1
|
Brockmueller A, Sajeev A, Koklesova L, Samuel SM, Kubatka P, Büsselberg D, Kunnumakkara AB, Shakibaei M. Resveratrol as sensitizer in colorectal cancer plasticity. Cancer Metastasis Rev 2024; 43:55-85. [PMID: 37507626 PMCID: PMC11016130 DOI: 10.1007/s10555-023-10126-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
Despite tremendous medical treatment successes, colorectal cancer (CRC) remains a leading cause of cancer deaths worldwide. Chemotherapy as monotherapy can lead to significant side effects and chemoresistance that can be linked to several resistance-activating biological processes, including an increase in inflammation, cellular plasticity, multidrug resistance (MDR), inhibition of the sentinel gene p53, and apoptosis. As a consequence, tumor cells can escape the effectiveness of chemotherapeutic agents. This underscores the need for cross-target therapeutic approaches that are not only pharmacologically safe but also modulate multiple potent signaling pathways and sensitize cancer cells to overcome resistance to standard drugs. In recent years, scientists have been searching for natural compounds that can be used as chemosensitizers in addition to conventional medications for the synergistic treatment of CRC. Resveratrol, a natural polyphenolic phytoalexin found in various fruits and vegetables such as peanuts, berries, and red grapes, is one of the most effective natural chemopreventive agents. Abundant in vitro and in vivo studies have shown that resveratrol, in interaction with standard drugs, is an effective chemosensitizer for CRC cells to chemotherapeutic agents and thus prevents drug resistance by modulating multiple pathways, including transcription factors, epithelial-to-mesenchymal transition-plasticity, proliferation, metastasis, angiogenesis, cell cycle, and apoptosis. The ability of resveratrol to modify multiple subcellular pathways that may suppress cancer cell plasticity and reversal of chemoresistance are critical parameters for understanding its anti-cancer effects. In this review, we focus on the chemosensitizing properties of resveratrol in CRC and, thus, its potential importance as an additive to ongoing treatments.
Collapse
Affiliation(s)
- Aranka Brockmueller
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Pettenkoferstr. 11, D-80336, Munich, Germany
| | - Anjana Sajeev
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, 781039, India
| | - Lenka Koklesova
- Clinic of Gynecology and Obstetrics, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollarova 2, 03601, Martin, Slovakia
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar (Medbay), Education City, Qatar Foundation, 24144, Doha, Qatar
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 03601, Martin, Slovakia
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar (Medbay), Education City, Qatar Foundation, 24144, Doha, Qatar
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, 781039, India
| | - Mehdi Shakibaei
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Pettenkoferstr. 11, D-80336, Munich, Germany.
| |
Collapse
|
2
|
Genome-Wide Transcriptional Profiling Reveals PHACTR1 as a Novel Molecular Target of Resveratrol in Endothelial Homeostasis. Nutrients 2022; 14:nu14214518. [DOI: 10.3390/nu14214518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory vascular disease in which endothelial cells play an important role in maintaining vascular homeostasis. Endotheliitis caused by endothelial dysfunction (ED) is the key cause for the development of cardiovascular and cerebrovascular diseases as well as other vascular system diseases. Resveratrol (RES), a multi-functional polyphenol present in edible plants and fruits, prevents cardiovascular disease by regulating a variety of athero-relevant signaling pathways. By transcriptome profiling of RES-treated human umbilical vein endothelial cells (HUVECs) and in-depth bioinformatic analysis, we observed that differentially expressed genes (DEGs) were enriched in KEGG pathways of fluid shear stress and atherosclerosis, suggesting that the RES may serve as a good template for a shear stress mimetic drug that hold promise in combating atherosclerosis. A heat map and multiple datasets superimposed screening revealed that RES significantly down-regulated phosphatase and actin modulator 1 (PHACTR1), a pivotal coronary artery disease risk gene associated with endothelial inflammation and polyvascular diseases. We further demonstrate that RES down-regulated the gene and protein expression of PHACTR1 and inhibited TNF-α-induced adhesion of THP-1 monocytes to activated endothelial cells via suppressing the expression of PHACTR1. Taken together, our study reveals that PHACTR1 represents a new molecular target for RES to maintain endothelial cell homeostasis and prevent atherosclerotic cardiovascular disease.
Collapse
|
3
|
Liu J, Song X, Yan Y, Liu B. Role of GTPase-Dependent Mitochondrial Dynamins in Heart Diseases. Front Cardiovasc Med 2021; 8:720085. [PMID: 34660720 PMCID: PMC8514750 DOI: 10.3389/fcvm.2021.720085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/06/2021] [Indexed: 12/25/2022] Open
Abstract
Heart function maintenance requires a large amount of energy, which is supplied by the mitochondria. In addition to providing energy to cardiomyocytes, mitochondria also play an important role in maintaining cell function and homeostasis. Although adult cardiomyocyte mitochondria appear as independent, low-static organelles, morphological changes have been observed in cardiomyocyte mitochondria under stress or pathological conditions. Indeed, cardiac mitochondrial fission and fusion are involved in the occurrence and development of heart diseases. As mitochondrial fission and fusion are primarily regulated by mitochondrial dynamins in a GTPase-dependent manner, GTPase-dependent mitochondrial fusion (MFN1, MFN2, and OPA1) and fission (DRP1) proteins, which are abundant in the adult heart, can also be regulated in heart diseases. In fact, these dynamic proteins have been shown to play important roles in specific diseases, including ischemia-reperfusion injury, heart failure, and metabolic cardiomyopathy. This article reviews the role of GTPase-dependent mitochondrial fusion and fission protein-mediated mitochondrial dynamics in the occurrence and development of heart diseases.
Collapse
Affiliation(s)
| | | | | | - Bin Liu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Rossi GA, Sacco O, Capizzi A, Mastromarino P. Can Resveratrol-Inhaled Formulations Be Considered Potential Adjunct Treatments for COVID-19? Front Immunol 2021; 12:670955. [PMID: 34093569 PMCID: PMC8172170 DOI: 10.3389/fimmu.2021.670955] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/19/2021] [Indexed: 12/20/2022] Open
Abstract
The pandemic caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) has led to an extraordinary threat to the global healthcare system. This infection disease, named COVID-19, is characterized by a wide clinical spectrum, ranging from asymptomatic or mild upper respiratory tract illness to severe viral pneumonia with fulminant cytokine storm, which leads to respiratory failure. To improve patient outcomes, both the inhibition of viral replication and of the unwarranted excessive inflammatory response are crucial. Since no specific antiviral drug has been proven effective for the treatment of patients and the only upcoming promising agents are monoclonal antibodies, inexpensive, safe, and widely available treatments are urgently needed. A potential anti-inflammatory molecule to be evaluated, which possesses antiviral activities in several experimental models, is the polyphenol resveratrol. This compound has been shown to inhibit SARS-CoV-2 replication in human primary bronchial epithelial cell cultures and to downregulate several pathogenetic mechanisms involved in COVID-19 severity. The use of resveratrol in clinical practice is limited by the low bioavailability following oral administration, due to the pharmacokinetic and metabolic characteristics of the molecule. Therefore, topical administration through inhaled formulations could allow us to achieve sufficiently high concentrations of the compound in the airways, the entry route of SARS-CoV-2.
Collapse
Affiliation(s)
- Giovanni A Rossi
- Department of Pediatrics, Pediatric Pulmonary Disease Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Oliviero Sacco
- Department of Pediatrics, Pediatric Pulmonary Disease Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Antonino Capizzi
- Department of Pediatrics, Pediatric Pulmonary Disease Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Paola Mastromarino
- Department of Public Health and Infectious Diseases, Microbiology Section, University of Rome "Sapienza", Rome, Italy
| |
Collapse
|
5
|
Marola OJ, Syc-Mazurek SB, Howell GR, Libby RT. Endothelin 1-induced retinal ganglion cell death is largely mediated by JUN activation. Cell Death Dis 2020; 11:811. [PMID: 32980857 PMCID: PMC7519907 DOI: 10.1038/s41419-020-02990-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 01/02/2023]
Abstract
Glaucoma is a neurodegenerative disease characterized by loss of retinal ganglion cells (RGCs), the output neurons of the retina. Multiple lines of evidence show the endothelin (EDN, also known as ET) system is important in glaucomatous neurodegeneration. To date, the molecular mechanisms within RGCs driving EDN-induced RGC death have not been clarified. The pro-apoptotic transcription factor JUN (the canonical target of JNK signaling) and the endoplasmic reticulum stress effector and transcription factor DNA damage inducible transcript 3 (DDIT3, also known as CHOP) have been shown to act downstream of EDN receptors. Previous studies demonstrated that JUN and DDIT3 were important regulators of RGC death after glaucoma-relevant injures. Here, we characterized EDN insult in vivo and investigated the role of JUN and DDIT3 in EDN-induced RGC death. To accomplish this, EDN1 ligand was intravitreally injected into the eyes of wildtype, Six3-cre+Junfl/fl (Jun-/-), Ddit3 null (Ddit3-/-), and Ddit3-/-Jun-/- mice. Intravitreal EDN1 was sufficient to drive RGC death in vivo. EDN1 insult caused JUN activation in RGCs, and deletion of Jun from the neural retina attenuated RGC death after EDN insult. However, deletion of Ddit3 did not confer significant protection to RGCs after EDN1 insult. These results indicate that EDN caused RGC death via a JUN-dependent mechanism. In addition, EDN signaling is known to elicit potent vasoconstriction. JUN signaling was shown to drive neuronal death after ischemic insult. Therefore, the effects of intravitreal EDN1 on retinal vessel diameter and hypoxia were explored. Intravitreal EDN1 caused transient retinal vasoconstriction and regions of RGC and Müller glia hypoxia. Thus, it remains a possibility that EDN elicits a hypoxic insult to RGCs, causing apoptosis via JNK-JUN signaling. The importance of EDN-induced vasoconstriction and hypoxia in causing RGC death after EDN insult and in models of glaucoma requires further investigation.
