1
|
Giacco A, Petito G, Silvestri E, Scopigno N, Vigliotti M, Mercurio G, de Lange P, Lombardi A, Moreno M, Goglia F, Lanni A, Senese R, Cioffi F. Comparative effects of 3,5-diiodo-L-thyronine and 3,5,3'-triiodo-L-thyronine on mitochondrial damage and cGAS/STING-driven inflammation in liver of hypothyroid rats. Front Endocrinol (Lausanne) 2024; 15:1432819. [PMID: 39301315 PMCID: PMC11410700 DOI: 10.3389/fendo.2024.1432819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/07/2024] [Indexed: 09/22/2024] Open
Abstract
Maintaining a well-functioning mitochondrial network through the mitochondria quality control (MQC) mechanisms, including biogenesis, dynamics and mitophagy, is crucial for overall health. Mitochondrial dysfunction caused by oxidative stress and further exacerbated by impaired quality control can trigger inflammation through the release of the damage-associated molecular patterns (mtDAMPs). mtDAMPs act by stimulating the cyclic GMP-AMP synthase (cGAS) stimulator of interferon genes (STING) pathway. Recently, aberrant signalling of the cGAS-STING axis has been recognised to be closely associated with several sterile inflammatory diseases (e.g. non-alcoholic fatty liver disease, obesity). This may fit the pathophysiology of hypothyroidism, an endocrine disorder characterised by the reduction of thyroid hormone production associated with impaired metabolic fluxes, oxidative balance and inflammatory status. Both 3,5,3'-triiodo-L-tyronine (T3) and its derivative 3,5-diiodo-L-thyronine (3,5-T2), are known to mitigate processes targeting mitochondria, albeit the underlying mechanisms are not yet fully understood. Therefore, we used a chemically induced hypothyroidism rat model to investigate the effect of 3,5-T2 or T3 administration on inflammation-related factors (inflammatory cytokines, hepatic cGAS-STING pathway), oxidative stress, antioxidant defence enzymes, mitochondrial DNA (mtDNA) damage, release and repair, and the MQC system in the liver. Hypothyroid rats showed: i) increased oxidative stress, ii) accumulation of mtDNA damage, iii) high levels of circulating cytokines, iv) hepatic activation of cGAS-STING pathways and v) impairment of MQC mechanisms and autophagy. Both iodothyronines restored oxidative balance by enhancing antioxidant defence, preventing mtDNA damage through the activation of mtDNA repair mechanisms (OGG1, APE1, and POLγ) and promoting autophagy progression. Concerning MQC, both iodothyronines stimulated mitophagy and dynamics, with 3,5-T2 activating fusion and T3 modulating both fusion and fission processes. Moreover, only T3 enhanced mitochondrial biogenesis. Notably, 3,5-T2, but not T3, reversed the hypothyroidism-induced activation of the cGAS-STING inflammatory cascade. In addition, it is noteworthy that 3,5-T2 seems more effective than T3 in reducing circulating pro-inflammatory cytokines IL-6 and IL-1B and in stimulating the release of IL-10, a known anti-inflammatory cytokine. These findings reveal novel molecular mechanisms of hepatic signalling pathways involved in hypothyroidism, which could be targeted by natural iodothyronines, particularly 3,5-T2, paving the way for the development of new treatment strategies for inflammatory diseases.
Collapse
Affiliation(s)
- Antonia Giacco
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Giuseppe Petito
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Elena Silvestri
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Nicla Scopigno
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Michela Vigliotti
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Giovanna Mercurio
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Pieter de Lange
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Assunta Lombardi
- Department of Biology, University of Naples Federico II, Napoli, Italy
| | - Maria Moreno
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Fernando Goglia
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Antonia Lanni
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Rosalba Senese
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Federica Cioffi
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| |
Collapse
|
2
|
You Z, Wang J, Li F, Hei W, Li M, Guo X, Gao P, Cao G, Cai C, Li B. Uncoupling Protein 3 Promotes the Myogenic Differentiation of Type IIb Myotubes in C2C12 Cells. Genes (Basel) 2023; 14:2049. [PMID: 38002992 PMCID: PMC10671304 DOI: 10.3390/genes14112049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/30/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Uncoupling protein 3 (Ucp3) is an important transporter within mitochondria and is mainly expressed in skeletal muscle, brown adipose tissue and the myocardium. However, the effects of Ucp3 on myogenic differentiation are still unclear. This study evaluated the effects of Ucp3 on myogenic differentiation, myofiber type and energy metabolism in C2C12 cells. Gain- and loss-of-function studies revealed that Ucp3 could increase the number of myotubes and promote the myogenic differentiation of C2C12 cells. Furthermore, Ucp3 promoted the expression of the type IIb myofiber marker gene myosin heavy chain 4 (Myh4) and decreased the expression of the type I myofiber marker gene myosin heavy chain 7 (Myh7). In addition, energy metabolism related to the expression of PPARG coactivator 1 alpha (Pgc1-α), ATP synthase, H+ transportation, mitochondrial F1 complex, alpha subunit 1 (Atp5a1), lactate dehydrogenase A (Ldha) and lactate dehydrogenase B (Ldhb) increased with Ucp3 overexpression. Ucp3 could promote the myogenic differentiation of type IIb myotubes and accelerate energy metabolism in C2C12 cells. This study can provide the theoretical basis for understanding the role of Ucp3 in energy metabolism.
Collapse
Affiliation(s)
- Ziwei You
- College of Animal Science, Shanxi Agricultural University, 1 Mingxian Nanlu, Jinzhong 030801, China; (Z.Y.); (J.W.); (F.L.); (W.H.); (M.L.); (X.G.); (P.G.); (G.C.)
| | - Jieyu Wang
- College of Animal Science, Shanxi Agricultural University, 1 Mingxian Nanlu, Jinzhong 030801, China; (Z.Y.); (J.W.); (F.L.); (W.H.); (M.L.); (X.G.); (P.G.); (G.C.)
| | - Faliang Li
- College of Animal Science, Shanxi Agricultural University, 1 Mingxian Nanlu, Jinzhong 030801, China; (Z.Y.); (J.W.); (F.L.); (W.H.); (M.L.); (X.G.); (P.G.); (G.C.)
| | - Wei Hei
- College of Animal Science, Shanxi Agricultural University, 1 Mingxian Nanlu, Jinzhong 030801, China; (Z.Y.); (J.W.); (F.L.); (W.H.); (M.L.); (X.G.); (P.G.); (G.C.)
| | - Meng Li
- College of Animal Science, Shanxi Agricultural University, 1 Mingxian Nanlu, Jinzhong 030801, China; (Z.Y.); (J.W.); (F.L.); (W.H.); (M.L.); (X.G.); (P.G.); (G.C.)
| | - Xiaohong Guo
- College of Animal Science, Shanxi Agricultural University, 1 Mingxian Nanlu, Jinzhong 030801, China; (Z.Y.); (J.W.); (F.L.); (W.H.); (M.L.); (X.G.); (P.G.); (G.C.)
| | - Pengfei Gao
- College of Animal Science, Shanxi Agricultural University, 1 Mingxian Nanlu, Jinzhong 030801, China; (Z.Y.); (J.W.); (F.L.); (W.H.); (M.L.); (X.G.); (P.G.); (G.C.)
| | - Guoqing Cao
- College of Animal Science, Shanxi Agricultural University, 1 Mingxian Nanlu, Jinzhong 030801, China; (Z.Y.); (J.W.); (F.L.); (W.H.); (M.L.); (X.G.); (P.G.); (G.C.)
| | - Chunbo Cai
- College of Animal Science, Shanxi Agricultural University, 1 Mingxian Nanlu, Jinzhong 030801, China; (Z.Y.); (J.W.); (F.L.); (W.H.); (M.L.); (X.G.); (P.G.); (G.C.)
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bugao Li
- College of Animal Science, Shanxi Agricultural University, 1 Mingxian Nanlu, Jinzhong 030801, China; (Z.Y.); (J.W.); (F.L.); (W.H.); (M.L.); (X.G.); (P.G.); (G.C.)
| |
Collapse
|
3
|
Cardamom ( Elettaria cardamomum (L.) Maton) Seeds Intake Increases Energy Expenditure and Reduces Fat Mass in Mice by Modulating Neural Circuits That Regulate Adipose Tissue Lipolysis and Mitochondrial Oxidative Metabolism in Liver and Skeletal Muscle. Int J Mol Sci 2023; 24:ijms24043909. [PMID: 36835337 PMCID: PMC9960522 DOI: 10.3390/ijms24043909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
Cardamom seed (Elettaria cardamomum (L.) Maton; EC) is consumed in several countries worldwide and is considered a nutraceutical spice since it exerts antioxidant, anti-inflammatory, and metabolic activities. In obese individuals, EC intake also favors weight loss. However, the mechanism for these effects has not been studied. Here, we identified that EC modulates the neuroendocrine axis that regulates food intake, body weight, mitochondrial activity, and energy expenditure in mice. We fed C57BL/6 mice with diets containing 3%, 6%, or 12% EC or a control diet for 14 weeks. Mice fed the EC-containing diets gained less weight than control, despite slightly higher food intake. The lower final weight of EC-fed mice was due to lesser fat content but increased lean mass than control. EC intake increased lipolysis in subcutaneous adipose tissue, and reduced adipocyte size in subcutaneous, visceral, and brown adipose tissues. EC intake also prevented lipid droplet accumulation and increased mitochondrial content in skeletal muscle and liver. Accordingly, fasting and postprandial oxygen consumption, as well as fasting fat oxidation and postprandial glucose utilization were higher in mice fed with EC than in control. EC intake reduced proopiomelanocortin (POMC) mRNA content in the hypothalamic arcuate nucleus, without an impact on neuropeptide Y (NPY) mRNA. These neuropeptides control food intake but also influence the hypothalamic-pituitary-thyroid (HPT) and hypothalamic-pituitary-adrenal (HPA) axes. Thyrotropin-releasing hormone (TRH) mRNA expression in the hypothalamic paraventricular nucleus (PVN) and circulating triiodothyronine (T3) were lower in EC-fed mice than in control. This effect was linked with decreased circulating corticosterone and weight of adrenal glands. Our results indicate that EC modulates appetite, increases lipolysis in adipose tissue and mitochondrial oxidative metabolism in liver and skeletal muscle, leading to increased energy expenditure and lower body fat mass. These metabolic effects were ascribable to the modulation of the HPT and HPA axes. LC-MS profiling of EC found 11 phenolic compounds among which protocatechuic acid (23.8%), caffeic acid (21.06%) and syringic acid (29.25%) were the most abundant, while GC-MS profiling showed 16 terpenoids among which costunolide (68.11%), ambrial (5.3%) and cis-α-terpineol (7.99%) were identified. Extrapolation of mice-to-human EC intake was performed using the body surface area normalization equation which gave a conversion equivalent daily human intake dose of 76.9-308.4 mg bioactives for an adult of 60 kg that can be obtained from 14.5-58.3 g of cardamom seeds (18.5-74.2 g cardamom pods). These results support further exploration of EC as a coadjuvant in clinical practice.
Collapse
|
4
|
Pileggi C, Hooks B, McPherson R, Dent R, Harper ME. Targeting skeletal muscle mitochondrial health in obesity. Clin Sci (Lond) 2022; 136:1081-1110. [PMID: 35892309 PMCID: PMC9334731 DOI: 10.1042/cs20210506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/26/2022] [Accepted: 07/05/2022] [Indexed: 11/21/2022]
Abstract
Metabolic demands of skeletal muscle are substantial and are characterized normally as highly flexible and with a large dynamic range. Skeletal muscle composition (e.g., fiber type and mitochondrial content) and metabolism (e.g., capacity to switch between fatty acid and glucose substrates) are altered in obesity, with some changes proceeding and some following the development of the disease. Nonetheless, there are marked interindividual differences in skeletal muscle composition and metabolism in obesity, some of which have been associated with obesity risk and weight loss capacity. In this review, we discuss related molecular mechanisms and how current and novel treatment strategies may enhance weight loss capacity, particularly in diet-resistant obesity.
