tasaki K, Higuchi A, Takahashi H. Characterization of spermidine synthase and spermine synthase--The polyamine-synthetic enzymes that induce early flowering in Gentiana triflora. Biochem Biophys Res Commun 2015; 463:781-6. [PMID: 26056006 DOI: 10.1016/j.bbrc.2015.06.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 06/02/2015] [Indexed: 12/31/2022]
Abstract
Polyamines are essential for several living processes in plants. However, regulatory mechanisms of polyamines in herbaceous perennial are almost unknown. Here, we identified homologs of two Arabidopsis polyamine-synthetic enzymes, spermidine synthase (SPDS) and spermine synthase (SPMS) denoted as GtSPDS and GtSPMS, from the gentian plant, Gentiana triflora. Our results showed that recombinant proteins of GtSPDS and GtSPMS possessed SPDS and SPMS activities, respectively. The expression levels of GtSPDS and GtSPMS increased transiently during vegetative to reproductive growth phase and overexpression of the genes hastened flowering, suggesting that these genes are involved in flowering induction in gentian plants.
Collapse
Affiliation(s)
- Tomohiro Imamura
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan
| | - Kohei Fujita
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan
| | - Keisuke Tasaki
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan
| | - Atsumi Higuchi
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan
| | - Hideyuki Takahashi
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan.
| |
Collapse
|
30
|
Kakehi JI, Kawano E, Yoshimoto K, Cai Q, Imai A, Takahashi T. Mutations in ribosomal proteins, RPL4 and RACK1, suppress the phenotype of a thermospermine-deficient mutant of Arabidopsis thaliana. PLoS One 2015; 10:e0117309. [PMID: 25625317 PMCID: PMC4308196 DOI: 10.1371/journal.pone.0117309] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/22/2014] [Indexed: 11/18/2022] Open
Abstract
Thermospermine acts in negative regulation of xylem differentiation and its deficient mutant of Arabidopsis thaliana, acaulis5 (acl5), shows excessive xylem formation and severe dwarfism. Studies of two dominant suppressors of acl5, sac51-d and sac52-d, have revealed that SAC51 and SAC52 encode a transcription factor and a ribosomal protein L10 (RPL10), respectively, and these mutations enhance translation of the SAC51 mRNA, which contains conserved upstream open reading frames in the 5’ leader. Here we report identification of SAC53 and SAC56 responsible for additional suppressors of acl5. sac53-d is a semi-dominant allele of the gene encoding a receptor for activated C kinase 1 (RACK1) homolog, a component of the 40S ribosomal subunit. sac56-d represents a semi-dominant allele of the gene for RPL4. We show that the GUS reporter activity driven by the CaMV 35S promoter plus the SAC51 5’ leader is reduced in acl5 and restored by sac52-d, sac53-d, and sac56-d as well as thermospermine. Furthermore, the SAC51 mRNA, which may be a target of nonsense-mediated mRNA decay, was found to be stabilized in these ribosomal mutants and by thermospermine. These ribosomal proteins are suggested to act in the control of uORF-mediated translation repression of SAC51, which is derepressed by thermospermine.
Collapse
Affiliation(s)
- Jun-Ichi Kakehi
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Eri Kawano
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Kaori Yoshimoto
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Qingqing Cai
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Akihiro Imai
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Taku Takahashi
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
- * E-mail:
| |
Collapse
|
31
|
Wojtasik W, Kulma A, Boba A, Szopa J. Oligonucleotide treatment causes flax β-glucanase up-regulation via changes in gene-body methylation. BMC PLANT BIOLOGY 2014; 14:261. [PMID: 25287293 PMCID: PMC4209061 DOI: 10.1186/s12870-014-0261-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 09/23/2014] [Indexed: 05/29/2023]
Abstract
BACKGROUND Nowadays, the challenge for biotechnology is to develop tools for agriculture and industry to provide plants characterized by productivity and quality that will satisfy the growing demand for different kinds of natural products. To meet the challenge, the generation and application of genetically modified plants is justified. However, the strong social resistance to genetically modified organisms and restrictive regulations in European Union countries necessitated the development of a new technology for new plant types generation which uses the knowledge resulting from analysis of genetically modified plants to generate favourably altered plants while omitting the introduction of heterologous genes to their genome. Four-year experiments led to the development of a technology inducing heritable epigenetic gene activation without transgenesis. RESULTS The method comprises the induction of changes in methylation/demethylation of the endogenous gene by the plant's treatment with short oligodeoxynucleotides antisense to the coding region. In vitro cultured plants and F3 generation flax plants overproducing the β-1,3-glucanase gene (EMO-βGlu flax) were characterized by up-regulation of β-glucanase and chitinase genes, decreases in the methylation of CCGG sequences in the β-glucanase gene and in total DNA methylation and, more importantly, reasonable resistance against Fusarium infection. In addition, EMO-βGlu flax obtained by this technology showed similar features as those obtained by genetic engineering. CONCLUSION To our best knowledge, this is the first report on plant gene activation by treatment with oligodeoxynucleotides homologous to the coding region of the gene. Apart from the evident effectiveness, the most important issue is that the EMO method allows generation of favourably altered plants, whose cultivation makes the plant producer independent from the complicated procedure of obtaining an agreement on GMO release into the environment and whose products might be more easily introduced to the global market.