Collapse
Affiliation(s)
- Olivia J. Marola
- grid.412750.50000 0004 1936 9166Department of Ophthalmology, Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY USA ,grid.412750.50000 0004 1936 9166Cell Biology of Disease Graduate Program, University of Rochester Medical Center, Rochester, NY USA ,grid.16416.340000 0004 1936 9174The Center for Visual Sciences, University of Rochester, Rochester, NY USA
| | - Stephanie B. Syc-Mazurek
- grid.412750.50000 0004 1936 9166Department of Ophthalmology, Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY USA ,grid.412750.50000 0004 1936 9166Medical Scientist Training Program, University of Rochester Medical Center, Rochester, NY USA
| | - Gareth R. Howell
- grid.249880.f0000 0004 0374 0039The Jackson Laboratory, 600 Main Street, Bar Harbor, ME USA
| | - Richard T. Libby
- grid.412750.50000 0004 1936 9166Department of Ophthalmology, Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY USA ,grid.16416.340000 0004 1936 9174The Center for Visual Sciences, University of Rochester, Rochester, NY USA ,grid.412750.50000 0004 1936 9166Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY USA
| |
Collapse
|
6
|
Hu C, Liu Y, Teng M, Jiao K, Zhen J, Wu M, Li Z. Resveratrol inhibits the proliferation of estrogen receptor-positive breast cancer cells by suppressing EZH2 through the modulation of ERK1/2 signaling. Cell Biol Toxicol 2019; 35:445-456. [PMID: 30941654 DOI: 10.1007/s10565-019-09471-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 03/22/2019] [Indexed: 02/06/2023]
Abstract
Enhancer of zeste homolog 2 (EZH2) is frequently overexpressed in breast cancer and plays an important role in maintaining the cell proliferative capacity. However, the mechanisms underlying the transcriptional regulation of EZH2 in estrogen receptor (ER)-positive breast cancer cells remain unclear. The antitumor effects of resveratrol have been reported. However, whether EZH2 was involved in these effects needs further exploration. Here, we showed that EZH2 is required for estrogen-induced cell proliferation in ER-positive breast cancer. Exposure to 17β-estradiol (E2) upregulated EZH2 via ERα signaling, and this effect was blocked by U0126, a MEK inhibiter. Resveratrol inhibited the proliferation and colony formation in ER-positive breast cancer cells and downregulated EZH2 through inhibition of phospho-ERK1/2. These findings indicated that ERK1/2 and ER signaling-mediated EZH2 upregulation is crucial for the proliferation of ER-positive breast cancer cells. The suppression of EZH2 expression by ERK1/2 dephosphorylation is important for the antiproliferative activities of resveratrol against ER-positive breast cancer cells.
Collapse
Affiliation(s)
- Chunyan Hu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
| | - Yun Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
| | - Mengying Teng
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
| | - Kailin Jiao
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
| | - Jing Zhen
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
| | - Maoxuan Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
| | - Zhong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China.
| |
Collapse
|
7
|
Meng Q, Sun S, Luo Z, Shi B, Shan A, Cheng B. Maternal dietary resveratrol alleviates weaning-associated diarrhea and intestinal inflammation in pig offspring by changing intestinal gene expression and microbiota. Food Funct 2019; 10:5626-5643. [DOI: 10.1039/c9fo00637k] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Maternal dietary resveratrol alters intestinal gene expression and microbiota in offspring.
Collapse
Affiliation(s)
- Qingwei Meng
- Institute of Animal Nutrition
- Northeast Agricultural University
- Harbin
- P. R. China
| | - Shishuai Sun
- Institute of Animal Nutrition
- Northeast Agricultural University
- Harbin
- P. R. China
| | - Zhang Luo
- Institute of Animal Nutrition
- Northeast Agricultural University
- Harbin
- P. R. China
| | - Baoming Shi
- Institute of Animal Nutrition
- Northeast Agricultural University
- Harbin
- P. R. China
| | - Anshan Shan
- Institute of Animal Nutrition
- Northeast Agricultural University
- Harbin
- P. R. China
| | - Baojing Cheng
- Institute of Animal Nutrition
- Northeast Agricultural University
- Harbin
- P. R. China
| |
Collapse
|
8
|
Chowdhury P, Jayroe JJ, White BE, Fenton ER. Effects of a natural polyphenol on nicotine-induced pancreatic cancer cell proliferation. Tob Induc Dis 2018; 16:50. [PMID: 31516447 PMCID: PMC6659559 DOI: 10.18332/tid/95159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/04/2018] [Accepted: 09/15/2018] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION Resveratrol (trans-3, 4’, 5-trihydroxystilbene), a phytoalexin derived from the skin of grapes and other fruits, has anti-inflammatory and anti-oxidant effects. Its anti-carcinogenic effects are closely associated with its antioxidant activity; thus, the use of resveratrol as a possible cancer chemo-preventive is considered to be an important area of investigation. In this study we have examined the inhibitory effects of resveratrol in nicotine induced proliferation of pancreatic cancer cells. METHODS Cultured AR42J cells were incubated with 100 μM nicotine for 3 min and with 100 μM resveratrol for 30 min, either alone or in combination. Proliferation assays were conducted for a period of 0 to 96 h in serum media, incubated with nicotine and resveratrol, and evaluated by MTT assay. Protein was measured in lysed cells and activation of MAPK signals was measured by western blot using purified p-ERK antibody. Co-localization of activated ERK signals was confirmed by FITC conjugated ERK antibody using immunofluorescence assay and confocal microscopy. Biomarker of lipid peroxidation was determined in cell lysates by malondialdehyde (MDA) bioassay. RESULTS Resveratrol significantly suppressed the nicotine-induced proliferation of acinar cells compared to untreated controls (p<0.05). Mitogen activated protein kinase (MAPK) analysis revealed up-regulation of p-ERK expression by nicotine (p<0.05) that was suppressed significantly by resveratrol (p<0.05). Co-localization of activated ERK signals was confirmed by FITC conjugated ERK antibody, and this response was reduced significantly by resveratrol. Nicotine-induced malondialdehyde formation was also suppressed by resveratrol (p<0.05). CONCLUSIONS The data suggest that resveratrol suppressed nicotine-induced AR42J cell proliferation. The proliferation of AR42J cells by nicotine is associated with activation of MAPK signals and induction of protein oxidation. Resveratrol suppressed lipid peroxidation and P-ERK activated signals induced by nicotine. We conclude that resveratrol acts as an effective antioxidant in reversing the nicotine induced pancreatic cancer cell proliferation.
Collapse
Affiliation(s)
- Parimal Chowdhury
- University of Arkansas for Medical Sciences, Little Rock, United States
| | - John J Jayroe
- University of Arkansas for Medical Sciences, Little Rock, United States
| | - Bryan E White
- University of Arkansas at Little Rock (UALR), Little Rock, United States
| | - Ember R Fenton
- University of Arkansas for Medical Sciences, Little Rock, United States
| |
Collapse
|
9
|
Resveratrol Attenuates Staphylococcus Aureus-Induced Monocyte Adhesion through Downregulating PDGFR/AP-1 Activation in Human Lung Epithelial Cells. Int J Mol Sci 2018; 19:ijms19103058. [PMID: 30301269 PMCID: PMC6213130 DOI: 10.3390/ijms19103058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 12/17/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is a very common Gram-positive bacterium. It is widely distributed in air, soil, and water. S. aureus often causes septicemia and pneumonia in patients. In addition, it is considered to play a key role in mediating cell adhesion molecules upregulation. Resveratrol is a natural antioxidant with diverse biological effects, including the modulation of immune function, anti-inflammation, and cancer chemoprevention. In this study, we proved that S. aureus-upregulated vascular cell adhesion molecule-1 (VCAM-1) expression in human lung epithelial cells (HPAEpiCs) was inhibited by resveratrol. We also observed that resveratrol downregulated S. aureus-enhanced leukocyte count in bronchoalveolar lavage (BAL) fluid in mice. In HPAEpiCs, S. aureus stimulated c-Src, PDGFR, p38 MAPK, or JNK1/2 phosphorylation, which was inhibited by resveratrol. S. aureus induced the adhesion of THP-1 cells (a human monocytic cell line) to HPAEpiCs, which was also reduced by resveratrol. Finally, we found that S. aureus induced c-Src/PDGFR/p38 MAPK and JNK1/2-dependent c-Jun and ATF2 activation and in vivo binding of c-Jun and ATF2 to the VCAM-1 promoter, which were inhibited by resveratrol. Thus, resveratrol functions as a suppressor of S. aureus-induced inflammatory signaling, not only by inhibiting VCAM-1 expression but also by diminishing c-Src, PDGFR, JNK1/2, p38 MAPK, and AP-1 activation in HPAEpiCs.
Collapse
|
10
|
Polyphenols in Regulation of Redox Signaling and Inflammation During Cardiovascular Diseases. Cell Biochem Biophys 2017; 72:485-94. [PMID: 25701407 DOI: 10.1007/s12013-014-0492-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cardiovascular diseases remain one of the major health problems worldwide. The worldwide research against cardiovascular diseases as well as genome wide association studies were successful in indentifying the loci associated with this prominent life-threatening disease but still a substantial amount of casualty remains unexplained. Over the last decade, the thorough understanding of molecular and biochemical mechanisms of cardiac disorders lead to the knowledge of various mechanisms of action of polyphenols to target inflammation during cardiac disorders. The present review article summarizes major mechanisms of polyphenols against cardiovascular diseases.