Collapse
Affiliation(s)
- Chantal A. Pileggi
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada, K1H 8M5
- Ottawa Institute of Systems Biology, University of Ottawa, ON, Canada, K1H 8M5
| | - Breana G. Hooks
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada, K1H 8M5
- Ottawa Institute of Systems Biology, University of Ottawa, ON, Canada, K1H 8M5
| | - Ruth McPherson
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Robert R.M. Dent
- Division of Endocrinology, Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada, K1H 8M5
- Ottawa Institute of Systems Biology, University of Ottawa, ON, Canada, K1H 8M5
| |
Collapse
|
5
|
Effects of meteorin-like hormone on endocrine function of hypothalamo-hypophysial system and peripheral uncoupling proteins in rats. Mol Biol Rep 2022; 49:5919-5925. [PMID: 35332411 DOI: 10.1007/s11033-022-07374-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Meteorin-like hormone (Metrnl) is a peptide secreted from the adipose tissue and modulates the whole-body energy metabolism. Metrnl release into the circulation is influenced by obesity, cold exposure, and exercise. Thyroid hormones also exert many of their effects on metabolism through uncoupling proteins (UCPs). This study aimed to determine effect of Metrnl on hypothalamo-hypophysier-thyroid axis and energy metabolism and reveal the possible involvement of UCPs in this process. METHODS AND RESULTS Fourty male Sprague-Dawley rats were divided into 4 groups with 10 animals in each group: control, sham, 10 and 100 nM Metrnl. Hypothalamus, muscle, white adipose tissue (WAT) and brown adipose tissue (BAT) samples were collected to detect thyrotropin-releasing hormone (TRH), and UCP1 and UCP3 protein levels by western blot analysis. Serum thyroid-stimulating hormone (TSH), triiodothyronine (T3) and thyroxine (T4) hormone levels were determined by enzyme-linked immunosorbent assay. Central infusion of Metrnl caused significant increase in serum TSH, T3 and T4 levels compared to control (p < 0.05). After Metrnl treatment, there were significant increases in TRH in hypothalamus tissue, UCP1 in WAT and BAT; and UCP3 protein in the muscle tissue (p < 0.05). CONCLUSIONS The findings that Metrnl induced increases in the peripheral UCPs and hypothalamus-pituitary-thyroid axis hormones implicate a role for this hormone in body energy homeostasis through UCP-mediated mechanisms.
Collapse
|
6
|
Cioffi F, Giacco A, Goglia F, Silvestri E. Bioenergetic Aspects of Mitochondrial Actions of Thyroid Hormones. Cells 2022; 11:cells11060997. [PMID: 35326451 PMCID: PMC8947633 DOI: 10.3390/cells11060997] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/04/2022] [Accepted: 03/13/2022] [Indexed: 02/07/2023] Open
Abstract
Much is known, but there is also much more to discover, about the actions that thyroid hormones (TH) exert on metabolism. Indeed, despite the fact that thyroid hormones are recognized as one of the most important regulators of metabolic rate, much remains to be clarified on which mechanisms control/regulate these actions. Given their actions on energy metabolism and that mitochondria are the main cellular site where metabolic transformations take place, these organelles have been the subject of extensive investigations. In relatively recent times, new knowledge concerning both thyroid hormones (such as the mechanisms of action, the existence of metabolically active TH derivatives) and the mechanisms of energy transduction such as (among others) dynamics, respiratory chain organization in supercomplexes and cristes organization, have opened new pathways of investigation in the field of the control of energy metabolism and of the mechanisms of action of TH at cellular level. In this review, we highlight the knowledge and approaches about the complex relationship between TH, including some of their derivatives, and the mitochondrial respiratory chain.
Collapse
|
7
|
Aburahma A, Pachhain S, Choudhury SR, Rana S, Phuntumart V, Larsen R, Sprague JE. Potential Contribution of the Intestinal Microbiome to Phenethylamine-Induced Hyperthermia. BRAIN, BEHAVIOR AND EVOLUTION 2021; 95:256-271. [PMID: 33472193 DOI: 10.1159/000512098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/05/2020] [Indexed: 12/26/2022]
Abstract
Phenethylamines (e.g., methamphetamine) are a common source of drug toxicity. Phenethylamine-induced hyperthermia (PIH) can activate a cascade of events that may result in rhabdomyolysis, coagulopathy, and even death. Here, we review recent evidence that suggests a potential link between the gut-brain axis and PIH. Within the preoptic area of the hypothalamus, phenethylamines lead to changes in catecholamine levels, that activate the sympathetic nervous system (SNS) and increase the peripheral levels of norepinephrine (NE), resulting in: (1) the loss of heat dissipation through α1 adrenergic receptor (α1-AR)-mediated vasoconstriction, (2) heat generation through β-AR activation and subsequent free fatty acid (FFA) activation of uncoupling proteins (UCPs) in brown and white adipose tissue, and (3) alteration of the gut microbiome and its link to the gut-brain axis. Recent studies have shown that phenethylamine derivatives can influence the composition of the gut microbiome and thus its metabolic potential. Phenethylamines increase the relative level of Proteuswhich has been linked to enhanced NE turnover. Bidirectional fecal microbial transplants (FMT) between PIH-tolerant and PIH-naïve rats demonstrated that the transplantation of gut microbiome can confer phenotypic hyperthermic and tolerant responses to phenethylamines. These phenethylamine-mediated changes in the gut microbiome were also associated with epigenetic changes in the mediators of thermogenesis. Given the significant role that the microbiome has been shown to play in the maintenance of body temperature, we outline current studies demonstrating the effects of phenethylamines on the gut microbiome and how these microbiome changes may mechanistically contribute to alterations in body temperature.
Collapse
Affiliation(s)
- Amal Aburahma
- The Ohio Attorney General's Center for the Future of Forensic Science, Bowling Green State University, Bowling Green, Ohio, USA
| | - Sudhan Pachhain
- The Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, USA
| | - Sayantan Roy Choudhury
- The Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, USA
| | - Srishti Rana
- The Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, USA
| | - Vipa Phuntumart
- The Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, USA
| | - Ray Larsen
- The Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, USA
| | - Jon E Sprague
- The Ohio Attorney General's Center for the Future of Forensic Science, Bowling Green State University, Bowling Green, Ohio, USA,
| |
Collapse
|
8
|
Ferver A, Dridi S. Regulation of avian uncoupling protein (av-UCP) expression by cytokines and hormonal signals in quail myoblast cells. Comp Biochem Physiol A Mol Integr Physiol 2020; 248:110747. [PMID: 32565233 DOI: 10.1016/j.cbpa.2020.110747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/05/2020] [Accepted: 06/16/2020] [Indexed: 01/20/2023]
Abstract
Uncoupling proteins (UCPs), members of the mitochondrial anion carrier family, play a pivotal role in thermogenesis, redox balance, reactive oxygen species and many other cellular processes. They were extensively studied in mammalian species and have been shown to be tightly regulated at transcriptional and translational levels by various environmental and hormonal factors. Such studies are very limited in avian species which represent a unique model because they lack brown adipose tissue and they contain only one UCP (av-UCP) predominantly expressed in the muscle. The present study aimed, therefore, to determine the effects of pro-inflammatory cytokines (IL-6 and TNFα) and energy homeostasis-related hormones (leptin and T3) on the expression of av-UCP and its related transcription factors in quail myoblast (QM7) cells. Leptin treatment for 24 h significantly down-regulated av-UCP, and up-regulated PGC-1α, PPARα, and PPARγ expression in QM7 cells. IL-6 and TNFα administration significantly up-regulated the expression of av-UCP, however T3 had a biphasic effects (up-regulation with low dose and down-regulation with high dose) on av-UCP mRNA levels (P < .05). TNFα significantly induced PPARα and PPARγ mRNA abundances, however T3 and IL-6 down-regulated PPARα expression (P < .05). Together, these data are the first to report cytokine and hormonal regulation of av-UCP in avian muscle cells, suggesting that these effects are mediated through PPARs and PGC-1α, and opening a new vista for future functional and mechanistic studies.
Collapse
Affiliation(s)
- Alison Ferver
- University of Arkansas, Center of Excellence for Poultry Science, Fayetteville, AR 72701, United States of America
| | - Sami Dridi
- University of Arkansas, Center of Excellence for Poultry Science, Fayetteville, AR 72701, United States of America.
| |
Collapse
|
9
|
Abstract
The hypermetabolic effects of thyroid hormones (THs), the major endocrine regulators of metabolic rate, are widely recognized. Although, the cellular mechanisms underlying these effects have been extensively investigated, much has yet to be learned about how TH regulates diverse cellular functions. THs have a profound impact on mitochondria, the organelles responsible for the majority of cellular energy production, and several studies have been devoted to understand the respective importance of the nuclear and mitochondrial pathways for organelle activity. During the last decades, several new aspects of both THs (i.e., metabolism, transport, mechanisms of action, and the existence of metabolically active TH derivatives) and mitochondria (i.e., dynamics, respiratory chain organization in supercomplexes, and the discovery of uncoupling proteins other than uncoupling protein 1) have emerged, thus opening new perspectives to the investigation of the complex relationship between thyroid and the mitochondrial compartment. In this review, in the light of an historical background, we attempt to point out the present findings regarding thyroid physiology and the emerging recognition that mitochondrial dynamics as well as the arrangement of the electron transport chain in mitochondrial cristae contribute to the mitochondrial activity. We unravel the genomic and nongenomic mechanisms so far studied as well as the effects of THs on mitochondrial energetics and, principally, uncoupling of oxidative phosphorylation via various mechanisms involving uncoupling proteins. The emergence of new approaches to the question as to what extent and how the action of TH can affect mitochondria is highlighted. © 2016 American Physiological Society. Compr Physiol 6:1591-1607, 2016.
Collapse
Affiliation(s)
- Antonia Lanni
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, Italy
| | - Maria Moreno
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy
| | - Fernando Goglia
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy
| |
Collapse
|
10
|
Goharbari MH, Shadboores A, Abdollahi M. Inhibitory Effects of Thyroid Hormones on Mitochondrial
Oxidative Stress: A Systematic Review. INT J PHARMACOL 2016. [DOI: 10.3923/ijp.2016.249.261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Akhmedov AT, Rybin V, Marín-García J. Mitochondrial oxidative metabolism and uncoupling proteins in the failing heart. Heart Fail Rev 2015; 20:227-49. [PMID: 25192828 DOI: 10.1007/s10741-014-9457-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite significant progress in cardiovascular medicine, myocardial ischemia and infarction, progressing eventually to the final end point heart failure (HF), remain the leading cause of morbidity and mortality in the USA. HF is a complex syndrome that results from any structural or functional impairment in ventricular filling or blood ejection. Ultimately, the heart's inability to supply the body's tissues with enough blood may lead to death. Mechanistically, the hallmarks of the failing heart include abnormal energy metabolism, increased production of reactive oxygen species (ROS) and defects in excitation-contraction coupling. HF is a highly dynamic pathological process, and observed alterations in cardiac metabolism and function depend on the disease progression. In the early stages, cardiac remodeling characterized by normal or slightly increased fatty acid (FA) oxidation plays a compensatory, cardioprotective role. However, upon progression of HF, FA oxidation and mitochondrial oxidative activity are decreased, resulting in a significant drop in cardiac ATP levels. In HF, as a compensatory response to decreased oxidative metabolism, glucose uptake and glycolysis are upregulated, but this upregulation is not sufficient to compensate for a drop in ATP production. Elevated mitochondrial ROS generation and ROS-mediated damage, when they overwhelm the cellular antioxidant defense system, induce heart injury and contribute to the progression of HF. Mitochondrial uncoupling proteins (UCPs), which promote proton leak across the inner mitochondrial membrane, have emerged as essential regulators of mitochondrial membrane potential, respiratory activity and ROS generation. Although the physiological role of UCP2 and UCP3, expressed in the heart, has not been clearly established, increasing evidence suggests that these proteins by promoting mild uncoupling could reduce mitochondrial ROS generation and cardiomyocyte apoptosis and ameliorate thereby myocardial function. Further investigation on the alterations in cardiac UCP activity and regulation will advance our understanding of their physiological roles in the healthy and diseased heart and also may facilitate the development of novel and more efficient therapies.