Collapse
Affiliation(s)
- Wioleta Wojtasik
- />Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, Wroclaw, 51-148 Poland
| | - Anna Kulma
- />Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, Wroclaw, 51-148 Poland
| | - Aleksandra Boba
- />Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, Wroclaw, 51-148 Poland
- />Wroclaw Research Center EIT+, Stablowicka 147/149, Wroclaw, 54-066 Poland
| | - Jan Szopa
- />Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, Wroclaw, 51-148 Poland
- />Linum Foundation, Stablowicka 147/149, Wroclaw, 54-066 Poland
| |
Collapse
|
32
|
Uchiyama-Kadokura N, Murakami K, Takemoto M, Koyanagi N, Murota K, Naito S, Onouchi H. Polyamine-responsive ribosomal arrest at the stop codon of an upstream open reading frame of the AdoMetDC1 gene triggers nonsense-mediated mRNA decay in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2014; 55:1556-67. [PMID: 24929422 DOI: 10.1093/pcp/pcu086] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
During mRNA translation, nascent peptides with certain specific sequences cause arrest of ribosomes that have synthesized themselves. In some cases, such ribosomal arrest is coupled with mRNA decay. In yeast, mRNA quality control systems have been shown to be involved in mRNA decay associated with ribosomal arrest. However, a link between ribosomal arrest and mRNA quality control systems has not been found in multicellular organisms. In this study, we aimed to explore the relationship between ribosomal arrest and mRNA decay in plants. For this purpose, we used an upstream open reading frame (uORF) of the Arabidopsis thaliana AdoMetDC1 gene, in which the uORF-encoded peptide is involved in polyamine-responsive translational repression of the main coding sequence. Our in vitro analyses revealed that the AdoMetDC1 uORF-encoded peptide caused ribosomal arrest at the uORF stop codon in response to polyamine. Using transgenic calli harboring an AdoMetDC1 uORF-containing reporter gene, we showed that polyamine promoted mRNA decay in a uORF sequence-dependent manner. These results suggest that the polyamine-responsive ribosomal arrest mediated by the uORF-encoded peptide is coupled with mRNA decay. Our results also showed that the polyamine-responsive acceleration of mRNA decay was compromised by defects in factors that are essential for nonsense-mediated mRNA decay (NMD), an mRNA quality control system that degrades mRNAs with premature stop codons, suggesting that NMD is involved in AdoMetDC1 uORF peptide-mediated mRNA decay. Collectively, these findings suggest that AdoMetDC1 uORF peptide-mediated ribosomal arrest at the uORF stop codon induces NMD.
Collapse
Affiliation(s)
- Naoko Uchiyama-Kadokura
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810 Japan Present address: Chifure Corporation, Kawagoe, 350-0833 Japan
| | - Karin Murakami
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| | - Mariko Takemoto
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan Present address: SRD Corporation, Chuo-ku, Tokyo, 104-0032 Japan
| | - Naoto Koyanagi
- Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan Present address: Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639 Japan
| | - Katsunori Murota
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810 Japan Present address: Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Sapporo, 062-8517 Japan
| | - Satoshi Naito
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810 Japan Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| | - Hitoshi Onouchi
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| |
Collapse
|
33
|
Tiburcio AF, Altabella T, Bitrián M, Alcázar R. The roles of polyamines during the lifespan of plants: from development to stress. PLANTA 2014; 240:1-18. [PMID: 24659098 DOI: 10.1007/s00425-014-2055-9] [Citation(s) in RCA: 231] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 03/05/2014] [Indexed: 05/18/2023]
Abstract
Compelling evidence indicates that free polyamines (PAs) (mainly putrescine, spermidine, spermine, and its isomer thermospermine), some PA conjugates to hydroxycinnamic acids, and the products of PA oxidation (hydrogen peroxide and γ-aminobutyric acid) are required for different processes in plant development and participate in abiotic and biotic stress responses. A tight regulation of PA homeostasis is required, since depletion or overaccumulation of PAs can be detrimental for cell viability in many organisms. In plants, homeostasis is achieved by modulation of PA biosynthesis, conjugation, catabolism, and transport. However, recent data indicate that such mechanisms are not mere modulators of PA pools but actively participate in PA functions. Examples are found in the spermidine-dependent eiF5A hypusination required for cell division, PA hydroxycinnamic acid conjugates required for pollen development, and the involvement of thermospermine in cell specification. Recent advances also point to implications of PA transport in stress tolerance, PA-dependent transcriptional and translational modulation of genes and transcripts, and posttranslational modifications of proteins. Overall, the molecular mechanisms identified suggest that PAs are intricately coordinated and/or mediate different stress and developmental pathways during the lifespan of plants.