Collapse
|
11
|
Zhang R, Lu M, Zhang Z, Tian X, Wang S, Lv D. Resveratrol reverses P-glycoprotein-mediated multidrug resistance of U2OS/ADR cells by suppressing the activation of the NF-κB and p38 MAPK signaling pathways. Oncol Lett 2016; 12:4147-4154. [PMID: 27895784 PMCID: PMC5104249 DOI: 10.3892/ol.2016.5136] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 07/01/2016] [Indexed: 12/18/2022] Open
Abstract
The present study aimed to investigate the reversal effect of resveratrol on the phenomenon of multidrug resistance in U2OS/adriamycin (ADR) cells and to clarify the molecular mechanisms. To examine the cell survival and half-inhibitory concentration (IC50) of ADR in U2OS and U2OS/ADR cells, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was used. The accumulation of ADR in U2OS and U2OS/ADR cells was investigated by flow cytometry. Reverse transcription-quantitative polymerase chain reaction and western blot analysis were used to detect the expression of multidrug resistance protein 1 (MDR1), P-glycoprotein (P-gp), p65 and p38. Compared with U2OS cells, the IC50 value of ADR was significantly increased in U2OS/ADR cells, which exhibited high levels of MDR1/P-gp. However, resveratrol could drastically reduce the IC50 value of ADR and the expression of MDR1/P-gp, and increased the accumulation of ADR in U2OS/ADR cells. In addition, the expression levels of p38 (phosphorylated) and p65 (acetylated and total) in U2OS/ADR cells were also significantly suppressed by resveratrol. These results suggested that the nuclear factor (NF)-κB and p38 mitogen-activated protein kinase (MAPK) signaling pathways are correlated with ADR-induced drug resistance in U2OS/ADR cells. Furthermore, resveratrol could downregulate the expression of MDR1/P-gp and reverse the drug resistance phenomenon in U2OS/ADR cells partly at least by suppressing the activation of the NF-κB and p38 MAPK signaling pathways.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Orthopedics, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Ming Lu
- Department of Orthopedics, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Zhen Zhang
- Department of Orthopedics, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Xiliang Tian
- Department of Orthopedics, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Shouyu Wang
- Department of Orthopedics, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Decheng Lv
- Department of Orthopedics, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
12
|
Meyer MR, Barton M. Estrogens and Coronary Artery Disease: New Clinical Perspectives. ADVANCES IN PHARMACOLOGY 2016; 77:307-60. [PMID: 27451102 DOI: 10.1016/bs.apha.2016.05.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In premenopausal women, endogenous estrogens are associated with reduced prevalence of arterial hypertension, coronary artery disease, myocardial infarction, and stroke. Clinical trials conducted in the 1990s such as HERS, WHI, and WISDOM have shown that postmenopausal treatment with horse hormone mixtures (so-called conjugated equine estrogens) and synthetic progestins adversely affects female cardiovascular health. Our understanding of rapid (nongenomic) and chronic (genomic) estrogen signaling has since advanced considerably, including identification of a new G protein-coupled estrogen receptor (GPER), which like the "classical" receptors ERα and ERβ is highly abundant in the cardiovascular system. Here, we discuss the role of estrogen receptors in the pathogenesis of coronary artery disease and review natural and synthetic ligands of estrogen receptors as well as their effects in physiology, on cardiovascular risk factors, and atherosclerotic vascular disease. Data from preclinical and clinical studies using nonselective compounds activating GPER, which include selective estrogen receptor modulators such as tamoxifen or raloxifene, selective estrogen receptor downregulators such as Faslodex™ (fulvestrant/ICI 182,780), vitamin B3 (niacin), green tea catechins, and soy flavonoids such as genistein or resveratrol, strongly suggest that activation of GPER may afford therapeutic benefit for primary and secondary prevention in patients with or at risk for coronary artery disease. Evidence from preclinical studies suggest similar efficacy profiles for selective small molecule GPER agonists such as G-1 which are devoid of uterotrophic activity. Further clinical research in this area is warranted to provide opportunities for future cardiovascular drug development.
Collapse
Affiliation(s)
- M R Meyer
- Triemli City Hospital, Zürich, Switzerland.
| | - M Barton
- Molecular Internal Medicine, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
13
|
Lou Y, Wang Z, Xu Y, Zhou P, Cao J, Li Y, Chen Y, Sun J, Fu L. Resveratrol prevents doxorubicin-induced cardiotoxicity in H9c2 cells through the inhibition of endoplasmic reticulum stress and the activation of the Sirt1 pathway. Int J Mol Med 2015. [PMID: 26202177 DOI: 10.3892/ijmm.2015.2291] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Treatment with doxorubicin (DOX) is one of the major causes of chemotherapy-induced cardiotoxicity and is therefore, the principal limiting factor in the effectiveness of chemotherapy for cancer patients. DOX‑induced heart failure is thought to result from endoplasmic reticulum (ER) stress and cardiomyocyte apoptosis. Resveratrol (RV), a polyphenol antioxidant found in red wine, has been shown to play a cardioprotective role. The aim of the present study was to examine the effects of RV on DOX‑induced cardiotoxicity in H9c2 cells. We hypothesized that RV would protect H9c2 cells against DOX‑induced ER stress and subsequent cell death through the activation of the Sirt1 pathway. Our results demonstrated that the decrease observed in the viability of the H9c2 cells following exposure to DOX was accompanied by a significant increase in the expression of the ER stress‑related proteins, glucose‑regulated protein 78 (GRP78) and C/EBP homologous protein (CHOP). However, we found that RV downregulated the expression of ER stress marker protein in the presence of DOX and restored the viability of the H9c2 cells. Exposure to RV or DOX alone only slightly increased the protein expression of Sirt1, whereas a significant increase in Sirt1 protein levels was observed in the cells treated with both RV and DOX. The Sirt1 inhibitor, nicotinamide (NIC), partially neutralized the effects of RV on the expression of Sirt1 in the DOX‑treated cells and completely abolished the effects of RV on the expression of GRP78 and CHOP. The findings of our study suggest that RV protects H9c2 cells against DOX‑induced ER stress through ER stabilization, and more specifically through the activation of the Sirt1 pathway, thereby leading to cardiac cell survival.
Collapse
Affiliation(s)
- Yu Lou
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Zhen Wang
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yi Xu
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Ping Zhou
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Junxian Cao
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yuanshi Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yeping Chen
- Department of Cardiovascular Medicine, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Junfeng Sun
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Lu Fu
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
14
|
DAI ZIXUN, LEI PENGFEI, XIE JIE, HU YIHE. Antitumor effect of resveratrol on chondrosarcoma cells via phosphoinositide 3-kinase/AKT and p38 mitogen-activated protein kinase pathways. Mol Med Rep 2015; 12:3151-5. [DOI: 10.3892/mmr.2015.3683] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 03/23/2015] [Indexed: 11/06/2022] Open
|
15
|
Giacosa A, Barale R, Bavaresco L, Faliva MA, Gerbi V, La Vecchia C, Negri E, Opizzi A, Perna S, Pezzotti M, Rondanelli M. Mediterranean Way of Drinking and Longevity. Crit Rev Food Sci Nutr 2014; 56:635-40. [DOI: 10.1080/10408398.2012.747484] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Attilio Giacosa
- Department of Surgery, University of Genoa, Genoa, Italy
- Department of Gastroenterology, Policlinico di Monza, Monza, Italy
| | | | | | | | - Vincenzo Gerbi
- Va. PRA, Microbiology and Food Technology Sector, University of Turin, Grugliasco, Italy
| | - Carlo La Vecchia
- Mario Negri Institute for Pharmacological Research, Milan, Italy
- Department of Occupational Health, University of Milan, Milan, Italy
| | - Eva Negri
- Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Annalisa Opizzi
- ASP (Azienda di Servizi alla Persona) of Pavia, Pavia, Italy
| | - Simone Perna
- ASP (Azienda di Servizi alla Persona) of Pavia, Pavia, Italy
| | - Mario Pezzotti
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Mariangela Rondanelli
- ASP (Azienda di Servizi alla Persona) of Pavia, Pavia, Italy
- Department of Applied Health Science, University of Pavia, Pavia, Italy
| |
Collapse
|
16
|
Tang PCT, Ng YF, Ho S, Gyda M, Chan SW. Resveratrol and cardiovascular health--promising therapeutic or hopeless illusion? Pharmacol Res 2014; 90:88-115. [PMID: 25151891 DOI: 10.1016/j.phrs.2014.08.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 07/29/2014] [Accepted: 08/02/2014] [Indexed: 02/07/2023]
Abstract
Resveratrol (3,5,4'-trihydroxy-trans-stilbene) is a natural polyphenolic compound that exists in Polygonum cuspidatum, grapes, peanuts and berries, as well as their manufactured products, especially red wine. Resveratrol is a pharmacologically active compound that interacts with multiple targets in a variety of cardiovascular disease models to exert protective effects or induce a reduction in cardiovascular risks parameters. This review attempts to primarily serve to summarize the current research findings regarding the putative cardioprotective effects of resveratrol and the molecular pathways underlying these effects. One intent is to hopefully provide a relatively comprehensive resource for clues that may prompt ideas for additional mechanistic studies which might further elucidate and strengthen the role of the stilbene family of compounds in cardiovascular disease and cardioprotection. Model systems that incorporate a significant functional association with tissues outside of the cardiovascular system proper, such as adipose (cell culture, obesity models) and pancreatic (diabetes) tissues, were reviewed, and the molecular pathways and/or targets related to these models and influenced by resveratrol are discussed. Because the body of work encompassing the stilbenes and other phytochemicals in the context of longevity and the ability to presumably mitigate a plethora of afflictions is replete with conflicting information and controversy, especially so with respect to the human response, we tried to remain as neutral as possible in compiling and presenting the more current data with minimal commentary, permitting the reader free reign to extract the knowledge most helpful to their own investigations.
Collapse
Affiliation(s)
- Philip Chiu-Tsun Tang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yam-Fung Ng
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology, Shenzhen, China
| | - Susan Ho
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Michael Gyda
- Life Sciences Multimedia Productions, Drexel Hill, PA, USA.
| | - Shun-Wan Chan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology, Shenzhen, China; Food Safety and Technology Research Centre, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
17
|
Resveratrol inhibits Staphylococcus aureus-induced TLR2/MyD88/NF-κB-dependent VCAM-1 expression in human lung epithelial cells. Clin Sci (Lond) 2014; 127:375-90. [PMID: 24617573 DOI: 10.1042/cs20130816] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Staphylococcus aureus is the most commonly found Gram-positive bacterium in patients admitted to intensive-care units, causing septicaemia or pneumonia. S. aureus is considered to play an important role in the induction of cell adhesion molecules. Resveratrol, a compound found in the skins of red fruits, may inhibit the inflammatory signalling pathways involved in lung diseases. In the present paper, we have shown that resveratrol reduced S. aureus-mediated VCAM-1 (vascular cell adhesion molecule-1) expression in HPAEpiCs (human lung epithelial cells) and lungs of mice. In an in vivo study, we have shown that resveratrol inhibited S. aureus-induced pulmonary haematoma and leucocyte count in BAL (bronchoalveolar lavage) fluid in mice. In an in vitro study, we observed that resveratrol attenuated S. aureus-induced TLR2 (Toll-like receptor 2), MyD88 (myeloid differentiation factor 88) and PI3K (phosphoinositide 3-kinase) complex formation. S. aureus stimulated Akt, JNK1/2 (c-Jun N-terminal kinase 1/2) and p42/p44 MAPK (mitogen-activated protein kinase) phosphorylation, which were inhibited by resveratrol. In addition, S. aureus induced IκB (inhibitor of nuclear factor κB) α and NF-κB (nuclear factor κB) p65 phosphorylation and NF-κB p65 translocation, which were reduced by resveratrol. Finally, we found that S. aureus induced NF-κB and p300 complex formation and p300 phosphorylation, which were inhibited by resveratrol. Thus resveratrol functions as a suppressor of S. aureus-induced inflammatory signalling not only by inhibiting VCAM-1 expression, but also by reducing TLR2-MyD88-PI3K complex formation and Akt, JNK1/2, p42/p44 MAPK, p300 and NF-κB activation in HPAEpiCs.