Collapse
Affiliation(s)
- Alexander T Akhmedov
- The Molecular Cardiology and Neuromuscular Institute, 75 Raritan Avenue, Highland Park, NJ, 08904, USA
| | | | | |
Collapse
|
12
|
Lombardi A, Moreno M, de Lange P, Iossa S, Busiello RA, Goglia F. Regulation of skeletal muscle mitochondrial activity by thyroid hormones: focus on the "old" triiodothyronine and the "emerging" 3,5-diiodothyronine. Front Physiol 2015; 6:237. [PMID: 26347660 PMCID: PMC4543916 DOI: 10.3389/fphys.2015.00237] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/07/2015] [Indexed: 11/20/2022] Open
Abstract
3,5,3′-Triiodo-L-thyronine (T3) plays a crucial role in regulating metabolic rate and fuel oxidation; however, the mechanisms by which it affects whole-body energy metabolism are still not completely understood. Skeletal muscle (SKM) plays a relevant role in energy metabolism and responds to thyroid state by remodeling the metabolic characteristics and cytoarchitecture of myocytes. These processes are coordinated with changes in mitochondrial content, bioenergetics, substrate oxidation rate, and oxidative phosphorylation efficiency. Recent data indicate that “emerging” iodothyronines have biological activity. Among these, 3,5-diiodo-L-thyronine (T2) affects energy metabolism, SKM substrate utilization, and mitochondrial functionality. The effects it exerts on SKM mitochondria involve more aspects of mitochondrial bioenergetics; among these, respiratory chain activity, mitochondrial thermogenesis, and lipid-handling are stimulated rapidly. This mini review focuses on signaling and biochemical pathways activated by T3 and T2 in SKM that influence the above processes. These novel aspects of thyroid physiology could reveal new perspectives for understanding the involvement of SKM mitochondria in hypo- and hyper-thyroidism.
Collapse
Affiliation(s)
- Assunta Lombardi
- Department of Biology, University of Naples Federico II Naples, Italy
| | - Maria Moreno
- Department of Science and Technology, University of Sannio Benevento, Italy
| | - Pieter de Lange
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples Caserta, Italy
| | - Susanna Iossa
- Department of Biology, University of Naples Federico II Naples, Italy
| | - Rosa A Busiello
- Department of Science and Technology, University of Sannio Benevento, Italy
| | - Fernando Goglia
- Department of Science and Technology, University of Sannio Benevento, Italy
| |
Collapse
|
13
|
Kitano Y, Honma T, Hatakeyama Y, Jibu Y, Kawakami Y, Tsuduki T, Nakagawa K, Miyazawa T. Effects of Historical Differences in Components of the Japanese Diet on the Risk of Obesity in Mice. ACTA ACUST UNITED AC 2014. [DOI: 10.4327/jsnfs.67.73] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Cioffi F, Senese R, Lanni A, Goglia F. Thyroid hormones and mitochondria: with a brief look at derivatives and analogues. Mol Cell Endocrinol 2013; 379:51-61. [PMID: 23769708 DOI: 10.1016/j.mce.2013.06.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 05/22/2013] [Accepted: 06/06/2013] [Indexed: 12/22/2022]
Abstract
Thyroid hormones (TH) have a multiplicity of effects. Early in life, they mainly affect development and differentiation, while later on they have particularly important influences over metabolic processes in almost all tissues. It is now quite widely accepted that thyroid hormones have two types of effects on mitochondria. The first is a rapid stimulation of respiration, which is evident within minutes/hours after hormone treatment, and it is probable that extranuclear/non-genomic mechanisms underlie this effect. The second response occurs one to several days after hormone treatment, and leads to mitochondrial biogenesis and to a change in mitochondrial mass. The hormone signal for the second response involves both T3-responsive nuclear genes and a direct action of T3 at mitochondrial binding sites. T3, by binding to a specific mitochondrial receptor and affecting the transcription apparatus, may thus act in a coordinated manner with the T3 nuclear pathway to regulate mitochondrial biogenesis and turnover. Transcription factors, coactivators, corepressors, signaling pathways and, perhaps, all play roles in these mechanisms. This review article focuses chiefly on TH, but also looks briefly at some analogues and derivatives (on which the data is still somewhat patchy). We summarize data obtained recently and in the past to try to obtain an updated picture of the current research position concerning the metabolic effects of TH, with particular emphasis on those exerted via mitochondria.
Collapse
Affiliation(s)
- Federica Cioffi
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Via Port'Arsa 11, 82100 Benevento, Italy
| | | | | | | |
Collapse
|
15
|
de Lange P, Cioffi F, Silvestri E, Moreno M, Goglia F, Lanni A. (Healthy) ageing: focus on iodothyronines. Int J Mol Sci 2013; 14:13873-92. [PMID: 23880847 PMCID: PMC3742223 DOI: 10.3390/ijms140713873] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 06/13/2013] [Accepted: 06/19/2013] [Indexed: 12/29/2022] Open
Abstract
The activity of the thyroid gland diminishes during ageing, but a certain tissue reserve of T3 and its metabolites is maintained. This reserve is thought to play a regulatory role in energy homeostasis during ageing. This review critically assesses this notion. T3 was thought to act predominantly through pathways that require transcriptional regulation by thyroid hormone receptors (TRs). However, in recent years, it has emerged that T3 and its metabolites can also act through non-genomic mechanisms, including cytosolic signaling. Interestingly, differences may exist in the non-genomic pathways utilized by thyroid hormone metabolites and T3. For instance, one particular thyroid hormone metabolite, namely 3,5-diiodo-l-thyronine (T2), increases the activity of the redox-sensitive protein deacetylase SIRT1, which has been associated with improvements in healthy ageing, whereas evidence exists that T3 may have the opposite effect. Findings suggesting that T3, T2, and their signaling pathways, such as those involving SIRT1 and AMP-activated protein kinase (AMPK), are associated with improvements in diet-induced obesity and insulin resistance emphasize the potential importance of the thyroid during ageing and in ageing-associated metabolic diseases.
Collapse
Affiliation(s)
- Pieter de Lange
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Via Vivaldi 43, Caserta 81100, Italy; E-Mail:
| | - Federica Cioffi
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Via Port’Arsa 11, Benevento 82100, Italy; E-Mails: (F.C.); (E.S.); (M.M.); (F.G.)
| | - Elena Silvestri
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Via Port’Arsa 11, Benevento 82100, Italy; E-Mails: (F.C.); (E.S.); (M.M.); (F.G.)
| | - Maria Moreno
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Via Port’Arsa 11, Benevento 82100, Italy; E-Mails: (F.C.); (E.S.); (M.M.); (F.G.)
| | - Fernando Goglia
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Via Port’Arsa 11, Benevento 82100, Italy; E-Mails: (F.C.); (E.S.); (M.M.); (F.G.)
| | - Antonia Lanni
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Via Vivaldi 43, Caserta 81100, Italy; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-082-327-4580; Fax: +39-082-327-4571
| |
Collapse
|
16
|
Hesselink MKC, Mensink M, Schrauwen P. Human Uncoupling Protein-3 and Obesity: An Update. ACTA ACUST UNITED AC 2012; 11:1429-43. [PMID: 14694206 DOI: 10.1038/oby.2003.192] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The cloning of the uncoupling protein (UCP)1 homologs UCP2 and UCP3 has raised considerable interest in the mechanism. The expression of UCP3 mainly in skeletal muscle mitochondria and the potency of the skeletal muscle as a thermogenic organ made UCP3 an attractive target for studies toward manipulation of energy expenditure to fight disorders such as obesity and type 2 diabetes. Overexpressing UCP3 in mice resulted in lean, hyperphagic mice. However, the lack of an apparent phenotype in mice lacking UCP3 triggered the search for alternative functions of UCP3. The observation that fatty acid levels significantly affect UCP3 expression has given UCP3 a position in fatty acid handling and/or oxidation. Emerging data indicate that the primary physiological role of UCP3 may be the mitochondrial handling of fatty acids rather than the regulation of energy expenditure through thermogenesis. It has been proposed that UCP3 functions to export fatty acid anions away from the mitochondrial matrix. In doing so, fatty acids are exchanged with protons, explaining the uncoupling activity of UCP3. The exported fatty acid anions may originate from hydrolysis of fatty acid esters by a mitochondrial thioesterase, or they may have entered the mitochondria as nonesterified fatty acids by incorporating into and flip-flopping across the mitochondrial inner membrane. Regardless of the origin of the fatty acid anions, this putative function of UCP3 might be of great importance in protecting mitochondria against fatty acid accumulation and may help to maintain muscular fat oxidative capacity.
Collapse
Affiliation(s)
- Matthijs K C Hesselink
- Department of Movement Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands.
| | | | | |
Collapse
|
17
|
Blaylock ML, Wang R, Shan D, Nagy TR. Ucp3 Expression during Weight Gain and Loss, Cold Exposure, and Fasting in the Collared Lemming. ACTA ACUST UNITED AC 2012; 12:1690-7. [PMID: 15536233 DOI: 10.1038/oby.2004.209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To determine the gene sequence and tissue distribution of uncoupling protein 3 (Ucp3) in the collared lemming, we quantified mRNA expression of Ucp3 under known states of altered energy expenditure (photoperiod-induced weight gain and loss, cold exposure, and fasting) and measured mitochondrial oxygen consumption to assess possible functional changes in energy expenditure. RESEARCH METHODS AND PROCEDURES The Ucp3 gene sequence information was obtained using the reverse transcription-polymerase chain reaction and rapid amplification of cDNA ends methods. Northern blots were used to determine mRNA expression levels. Respirometry was used to measure oxygen consumption rates in isolated mitochondria. RESULTS The lemming Ucp3 gene has a 97% sequence similarity with other published Ucp3 sequences at the amino acid level. Ucp3 mRNA is expressed in muscle, heart, and brown adipose tissue of collared lemmings. Long-photoperiod lemmings have a higher expression of Ucp3 mRNA than short-photoperiod lemmings (p < 0.001) in both muscle and brown adipose tissue. Transferring lemmings from long to short photoperiods (inducing weight gain) significantly decreased Ucp3 mRNA expression (p < 0.01), whereas transferring lemmings from short to long photoperiods (inducing weight loss) significantly increased Ucp3 expression (p < 0.001). Muscle Ucp3 mRNA expression was significantly decreased by 10 days of mild (10 degrees C) cold exposure (p < 0.001). Muscle Ucp3 mRNA expression was significantly increased by fasting (p < 0.01) and was correlated to plasma free fatty acid levels (r = 0.7). Photoperiod transfer did not alter mitochondrial coupling. DISCUSSION These data suggest that UCP3 may not be involved in energy expenditure in the collared lemming.