Collapse
|
34
|
Pottosin I, Shabala S. Polyamines control of cation transport across plant membranes: implications for ion homeostasis and abiotic stress signaling. FRONTIERS IN PLANT SCIENCE 2014; 5:154. [PMID: 24795739 PMCID: PMC4006063 DOI: 10.3389/fpls.2014.00154] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 04/02/2014] [Indexed: 05/18/2023]
Abstract
Polyamines are unique polycationic metabolites, controlling a variety of vital functions in plants, including growth and stress responses. Over the last two decades a bulk of data was accumulated providing explicit evidence that polyamines play an essential role in regulating plant membrane transport. The most straightforward example is a blockage of the two major vacuolar cation channels, namely slow (SV) and fast (FV) activating ones, by the micromolar concentrations of polyamines. This effect is direct and fully reversible, with a potency descending in a sequence Spm(4+) > Spd(3+) > Put(2+). On the contrary, effects of polyamines on the plasma membrane (PM) cation and K(+)-selective channels are hardly dependent on polyamine species, display a relatively low affinity, and are likely to be indirect. Polyamines also affect vacuolar and PM H(+) pumps and Ca(2+) pump of the PM. On the other hand, catabolization of polyamines generates H2O2 and other reactive oxygen species (ROS), including hydroxyl radicals. Export of polyamines to the apoplast and their oxidation there by available amine oxidases results in the induction of a novel ion conductance and confers Ca(2+) influx across the PM. This mechanism, initially established for plant responses to pathogen attack (including a hypersensitive response), has been recently shown to mediate plant responses to a variety of abiotic stresses. In this review we summarize the effects of polyamines and their catabolites on cation transport in plants and discuss the implications of these effects for ion homeostasis, signaling, and plant adaptive responses to environment.
Collapse
Affiliation(s)
- Igor Pottosin
- Biomedical Centre, Centro Universitario de Investigaciones Biomédicas, University of ColimaColima, Mexico
- School of Land and Food, University of TasmaniaHobart, TAS, Australia
| | - Sergey Shabala
- School of Land and Food, University of TasmaniaHobart, TAS, Australia
| |
Collapse
|
35
|
Jiménez-Bremont JF, Marina M, Guerrero-González MDLL, Rossi FR, Sánchez-Rangel D, Rodríguez-Kessler M, Ruiz OA, Gárriz A. Physiological and molecular implications of plant polyamine metabolism during biotic interactions. FRONTIERS IN PLANT SCIENCE 2014; 5:95. [PMID: 24672533 PMCID: PMC3957736 DOI: 10.3389/fpls.2014.00095] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 02/25/2014] [Indexed: 05/19/2023]
Abstract
During ontogeny, plants interact with a wide variety of microorganisms. The association with mutualistic microbes results in benefits for the plant. By contrast, pathogens may cause a remarkable impairment of plant growth and development. Both types of plant-microbe interactions provoke notable changes in the polyamine (PA) metabolism of the host and/or the microbe, being each interaction a complex and dynamic process. It has been well documented that the levels of free and conjugated PAs undergo profound changes in plant tissues during the interaction with microorganisms. In general, this is correlated with a precise and coordinated regulation of PA biosynthetic and catabolic enzymes. Interestingly, some evidence suggests that the relative importance of these metabolic pathways may depend on the nature of the microorganism, a concept that stems from the fact that these amines mediate the activation of plant defense mechanisms. This effect is mediated mostly through PA oxidation, even though part of the response is activated by non-oxidized PAs. In the last years, a great deal of effort has been devoted to profile plant gene expression following microorganism recognition. In addition, the phenotypes of transgenic and mutant plants in PA metabolism genes have been assessed. In this review, we integrate the current knowledge on this field and analyze the possible roles of these amines during the interaction of plants with microbes.