Collapse
|
18
|
Abstract
The phytochemicals present in fruits and vegetables may play an important role in deceasing chronic disease risk. Grapes, one of the most popular and widely cultivated and consumed fruits in the world, are rich in phytochemicals. Epidemiological evidence has linked the consumption of grapes with reduced risk of chronic diseases, including certain types of cancer and cardiovascular disease. In vitro and in vivo studies have shown that grapes have strong antioxidant activity, inhibiting cancer cell proliferation and suppressing platelet aggregation, while also lowering cholesterol. Grapes contain a variety of phytochemicals, like phenolic acids, stilbenes, anthocyanins, and proanthocyanidins, all of which are strong antioxidants. The phytochemical composition of grapes, however, varies greatly among different varieties. While extensive research exists, a literature review of the health benefits of grapes and their phytochemicals has not been compiled to summarize this work. The aim of this paper is to critically review the most recent literature regarding the concentrations, biological activities, and mechanisms of grape phytochemicals.
Collapse
Affiliation(s)
- Jun Yang
- Frito-Lay R&D, 7701 Legacy Drive, Plano, TX 75024, USA.
| | | |
Collapse
|
19
|
Resveratrol inhibits phenotype modulation by platelet derived growth factor-bb in rat aortic smooth muscle cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:572430. [PMID: 24738020 PMCID: PMC3964901 DOI: 10.1155/2014/572430] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/08/2014] [Accepted: 01/27/2014] [Indexed: 02/07/2023]
Abstract
Dedifferentiated vascular smooth muscle cells (VSMCs) are phenotypically modulated from the contractile state to the active synthetic state in the vessel wall. In this study, we investigated the effects of resveratrol on phenotype modulation by dedifferentiation and the intracellular signal transduction pathways of platelet derived growth factor-bb (PDGF-bb) in rat aortic vascular smooth muscle cells (RAOSMCs). Treatment of RAOSMCs with resveratrol showed dose-dependent inhibition of PDGF-bb-stimulated proliferation. Resveratrol treatment inhibited this phenotype change and disassembly of actin filaments and maintained the expression of contractile phenotype-related proteins such as calponin and smooth muscle actin-alpha in comparison with only PDGF-bb stimulated RAOSMC. Although PDGF stimulation elicited strong and detectable Akt and mTOR phosphorylations lasting for several hours, Akt activation was much weaker when PDGF was used with resveratrol. In contrast, resveratrol only slightly inhibited phosphorylations of 42/44 MAPK and p38 MAPK. In conclusion, RAOSMC dedifferentiation, phenotype, and proliferation rate were inhibited by resveratrol via interruption of the balance of Akt, 42/44MAPK, and p38MAPK pathway activation stimulated by PDGF-bb.
Collapse
|
20
|
Borriello A, Bencivenga D, Caldarelli I, Tramontano A, Borgia A, Zappia V, Della Ragione F. Resveratrol: from basic studies to bedside. Cancer Treat Res 2014; 159:167-184. [PMID: 24114480 DOI: 10.1007/978-3-642-38007-5_10] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Plants produce a remarkable amount of low molecular mass natural products endowed with a large array of pivotal biological activities. Among these molecules, resveratrol (3,5,4'-trihydroxystilbene) has been identified as an important modulator of cell phenotype with a complex and pleiotropic mode of action. Extensive literature regarding its activity, mainly employing cellular models, suggests that this polyphenol controls cell proliferation, induces differentiation, and activates apoptosis and autophagy. The compound also modulates angiogenesis and inflammation. Similarly, studies on implanted cancers and chemical-induced tumors confirm the potential chemotherapeutical interest of the compound. Likewise, several reports clearly demonstrated, in animal models, that the compound might positively affect the development and evolution of chronic diseases including type 2 diabetes, obesity, coronary heart disease, metabolic syndrome, and neurogenerative pathologies. Finally, a number of investigations stated that the toxicity of the molecule is scarce. Despite these promising observations, few clinical trials have yet been performed to evaluate the effectiveness of the molecule both in prevention and treatment of human chronic disease. Preliminary findings therefore suggest the need for more extensive clinical investigations.
Collapse
Affiliation(s)
- Adriana Borriello
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via De Crecchio 7, 80138, Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
21
|
Disatnik MH, Ferreira JCB, Campos JC, Gomes KS, Dourado PMM, Qi X, Mochly-Rosen D. Acute inhibition of excessive mitochondrial fission after myocardial infarction prevents long-term cardiac dysfunction. J Am Heart Assoc 2013; 2:e000461. [PMID: 24103571 PMCID: PMC3835263 DOI: 10.1161/jaha.113.000461] [Citation(s) in RCA: 250] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background Ischemia and reperfusion (IR) injury remains a major cause of morbidity and mortality and multiple molecular and cellular pathways have been implicated in this injury. We determined whether acute inhibition of excessive mitochondrial fission at the onset of reperfusion improves mitochondrial dysfunction and cardiac contractility postmyocardial infarction in rats. Methods and Results We used a selective inhibitor of the fission machinery, P110, which we have recently designed. P110 treatment inhibited the interaction of fission proteins Fis1/Drp1, decreased mitochondrial fission, and improved bioenergetics in three different rat models of IR, including primary cardiomyocytes, ex vivo heart model, and an in vivo myocardial infarction model. Drp1 transiently bound to the mitochondria following IR injury and P110 treatment blocked this Drp1 mitochondrial association. Compared with control treatment, P110 (1 μmol/L) decreased infarct size by 28±2% and increased adenosine triphosphate levels by 70+1% after IR relative to control IR in the ex vivo model. Intraperitoneal injection of P110 (0.5 mg/kg) at the onset of reperfusion in an in vivo model resulted in improved mitochondrial oxygen consumption by 68% when measured 3 weeks after ischemic injury, improved cardiac fractional shortening by 35%, reduced mitochondrial H2O2 uncoupling state by 70%, and improved overall mitochondrial functions. Conclusions Together, we show that excessive mitochondrial fission at reperfusion contributes to long‐term cardiac dysfunction in rats and that acute inhibition of excessive mitochondrial fission at the onset of reperfusion is sufficient to result in long‐term benefits as evidenced by inhibiting cardiac dysfunction 3 weeks after acute myocardial infarction.
Collapse
Affiliation(s)
- Marie-Hélène Disatnik
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, 94305, CA
| | | | | | | | | | | | | |
Collapse
|
22
|
Casas-Rua V, Alvarez IS, Pozo-Guisado E, Martín-Romero FJ. Inhibition of STIM1 phosphorylation underlies resveratrol-induced inhibition of store-operated calcium entry. Biochem Pharmacol 2013; 86:1555-63. [PMID: 24095720 DOI: 10.1016/j.bcp.2013.09.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/23/2013] [Accepted: 09/24/2013] [Indexed: 11/19/2022]
Abstract
Resveratrol, a natural phytoalexin that shows health-promoting benefits, is an inhibitor of store-operated calcium entry (SOCE). Knowledge of the molecular mechanism underlying this inhibition is required for the proper design of therapies that include resveratrol or related stilbenoids, but remains largely unknown. To unravel this mechanism, using HEK293 cells as a model, we found that resveratrol inhibited the ERK1/2 activation triggered by Ca²⁺ store depletion. As a consequence, resveratrol inhibited STIM1 phosphorylation at residues Ser575, Ser608, and Ser621. Because this phosphorylation regulates the dissociation of STIM1 from the microtubule plus-end binding protein EB1 under store depletion conditions, resveratrol inhibited STIM1-EB1 dissociation. This inhibition had downstream effects such as inhibition of STIM1 multimerization in response to store depletion, and a significant impairment in the binding of STIM1 to ORAI1. Although additional targets for resveratrol in the molecular mechanism that governs SOCE cannot be discarded, the present results demonstrate that ERK1/2 pathway is a major target for resveratrol, and that the impairment of its activation produces a significant inhibition of SOCE.
Collapse
Affiliation(s)
- Vanessa Casas-Rua
- Department of Biochemistry and Molecular Biology, School of Life Sciences, University of Extremadura, Badajoz, Spain; Department of Cell Biology, School of Life Sciences, University of Extremadura, Badajoz, Spain.
| | | | | | | |
Collapse
|
23
|
Guo C, Sinnott B, Niu B, Lowry MB, Fantacone ML, Gombart AF. Synergistic induction of human cathelicidin antimicrobial peptide gene expression by vitamin D and stilbenoids. Mol Nutr Food Res 2013; 58:528-536. [PMID: 24039193 DOI: 10.1002/mnfr.201300266] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 07/25/2013] [Accepted: 07/26/2013] [Indexed: 11/07/2022]
Abstract
SCOPE The cathelicidin antimicrobial peptide (CAMP) gene is induced by 1α,25-dihydroxyvitamin D3 (1α,25(OH)2 D3), lithocholic acid, curcumin, nicotinamide, and butyrate. Discovering additional small molecules that regulate its expression will identify new molecular mechanisms involved in CAMP regulation and increase understanding of how diet and nutrition can improve immune function. METHODS AND RESULTS We discovered that two stilbenoids, resveratrol and pterostilbene, induced CAMP promoter-luciferase expression. Synergistic activation was observed when either stilbenoid was combined with 1α,25(OH)2 D3. Both stilbenoids increased CAMP mRNA and protein levels in the monocyte cell line U937 and synergy was observed in both U937 and the keratinocyte cell line, HaCaT. Inhibition of resveratrol targets sirtuin-1, cyclic AMP production and the c-Jun N-terminal, phosphoinositide 3 and AMP-activated kinases did not block induction of CAMP by resveratrol or synergy with 1α,25(OH)2 D3. Nevertheless, inhibition of the extracellular signal regulated 1/2 and p38 mitogen-activated protein kinases, increased CAMP gene expression in combination with 1α,25(OH)2 D3 suggesting that inhibition of these kinases by resveratrol may explain, in part, its synergy with vitamin D. CONCLUSION Our findings demonstrate for the first time that stilbenoid compounds may have the potential to boost the innate immune response by increasing CAMP gene expression, particularly in combination with 1α,25(OH)2 D3.