Collapse
Affiliation(s)
- Matthew L Blaylock
- Webb Building 419, 1530 Third Avenue South, Birmingham, AL 35294-3360, USA
| | | | | | | |
Collapse
|
18
|
Divakaruni AS, Brand MD. The regulation and physiology of mitochondrial proton leak. Physiology (Bethesda) 2011; 26:192-205. [PMID: 21670165 DOI: 10.1152/physiol.00046.2010] [Citation(s) in RCA: 289] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mitochondria couple respiration to ATP synthesis through an electrochemical proton gradient. Proton leak across the inner membrane allows adjustment of the coupling efficiency. The aim of this review is threefold: 1) introduce the unfamiliar reader to proton leak and its physiological significance, 2) review the role and regulation of uncoupling proteins, and 3) outline the prospects of proton leak as an avenue to treat obesity, diabetes, and age-related disease.
Collapse
Affiliation(s)
- Ajit S Divakaruni
- Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Cambridge, United Kingdom
| | | |
Collapse
|
19
|
Senese R, Valli V, Moreno M, Lombardi A, Busiello RA, Cioffi F, Silvestri E, Goglia F, Lanni A, de Lange P. Uncoupling protein 3 expression levels influence insulin sensitivity, fatty acid oxidation, and related signaling pathways. Pflugers Arch 2010; 461:153-64. [DOI: 10.1007/s00424-010-0892-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 09/10/2010] [Accepted: 10/04/2010] [Indexed: 11/30/2022]
|
20
|
Abstract
PURPOSE OF REVIEW The article is principally intended to describe the recent evolutions in the field of research concerned with the metabolic actions of thyroid hormones and those of some of their metabolites or derivatives. Mitochondria, as a result of their functions, represent the principal objective of scientists investigating the mechanisms underlying the effects of thyroid hormones or their metabolites/derivatives. RECENT FINDINGS Indeed, some important recent findings concern these organelles, and in particular mitochondrial uncoupling and its modulation by effectors. Traditionally, thyroxine (T4) and tri-iodo-L-thyronine (T3) were the only thyroid hormones considered to have metabolic effects, and they alone were considered for potential as agents that might counteract some important abnormalities such as dyslipidaemias and obesity. Several observations, however, led to a reconsideration of this idea. In recent years, studies dealing with the biological activities of some natural metabolites or structural analogues of thyroid hormones have revealed abilities to ameliorate some major worldwide medical problems, such as artherosclerosis, obesity and cardiovascular diseases. Among natural metabolites, 3,5-diiodothyronine (T2) has been shown to powerfully reduce adiposity and dyslipidaemia and to reverse hepatic steatosis without unfavourable side-effects usually observed when T3 or T4 is used. Examples of synthetic analogues are GC-1 (or sobetirome) and KB2115 (or eprotirome) which show ipolipidaemic and antiaterogenic capacities. Clinical trials are in progress for these last agents. SUMMARY In view of the above-mentioned actions, some of these compounds are now undergoing clinical trials and may have important implications for clinical practice or researches in the field of both endocrinology and metabolic-related abnormalities such as diabetes and dyslipidaemias.
Collapse
Affiliation(s)
- Federica Cioffi
- Dipartimento di Scienze della Vita, Seconda Università degli Studi di Napoli, Caserta, Italy
| | | | | |
Collapse
|
21
|
Hancock AM, Clark VJ, Qian Y, Di Rienzo A. Population genetic analysis of the uncoupling proteins supports a role for UCP3 in human cold resistance. Mol Biol Evol 2010; 28:601-14. [PMID: 20802238 PMCID: PMC3002247 DOI: 10.1093/molbev/msq228] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Production of heat via nonshivering thermogenesis (NST) is critical for temperature homeostasis in mammals. Uncoupling protein UCP1 plays a central role in NST by uncoupling the proton gradients produced in the inner membranes of mitochondria to produce heat; however, the extent to which UCP1 homologues, UCP2 and UCP3, are involved in NST is the subject of an ongoing debate. We used an evolutionary approach to test the hypotheses that variants that are associated with increased expression of these genes (UCP1 -3826A, UCP2 -866A, and UCP3 -55T) show evidence of adaptation with winter climate. To that end, we calculated correlations between allele frequencies and winter climate variables for these single-nucleotide polymorphisms (SNPs), which we genotyped in a panel of 52 worldwide populations. We found significant correlations with winter climate for UCP1 -3826G/A and UCP3 -55C/T. Further, by analyzing previously published genotype data for these SNPs, we found that the peak of the correlation for the UCP1 region occurred at the disease-associated -3826A/G variant and that the UCP3 region has a striking signal overall, with several individual SNPs showing interesting patterns, including the -55C/T variant. Resequencing of the regions in a set of three diverse population samples helped to clarify the signals that we found with the genotype data. At UCP1, the resequencing data revealed modest evidence that the haplotype carrying the -3826A variant was driven to high frequency by selection. In the UCP3 region, combining results from the climate analysis and resequencing survey suggest a more complex model in which variants on multiple haplotypes may independently be correlated with temperature. This is further supported by an excess of intermediate frequency variants in the UCP3 region in the Han Chinese population. Taken together, our results suggest that adaptation to climate influenced the global distribution of allele frequencies in UCP1 and UCP3 and provide an independent source of evidence for a role in cold resistance for UCP3.
Collapse
|
22
|
Abstract
AIM Although obesity and weight gain generally are anticipated to be caused by an imbalance between energy intake and energy expenditure, the significance of thyroid hormones (TH) remains unclear. Examination of mitochondrial function may reflect intracellular thyroid hormone effect and elucidate whether a lower metabolic rate is present. METHODS In a group of 34 obese adolescents (age <16 years and body mass index above the age-related 95th percentile), and an age- and gender-matched group of 32 lean adolescent, thyroid stimulating hormone (TSH) and basal oxygen consumption were measured and mitochondrial function in peripheral blood monocytes was determined by flow cytometry. RESULTS Significant increase in TSH (3.06 +/- 1.56 mU/L vs. 2.33 +/- 0.91 mU/L, p < 0.05) and a decrease in VO2 (129 +/- 16 mL O2/m(2)*min vs. 146 +/- 15 mL O2/m(2)*min, p < 0.05) were observed in obese adolescents compared with lean adolescents. Flow cytometry analysis demonstrated a lower mitochondrial mass (6385 +/- 1962 a.u. vs. 7608 +/- 2328 a.u., p < 0.05) and mitochondrial membrane potential (11426 +/- 3861 a.u. vs. 14017 +/- 5536 a.u., p < 0.05) in obese adolescents compared with lean adolescents. These results are even more pronounced in adolescents with obese mothers. CONCLUSION In obese adolescents, the increased TSH and lowered VO2 propose a lowered basal metabolic rate and the impaired mitochondrial function suggests a decreased thyroid hormone stimulation of mitochondrial energy production. The maternal in-heritage is suggestive of a basal metabolic defect or mitochondrial resistance for TH.
Collapse
Affiliation(s)
- L Wilms
- The Mitochondrial Research Unit, Naestved Hospital, Naestved, Denmark.
| | | | | | | |
Collapse
|
23
|
Lombardi A, Busiello RA, Napolitano L, Cioffi F, Moreno M, de Lange P, Silvestri E, Lanni A, Goglia F. UCP3 translocates lipid hydroperoxide and mediates lipid hydroperoxide-dependent mitochondrial uncoupling. J Biol Chem 2010; 285:16599-605. [PMID: 20363757 PMCID: PMC2878051 DOI: 10.1074/jbc.m110.102699] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2010] [Revised: 02/26/2010] [Indexed: 11/06/2022] Open
Abstract
Although the literature contains many studies on the function of UCP3, its role is still being debated. It has been hypothesized that UCP3 may mediate lipid hydroperoxide (LOOH) translocation across the mitochondrial inner membrane (MIM), thus protecting the mitochondrial matrix from this very aggressive molecule. However, no experiments on mitochondria have provided evidence in support of this hypothesis. Here, using mitochondria isolated from UCP3-null mice and their wild-type littermates, we demonstrate the following. (i) In the absence of free fatty acids, proton conductance did not differ between wild-type and UCP3-null mitochondria. Addition of arachidonic acid (AA) to such mitochondria induced an increase in proton conductance, with wild-type mitochondria showing greater enhancement. In wild-type mitochondria, the uncoupling effect of AA was significantly reduced both when the release of O2* in the matrix was inhibited and when the formation of LOOH was inhibited. In UCP3-null mitochondria, however, the uncoupling effect of AA was independent of the above mechanisms. (ii) In the presence of AA, wild-type mitochondria released significantly more LOOH compared with UCP3-null mitochondria. This difference was abolished both when UCP3 was inhibited by GDP and under a condition in which there was reduced LOOH formation on the matrix side of the MIM. These data demonstrate that UCP3 is involved both in mediating the translocation of LOOH across the MIM and in LOOH-dependent mitochondrial uncoupling.
Collapse
Affiliation(s)
- Assunta Lombardi
- From the Dipartimento delle Scienze Biologiche, Università degli Studi di Napoli Federico II, Via Mezzocannone 8, 80134 Napoli
| | - Rosa Anna Busiello
- From the Dipartimento delle Scienze Biologiche, Università degli Studi di Napoli Federico II, Via Mezzocannone 8, 80134 Napoli
| | - Laura Napolitano
- From the Dipartimento delle Scienze Biologiche, Università degli Studi di Napoli Federico II, Via Mezzocannone 8, 80134 Napoli
| | - Federica Cioffi
- the Dipartimento di Scienze della Vita, Seconda Università degli Studi di Napoli, Via Vivaldi 43, 81100 Caserta, and
| | - Maria Moreno
- the Dipartimento di Scienze Biologiche ed Ambientali, Università degli Studi del Sannio, Via Port'Arsa 11, 82100 Benevento, Italy
| | - Pieter de Lange
- the Dipartimento di Scienze della Vita, Seconda Università degli Studi di Napoli, Via Vivaldi 43, 81100 Caserta, and
| | - Elena Silvestri
- the Dipartimento di Scienze Biologiche ed Ambientali, Università degli Studi del Sannio, Via Port'Arsa 11, 82100 Benevento, Italy
| | - Antonia Lanni
- the Dipartimento di Scienze della Vita, Seconda Università degli Studi di Napoli, Via Vivaldi 43, 81100 Caserta, and
| | - Fernando Goglia
- the Dipartimento di Scienze Biologiche ed Ambientali, Università degli Studi del Sannio, Via Port'Arsa 11, 82100 Benevento, Italy
| |
Collapse
|
24
|
Mathew J, Paul J, Nandhu MS, Paulose CS. Increased excitability and metabolism in pilocarpine induced epileptic rats: effect of Bacopa monnieri. Fitoterapia 2010; 81:546-51. [PMID: 20117182 DOI: 10.1016/j.fitote.2010.01.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 01/12/2010] [Accepted: 01/18/2010] [Indexed: 01/30/2023]
Abstract
We have evaluated the acetylcholine esterase and malate dehydrogenase activity in the muscle, epinephrine, norepinephrine, insulin and T3 content in the serum of epileptic rats. Acetylcholine esterase and malate dehydrogenase activity increased in the muscle and decreased in the heart of the epileptic rats compared to control. Insulin and T3 content were increased significantly in the serum of the epileptic rats. Our results suggest that repetitive seizures resulted in increased metabolism and excitability in epileptic rats. Bacopa monnieri and Bacoside-A treatment prevents the occurrence of seizures there by reducing the impairment on peripheral nervous system.