Collapse
Affiliation(s)
- Juan F. Jiménez-Bremont
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, San Luis PotosíMéxico
| | - María Marina
- UB3, Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y TécnicasChascomús, Argentina
| | | | - Franco R. Rossi
- UB3, Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y TécnicasChascomús, Argentina
| | - Diana Sánchez-Rangel
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, San Luis PotosíMéxico
| | | | - Oscar A. Ruiz
- UB1, Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y TécnicasChascomús, Argentina
| | - Andrés Gárriz
- UB3, Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y TécnicasChascomús, Argentina
| |
Collapse
|
36
|
Moschou PN, Roubelakis-Angelakis KA. Polyamines and programmed cell death. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1285-96. [PMID: 24218329 DOI: 10.1093/jxb/ert373] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Polyamines (PAs) have been considered as important molecules for survival. However, evidence reinforces that PAs are also implicated, directly or indirectly, in pathways regulating programmed cell death (PCD). Direct correlation of PAs with cell death refers to their association with particular biological processes, and their physical contact with molecules or structures involved in cell death. Indirectly, PAs regulate PCD through their metabolic derivatives, such as catabolic and interconversion products. Cytotoxic products of PA metabolism are involved in PCD cascades, whereas it remains largely elusive how PAs directly control pathways leading to PCD. In this review, we present and compare advances in PA-dependent PCD in animals and plants.
Collapse
Affiliation(s)
- Panagiotis N Moschou
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 75007 Uppsala, Sweden
| | | |
Collapse
|
37
|
Tong W, Yoshimoto K, Kakehi JI, Motose H, Niitsu M, Takahashi T. Thermospermine modulates expression of auxin-related genes in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2014; 5:94. [PMID: 24672532 PMCID: PMC3953664 DOI: 10.3389/fpls.2014.00094] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 02/25/2014] [Indexed: 05/02/2023]
Abstract
Thermospermine, a structural isomer of spermine, is widely distributed in the plant kingdom and has been shown to play a role in repressing xylem differentiation by studies of its deficient mutant, acaulis5 (acl5), in Arabidopsis. Our results of microarray and real-time PCR analyses revealed that, in addition to a number of genes involved in xylem differentiation, genes related to auxin signaling were up-regulated in acl5 seedlings. These genes include MONOPTEROS, an auxin response factor gene, which acts as a master switch for auxin-dependent procambium formation, and its target genes. Their expression was reduced by exogenous treatment with thermospermine or by transgenic induction of the ACL5 gene. We examined the effect of synthetic polyamines on the expression of these auxin-related genes and on the vascular phenotype of acl5, and found that tetramines containing the NC3NC3N chain could mimic the effect of thermospermine but longer polyamines containing the same chain had little or no such effect. We also found that thermospermine had an inhibitory effect on lateral root formation in wild-type seedlings and it was mimicked by synthetic tetramines with the NC3NC3N chain. These results suggest the importance of the NC3NC3N chain of thermospermine in its action in modulating auxin signaling.