Collapse
Affiliation(s)
- Chunxiao Guo
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331.,Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| | - Brian Sinnott
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331.,Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| | - Brenda Niu
- School of Medicine, Oregon Health Sciences University, Portland, Oregon 97239
| | - Malcolm B Lowry
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331.,Department of Microbiology, Oregon State University, Corvallis, Oregon 97331
| | - Mary L Fantacone
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331.,Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| | - Adrian F Gombart
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331.,Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| |
Collapse
|
24
|
Resveratrol prevents dendritic cell maturation in response to advanced glycation end products. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:574029. [PMID: 23936610 PMCID: PMC3725714 DOI: 10.1155/2013/574029] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 06/06/2013] [Accepted: 06/07/2013] [Indexed: 12/22/2022]
Abstract
Advanced glycation end products (AGEs), generated through nonenzymatic glycosylation of proteins, lipids, and nucleic acids, accumulate in the body by age thus being considered as biomarkers of senescence. Senescence is characterized by a breakdown of immunological self-tolerance, resulting in increased reactivity to self-antigens. Previous findings suggest that AGE and its receptor RAGE may be involved in the pathogenesis of autoimmune reactions through dendritic cell (DC) activation. The aim of this study was to investigate whether resveratrol, a polyphenolic antioxidant compound with tolerogenic effects on DCs, was able to counteract the mechanisms triggered by AGE/RAGE interaction on DCs. By immunochemical and cytofluorimetric assays, we demonstrated that in vitro pretreatment of human monocyte-derived DCs with resveratrol prevents DC activation in response to glucose-treated albumin (AGE-albumin). We found that resveratrol exerts an inhibitory effect on DC surface maturation marker and RAGE up-regulation in response to AGE-albumin. It also inhibited proinflammatory cytokine expression, allostimulatory ability upregulation, mitogen-activated protein (MAP) kinases, and NF-κB activation in AGE-albumin-stimulated DCs. We suggest that resveratrol, by dismantling AGE/RAGE signaling on DCs may prevent or reduce increased reactivity to self-molecules in aging.
Collapse
|
25
|
Drawnel FM, Archer CR, Roderick HL. The role of the paracrine/autocrine mediator endothelin-1 in regulation of cardiac contractility and growth. Br J Pharmacol 2013; 168:296-317. [PMID: 22946456 DOI: 10.1111/j.1476-5381.2012.02195.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 08/23/2012] [Accepted: 08/28/2012] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Endothelin-1 (ET-1) is a critical autocrine and paracrine regulator of cardiac physiology and pathology. Produced locally within the myocardium in response to diverse mechanical and neurohormonal stimuli, ET-1 acutely modulates cardiac contractility. During pathological cardiovascular conditions such as ischaemia, left ventricular hypertrophy and heart failure, myocyte expression and activity of the entire ET-1 system is enhanced, allowing the peptide to both initiate and maintain maladaptive cellular responses. Both the acute and chronic effects of ET-1 are dependent on the activation of intracellular signalling pathways, regulated by the inositol-trisphosphate and diacylglycerol produced upon activation of the ET(A) receptor. Subsequent stimulation of protein kinases C and D, calmodulin-dependent kinase II, calcineurin and MAPKs modifies the systolic calcium transient, myofibril function and the activity of transcription factors that coordinate cellular remodelling. The precise nature of the cellular response to ET-1 is governed by the timing, localization and context of such signals, allowing the peptide to regulate both cardiomyocyte physiology and instigate disease. LINKED ARTICLES This article is part of a themed section on Endothelin. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.168.issue-1.
Collapse
Affiliation(s)
- Faye M Drawnel
- Babraham Research Campus, Babraham Institute, Cambridge, UK
| | | | | |
Collapse
|
26
|
Wakabayashi I, Takeda Y. Inhibitory effects of resveratrol on MCP-1, IL-6, and IL-8 production in human coronary artery smooth muscle cells. Naunyn Schmiedebergs Arch Pharmacol 2013; 386:835-9. [DOI: 10.1007/s00210-013-0877-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 04/17/2013] [Indexed: 12/21/2022]
|
27
|
Tateya S, Kim F, Tamori Y. Recent advances in obesity-induced inflammation and insulin resistance. Front Endocrinol (Lausanne) 2013; 4:93. [PMID: 23964268 PMCID: PMC3737462 DOI: 10.3389/fendo.2013.00093] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/11/2013] [Indexed: 12/12/2022] Open
Abstract
It has been demonstrated in rodents and humans that chronic inflammation characterized by macrophage infiltration occurs mainly in adipose tissue or liver during obesity, in which activation of immune cells is closely associated with insulin sensitivity. Macrophages can be classified as classically activated (M1) macrophages that support microbicidal activity or alternatively activated (M2) macrophages that support allergic and antiparasitic responses. In the context of insulin action, M2 macrophages sustain insulin sensitivity by secreting IL-4 and IL-10, while M1 macrophages induce insulin resistance through the secretion of proinflammatory cytokines, such as TNFα. Polarization of M1/M2 is controlled by various dynamic functions of other immune cells. It has been demonstrated that, in a lean state, TH2 cells, Treg cells, natural killer T cells, or eosinophils contribute to the M2 activation of macrophages by secreting IL-4 or IL-10. In contrast, obesity causes alteration of the constituent immune cells, in which TH1 cells, B cells, neutrophils, or mast cells induce M1 activation of macrophages by the elevated secretion of TNFα and IFNγ. Increased secretion of TNFα and free fatty acids from hypertrophied adipocytes also contributes to the M1 activation of macrophages. Since obesity-induced insulin resistance is established by macrophage infiltration and the activation of immune cells inside tissues, identification of the factors that regulate accumulation and the intracellular signaling cascades that define polarization of M1/M2 would be indispensable. Regulation of these factors would lead to the pharmacological inhibition of obesity-induced insulin resistance. In this review, we introduce molecular mechanisms relevant to the pathophysiology and review the most recent studies of clinical applications targeting chronic inflammation.
Collapse
Affiliation(s)
- Sanshiro Tateya
- Department of Internal Medicine, Division of Diabetes, Metabolism, and Endocrinology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Francis Kim
- Department of Medicine, University of Washington, Seattle, WA, USA
- Diabetes and Obesity Center of Excellence, University of Washington, Seattle, WA, USA
| | - Yoshikazu Tamori
- Department of Internal Medicine, Division of Diabetes, Metabolism, and Endocrinology, Graduate School of Medicine, Kobe University, Kobe, Japan
- Department of Internal Medicine, Diabetes Center, Chibune Hospital, Osaka, Japan
- *Correspondence: Yoshikazu Tamori, Department of Internal Medicine, Division of Diabetes, Metabolism, and Endocrinology, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan e-mail:
| |
Collapse
|
28
|
Effects of Purple Grape Juice in the Redox-sensitive Modulation of Right Ventricular Remodeling in a Pulmonary Arterial Hypertension Model. J Cardiovasc Pharmacol 2012; 60:15-22. [DOI: 10.1097/fjc.0b013e3182550fd6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
29
|
Resveratrol and diabetic cardiac function: focus on recent in vitro and in vivo studies. J Bioenerg Biomembr 2012; 44:281-96. [DOI: 10.1007/s10863-012-9429-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
30
|
Abstract
Resveratrol, a natural polyphenol abundantly found in grape skins and red wine, possesses diverse biochemical and physiological actions, including anti-inflammatory, anti-oxidation, anti-proliferation and promotion of differentiation, and chemopreventive effects. Recently, it is attracting increased attention due to its health benefits, especially in common age-related diseases such as cardiovascular disease, cancer, type 2 diabetes, and neurological conditions. In this review, we discuss the latest cellular and molecular findings that account for the beneficial actions of resveratrol.
Collapse
Affiliation(s)
- Wei Yu
- Department of Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, People's Republic of China
| | | | | |
Collapse
|
31
|
Zhang C, Feng Y, Qu S, Wei X, Zhu H, Luo Q, Liu M, Chen G, Xiao X. Resveratrol attenuates doxorubicin-induced cardiomyocyte apoptosis in mice through SIRT1-mediated deacetylation of p53. Cardiovasc Res 2011; 90:538-45. [PMID: 21278141 DOI: 10.1093/cvr/cvr022] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AIMS Doxorubicin (DOX) is an anthracycline drug with a wide spectrum of clinical antineoplastic activity, but increased apoptosis has been implicated in its cardiotoxicity. Resveratrol (RES) was shown to harbour major health benefits in diseases associated with oxidative stress. In this study, we aimed to determine the effect of RES on DOX-induced myocardial apoptosis in mice. METHODS AND RESULTS Male Balb/c mice were randomized to one of the following four treatments: saline, RES, DOX, or RES plus DOX (10 mice in each group). DOX treatment markedly depressed cardiac function, decreased the heart weight, the body weight, and the ratio of heart weight to body weight, but inversely increased the level of protein carbonyl, malondialdehyde, and serum lactate dehydrogenase, and induced mitochondrial cytochrome c release and cardiomyocyte apoptosis. However, these effects of DOX were ameliorated by its combination with RES. Further studies with a co-immunoprecipitation assay revealed an interaction between p53 and Sirtuin 1 (SIRT1). It was found by western blot and electrophoretic mobility shift assay that DOX treatment increased p53 protein acetylation and cytochrome c release from mitochondria, activated p53 binding at the Bax promoter, and up-regulated Bax expression, but supplementation with RES could weaken all these effects. CONCLUSION The protective effect of RES against DOX-induced cardiomyocyte apoptosis is associated with the up-regulation of SIRT1-mediated p53 deacetylation.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Min Z, Kang L, Lin L, Jinghua F, Junna S, Baolin L. Resveratrol restores lysophosphatidylcholine-induced loss of endothelium-dependent relaxation in rat aorta tissue coinciding with inhibition of extracellular-signal-regulated protein kinase activation. Phytother Res 2010; 24:1762-8. [DOI: 10.1002/ptr.3136] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Wood LG, Wark PAB, Garg ML. Antioxidant and anti-inflammatory effects of resveratrol in airway disease. Antioxid Redox Signal 2010; 13:1535-48. [PMID: 20214495 DOI: 10.1089/ars.2009.3064] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Respiratory diseases, such as asthma and chronic obstructive pulmonary disease (COPD), are a significant and increasing global health problem. These diseases are characterized by airway inflammation, which develops in response to various stimuli. In asthma, inflammation is driven by exposure to a variety of triggers, including allergens and viruses, which activate components of both the innate and acquired immune responses. In COPD, exposure to cigarette smoke is the primary stimulus of airway inflammation. Activation of airway inflammatory cells leads to the release of excessive quantities of reactive oxygen species (ROS), resulting in oxidative stress. Antioxidants provide protection against the damaging effects of oxidative stress and thus may be useful in the management of inflammatory airways disease. Resveratrol, a polyphenol that demonstrates both antioxidative and anti-inflammatory functions, has been shown to improve outcomes in a variety of diseases, in particular, in cancer. We review the evidence for a protective role of resveratrol in respiratory disease. Mechanisms of resveratrol action that may be relevant to respiratory disease are described. We conclude that resveratrol has potential as a therapeutic agent in respiratory disease, which should be further investigated.