Collapse
Affiliation(s)
- Jobin Mathew
- Molecular Neurobiology and Cell Biology Unit, Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Cochin 682 022, Kerala, India
| | | | | | | |
Collapse
|
25
|
Cioffi F, Senese R, de Lange P, Goglia F, Lanni A, Lombardi A. Uncoupling proteins: a complex journey to function discovery. Biofactors 2009; 35:417-28. [PMID: 19626697 DOI: 10.1002/biof.54] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since their discovery, uncoupling proteins have aroused great interest due to the crucial importance of energy-dissipating system for cellular physiology. The uncoupling effect and the physiological role of UCP1 (the first-described uncoupling protein) are well established. However, the reactions catalyzed by UCP1 homologues (UCPs), and their physiological roles are still under debate, with the literature containing contrasting results. Current hypothesis propose several physiological functions for novel UCPs, such as: (i) attenuation of reactive oxygen species production and protection against oxidative damage, (ii) thermogenic function, although UCPs do not generally seem to affect thermogenesis, UCP3 can be thermogenic under certain conditions, (iii) involvement in fatty acid handling and/or transport, although recent experimental evidence argues against the previously hypothesized role for UCPs in the export of fatty acid anions, (iv) fatty acid hydroperoxide export, although this function, due to the paucity of the experimental evidence, remains hypothetical, (v) Ca(2+) uptake, although results for and against a role in Ca(2+) uptake are still emerging, (vi) a signaling role in pancreatic beta cells, where it attenuates glucose-induced insulin secretion. From the above, it is evident that more research will be needed to establish universally accepted functions for UCPs.
Collapse
Affiliation(s)
- Federica Cioffi
- Dipartimento di Scienze della Vita, Seconda Università degli Studi di Napoli, Caserta, Italy
| | | | | | | | | | | |
Collapse
|
26
|
Lombardi A, de Lange P, Silvestri E, Busiello RA, Lanni A, Goglia F, Moreno M. 3,5-Diiodo-L-thyronine rapidly enhances mitochondrial fatty acid oxidation rate and thermogenesis in rat skeletal muscle: AMP-activated protein kinase involvement. Am J Physiol Endocrinol Metab 2009; 296:E497-502. [PMID: 19116374 DOI: 10.1152/ajpendo.90642.2008] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Triiodothyronine regulates energy metabolism and thermogenesis. Among triiodothyronine derivatives, 3,5-diiodo-l-thyronine (T(2)) has been shown to exert marked effects on energy metabolism by acting mainly at the mitochondrial level. Here we investigated the capacity of T(2) to affect both skeletal muscle mitochondrial substrate oxidation and thermogenesis within 1 h after its injection into hypothyroid rats. Administration of T(2) induced an increase in mitochondrial oxidation when palmitoyl-CoA (+104%), palmitoylcarnitine (+80%), or succinate (+30%) was used as substrate, but it had no effect when pyruvate was used. T(2) was able to 1) activate the AMPK-ACC-malonyl-CoA metabolic signaling pathway known to direct lipid partitioning toward oxidation and 2) increase the importing of fatty acids into the mitochondrion. These results suggest that T(2) stimulates mitochondrial fatty acid oxidation by activating several metabolic pathways, such as the fatty acid import/beta-oxidation cycle/FADH(2)-linked respiratory pathways, where fatty acids are imported. T(2) also enhanced skeletal muscle mitochondrial thermogenesis by activating pathways involved in the dissipation of the proton-motive force not associated with ATP synthesis ("proton leak"), the effect being dependent on the presence of free fatty acids inside mitochondria. We conclude that skeletal muscle is a target for T(2), and we propose that, by activating processes able to enhance mitochondrial fatty acid oxidation and thermogenesis, T(2) could play a role in protecting skeletal muscle against excessive intramyocellular lipid storage, possibly allowing it to avoid functional disorders.
Collapse
Affiliation(s)
- A Lombardi
- Università degli Studi del Napoli, Federic II, Napoli, Italy
| | | | | | | | | | | | | |
Collapse
|
27
|
de Lange P, Senese R, Cioffi F, Moreno M, Lombardi A, Silvestri E, Goglia F, Lanni A. Rapid activation by 3,5,3'-L-triiodothyronine of adenosine 5'-monophosphate-activated protein kinase/acetyl-coenzyme a carboxylase and akt/protein kinase B signaling pathways: relation to changes in fuel metabolism and myosin heavy-chain protein content in rat gastrocnemius muscle in vivo. Endocrinology 2008; 149:6462-70. [PMID: 18703632 DOI: 10.1210/en.2008-0202] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T3 stimulates metabolic rate in many tissues and induces changes in fuel use. The pathways by which T3 induces metabolic/structural changes related to altered fuel use in skeletal muscle have not been fully clarified. Gastrocnemius muscle (isolated at different time points after a single injection of T3 into hypothyroid rats), displayed rapid inductions of AMP-activated protein kinase (AMPK) phosphorylation (threonine 172; within 6 h) and acetyl-coenzyme A carboxylase phosphorylation (serine 79; within 12 h). As a consequence, increases occurred in mitochondrial fatty acid oxidation and carnitine palmitoyl transferase activity. Concomitantly, T3 stimulated signaling toward increased glycolysis through a rapid increase in Akt/protein kinase B (serine 473) phosphorylation (within 6 h) and a directly related increase in the activity of phosphofructokinase. The kinase specificity of the above effects was verified by treatment with inhibitors of AMPK and Akt activity (compound C and wortmannin, respectively). In contrast, glucose transporter 4 translocation to the membrane (activated by T3 within 6 h) was maintained when either AMPK or Akt activity was inhibited. The metabolic changes were accompanied by a decline in myosin heavy-chain Ib protein [causing a shift toward the fast-twitch (glycolytic) phenotype]. The increases in AMPK and acetyl-coenzyme A carboxylase phosphorylation were transient events, both levels declining from 12 h after the T3 injection, but Akt phosphorylation remained elevated until at least 48h after the injection. These data show that in skeletal muscle, T3 stimulates both fatty acid and glucose metabolism through rapid activations of the associated signaling pathways involving AMPK and Akt/protein kinase B.
Collapse
Affiliation(s)
- Pieter de Lange
- Dipartimento di Scienze della Vita, Seconda Università degli Studi di Napoli, Via Vivaldi 43, 81100 Caserta, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Lombardi A, Grasso P, Moreno M, de Lange P, Silvestri E, Lanni A, Goglia F. Interrelated influence of superoxides and free fatty acids over mitochondrial uncoupling in skeletal muscle. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:826-33. [PMID: 18471434 DOI: 10.1016/j.bbabio.2008.04.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 03/21/2008] [Accepted: 04/14/2008] [Indexed: 10/22/2022]
Abstract
Mitochondrial uncoupling protein 3 (UCP(3))-mediated uncoupling has been postulated to depend on several factors, including superoxides, free fatty acids (FFAs), and fatty acid hydroperoxides and/or their derivatives. We investigated whether there is an interrelation between endogenous mitochondrial superoxides and fatty acids in inducing skeletal muscle mitochondrial uncoupling, and we speculated on the possible involvement of UCP(3) in this process. In the absence of FFAs, no differences in proton-leak kinetic were detected between succinate-energized mitochondria respiring in the absence or presence of rotenone, despite a large difference in complex I superoxide production. The addition of either arachidic acid or arachidonic acid induced an increase in proton-leak kinetic, with arachidonic acid having the more marked effect. The uncoupling effect of arachidic acid was independent of the presence of GDP, rotenone and vitamin E, while that of arachidonic acid was dependent on these factors. These data demonstrate that FFA and O(2-) play interrelated roles in inducing mitochondrial uncoupling, and we hypothesize that a likely formation of mitochondrial fatty acid hydroperoxides is a key event in the arachidonic acid-induced GDP-dependent inhibition of mitochondrial uncoupling.
Collapse
Affiliation(s)
- Assunta Lombardi
- Dipartimento delle Scienze Biologiche, Sezione Fisiologia, Università degli Studi di Napoli Federico II, Via Mezzocannone 8, 80134 Napoli, Italy
| | | | | | | | | | | | | |
Collapse
|
29
|
Hoenig M, Caffall Z, Ferguson DC. Triiodothyronine differentially regulates key metabolic factors in lean and obese cats. Domest Anim Endocrinol 2008; 34:229-37. [PMID: 17683895 DOI: 10.1016/j.domaniend.2007.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 06/11/2007] [Accepted: 06/12/2007] [Indexed: 10/23/2022]
Abstract
The effect of a 2-week administration of 75microg triiodothyronine (T3) on substrate oxidation, heat production, non-esterified fatty acids, and leptin was evaluated in eight lean (three females and five males) and eight obese (five females and three males) age-matched adult neutered cats. In addition, using real-time RT-PCR, expression of muscle and adipose tissue uncoupling proteins (UCP2 and UCP3), deiodinase 1 and 2 (D1; D2), and peroxisome proliferator-activated receptor (PPAR) alpha and gamma and peroxisome-proliferator-activator receptor-gamma co-activator 1alpha (PGC1) was examined. Compared to lean cats, obese cats had increased NEFA, leptin, UCP2, and D1mRNA in muscle and UCP3mRNA levels in fat, but lower heat production, and fat PPARs and PGC1. T3 administration increased thermogenesis and NEFA in lean and obese cats, and adipose tissue PPARgamma in lean cats. It also increased muscle D1 in lean and D2 in obese cats. The increase in muscle D2 was interpreted to be reflective of the reduced serum total T4 concentration following T3 suppression of the pituitary. No effect was seen on leptin, or UCP2 and 3. This shows that T3 regulates thermogenesis but not through changes in uncoupling protein expression. It also indicates that PPARs have an important role in the pathogenesis of obesity in cats.
Collapse
Affiliation(s)
- M Hoenig
- Department of Physiology and Pharmacology, College of Veterinary Medicine, 501 DW Brooks Drive, University of Georgia, Athens, GA 30602, United States.
| | | | | |
Collapse
|
30
|
Abstract
Thyroid hormones are the major endocrine regulators of metabolic rate, and their hypermetabolic effects are widely recognized. The cellular mechanisms underlying these metabolic effects have been the subject of much research. Thyroid hormone status has a profound impact on mitochondria, the organelles responsible for the majority of cellular adenosine triphosphate (ATP) production. However, mechanisms are not well understood. We review the effects of thyroid hormones on mitochondrial energetics and principally oxidative phosphorylation. Genomic and nongenomic mechanisms have been studied. Through the former, thyroid hormones stimulate mitochondriogenesis and thereby augment cellular oxidative capacity. Thyroid hormones induce substantial modifications in mitochondrial inner membrane protein and lipid compositions. Results are consistent with the idea that thyroid hormones activate the uncoupling of oxidative phosphorylation through various mechanisms involving inner membrane proteins and lipids. Increased uncoupling appears to be responsible for some of the hypermetabolic effects of thyroid hormones. ATP synthesis and turnover reactions are also affected. There appear to be complex relationships between mitochondrial proton leak mechanisms, reactive oxygen species production, and thyroid status. As the majority of studies have focused on the effects of thyroid status on rat liver preparations, there is still a need to address fundamental questions regarding thyroid hormone effects in other tissues and species.