Collapse
Affiliation(s)
- Wurina Tong
- Division of Bioscience, Graduate School of Natural Science and Technology, Okayama UniversityOkayama, Japan
| | - Kaori Yoshimoto
- Division of Bioscience, Graduate School of Natural Science and Technology, Okayama UniversityOkayama, Japan
| | - Jun-Ichi Kakehi
- Division of Bioscience, Graduate School of Natural Science and Technology, Okayama UniversityOkayama, Japan
| | - Hiroyasu Motose
- Division of Bioscience, Graduate School of Natural Science and Technology, Okayama UniversityOkayama, Japan
| | - Masaru Niitsu
- Faculty of Pharmaceutical Sciences, Department of Analytical Chemistry, Josai UniversitySakado, Japan
| | - Taku Takahashi
- Division of Bioscience, Graduate School of Natural Science and Technology, Okayama UniversityOkayama, Japan
- *Correspondence: Taku Takahashi, Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan e-mail:
| |
Collapse
|
38
|
Soda K. Polyamines. J JPN SOC FOOD SCI 2014. [DOI: 10.3136/nskkk.61.607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Kuniyasu Soda
- Cardiovascular Research Institute, Saitama Medical Center, Jichi Medical University
| |
Collapse
|
39
|
Putrescine overproduction does not affect the catabolism of spermidine and spermine in poplar and Arabidopsis. Amino Acids 2013; 46:743-57. [PMID: 24013280 DOI: 10.1007/s00726-013-1581-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 08/12/2013] [Indexed: 12/26/2022]
Abstract
The effect of up-regulation of putrescine (Put) production by genetic manipulation on the turnover of spermidine (Spd) and spermine (Spm) was investigated in transgenic cells of poplar (Populus nigra × maximowiczii) and seedlings of Arabidopsis thaliana. Several-fold increase in Put production was achieved by expressing a mouse ornithine decarboxylase cDNA either under the control of a constitutive (in poplar) or an inducible (in Arabidopsis) promoter. The transgenic poplar cells produced and accumulated 8-10 times higher amounts of Put than the non-transgenic cells, whereas the Arabidopsis seedlings accumulated up to 40-fold higher amounts of Put; however, in neither case the cellular Spd or Spm increased consistently. The rate of Spd and Spm catabolism and the half-life of cellular Spd and Spm were measured by pulse-chase experiments using [(14)C]Spd or [(14)C]Spm. Spermidine half-life was calculated to be about 22-32 h in poplar and 52-56 h in Arabidopsis. The half-life of cellular Spm was calculated to be approximately 24 h in Arabidopsis and 36-48 h in poplar. Both species were able to convert Spd to Spm and Put, and Spm to Spd and Put. The rates of Spd and Spm catabolism in both species were several-fold slower than those of Put, and the overproduction of Put had only a small effect on the overall rates of turnover of Spd or Spm. There was little effect on the rates of Spd to Spm conversion as well as the conversion of Spm into lower polyamines. While Spm was mainly converted back to Spd and not terminally degraded, Spd was removed from the cells largely through terminal catabolism in both species.
Collapse
|
40
|
Dutra NT, Silveira V, de Azevedo IG, Gomes-Neto LR, Façanha AR, Steiner N, Guerra MP, Floh EIS, Santa-Catarina C. Polyamines affect the cellular growth and structure of pro-embryogenic masses in Araucaria angustifolia embryogenic cultures through the modulation of proton pump activities and endogenous levels of polyamines. PHYSIOLOGIA PLANTARUM 2013; 148:121-132. [PMID: 22998677 DOI: 10.1111/j.1399-3054.2012.01695.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/05/2012] [Accepted: 07/05/2012] [Indexed: 06/01/2023]
Abstract
Polyamines (PAs) are abundant polycationic compounds involved in many physiological processes in plants, including somatic embryogenesis. This study investigates the role of PAs on cellular growth and structure of pro-embryogenic masses (PEMs), endogenous PA and proton pump activities in embryogenic suspension cultures of Araucaria angustifolia. The embryogenic suspension cultures were incubated with putrescine (Put), spermidine (Spd), spermine (Spm) and the inhibitor methylglyoxal-bis(guanylhydrazone) (MGBG), respectively (1 mM). After 24 h and 21 days, the cellular growth and structure of PEMs, endogenous PA contents and proton pump activities were analyzed. The addition of Spm reduced the cellular growth and promoted the development of PEMs in embryogenic cultures, which could be associated with a reduction in the activities of proton pumps, such as H(+) -ATPase P- and V-types and H(+) -PPases, and alterations in the endogenous PA contents. Spm significantly affected the physiology of the A. angustifolia somatic embryogenesis suspension, as it potentially affects cellular growth and structure of PEMs through the modulation of proton pump activities. This work demonstrates the involvement of exogenous PAs in the modulation of cellular growth and structure of PEMs, endogenous PA levels and proton pump activities during somatic embryogenesis. To our knowledge, this study is the first to report a relationship between PAs and proton pump activities in these processes. The results obtained in this study offer new perspectives for studies addressing the role of PAs and proton pump on somatic embryogenesis in this species.