Collapse
Affiliation(s)
- Lisa G Wood
- Department of Respiratory and Sleep Medicine, Hunter Medical Research Institute, John Hunter Hospital, Newcastle, NSW, Australia.
| | | | | |
Collapse
|
34
|
Abstract
Resveratrol is naturally present in certain fruits and vegetables including grape skins and especially in red wine. Similar to red wine, resveratrol possesses diverse biochemical and physiological properties including anti-inflammatory and immunomulatory activities as well as wide range of health benefits ranging from chemoprevention to cardioprotection. Recent studies implicated that resveratrol also possesses antiaging properties. The present review describes some of the important physiological properties of resveratrol that accounts for its diverse physiological actions.
Collapse
|
35
|
Abstract
This review describes the dose-dependent health benefits of resveratrol, a polyphenolic antioxidant that is found in a variety of foods, especially grape skin and red wine. Resveratrol provides diverse health benefits including cardioprotection, inhibition of low-density lipoprotein, activation of nitric oxide (NO) production, hindering of platelet aggregation [32] A.A.E. Bertelli, D.E. Giovannini, R.L. Caterina, W. Bernini, M. Migliori and M. Fregoni et al., Antiplatelet activity of cis-resveratrol, Drugs Exp Clin Res 22 (1996), pp. 61-63. View Record in Scopus | Cited By in Scopus (111) and promotion of anti-inflammatory effects. Studies have shown that at a lower dose, resveratrol acts as an anti-apoptotic agent, providing cardioprotection as evidenced by increased expression in cell survival proteins, improved postischemic ventricular recovery and reduction of myocardial infarct size and cardiomyocyte apoptosis and maintains a stable redox environment compared to control. At higher dose, resveratrol acts as a pro-apoptotic compound, inducing apoptosis in cancer cells by exerting a death signal. At higher doses, resveratrol depresses cardiac function, elevates levels of apoptotic protein expressions, results in an unstable redox environment, increases myocardial infarct size and number of apoptotic cells. At high dose, resveratrol not only hinders tumor growth but also inhibits the synthesis of RNA, DNA and protein, causes structural chromosome aberrations, chromatin breaks, chromatin exchanges, weak aneuploidy, higher S-phase arrest, blocks cell proliferation, decreases wound healing, endothelial cell growth by fibroblast growth factor-2 (FGF-2) and vascular endothelial growth factor, and angiogenesis in healthy tissue cells leading to cell death. Thus, at lower dose, resveratrol can be very useful in maintaining the human health whereas at higher dose, resveratrol has pro-apoptotic actions on healthy cells, but can kill tumor cells.
Collapse
Affiliation(s)
- Subhendu Mukherjee
- Cardiovascular Research Center, University of Connecticut Health Center, School of Medicine, 263 Farmington Avenue, Farmington, CT 06030-1110, USA
| | | | | |
Collapse
|
36
|
Sánchez-Fidalgo S, Cárdeno A, Villegas I, Talero E, de la Lastra CA. Dietary supplementation of resveratrol attenuates chronic colonic inflammation in mice. Eur J Pharmacol 2010; 633:78-84. [PMID: 20132809 DOI: 10.1016/j.ejphar.2010.01.025] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 12/29/2009] [Accepted: 01/25/2010] [Indexed: 12/11/2022]
Abstract
Ulcerative colitis is a nonspecific inflammatory disorder characterized by oxidative and nitrosative stress, leucocyte infiltration and upregulation of inflammatory mediators. Resveratrol is a polyphenolic compound found in grapes and wine, with multiple pharmacological actions, mainly anti-inflammatory, antioxidant, antitumour and immunomodulatory activities. The aim of this study was to investigate the effect of dietary resveratrol on chronic dextran sulphate sodium (DSS)-induced colitis. Six-week-old mice were randomized into two dietary groups: one standard diet and the other enriched with resveratrol at 20mg/kg of diet. After 30days, mice were exposed to 3% DSS for 5days developing acute colitis that progressed to severe chronic inflammation after 21days of water. Our results demonstrated that resveratrol group significantly attenuated the clinical signs such as loss of body weight, diarrhea and rectal bleeding improving results from disease activity index and inflammatory score. Moreover, the totality of resveratrol-fed animals survived and finished the treatment while animals fed with standard diet showed a mortality of 40%. Three weeks after DSS removal, the polyphenol caused substantial reductions of the rise of pro-inflammatory cytokines, TNF-alpha and IL-1beta and an increase of the anti-inflammatory cytokine IL-10. Also resveratrol reduced prostaglandin E synthase-1 (PGES-1), cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) proteins expression, via downregulation of p38, a mitogen-activated protein kinases (MAPK) signal pathway. We conclude that resveratrol diet represents a novel approach to the treatment of chronic intestinal inflammation.
Collapse
|
37
|
Increased responsiveness of human coronary artery endothelial cells in inflammation and coagulation. Mediators Inflamm 2010; 2009:146872. [PMID: 20107610 PMCID: PMC2810452 DOI: 10.1155/2009/146872] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 10/26/2009] [Indexed: 01/29/2023] Open
Abstract
The effects of anti-inflammatory plant extracts, such as black tea extract (BTE) and resveratrol (RSV) could modulate cell activation leading to atherosclerosis, however there is little comparative information about how different endothelial cell types are affected by these compounds. In order to compare human endothelial cells derived from different origins (umbilical vein or HUVEC, coronary artery or HCAEC, microvascular or HMVEC) and their interleukin-1β (IL-1β) responsiveness, IL-6 ELISA, RT-PCR, tissue factor assay, and prostacyclin responses using 6-keto PGF1α ELISA were determined. The IL-1β-induced IL-6 levels were dose-dependent with highest responses seen in HCAEC. Significant inhibition of IL-1β responses was achieved with BTE and RSV, with the largest decrease of IL-6 and TF seen in HCAEC. Prostacyclin levels were highest in HUVEC and were inhibited by RSV in all cell types. The differences between the endothelial cell types could account for greater susceptibility of coronary arteries to inflammation and atherogenesis.
Collapse
|
38
|
Sebai H, Ristorcelli E, Sbarra V, Hovsepian S, Fayet G, Aouani E, Lombardo D. Protective effect of resveratrol against LPS-induced extracellular lipoperoxidation in AR42J cells partly via a Myd88-dependent signaling pathway. Arch Biochem Biophys 2009; 495:56-61. [PMID: 20035708 DOI: 10.1016/j.abb.2009.12.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 12/13/2009] [Accepted: 12/16/2009] [Indexed: 01/21/2023]
Abstract
Lipopolysaccharides (LPS) are major components of the cell wall of Gram negative bacteria implicated in the pathogenesis of bacterial infection. Resveratrol is a polyphenolic phytoalexin exhibiting antioxidant and anti-inflammatory properties. We investigated the protective effects of this natural compound on LPS-induced proinflammatory effect using non-myeloid AR42J pancreatic cells. We found that LPS dose-dependently increased extracellular malondialdehyde (MDA) and nitric oxide without affecting their intracellular level whereas resveratrol abolished all these deleterious effects. LPS increased CD14 expression; IRAK1 and a phosphorylated form of p38 MAPK protein. Resveratrol counteracted LPS effect by decreasing CD14 and IRAK1 expression but unexpectedly increased the p38 MAPK protein phosphorylation. Altogether, our data highlighted the functionality of the TLR4-Myd88 signaling pathway in LPS pro-oxidant effect using non-myeloid cells. They further suggested that resveratrol exerted antioxidant properties either by a Myd88-dependent way not involving IRAK1 or by a TRIF dependent pathway.
Collapse
Affiliation(s)
- Hichem Sebai
- INSERM UMR-911 CRO2, Aix-Marseille Université, Faculté de Médecine-Timone, 27 Bld Jean Moulin, 13385 Marseille Cedex 05, France.
| | | | | | | | | | | | | |
Collapse
|
39
|
Shakibaei M, Harikumar KB, Aggarwal BB. Resveratrol addiction: to die or not to die. Mol Nutr Food Res 2009; 53:115-28. [PMID: 19072742 DOI: 10.1002/mnfr.200800148] [Citation(s) in RCA: 211] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Resveratrol, a polyphenol derived from red grapes, berries, and peanuts, has been shown to mediate death of a wide variety of cells. The mechanisms by which resveratrol mediates cell death include necrosis, apoptosis, autophagy, and others. While most studies suggest that resveratrol kills tumor cells selectively, evidence is emerging that certain normal cells such as endothelial cells, lymphocytes, and chondrocytes are vulnerable to resveratrol. Cell killing by this stilbene may be mediated through any of numerous mechanisms that involve activation of mitochondria and of death caspases; upregulation of cyclin-dependent kinase inhibitors, tumor suppressor gene products, or death-inducing cytokines and cytokine receptors; or downregulation of cell survival proteins (survivin, cFLIP, cIAPs, X-linked inhibitor of apoptosis protein (XIAP), bcl-2, bcl-XL) or inhibition of cell survival kinases (e.g., mitogen-activiated protein kinases (MAPKs), AKT/phosphoinositide 3-kinase (PI3K), PKC, EGFR kinase) and survival transcription factors (nuclear factor-kappaB (NF-kappaB), activating protein 1 (AP-1), HIF-1alpha, signal transducer and activator of transcription (STAT3)). Induction of any of these pathways by resveratrol leads to cell death. While cell death is a hallmark of resveratrol, this polyphenol also has been linked with suppression of inflammation, arthritis, and cardiovascular diseases and delaying of aging. These attributes of resveratrol are discussed in detail in this review.