Collapse
Affiliation(s)
- Mary-Ellen Harper
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| | | |
Collapse
|
31
|
Lombardi A, Lanni A, de Lange P, Silvestri E, Grasso P, Senese R, Goglia F, Moreno M. Acute administration of 3,5-diiodo-l-thyronine to hypothyroid rats affects bioenergetic parameters in rat skeletal muscle mitochondria. FEBS Lett 2007; 581:5911-6. [DOI: 10.1016/j.febslet.2007.11.073] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Accepted: 11/12/2007] [Indexed: 10/22/2022]
|
32
|
Nabben M, Hoeks J. Mitochondrial uncoupling protein 3 and its role in cardiac- and skeletal muscle metabolism. Physiol Behav 2007; 94:259-69. [PMID: 18191161 DOI: 10.1016/j.physbeh.2007.11.039] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 11/22/2007] [Accepted: 11/23/2007] [Indexed: 11/20/2022]
Abstract
Uncoupling protein 3 (UCP3), is primarily expressed in skeletal muscle mitochondria and has been suggested to be involved in mediating energy expenditure via uncoupling, hereby dissipating the mitochondrial proton gradient necessary for adenosine triphosphate (ATP) synthesis. Although some studies support a role for UCP3 in energy metabolism, other studies pointed towards a function in fatty acid metabolism. Thus, the protein is up regulated or high when fatty acid supply to the mitochondria exceeds the capacity to oxidize fatty acids and down regulated or low when oxidative capacity is high or improved. Irrespective of the exact operating mechanism, UCP3 seems to protect mitochondria against lipid-induced oxidative stress, which makes this protein a potential player in the development of type 2 diabetes mellitus. Next to skeletal muscle, UCP3 is also expressed in cardiac muscle where its role is relatively unexplored. Interestingly, energy deficiency in cardiac muscle is associated to heart failure and UCP3 might contribute to this energy deficiency. It has been suggested that UCP3 decreases energy status via uncoupling of mitochondrial respiration, but the available data does not provide a unified answer. In fact, the results obtained regarding cardiac UCP3 are very similar as in skeletal muscle, implying that its physiological function can be extrapolated. Therefore, cardiac UCP3 can just as well serve to protect the heart against lipid-induced oxidative stress, similar to the function described for skeletal muscle UCP3. The present review will deal with the available literature on both skeletal muscle- and cardiac UCP3 to elucidate its physiological function in these tissues.
Collapse
Affiliation(s)
- Miranda Nabben
- Department of Human Biology, Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| | | |
Collapse
|
33
|
Erion MD, Cable EE, Ito BR, Jiang H, Fujitaki JM, Finn PD, Zhang BH, Hou J, Boyer SH, van Poelje PD, Linemeyer DL. Targeting thyroid hormone receptor-beta agonists to the liver reduces cholesterol and triglycerides and improves the therapeutic index. Proc Natl Acad Sci U S A 2007; 104:15490-5. [PMID: 17878314 PMCID: PMC1978486 DOI: 10.1073/pnas.0702759104] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Despite efforts spanning four decades, the therapeutic potential of thyroid hormone receptor (TR) agonists as lipid-lowering and anti-obesity agents remains largely unexplored in humans because of dose-limiting cardiac effects and effects on the thyroid hormone axis (THA), muscle metabolism, and bone turnover. TR agonists selective for the TRbeta isoform exhibit modest cardiac sparing in rodents and primates but are unable to lower lipids without inducing TRbeta-mediated suppression of the THA. Herein, we describe a cytochrome P450-activated prodrug of a phosphonate-containing TR agonist that exhibits increased TR activation in the liver relative to extrahepatic tissues and an improved therapeutic index. Pharmacokinetic studies in rats demonstrated that the prodrug (2R,4S)-4-(3-chlorophenyl)-2-[(3,5-dimethyl-4-(4'-hydroxy-3'-isopropylbenzyl)phenoxy)methyl]-2-oxido-[1,3,2]-dioxaphosphonane (MB07811) undergoes first-pass hepatic extraction and that cleavage of the prodrug generates the negatively charged TR agonist (3,5-dimethyl-4-(4'-hydroxy-3'-isopropylbenzyl)phenoxy)methylphosphonic acid (MB07344), which distributes poorly into most tissues and is rapidly eliminated in the bile. Enhanced liver targeting was further demonstrated by comparing the effects of MB07811 with 3,5,3'-triiodo-l-thyronine (T(3)) and a non-liver-targeted TR agonist, 3,5-dichloro-4-(4-hydroxy-3-isopropylphenoxy)phenylacetic acid (KB-141) on the expression of TR agonist-responsive genes in the liver and six extrahepatic tissues. The pharmacologic effects of liver targeting were evident in the normal rat, where MB07811 exhibited increased cardiac sparing, and in the diet-induced obese mouse, where, unlike KB-141, MB07811 reduced cholesterol and both serum and hepatic triglycerides at doses devoid of effects on body weight, glycemia, and the THA. These results indicate that targeting TR agonists to the liver has the potential to lower both cholesterol and triglyceride levels with an acceptable safety profile.
Collapse
Affiliation(s)
- Mark D Erion
- Metabasis Therapeutics, Inc., 11119 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Fink BD, Herlein JA, Almind K, Cinti S, Kahn CR, Sivitz WI. Mitochondrial proton leak in obesity-resistant and obesity-prone mice. Am J Physiol Regul Integr Comp Physiol 2007; 293:R1773-80. [PMID: 17761507 DOI: 10.1152/ajpregu.00478.2007] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We quantified uncoupling proteins (UCPs) in molar amounts and assessed proton conductance in mitochondria isolated from interscapular brown adipose tissue (IBAT) and hindlimb muscle [known from prior work to contain ectopic brown adipose tissue (BAT) interspersed between muscle fibers] of obesity-resistant 129S6/SvEvTac (129) and obesity-prone C57BL/6 (B6) mice under conditions of low (LF) and high-fat (HF) feeding. With usual feeding, IBAT mitochondrial UCP1 content and proton conductance were greater in 129 mice than B6. However, with HF feeding, UCP1 and proton conductance increased more in B6 mice. Moreover, with HF feeding GDP-inhibitable proton conductance, specific for UCP1, equaled that seen in the 129 strain. UCP1 expression was substantial in mitochondria from hindlimb muscle tissue (ectopic BAT) of 129 mice as opposed to B6 but did not increase with HF feeding in either strain. As expected, muscle UCP3 expression increased with HF feeding in both strains but did not differ by strain. Moreover, the proton conductance of mitochondria isolated from hindlimb muscle tissue did not differ by strain or diet. Our data uncover a response to weight gain in obesity-prone (compared to resistant) mice unrecognized in prior studies that examined only UCP1 mRNA. Obesity-prone mice have the capacity to increase both IBAT UCP1 protein and mitochondrial proton conductance as much or more than obesity-resistant mice. But, this is only achieved only at a higher body mass and, therefore, may be adaptive rather than preventative. Neither obesity-prone nor resistant mice respond to HF feeding by expressing more UCP1 in ectopic BAT within muscle tissue.
Collapse
Affiliation(s)
- Brian D Fink
- University of Iowa, Iowa City Veterans Affairs Medical Center, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
35
|
de Lange P, Feola A, Ragni M, Senese R, Moreno M, Lombardi A, Silvestri E, Amat R, Villarroya F, Goglia F, Lanni A. Differential 3,5,3'-triiodothyronine-mediated regulation of uncoupling protein 3 transcription: role of Fatty acids. Endocrinology 2007; 148:4064-72. [PMID: 17478558 DOI: 10.1210/en.2007-0206] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T(3) regulates energy metabolism by stimulating metabolic rate and decreasing metabolic efficiency. The discovery of mitochondrial uncoupling protein 3 (UCP3), its homology to UCP1, and regulation by T(3) rendered it a possible molecular determinant of the action of T(3) on energy metabolism, but data are controversial. This controversy may in part be attributable to discrepancies observed between the regulation by T(3) of UCP3 expression in rats, humans, and mice. To clarify this issue, we studied 1) the induction kinetics of the UCP3 gene by T(3) in rat skeletal muscle, 2) the influence of fatty acids, and 3) the structure and regulation of the various UCP3 promoters by T(3). Within 8 h of single-dose T(3) administration, hypothyroid rats showed a rise in serum fatty acid levels concomitant with a rapid increase in UCP3 expression in gastrocnemius muscle, followed by inductions of peroxisome proliferator activated receptor delta (PPARdelta) (within 24 h) and PPAR target gene expression (after 24 h). This T(3)-induced early UCP3 expression depended on fatty acid-PPAR signaling because depleting serum fatty acid levels abolished its expression, restorable by administration of the PPARdelta agonist L165,041 (4-[3-(4-acetyl-3-hydroxy-2-propylphenoxy)propoxy]phenoxy]acetic acid). In transfected rat L6 myoblasts, only the rat UCP3 promoter positively responded to T(3) and L165,041 together in the presence of MyoD, thyroid hormone receptor beta1 (TRbeta1), PPARdelta, or PPARdelta plus the TR dimerization partner retinoid X receptor alpha. All promoters share a response element common to TR and PPAR (TRE 1), but the observed species differences may be attributable to different localizations of the MyoD response element, which in the rat maps to exon 1.
Collapse
Affiliation(s)
- Pieter de Lange
- Dipartimento di Scienze della Vita, Seconda Università degli Studi di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Silvestri E, Schiavo L, Lombardi A, Goglia F. Thyroid hormones as molecular determinants of thermogenesis. ACTA ACUST UNITED AC 2006; 184:265-83. [PMID: 16026419 DOI: 10.1111/j.1365-201x.2005.01463.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Thyroid hormones (TH) are major modulators of energy metabolism and thermogenesis. It is generally believed that 3,5,3'-triiodo-l-thyronine (T3) is the only active form of TH, and that most of its effects are mediated by nuclear T3 receptors, which chiefly affect the transcription of target genes. Some of these genes encode for the proteins involved in energy metabolism. However, a growing volume of evidence now indicates that other iodothyronines may be biologically active. Several mechanisms have been proposed to explain the calorigenic effect of TH, but none has received universal acceptance. Cold acclimation/exposure and altered nutritional status are physiological conditions in which a modulation of energy expenditure is particularly important. TH seem to be deeply involved in this modulation, and this article will review some aspects of their possible influence in these conditions.
Collapse
Affiliation(s)
- E Silvestri
- Dipartimento di Scienze Biologiche ed Ambientali, Università degli Studi del Sannio, Benevento, Italy
| | | | | | | |
Collapse
|
38
|
Lanni A, Moreno M, Lombardi A, de Lange P, Silvestri E, Ragni M, Farina P, Baccari GC, Fallahi P, Antonelli A, Goglia F. 3,5-diiodo-L-thyronine powerfully reduces adiposity in rats by increasing the burning of fats. FASEB J 2005; 19:1552-4. [PMID: 16014396 DOI: 10.1096/fj.05-3977fje] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The effect of thyroid hormones on metabolism has long supported their potential as drugs to stimulate fat reduction, but the concomitant induction of a thyrotoxic state has greatly limited their use. Recent evidence suggests that 3,5-diiodo-L-thyronine (T2), a naturally occurring iodothyronine, stimulates metabolic rate via mechanisms involving the mitochondrial apparatus. We examined whether this effect would result in reduced energy storage. Here, we show that T2 administration to rats receiving a high-fat diet (HFD) reduces both adiposity and body weight gain without inducing thyrotoxicity. Rats receiving HFD + T2 showed (when compared with rats receiving HFD alone) a 13% lower body weight, a 42% higher liver fatty acid oxidation rate, appoximately 50% less fat mass, a complete disappearance of fat from the liver, and significant reductions in the serum triglyceride and cholesterol levels (-52% and -18%, respectively). Thyroid hormones and thyroid-stimulating hormone (TSH) serum levels were not influenced by T2 administration. The biochemical mechanism underlying the effects of T2 on liver metabolism involves the carnitine palmitoyl-transferase system and mitochondrial uncoupling. If the results hold true for humans, pharmacological administration of T2 might serve to counteract the problems associated with overweight, such as accumulation of lipids in liver and serum, without inducing thyrotoxicity. However, the results reported here do not exclude deleterious effects of T2 on a longer time scale as well as do not show that T2 acts in the same way in humans.