Collapse
Affiliation(s)
- Nathalia Torres Dutra
- Cell Biology and Tissue Laboratory (LBCT), Bioscience and Biotechnology Center (CBB), State University of Norte Fluminense "Darcy Ribeiro" (UENF), Campos dos Goytacazes, RJ, 28013-602, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Marina M, Sirera FV, Rambla JL, Gonzalez ME, Blázquez MA, Carbonell J, Pieckenstain FL, Ruiz OA. Thermospermine catabolism increases Arabidopsis thaliana resistance to Pseudomonas viridiflava. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1393-402. [PMID: 23382552 DOI: 10.1093/jxb/ert012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
This work investigated the roles of the tetraamine thermospermine (TSpm) by analysing its contribution to Arabidopsis basal defence against the biotrophic bacterium Pseudomonas viridiflava. The participation of polyamine oxidases (PAOs) in TSpm homeostasis and TSpm-mediated defence was also investigated. Exogenous supply of TSpm, as well as ectopic expression of the TSpm biosynthetic gene ACL5, increased Arabidopsis Col-0 resistance to P. viridiflava, while null acl5 mutants were less resistant than Col-0 plants. The above-mentioned increase in resistance was blocked by the PAO inhibitor SL-11061, thus demonstrating the participation of TSpm oxidation. Analysis of PAO genes expression in transgenic 35S::ACL5 and Col-0 plants supplied with TSpm suggests that PAO 1, 3, and 5 are the main PAOs involved in TSpm catabolism. In summary, TSpm exhibited the potential to perform defensive functions previously reported for its structural isomer Spm, and the relevance of these findings is discussed in the context of ACL5 expression and TSpm concentration in planta. Moreover, this work demonstrates that manipulation of TSpm metabolism modifies plant resistance to pathogens.
Collapse
Affiliation(s)
- María Marina
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-INTECH/UNSAM-CONICET), Chascomús, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
The polyamine spermine protects Arabidopsis from heat stress-induced damage by increasing expression of heat shock-related genes. Transgenic Res 2012; 22:595-605. [DOI: 10.1007/s11248-012-9666-3] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 10/10/2012] [Indexed: 01/08/2023]
|
43
|
Polyamines under Abiotic Stress: Metabolic Crossroads and Hormonal Crosstalks in Plants. Metabolites 2012; 2:516-28. [PMID: 24957645 PMCID: PMC3901213 DOI: 10.3390/metabo2030516] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/06/2012] [Accepted: 08/10/2012] [Indexed: 12/30/2022] Open
Abstract
Polyamines are essential compounds for cell survival and have key roles in plant stress protection. Current evidence points to the occurrence of intricate cross-talks between polyamines, stress hormones and other metabolic pathways required for their function. In this review we integrate the polyamine metabolic pathway in the context of its immediate metabolic network which is required to understand the multiple ways by which polyamines can maintain their homeostasis and participate in plant stress responses.
Collapse
|
44
|
Sagor GHM, Takahashi H, Niitsu M, Takahashi Y, Berberich T, Kusano T. Exogenous thermospermine has an activity to induce a subset of the defense genes and restrict cucumber mosaic virus multiplication in Arabidopsis thaliana. PLANT CELL REPORTS 2012; 31:1227-32. [PMID: 22371256 DOI: 10.1007/s00299-012-1243-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 02/09/2012] [Accepted: 02/17/2012] [Indexed: 05/08/2023]
Abstract
UNLABELLED We previously proposed the defensive role of a signal pathway triggered by the polyamine spermine (Spm) in the reaction against avirulent viral pathogens in Nicotiana tabacum and Arabidopsis thaliana. In this study, we showed that thermospermine (T-Spm), an isomer of Spm, is also active in inducing the expression of the genes involved in the Spm-signal pathway at a similar dose as Spm. Furthermore, we found that T-Spm enhances the expression of a subset of pathogenesis-related genes whose expression is induced during cucumber mosaic virus (CMV)-triggered hypersensitive response. In consistent with the above observation, we further showed that exogenous T-Spm can repress CMV multiplication with same efficiency as Spm. KEY MESSAGE Polyamine thermospermine, an isomer of spermine, is able to induce a subset of hypersensitive response-related defense genes and can suppress cucumber mosaic virus multiplication in Arabidopsis thaliana.