Collapse
Affiliation(s)
- Mehdi Shakibaei
- Institute of Anatomy, Ludwig-Maximilian-University Munich, Munich, Germany
| | | | | |
Collapse
|
40
|
Seya K, Kanemaru K, Sugimoto C, Suzuki M, Takeo T, Motomura S, Kitahara H, Niwa M, Oshima Y, Furukawa KI. Opposite effects of two resveratrol (trans-3,5,4'-trihydroxystilbene) tetramers, vitisin A and hopeaphenol, on apoptosis of myocytes isolated from adult rat heart. J Pharmacol Exp Ther 2008; 328:90-8. [PMID: 18927354 DOI: 10.1124/jpet.108.143172] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
It has been reported that resveratrol (trans-3,5,4'-trihydroxystilbene) from Vitis plants has various cardioprotective effects. Vitis plants also include various resveratrol tetramers. The aim of our study is to clarify the pharmacological properties of resveratrol tetramers. We isolated two resveratrol tetramers as major products of Vitis plants. One is vitisin A, a complex of two resveratrol dimers, (+)-epsilon-viniferin and ampelopsin B, and the other is hopeaphenol, composed of 2 mol ampelopsin B. Vitisin A (30-300 nM) unexpectedly dose-dependently facilitated swelling and depolarization of mitochondria and cytochrome c release from mitochondria, which are indices of cardiomyocyte apoptosis. Furthermore, vitisin A induced apoptosis in the primary culture of adult rat ventricular myocytes. On the other hand, hopeaphenol (1-10 microM) dose-dependently inhibited Ca(2+) (30 microM)-induced mitochondrial depolarization and cytochrome c release from mitochondria but had not affected mitochondrial swelling. Moreover, hopeaphenol inhibited vitisin A-induced apoptosis. In structural and functional studies, we further confirmed that vitisin B, one of the resveratrol tetramers having (+)-epsilon-viniferin unit, induces mitochondrial swelling and cytochrome c release from mitochondria like vitisin A and that vitisifuran A, one of the resveratrol tetramers having the ampelopsin B unit, inhibits Ca(2+)-induced cytochrome c release from mitochondria like hopeaphenol. These results show that resveratrol tetramers have at least two opposite effects on cardiomyocytes; the one having the (+)-epsilon-viniferin unit induces cardiomyocyte apoptosis, and the other having ampelopsin B but not (+)-epsilon-viniferin unit inhibits it.
Collapse
Affiliation(s)
- Kazuhiko Seya
- Department of Pharmacology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
El-Mowafy AM, Alkhalaf M, El-Kashef HA. Resveratrol Reverses Hydrogen Peroxide-induced Proliferative Effects in Human Coronary Smooth Muscle Cells: A Novel Signaling Mechanism. Arch Med Res 2008; 39:155-61. [DOI: 10.1016/j.arcmed.2007.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Accepted: 09/06/2007] [Indexed: 12/24/2022]
|
42
|
|
43
|
Rayalam S, Della-Fera MA, Yang JY, Park HJ, Ambati S, Baile CA. Resveratrol potentiates genistein's antiadipogenic and proapoptotic effects in 3T3-L1 adipocytes. J Nutr 2007; 137:2668-73. [PMID: 18029481 DOI: 10.1093/jn/137.12.2668] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Genistein (G) and resveratrol (R) individually inhibit adipogenesis in 3T3-L1 adipocytes and induce apoptosis in cancer cells. We investigated whether the combination of G and R resulted in enhanced effects on adipogenesis, lipolysis, and apoptosis in 3T3-L1 cells. Preadipocytes and mature adipocytes were treated with G and R individually at 50 and 100 micromol/L (G100; R100) and in combination. Both in preadipocytes and mature adipocytes, G and R individually decreased cell viability dose-dependently, but G100 + R100 further decreased viability by 59 +/- 0.97% (P < 0.001) and 69.7 +/- 1.2% (P < 0.001) after 48 h compared with G100 and R100, respectively. G100 + R100 induced apoptosis 242 +/- 8.7% (P < 0.001) more than the control after 48 h, whereas G100 and R100 individually increased apoptosis only 46 +/- 9.2 and 46 +/- 7.9%, respectively. G and R did not modulate mitogen-activated protein kinase expression by themselves, but G100 + R100 increased Jun-N-terminal kinase phosphorylation by 38.8 +/- 4.4% (P < 0.001) and decreased extracellular signal-regulating kinase phosphorylation by 48 +/- 3.4% (P < 0.001). Individually, G and R at 25 micromol/L (G25; R25) decreased lipid accumulation by 30 +/- 1.7% and 20.07 +/- 4.27%, respectively (P < 0.001). However, G25 + R25 decreased lipid accumulation by 77.9 +/- 3.4% (P < 0.001). Lipolysis assay revealed that neither G25 nor R25 induced lipolysis, whereas G25 + R25 significantly increased lipolysis by 25.5 +/- 4.6%. The adipocyte-specific proteins PPARgamma and CCAAT/enhancer binding protein-alpha were downregulated after treatment with G + R, but no effect was observed with individual compounds. These results indicate that G and R in combination produce enhanced effects on inhibiting adipogenesis, inducing apoptosis, and promoting lipolysis in 3T3-L1 adipocytes. Thus, the combination of G and R is more potent in exerting antiobesity effects than the individual compounds.
Collapse
Affiliation(s)
- Srujana Rayalam
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602-2771, USA
| | | | | | | | | | | |
Collapse
|
44
|
Ekshyyan VP, Hebert VY, Khandelwal A, Dugas TR. Resveratrol inhibits rat aortic vascular smooth muscle cell proliferation via estrogen receptor dependent nitric oxide production. J Cardiovasc Pharmacol 2007; 50:83-93. [PMID: 17666920 DOI: 10.1097/fjc.0b013e318059ae80] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Vascular smooth muscle cell (VSMC) proliferation is pivotal in the progression of hypertension, atherosclerosis, and restenosis. Resveratrol is a grape polyphenol that is implicated as an important contributor to red wine's vascular protective effects. Its antimitogenic action on VSMC is attributed to an array of pleiotropic effects, including modulation of the estrogen receptor (ER). To elucidate the mechanisms underlying resveratrol-mediated ER modulation and its inhibition of VSMC proliferation, we treated VSMC with resveratrol with or without the ER antagonist ICI 182,780 and measured cell proliferation and nitric oxide (NO) production. Resveratrol dose-dependently decreased VSMC DNA synthesis, with a half maximal inhibitory concentration (IC50) of 3.73+/-0.57 microM, and dramatically slowed cell growth, but did not induce VSMC apoptosis. Resveratrol-mediated decrease in proliferation was reversed by cotreatment with ICI 182,780, and resveratrol effectively competed with 17beta-estradiol for binding to the ER, exhibiting an IC50 of 8.92+/-0.14 microM. Resveratrol induced a sustained increase in ER-dependent NO production. Further, resveratrol-mediated decrease in VSMC proliferation was blunted by cotreatment with the general nitric oxide synthase (NOS) inhibitor N5-(1-Iminomethyl)-L-ornithine, dihydrochloride or with the inducible NOS (iNOS)-selective inhibitor S,S'-1,4-phenylene-bis (1,2-ethanediyl)bis-isothiourea, dihydrobromide, but not with the neuronal NOS-selective inhibitor 7-nitroindazole. Though resveratrol did not alter iNOS protein levels, it dose-dependently increased levels of iNOS activity, of the iNOS cofactor tetrahydrobiopterin (BH4), and of guanosine triphosphate cyclohydrolase I protein, the rate-limiting enzyme in BH4 biosynthesis. In addition, all of these effects were abolished by cotreatment with ICI 182,780. Thus, the antimitogenic effects of resveratrol on VSMC may be mediated by an ER-induced increase in iNOS activity.
Collapse
Affiliation(s)
- Viktoriya P Ekshyyan
- Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| | | | | | | |
Collapse
|
45
|
Rahman I, Biswas SK, Kirkham PA. Regulation of inflammation and redox signaling by dietary polyphenols. Biochem Pharmacol 2006; 72:1439-52. [PMID: 16920072 DOI: 10.1016/j.bcp.2006.07.004] [Citation(s) in RCA: 631] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2006] [Revised: 07/05/2006] [Accepted: 07/11/2006] [Indexed: 01/24/2023]
Abstract
Reactive oxygen species (ROS) play a key role in enhancing the inflammation through the activation of NF-kappaB and AP-1 transcription factors, and nuclear histone acetylation and deacetylation in various inflammatory diseases. Such undesired effects of oxidative stress have been found to be controlled by the antioxidant and/or anti-inflammatory effects of dietary polyphenols such as curcumin (diferuloylmethane, a principal component of turmeric) and resveratrol (a flavonoid found in red wine). The phenolic compounds in fruits, vegetables, tea and wine are mostly derivatives, and/or isomers of flavones, isoflavones, flavonols, catechins, tocopherols, and phenolic acids. Polyphenols modulate important cellular signaling processes such as cellular growth, differentiation and host of other cellular features. In addition, they modulate NF-kappaB activation, chromatin structure, glutathione biosynthesis, nuclear redox factor (Nrf2) activation, scavenge effect of ROS directly or via glutathione peroxidase activity and as a consequence regulate inflammatory genes in macrophages and lung epithelial cells. However, recent data suggest that dietary polyphenols can work as modifiers of signal transduction pathways to elicit their beneficial effects. The effects of polyphenols however, have been reported to be more pronounced in vitro using high concentrations which are not physiological in vivo. This commentary discusses the recent data on dietary polyphenols in the control of signaling and inflammation particularly during oxidative stress, their metabolism and bioavailability.