Collapse
Affiliation(s)
- Antonia Lanni
- Dipartimento di Scienze della Vita, Seconda Università di Napoli, Caserta, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Solanes G, Pedraza N, Calvo V, Vidal-Puig A, Lowell BB, Villarroya F. Thyroid hormones directly activate the expression of the human and mouse uncoupling protein-3 genes through a thyroid response element in the proximal promoter region. Biochem J 2005; 386:505-13. [PMID: 15496137 PMCID: PMC1134869 DOI: 10.1042/bj20041073] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Revised: 10/06/2004] [Accepted: 10/21/2004] [Indexed: 01/07/2023]
Abstract
The transcription of the human UCP3 (uncoupling protein-3) gene in skeletal muscle is tightly regulated by metabolic signals related to fatty acid availability. However, changes in thyroid status also modulate UCP3 gene expression, albeit by unknown mechanisms. We created transgenic mice bearing the entire human UCP3 gene to investigate the effect of thyroid hormones on human UCP3 gene expression. Treatment of human UCP3 transgenic mice with thyroid hormones induced the expression of the human gene in skeletal muscle. In addition, transient transfection experiments demonstrate that thyroid hormones activate the transcription of the human UCP3 gene promoter when MyoD and the TR (thyroid hormone receptor) were co-transfected. The action of thyroid hormones on UCP3 gene transcription is mediated by the binding of the TR to a proximal region in the UCP3 gene promoter that contains a direct repeat structure. An intact DNA sequence of this site is required for thyroid hormone responsiveness and TR binding. Chromatin immunoprecipitation assays revealed that the TR binds this element in vivo. The murine Ucp3 gene promoter was also dependent on MyoD and responsive to thyroid hormone in transient transfection assays. However, it was much less sensitive to thyroid hormone than the human UCP3 promoter. In summary, UCP3 gene transcription is activated by thyroid hormone treatment in vivo, and this activation is mediated by a TRE (thyroid hormone response element) in the proximal promoter region. Such regulation suggests a link between UCP3 gene expression and the effects of thyroid hormone on mitochondrial function in skeletal muscle.
Collapse
Key Words
- promoter regulation
- thyroid hormone
- transgenic mouse
- uncoupling protein-3 (ucp3)
- c/ebpα, ccaat/enhancer-binding protein
- chip, chromatin immunoprecipitation
- emsa, electrophoretic mobility-shift assay
- ppar, peroxisome-proliferator-activated receptor
- ros, reactive oxygen species
- rxr, retinoid x receptor
- t3, thyroid hormone
- tr, thyroid hormone receptor
- tre, thyroid hormone response element
- ucp3, uncoupling protein-3
- ucp3l, long form of ucp3
- ucp3s, short form of ucp3
Collapse
Affiliation(s)
- Gemma Solanes
- Departament de Bioquímica i Biologia Molecular, Universitat de Barcelona, Avda Diagonal 645, E-08028 Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
40
|
Silvestri E, Moreno M, Lombardi A, Ragni M, de Lange P, Alexson SEH, Lanni A, Goglia F. Thyroid-hormone effects on putative biochemical pathways involved in UCP3 activation in rat skeletal muscle mitochondria. FEBS Lett 2005; 579:1639-45. [PMID: 15757654 DOI: 10.1016/j.febslet.2005.02.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Revised: 02/01/2005] [Accepted: 02/07/2005] [Indexed: 01/13/2023]
Abstract
In vitro, uncoupling protein 3 (UCP3)-mediated uncoupling requires cofactors [e.g., superoxides, coenzyme Q (CoQ) and fatty acids (FA)] or their derivatives, but it is not yet clear whether or how such activators interact with each other under given physiological or pathophysiological conditions. Since triiodothyronine (T3) stimulates lipid metabolism, UCP3 expression and mitochondrial uncoupling, we examined its effects on some biochemical pathways that may underlie UCP3-mediated uncoupling. T3-treated rats (Hyper) showed increased mitochondrial lipid-oxidation rates, increased expression and activity of enzymes involved in lipid handling and increased mitochondrial superoxide production and CoQ levels. Despite the higher mitochondrial superoxide production in Hyper, euthyroid and hyperthyroid mitochondria showed no differences in proton-conductance when FA were chelated by bovine serum albumin. However, mitochondria from Hyper showed a palmitoyl-carnitine-induced and GDP-inhibited increased proton-conductance in the presence of carboxyatractylate. We suggest that T3 stimulates the UCP3 activity in vivo by affecting the complex network of biochemical pathways underlying the UCP3 activation.
Collapse
Affiliation(s)
- E Silvestri
- Dipartimento di Scienze Biologiche ed Ambientali, Università degli Studi del Sannio, Via Port'Arsa 11, 82100 Benevento, Italy
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Dulloo AG, Seydoux J, Jacquet J. Adaptive thermogenesis and uncoupling proteins: a reappraisal of their roles in fat metabolism and energy balance. Physiol Behav 2004; 83:587-602. [PMID: 15621064 DOI: 10.1016/j.physbeh.2004.07.028] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Accepted: 07/27/2004] [Indexed: 11/24/2022]
Abstract
After decades of controversies about the quantitative importance of autoregulatory adjustments in energy expenditure in weight regulation, there is now increasing recognition that even subtle variations in thermogenesis could, in dynamic systems and over the long term, be important in determining weight maintenance in some and obesity in others. The main challenge nowadays is to provide a mechanistic explanation for the role of adaptive thermogenesis in attenuating and correcting deviations of body weight and body composition, and in the identification of molecular mechanisms that constitute its effector systems. This workshop paper reconsiders what constitutes adaptive changes in thermogenesis and reassesses the role of the sympathetic nervous system (SNS) and uncoupling proteins (UCP1, UCP2, UCP3, UCP5/BMCP1) as the efferent and effector components of the classical one-control system for adaptive thermogenesis and fat oxidation. It then reviews the evidence suggesting that there are in fact two distinct control systems for adaptive thermogenesis, the biological significance of which is to satisfy--in a lifestyle of famine-and-feast--the needs to suppress thermogenesis for energy conservation during weight loss and weight recovery even under environmental stresses (e.g., cold, infection, nutrient imbalance) when sympathetic activation of thermogenesis has equally important survival value.
Collapse
Affiliation(s)
- Abdul G Dulloo
- Department of Medicine, Division of Physiology, University of Fribourg, Rue du Musée 5, CH-1700 Fribourg, Switzerland.
| | | | | |
Collapse
|
42
|
Katsumata M, Matsumoto M, Kawakami S, Kaji Y. Effect of heat exposure on uncoupling protein-3 mRNA abundance in porcine skeletal muscle. J Anim Sci 2004; 82:3493-9. [PMID: 15537769 DOI: 10.2527/2004.82123493x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Exposure to cold increases abundance of mRNA for uncoupling protein-3 (UCP3) in skeletal muscle, whereas the influence of exposure to heat is unknown. Thus, we conducted a study to investigate the influence of heat exposure on UCP3 mRNA abundance in porcine skeletal muscle. Three pigs aged 110 to 120 d, with an average BW of 75 kg, from each of eight litters were used. Each littermate was assigned to one of three treatment groups; one group was reared at 32 degrees C and fed ad libitum (32AL) for 4 wk, whereas the other two groups were maintained at 23 degrees C for the same period, and either pair-fed the intake of their 32AL littermates (23PF), or fed ad libitum (23AL). The RNase protection assay revealed that UCP3 mRNA abundance in longissimus dorsi and rhomboideus muscles was higher (P < 0.05) in the 32AL group than the 23PF group. The 23AL group also had significantly higher UCP3 mRNA abundance than the 23PF group in these muscles. Plasma total 3,5,3'-triiodothyronine concentration of the 32AL group was lower (P < 0.05) than that of the 23PF group, whereas mRNA abundance of thyroid hormone receptor (TR) isoforms, TRalpha1 and TRalpha2, in these muscles was not affected, suggesting that the 32AL group was in a relatively hypo-thyroid state. Because thyroid hormone up-regulates UCP3 expression, these results indicate that factors other than thyroid hormone may play a role in regulating UCP3 mRNA abundance in skeletal muscle of heat-exposed pigs.
Collapse
Affiliation(s)
- M Katsumata
- Department of Animal and Grassland Research, National Agriculture Research Center for Kyushu Okinawa Region, Kumamoto 861-1192, Japan.
| | | | | | | |
Collapse
|
43
|
Mills EM, Rusyniak DE, Sprague JE. The role of the sympathetic nervous system and uncoupling proteins in the thermogenesis induced by 3,4-methylenedioxymethamphetamine. J Mol Med (Berl) 2004; 82:787-99. [PMID: 15602689 DOI: 10.1007/s00109-004-0591-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2004] [Accepted: 08/03/2004] [Indexed: 10/26/2022]
Abstract
Body temperature regulation involves a homeostatic balance between heat production and dissipation. Sympathetic agents such as 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) can disrupt this balance and as a result produce an often life-threatening hyperthermia. The hyperthermia induced by MDMA appears to result from the activation of the sympathetic nervous system (SNS) and the hypothalamic-pituitary-thyroid/adrenal axis. Norepinephrine release mediated by MDMA creates a double-edged sword of heat generation through activation of uncoupling protein (UCP3) along with alpha1- and beta3-adrenoreceptors and loss of heat dissipation through SNS-mediated vasoconstriction. This review examines cellular mechanisms involved in MDMA-induced thermogenesis from UCP activation to vasoconstriction and how these mechanisms are related to other thermogenic conditions and potential treatment modalities.
Collapse
Affiliation(s)
- Edward M Mills
- The National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892-1770, USA
| | | | | |
Collapse
|
44
|
Sprague JE, Mallett NM, Rusyniak DE, Mills E. UCP3 and thyroid hormone involvement in methamphetamine-induced hyperthermia. Biochem Pharmacol 2004; 68:1339-43. [PMID: 15345323 DOI: 10.1016/j.bcp.2004.03.049] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2004] [Accepted: 03/01/2004] [Indexed: 10/26/2022]
Abstract
Here, we determined the extent of hypothalamic-pituitary-thyroid (HPT) axis and uncoupling protein-3 (UCP3) involvement in methamphetamine (METH)-induced hyperthermia. Sprague-Dawley rats treated with METH (40mg/kg, s.c.) responded with a hyperthermic response that peaked 1h post-treatment and was sustained through 2h. After METH treatment, thyroparathyroidectomized (TX) animals developed hypothermia that was sustained for the 3h monitoring period. In TX animals supplemented for 5 days with levothyroxine (100microg/kg, s.c.), METH-induced hypothermia was eliminated and the hyperthermic response was restored. Thyroid hormone levels (T3 and T4), measured in euthyroid animals 1h after METH, remained unchanged. As seen in rats, 1h post-METH (20mg/kg, i.p.) treatment, wild-type (WT) mice developed profound hyperthermia that was sustained for 2h. In marked contrast, UCP3-/- animals developed a markedly blunted hyperthermic response at 1h compared to WT animals. Furthermore, UCP3-/- mice could not sustain this slight elevation in temperature. Two hours post-METH treatment, UCP3-/- animal temperature returned to baseline temperatures. UCP3-/- mice were also completely protected against the lethal effects of METH, whereas 40% of WT mice succumbed to the hyperthermia. These findings suggest that thyroid hormone plays a permissive role in the thermogenic effects induced by METH. Furthermore, the findings indicate that UCP3 plays a major role in the development and maintenance of the hyperthermia induced by METH. The relationship of these results to the hyperthermia induced by 3,4-methylenedioxymethamphetamine (MDMA) is also discussed.