Collapse
Affiliation(s)
- G H M Sagor
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577, Japan
| | | | | | | | | | | |
Collapse
|
45
|
Waduwara-Jayabahu I, Oppermann Y, Wirtz M, Hull ZT, Schoor S, Plotnikov AN, Hell R, Sauter M, Moffatt BA. Recycling of methylthioadenosine is essential for normal vascular development and reproduction in Arabidopsis. PLANT PHYSIOLOGY 2012; 158:1728-44. [PMID: 22345506 PMCID: PMC3320181 DOI: 10.1104/pp.111.191072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
5'-Methylthioadenosine (MTA) is the common by-product of polyamine (PA), nicotianamine (NA), and ethylene biosynthesis in Arabidopsis (Arabidopsis thaliana). The methylthiol moiety of MTA is salvaged by 5'-methylthioadenosine nucleosidase (MTN) in a reaction producing methylthioribose (MTR) and adenine. The MTN double mutant, mtn1-1mtn2-1, retains approximately 14% of the MTN enzyme activity present in the wild type and displays a pleiotropic phenotype that includes altered vasculature and impaired fertility. These abnormal traits were associated with increased MTA levels, altered PA profiles, and reduced NA content. Exogenous feeding of PAs partially recovered fertility, whereas NA supplementation improved fertility and also reversed interveinal chlorosis. The analysis of PA synthase crystal structures containing bound MTA suggests that the corresponding enzyme activities are sensitive to available MTA. Mutant plants that expressed either MTN or human methylthioadenosine phosphorylase (which metabolizes MTA without producing MTR) appeared wild type, proving that the abnormal traits of the mutant are due to MTA accumulation rather than reduced MTR. Based on our results, we propose that the key targets affected by increased MTA content are thermospermine synthase activity and spermidine-dependent posttranslational modification of eukaryotic initiation factor 5A.
Collapse
|
46
|
Takano A, Kakehi JI, Takahashi T. Thermospermine is not a minor polyamine in the plant kingdom. PLANT & CELL PHYSIOLOGY 2012; 53:606-16. [PMID: 22366038 DOI: 10.1093/pcp/pcs019] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Thermospermine is a structural isomer of spermine, which is one of the polyamines studied extensively in the past, and is produced from spermidine by the action of thermospermine synthase encoded by a gene named ACAULIS5 (ACL5) in plants. According to recent genome sequencing analyses, ACL5-like genes are widely distributed throughout the plant kingdom. In Arabidopsis, ACL5 is expressed specifically during xylem formation from procambial cells to differentiating xylem vessels. Loss-of-function mutants of ACL5 display overproliferation of xylem vessels along with severe dwarfism, suggesting that thermospermine plays a role in the repression of xylem differentiation. Studies of suppressor mutants of acl5 that recover the wild-type phenotype in the absence of thermospermine suggest that thermospermine acts on the translation of specific mRNAs containing upstream open reading frames (uORFs). Thermospermine is a novel type of plant growth regulator and may also serve in the control of wood biomass production.
Collapse
Affiliation(s)
- Ayaka Takano
- Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | | | | |
Collapse
|
47
|
Alet AI, Sánchez DH, Cuevas JC, Marina M, Carrasco P, Altabella T, Tiburcio AF, Ruiz OA. New insights into the role of spermine in Arabidopsis thaliana under long-term salt stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 182:94-100. [PMID: 22118620 DOI: 10.1016/j.plantsci.2011.03.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 03/17/2011] [Accepted: 03/22/2011] [Indexed: 05/08/2023]
Abstract
Polyamines (putrescine, spermidine and spermine) are traditionally implicated in the response of plants to environmental cues. Free spermine accumulation has been suggested as a particular feature of long-term salt stress, and in the model plant Arabidopsis thaliana the spermine synthase gene (AtSPMS) has been reported as inducible by abscisic acid (ABA) and acute salt stress treatments. With the aim to unravel the physiological role of free spermine during salinity, we analyzed polyamine metabolism in A. thaliana salt-hypersensitive sos mutants (salt overlay sensitive; sos1-1, sos2-1 and sos3-1), and studied the salt stress tolerance of the mutants in spermine and thermospermine synthesis (acl5-1, spms-1 and acl5-1/spms-1). Results presented here indicate that induction in polyamine metabolism is a SOS-independent response to salinity and is globally over-induced in a sensitive background. In addition, under long-term salinity, the mutants in the synthesis of spermine and thermospermine (acl5-1, spms-1 and double acl5-1/spms-1) accumulated more Na(+) and performed worst than WT in survival experiments. Therefore, support is given to a role for these higher polyamines in salt tolerance mechanisms.