Collapse
Affiliation(s)
- Irfan Rahman
- Department of Environmental Medicine, Division of Lung Biology and Disease, University of Rochester Medical Center, MRBX 3.11106, 601 Elmwood Avenue, Box 850, Rochester, NY 14642, USA
| | | | | |
Collapse
|
46
|
|
47
|
Nongenomic activation of the GC-A enzyme by resveratrol and estradiol downstream from membrane estrogen receptors in human coronary arterial cells. Nutr Metab Cardiovasc Dis 2006; 17:508-16. [PMID: 17134961 DOI: 10.1016/j.numecd.2006.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 04/06/2006] [Accepted: 04/26/2006] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND AIM Resveratrol (RSVL), a polyphenolic phytoestrogen in grapes, confers multifaceted cardiovascular benefits. The cellular and molecular basis of RSVL actions has been largely undefined until now. METHODS AND RESULTS In human coronary smooth muscle cells (HCSMCs), RSVL markedly (3.2-fold) enhanced cGMP formation (t(1/2): 6.3 min, EC(50): 1.8 microM) and stimulated kinase-G activity (4-fold). By contrast, RSVL had no effect on cAMP or PKA activity in these cells. The RSVL-enhanced cGMP/kinase-G activity was not abrogated by the nitric oxide synthase-inhibitor (L-NMMA, 10 microM), or the soluble guanylyl cyclase (sGC)-inhibitor (ODQ, 10 microM). In membrane preparations from HCSMCs, RSVL activated GC in the particulate-, but not in the soluble-membrane fraction. Similar effects were due to the specific particulate-GC-A agonist atrial natriuretic peptide (ANP, 0.1-1 microM). The combined effects of RSVL and ANP were competitive. By contrast, the selective GC-B agonist (BNP) showed no response on cGMP, whereas that for GC-C (guanylin) produced only slight increases in cGMP levels. Estradiol (E2) mimicked the effects of RSVL on cGMP, but showed a 46% lower maximal response. Combining E2 with RSVL showed a competitive, rather than an additive, response. Further, cGMP formation by RSVL or E2 was significantly attenuated by the pure estrogen receptor blocker, ICI-182,780 (10 microM). CONCLUSION These findings are the first to link RSVL with pGC/kinase-G activation downstream from membrane ERs in the vasculature, thus substantiating its coronary protective effects, even in endothelium-disrupted coronary arteries.
Collapse
|
48
|
Balestrieri C, Felice F, Piacente S, Pizza C, Montoro P, Oleszek W, Visciano V, Balestrieri ML. Relative effects of phenolic constituents from Yucca schidigera Roezl. bark on Kaposi's sarcoma cell proliferation, migration, and PAF synthesis. Biochem Pharmacol 2006; 71:1479-87. [PMID: 16580641 DOI: 10.1016/j.bcp.2006.01.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Revised: 01/05/2006] [Accepted: 01/05/2006] [Indexed: 11/17/2022]
Abstract
Yuccaols (A, B, C) are phenolic constituents isolated from Yucca schidigera bark characterized by unusual spirostructures made up of a C15 unit and a stilbenic portion closely related to resveratrol. These novel compounds are of particular interest for their antioxidant and anti-inflammatory properties. However, their effects on cell proliferation, migration, and platelet-activating factor (PAF) biosynthesis remain unknown. PAF, a potent mediator of inflammation, is known to promote angiogenesis and in vitro migration of endothelial cells and Kaposi's sarcoma (KS) cells. The objective of our study was to determine the effect of Yuccaols and resveratrol on the vascular endothelial growth factor (VEGF)-induced proliferation, migration, and PAF biosynthesis in KS cells. The results indicated that Yuccaols (25 microM) were more effective than resveratrol (25 microM) in inhibiting the VEGF-induced KS cell proliferation. Western blot analysis revealed that Yuccaols reduced the VEGF-induced phosphorylation of p38 and p42/44, thus indicating a possible interference with the mechanism underlying the VEGF-stimulated cell proliferation. Furthermore, Yuccaols completely inhibited the VEGF-stimulated PAF biosynthesis catalyzed by the acetyl-CoA:lyso-PAF acetyltransferase and enhanced its degradation through the PAF-dependent CoA-independent transacetylase (250% of control). In addition, Yuccaol C abrogated the PAF-induced cell motility whereas Yuccaol A and Yuccaol B reduced the cell migration from 7.6 microm/h to 6.1 microm/h and 5.6 microm/h, respectively. These results indicate that the anti-inflammatory properties attributed to Yucca schidigera can be ascribed to both resveratrol and Yuccaols and provide the first evidences of the anti-tumor and anti-invasive properties of these novel phenolic compounds.
Collapse
Affiliation(s)
- Ciro Balestrieri
- Department of Biochemistry and Biophysics, Second University of Naples, via L. De Crecchio 7, 80138 Naples, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Liu Z, Song Y, Zhang X, Liu Z, Zhang W, Mao W, Wang W, Cui W, Zhang X, Jia X, Li N, Han C, Liu C. Effects of trans-resveratrol on hypertension-induced cardiac hypertrophy using the partially nephrectomized rat model. Clin Exp Pharmacol Physiol 2006; 32:1049-54. [PMID: 16445570 DOI: 10.1111/j.1440-1681.2005.04303.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
trans-Resveratrol (resveratrol) has been shown to have beneficial effects on the cardiovascular system in a number of studies. It is, however, unclear whether this naturally occurring compound can protect against cardiac hypertrophy. The aim of the present study was to investigate the effects of resveratrol on cardiac hypertrophy in vivo and the potential underlying mechanisms involving endothelin (ET), angiotensin (Ang) II and nitric oxide (NO) in partially nephrectomized rats. Animal models bearing cardiac hypertrophy were replicated in male Sprague-Dawley rats following partial nephrectomy (PNX). Resveratrol (10 or 50 mg/kg) was administered to rats by gavage for 4 weeks. Simultaneous PNX and sham operation controls were simultaneously established in the present study. The systolic blood pressure (SBP) of rats was measured at baseline and, along with heart weight, after 4 weeks treatment. Serum ET-1, AngII and NO concentrations were determined. In the present study, it was shown that, compared with rats in the sham-operated group, rats in the PNX group had significantly higher SBP (154.1 +/- 22.7 mmHg), heart weight (1.69 +/- 0.24 g) and serum ET-1 (125.70 +/- 26.27 pg/mL) and AngII serum concentrations (743.63 +/- 86.50 pg/mL), whereas serum NO concentrations were lower (21.1 +/- 6.9 micromol/L; all P < 0.05). These values in the sham control group were 114 +/- 10 mmHg, 1.28 +/- 0.13 g, 52.44 +/- 21.85 pg/mL, 528.7 +/- 158.5 pg/mL and 53.21 +/- 23.87 micromol/L, respectively. After 4 weeks treatment with 50 mg/kg resveratrol, SBP, heart weight and ET-1 and AngII concentrations had decreased to 135.4 +/- 15.8 mmHg, 1.39 +/- 0.15 g, 97.11 +/- 26.74 pg/mL and 629.64 +/- 116.18 pg/mL, respectively. However, the serum NO concentration had increased to 40.1 +/- 14.6 micromol/L. These values were significantly different from those obtained for the PNX group. In conclusion, trans-resveratrol appears to be able to protect against the increase in SBP and subsequent cardiac hypertrophy in vivo and the mechanisms responsible may involve, at least in part, modulation of NO, AngII and ET-1 production.
Collapse
Affiliation(s)
- Zhaoping Liu
- Institute of Nutrition and Food Safety, Chinese Centers for Disease Control and Prevention, Beijing, China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Das S, Tosaki A, Bagchi D, Maulik N, Das DK. Potentiation of a Survival Signal in the Ischemic Heart by Resveratrol through p38 Mitogen-Activated Protein Kinase/Mitogen- and Stress-Activated Protein Kinase 1/cAMP Response Element-Binding Protein Signaling. J Pharmacol Exp Ther 2006; 317:980-8. [PMID: 16525036 DOI: 10.1124/jpet.105.095133] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Resveratrol (3,4',5-trihydroxy-trans-stilbene), a naturally occurring polyphenolic compound found abundantly in grape skins and red wines, has been found to pharmacologically precondition the heart against ischemia reperfusion injury through the potentiation of a survival signal involving cAMP response element-binding protein-dependent phosphatidylinositol 3-kinase-Akt-BclII pathway. The present study was designed to determine whether, similar to ischemic preconditioning, resveratrol uses mitogen-activated protein kinases (MAPKs) as upstream signaling targets. The isolated rat hearts were preperfused for 15 min with Krebs-Henseleit bicarbonate buffer in the absence (control) or presence of extracellular signal-regulated kinase (ERK) 1/2 inhibitor 2'-amino-3'-methoxyflavone (PD98059), p38 MAPK inhibitor 4-(4-fluorophenyl)-2-(4-hydroxyphenyl)-5-(4-pyridyl)-1H-imidazole (SB-202190), mitogen- and stress-activated protein kinase 1 (MSK-1) inhibitor N-[2-(4-bromocinnamylamino)ethyl]-5-isoquinoline (H89), protein kinase A inhibitor (9S,10S,12R)-2,3,9,10,11,12-hexahydro-10hydroxy-9-methyl-1-oxo-9,12-epoxy-1H-diindolo[1,2,3fg: 3',2',1'-kl]-pyrrolo[3,4-i][1,6]benzodiazocine-10-carboxylic acid hexyl ester (KT5720), resveratrol only, resveratrol plus PD98059, resveratrol plus SB-202190, resveratrol plus H89, or resveratrol plus KT5720. Consistent with previous reports, resveratrol provided cardioprotection as evidenced by its ability to improve postischemic ventricular function, reduction of myocardial infarct size, and cardiomyocyte apoptosis. The cardioprotection afforded by resveratrol was partially abolished with PD98059 or SB-202190, suggesting that ERK1/2 and p38 MAPK play roles in resveratrol-mediated preconditioning. An MSK-1 inhibitor, H89, abolished resveratrol-mediated preconditioning, indicating MSK-1 to be the downstream target molecule for both ERK1/2 and p38 MAPK. KT5720 had no effect on resveratrol-mediated cardioprotection. Corroborating these results, Western blot analysis revealed phosphorylation of ERK1/2, p38 MAPK, MAPK-activated protein (MAPKAP) kinase 2, and MSK-1 with resveratrol and inhibition of phosphorylation with corresponding inhibitors. These results showed for the first time that resveratrol triggers an MAPK signaling pathway involving ERK1/2 and p38 MAPK, the former using MSK-1 as the downstream target and the latter, using both MAPKAP kinase 2 and MSK-1 as downstream targets.
Collapse
Affiliation(s)
- Samarjit Das
- Cardiovascular Research Center, University of Connecticut, School of Medicine, Farmington, CT 06030, USA
| | | | | | | | | |
Collapse
|