Collapse
Affiliation(s)
- Jon E Sprague
- The Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University, Ada, OH 45810, USA.
| | | | | | | |
Collapse
|
45
|
Christoffolete MA, Moriscot AS. Hypercaloric cafeteria-like diet induced UCP3 gene expression in skeletal muscle is impaired by hypothyroidism. Braz J Med Biol Res 2004; 37:923-7. [PMID: 15264037 DOI: 10.1590/s0100-879x2004000600019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The uncoupling protein UCP3 belongs to a family of mitochondrial carriers located in the inner mitochondrial membrane of certain cell types. It is expressed almost exclusively at high levels in skeletal muscle and its physiological role has not been fully determined in this tissue. In the present study we have addressed the possible interaction between a hypercaloric diet and thyroid hormone (T3), which are strong stimulators of UCP3 gene expression in skeletal muscle. Male Wistar rats weighing 180 +/- 20 g were rendered hypothyroid by thyroidectomy and the addition of methimazole (0.05%; w/v) to drinking water after surgery. The rats were fed a hypercaloric cafeteria diet (68% carbohydrates, 13% protein and 18% lipids) for 10 days and sacrificed by decapitation. Subsequently, the gastrocnemius muscle was dissected, total RNA was isolated with Trizol and UCP3 gene expression was determined by Northern blotting using a specific probe. Statistical analysis was performed by one-way analysis of variance (ANOVA) followed by the Student-Newman-Keuls post-test. Skeletal muscle UCP3 gene expression was decreased by 60% in hypothyroid rats and UCP3 mRNA expression was increased 70% in euthyroid cafeteria-fed rats compared to euthyroid chow-fed animals, confirming previous studies. Interestingly, the cafeteria diet was unable to stimulate UCP3 gene expression in hypothyroid animals (40% lower as compared to euthyroid cafeteria-fed animals). The results show that a hypercaloric diet is a strong stimulator of UCP3 gene expression in skeletal muscle and requires T3 for an adequate action.
Collapse
Affiliation(s)
- M A Christoffolete
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, SP, Brasil
| | | |
Collapse
|
46
|
de Lange P, Ragni M, Silvestri E, Moreno M, Schiavo L, Lombardi A, Farina P, Feola A, Goglia F, Lanni A. Combined cDNA array/RT‐PCR analysis of gene expression profile in rat gastrocnemius muscle: relation to its adaptive function in energy metabolism during fasting. FASEB J 2003; 18:350-2. [PMID: 14656997 DOI: 10.1096/fj.03-0342fje] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We evaluated the effects of fasting on the gene expression profile in rat gastrocnemius muscle using a combined cDNA array and RT-PCR approach. Of the 1176 distinct rat genes analyzed on the cDNA array, 114 were up-regulated more than twofold in response to fasting, including all 17 genes related to lipid metabolism present on the membranes and all 10 analyzed components of the proteasome machinery. Only 7 genes were down-regulated more than twofold. On the basis of our analysis of genes on the cDNA array plus the data from our RT-PCR assays, the metabolic adaptations shown by rat gastrocnemius muscle during fasting are reflected by i) increased transcription both of myosin heavy chain (MHC) Ib (associated with type I fibers) and of at least three factors involved in the shift toward type I fibers [p27kip1, muscle LIM protein (MLP), cystein rich protein-2], of which one (MLP) has been shown to enhance the activity of MyoD, which would explain the known increase in the expression of skeletal muscle uncoupling protein-3 (UCP3); ii) increased lipoprotein lipase (LPL) expression, known to trigger UCP3 transcription, which tends, together with the first point, to underline the suggested role of UCP3 in mitochondrial lipid handling (the variations under the first point and this one have not been observed in mice, indicating a species-specific regulation of these mechanisms); iii) reduced expression of the muscle-specific coenzyme Q (CoQ)7 gene, which is necessary for mitochondrial CoQ synthesis, together with an increased expression of mitochondrial adenylate kinase 3, which inactivates the resident key enzyme for CoQ synthesis, 3-hydroxy-3-methylglutaryl CoA reductase (HMGR), the mRNA level for which fell during fasting; and iv) increased transcription of components of the proteasomal pathways involved in protein degradation/turnover.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Energy Metabolism
- Fasting
- Free Radical Scavengers/metabolism
- Gene Expression Profiling
- Heat-Shock Proteins/genetics
- Lipid Metabolism
- Mitochondria/metabolism
- Muscle Fibers, Slow-Twitch
- Muscle, Skeletal/metabolism
- Myosin Heavy Chains/genetics
- Oligonucleotide Array Sequence Analysis
- Oxidative Phosphorylation
- Protein Kinases/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Receptor, Insulin/genetics
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Retinoic Acid/genetics
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor, Type I
- Retinoid X Receptors
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription Factors/genetics
- Ubiquinone/biosynthesis
- Ubiquitin/genetics
- Ubiquitin-Conjugating Enzymes/genetics
Collapse
Affiliation(s)
- Pieter de Lange
- Dipartimento di Scienze della Vita, Seconda Università degli Studi di Napoli (SUN), Caserta,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Wang S, Subramaniam A, Cawthorne MA, Clapham JC. Increased fatty acid oxidation in transgenic mice overexpressing UCP3 in skeletal muscle. Diabetes Obes Metab 2003; 5:295-301. [PMID: 12940866 DOI: 10.1046/j.1463-1326.2003.00273.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIM To determine the rates of substrate oxidation by skeletal muscle in vitro as well as tissue-specific glucose uptake in vivo in transgenic mice overexpressing uncoupling protein-3 (UCP3) in skeletal muscle. METHODS Soleus muscle was isolated from transgenic mice overexpressing UCP3 in skeletal muscle and wild-type mice. Rates of [1-14C]-palmitate oxidation and [2-14C]-pyruvate oxidation were determined by in vitro incubation of the soleus muscle. Tissue glucose uptake rates were characterized during a glucose tolerance test using 2-deoxy-[1-3H]-glucose as a tracer. RESULTS Oxidation of [1-14C]-palmitate to CO2 by isolated soleus muscle was increased in UCP3 transgenic mice (0.45 +/- 0.03 vs. 0.24 +/- 0.02 micro mol/h/g). [2-14C]-pyruvate oxidation, which is a measure of the activity of pyruvate carboxylase in introducing pyruvate carbon into the tricarboxylic acid cycle, was increased 1.4-fold in the presence of fatty acid in the UCP3 transgenic mice (3.84 +/- 0.28 vs. 5.36 +/- 0.29 micro mol/h/g). The plasma glucose concentration after an overnight fast was significantly lower in the UCP3 transgenic mice (3.56 +/- 0.37 vs. 5.11 +/- 0.33 m/mol). Only brown adipose tissue from the UCP3 transgenic mice showed increased tissue glucose uptake rates compared with the wild-type mice. Skeletal muscle uptake rates of 2-deoxyglucose were either unchanged (soleus and gastrocnemius) or reduced (diaphragm) in the UCP3 transgenic mice. CONCLUSIONS The improved glucose tolerance in the UCP3 transgenic mice does not appear to be the result of increased uptake into peripheral tissues. The increased fatty acid oxidation in skeletal muscle of UCP3 transgenic mice supports the proposed role of UCP3 in the export of fatty acid anions from mitochondria during fatty acid oxidation.
Collapse
Affiliation(s)
- S Wang
- Clore Laboratory, University of Buckingham, Buckingham, UK.
| | | | | | | |
Collapse
|
48
|
Cunningham O, McElligott AM, Carroll AM, Breen E, Reguenga C, Oliveira MEM, Azevedo JE, Porter RK. Selective detection of UCP 3 expression in skeletal muscle: effect of thyroid status and temperature acclimation. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1604:170-9. [PMID: 12837549 DOI: 10.1016/s0005-2728(03)00057-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A novel peptide antibody to UCP 3 is characterized which is sensitive and discriminatory for UCP 3 over UCP 2, UCP 1 and other mitochondrial transporters. The peptide antibody detects UCP 3 expression in E. coli, COS cells and yeast expression systems. The peptide antibody detects a single approximately 33 kDa protein band in mitochondria from isolated rat skeletal muscle, mouse and rat brown adipose tissue, and in whole muscle groups (soleus and extensor digitorum longus) from mice. No 33 kDa band is detectable in isolated mitochondria from liver, heart, brain, kidney and lungs of rats, or gastrocnemius mitochondria from UCP 3 knock-out mice. From our data, we conclude that the peptide antibody is detecting UCP 3 in skeletal muscle, skeletal muscle mitochondria and brown adipose tissue mitochondria. It is also noteworthy that the peptide antibody can detect human, mouse and rat forms of UCP 3. Using the UCP 3 peptide antibody, we confirm and quantify the increased (2.8-fold) UCP 3 expression observed in skeletal muscle mitochondria isolated from 48-h-starved rats. We show that UCP 3 expression is increased (1.6-fold) in skeletal muscle of rats acclimated over 8 weeks to 8 degrees C and that UCP 3 expression is decreased (1.4-fold) in rats acclimated to 30 degrees C. Furthermore, UCP 3 expression is increased (2.3-fold) in skeletal muscle from hyperthyroid rats compared to euthyroid controls. In addition, we show that UCP 3 expression is only coincident with the mitochondrial fraction of skeletal muscle homogenates and not peroxisomal, nuclear or cytosolic and microsomal fractions.
Collapse
Affiliation(s)
- O Cunningham
- Department of Biochemistry, Trinity College Dublin, Biotechnology Building, Room 0.16, Dublin 2, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Moreno M, Lombardi A, De Lange P, Silvestri E, Ragni M, Lanni A, Goglia F. Fasting, lipid metabolism, and triiodothyronine in rat gastrocnemius muscle: interrelated roles of uncoupling protein 3, mitochondrial thioesterase, and coenzyme Q. FASEB J 2003; 17:1112-4. [PMID: 12692085 DOI: 10.1096/fj.02-0839fje] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We investigated the role of uncoupling protein 3 (UCP3) during fasting and examined the effect of triiodothyronine (T3) administration in such a condition. The possible involvement of mitochondrial thioesterase (MTE I) and the role of putative cofactors, such as coenzyme Q (CoQ), was also examined. Here, we report that fasting induced a more than twofold elevation in the expression and activity of MTE I, and an increase in UCP3 expression, without any associated uncoupling activity. Administration of T3 to fasting rats further up-regulated UCP3 as well as MTE I expression, markedly enhanced MTE I enzyme activity and prevented the impairment of the uncoupling activity of UCP3 normally seen during fasting. Indeed, T3-treatment induced an UCP3-dependent decrease in mitochondrial membrane potential, which was abolished by the addition of either GDP or superoxide dismutase (SOD). T3 administration also prevented the marked decrease of CoQ levels observed in fasting rats and this provides evidence that also, in vivo, CoQ represents an essential cofactor for the UCP3-mediated uncoupling. The data also show that MTE I and UCP3 are likely involved in the same biochemical mechanism and that UCP3 postulated functions, such as lipid handling and uncoupling, are not mutually exclusive but may coexist in vivo.
Collapse
Affiliation(s)
- Maria Moreno
- Dipartimento di Scienze Biologiche ed Ambientali, Università degli Studi del Sannio, Via Port'Arsa 11, 82100 Benevento, Italia
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Thyroid hormone (TH/T3) exerts many of its effects on energy metabolism by affecting gene transcription. However, although this is an important target for T3, only a limited number of T3-responsive genes have been identified and studied. Among these, the genes for uncoupling proteins (UCPs) have attracted the interest of scientists. Although the role of UCP1 seems quite well established, uncertainty surrounds the physiological function of the recently discovered UCP1 analogs, UCP2 and UCP3. The literature suggests that T3 affects both the expression and the activity of each of these UCPs but further studies are needed to establish whether the mechanisms activated by the hormone are the same. Recently, because of their larger range of expression, much attention has been devoted to UCP2 and UCP3. Most detailed studies on the involvement of these proteins as mediators of the effects of T3 on metabolism have focused on UCP3 because of its expression in skeletal muscle. T3 seems to be unique in having the ability to stimulate the expression and activity of UCP3 and this may be related to the capacity of T3 to activate the integrated biochemical processes linked to UCP activity, such as those related to fatty acids, coenzyme Q and free radicals.
Collapse
Affiliation(s)
- A Lanni
- Dipartimento di Scienze della Vita, Seconda Università degli Studi di Napoli, Via Vivaldi 43, 81100, Caserta, Italy.
| | | | | | | |
Collapse
|