Collapse
Affiliation(s)
- Analía I Alet
- Unidad de Biotecnología 1, Instituto Tecnológico de Chascomús (IIB-INTECH/UNSAM-CONICET), Camino Circunvalación Laguna, Km. 6 CC164, (B7130IWA) Chascomús, Pcia. de Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Polyamine catabolism: target for antiproliferative therapies in animals and stress tolerance strategies in plants. Amino Acids 2011; 42:411-26. [DOI: 10.1007/s00726-011-1012-1] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 05/28/2011] [Indexed: 12/27/2022]
|
49
|
Profiling the aminopropyltransferases in plants: their structure, expression and manipulation. Amino Acids 2011; 42:813-30. [PMID: 21861167 DOI: 10.1007/s00726-011-0998-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 06/28/2011] [Indexed: 10/17/2022]
Abstract
Polyamines are organic polycations that are involved in a wide range of cellular activities related to growth, development, and stress response in plants. Higher polyamines spermidine and spermine are synthesized in plants and animals by a class of enzymes called aminopropyltransferases that transfer aminopropyl moieties (derived from decarboxylated S-adenosylmethionine) to putrescine and spermidine to produce spermidine and spermine, respectively. The higher polyamines show a much tighter homeostatic regulation of their metabolism than the diamine putrescine in most plants; therefore, the aminopropyltransferases are of high significance. We present here a comprehensive summary of the current literature on plant aminopropyltransferases including their distribution, biochemical properties, genomic organization, pattern of expression during development, and their responses to abiotic stresses, and manipulation of their cellular activity through chemical inhibitors, mutations, and genetic engineering. This minireview complements several recent reviews on the overall biosynthetic pathway of polyamines and their physiological roles in plants and animals. It is concluded that (1) plants often have two copies of the common aminopropyltransferase genes which exhibit redundancy of function, (2) their genomic organization is highly conserved, (3) direct enzyme activity data on biochemical properties of these enzymes are scant, (4) often there is a poor correlation among transcripts, enzyme activity and cellular contents of the respective polyamine, and (5) transgenic work mostly confirms the tight regulation of cellular contents of spermidine and spermine. An understanding of expression and regulation of aminopropyltransferases at the metabolic level will help us in effective use of genetic engineering approaches for the improvement in nutritional value and stress responses of plants.
Collapse
|
50
|
Gonzalez ME, Marco F, Minguet EG, Carrasco-Sorli P, Blázquez MA, Carbonell J, Ruiz OA, Pieckenstain FL. Perturbation of spermine synthase gene expression and transcript profiling provide new insights on the role of the tetraamine spermine in Arabidopsis defense against Pseudomonas viridiflava. PLANT PHYSIOLOGY 2011; 156:2266-77. [PMID: 21628628 PMCID: PMC3149955 DOI: 10.1104/pp.110.171413] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2010] [Accepted: 05/26/2011] [Indexed: 05/18/2023]
Abstract
The role of the tetraamine spermine in plant defense against pathogens was investigated by using the Arabidopsis (Arabidopsis thaliana)-Pseudomonas viridiflava pathosystem. The effects of perturbations of plant spermine levels on susceptibility to bacterial infection were evaluated in transgenic plants (35S::spermine synthase [SPMS]) that overexpressed the SPMS gene and accumulated spermine, as well as in spms mutants with low spermine levels. The former exhibited higher resistance to P. viridiflava than wild-type plants, while the latter were more susceptible. Exogenous supply of spermine to wild-type plants also increased disease resistance. Increased resistance provided by spermine was partly counteracted by the polyamine oxidase inhibitor SL-11061, demonstrating that the protective effect of spermine partly depends on its oxidation. In addition, global changes in gene expression resulting from perturbations of spermine levels were analyzed by transcript profiling 35S::SPMS-9 and spms-2 plants. Overexpression of 602 genes was detected in 35S::SPMS-9 plants, while 312 genes were down-regulated, as compared to the wild type. In the spms-2 line, 211 and 158 genes were up- and down-regulated, respectively. Analysis of gene ontology term enrichment demonstrated that many genes overexpressed only in 35S::SPMS-9 participate in pathogen perception and defense responses. Notably, several families of disease resistance genes, transcription factors, kinases, and nucleotide- and DNA/RNA-binding proteins were overexpressed in this line. Thus, a number of spermine-responsive genes potentially involved in resistance to P. viridiflava were identified. The obtained results support the idea that spermine contributes to plant resistance to P. viridiflava.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fernando Luis Pieckenstain
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús/Universidad Nacional de San Martín-Consejo Nacional de Investigaciones Científificas y Técnicas, CC 164 (B7130IWA) Chascomus, Argentina (M.E.G., O.A.R., F.L.P.); Departamento de Bioquímica y Biología Molecular, Universidad de Valencia, Facultad de Ciencias Biológicas, 46100 Burjassot, Valencia, Spain (F.M., P.C.-S.); Instituto de Biología Molecular y Celular de Plantas (Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas), 46022 Valencia, Spain (E.G.M., M.A.B., J.C.)
| |
Collapse
|