1
|
Huang H, Lu W, Zhang X, Pan J, Cao F, Wen L. Fibroblast subtypes in pancreatic cancer and pancreatitis: from mechanisms to therapeutic strategies. Cell Oncol (Dordr) 2024; 47:383-396. [PMID: 37721678 DOI: 10.1007/s13402-023-00874-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 09/19/2023] Open
Abstract
Excessive fibrosis is a predominant feature of pancreatic stroma and plays a crucial role in the development and progression of pancreatic ductal adenocarcinoma (PDAC) and chronic pancreatitis (CP). Emerging evidence showed diversity and heterogeneity of fibroblasts play crucial and somewhat contradictory roles, the interactions between fibroblasts and pancreatic cells or infiltrating immune cells are of great importance during PDAC and CP progression, with some promising therapeutic strategies being tested. Therefore, in this review, we describe the classification of fibroblasts and their functions in PDAC and pancreatitis, the mechanisms by which fibroblasts mediate the development and progression of PDAC and CP through direct or indirect interaction between fibroblast and pancreatic parenchymal cells, or by remodeling the pancreatic immune microenvironment mediates the development and progression of PDAC and CP. Finally, we summarized the current therapeutic strategies and agents that directly target subtypes of fibroblasts or interfere with their essential functions.
Collapse
Affiliation(s)
- Huizhen Huang
- Department of Gastroenterology, Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Nanjing Medical University, Shanghai, China
| | - Wanyi Lu
- Center for Biomarker Discovery and Validation, National Infrastructures for Translational Medicine (PUMCH), Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Xiuli Zhang
- Center for Biomarker Discovery and Validation, National Infrastructures for Translational Medicine (PUMCH), Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Jiachun Pan
- Center for Biomarker Discovery and Validation, National Infrastructures for Translational Medicine (PUMCH), Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Feng Cao
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Li Wen
- Center for Biomarker Discovery and Validation, National Infrastructures for Translational Medicine (PUMCH), Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China.
- State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China.
| |
Collapse
|
2
|
Kong F, Pan Y, Wu D. Activation and Regulation of Pancreatic Stellate Cells in Chronic Pancreatic Fibrosis: A Potential Therapeutic Approach for Chronic Pancreatitis. Biomedicines 2024; 12:108. [PMID: 38255213 PMCID: PMC10813475 DOI: 10.3390/biomedicines12010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/16/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
In the complex progression of fibrosis in chronic pancreatitis, pancreatic stellate cells (PSCs) emerge as central figures. These cells, initially in a dormant state characterized by the storage of vitamin A lipid droplets within the chronic pancreatitis microenvironment, undergo a profound transformation into an activated state, typified by the secretion of an abundant extracellular matrix, including α-smooth muscle actin (α-SMA). This review delves into the myriad factors that trigger PSC activation within the context of chronic pancreatitis. These factors encompass alcohol, cigarette smoke, hyperglycemia, mechanical stress, acinar cell injury, and inflammatory cells, with a focus on elucidating their underlying mechanisms. Additionally, we explore the regulatory factors that play significant roles during PSC activation, such as TGF-β, CTGF, IL-10, PDGF, among others. The investigation into these regulatory factors and pathways involved in PSC activation holds promise in identifying potential therapeutic targets for ameliorating fibrosis in chronic pancreatitis. We provide a summary of recent research findings pertaining to the modulation of PSC activation, covering essential genes and innovative regulatory mediators designed to counteract PSC activation. We anticipate that this research will stimulate further insights into PSC activation and the mechanisms of pancreatic fibrosis, ultimately leading to the discovery of groundbreaking therapies targeting cellular and molecular responses within these processes.
Collapse
Affiliation(s)
- Fanyi Kong
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (F.K.); (Y.P.)
| | - Yingyu Pan
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (F.K.); (Y.P.)
| | - Dong Wu
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (F.K.); (Y.P.)
- Clinical Epidemiology Unit, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
3
|
Apte M. A journey to and with the stars: The pancreatic stellate cell story. Pancreatology 2023; 23:893-899. [PMID: 37973449 DOI: 10.1016/j.pan.2023.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
The George E Palade Prize is the highest honour awarded by the International Association of Pancreatology, that recognises an individual who has made outstanding contributions to the understanding of the pancreas and pancreatic diseases. The 2023 Palade Prize was awarded to Professor Minoti Apte, University of New South Wales Sydney on September 16, 2023 during the Joint Meeting of the International Association of Pancreatology and the Indian Pancreas Club, held in Delhi, India. This paper summarises her Palade lecture wherein she reflects on her journey as a medical graduate, an academic and a researcher, with a particular focus on her team's pioneering work on pancreatic stellate cell biology and the role of these cells in health and disease. While there has been much progress in this field with the efforts of researchers worldwide, there is much still to be learned; thus it is a topic with ample scope for innovative research with the potential to translate into better outcomes for patients with pancreatic disease.
Collapse
Affiliation(s)
- Minoti Apte
- Pancreatic Research Group, South Western Sydney Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales Sydney and Ingham Institute for Applied Medical Research, Liverpool, Sydney, Australia.
| |
Collapse
|
4
|
Lu Y, Zhang T, Yang S, Yang B, Li J, Liu H, Yao D, Ren G, Wang D. Dynamic Contrast-Enhanced MRI Assessing Antifibrotic Therapeutic Effects of Pancreatic Fibrosis with Curcumin - An Experimental Study at 11.7 T. Acad Radiol 2023; 30 Suppl 1:S230-S237. [PMID: 37453883 DOI: 10.1016/j.acra.2023.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 07/18/2023]
Abstract
RATIONALE AND OBJECTIVES Pancreatic fibrosis is the hallmark of chronic pancreatitis (CP), which is associated with microcirculatory disturbance. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) can assess the perfusion and permeability of the pancreas by providing information about microcirculation. We hypothesize that DCE-MRI parameters can be utilized to assess pancreatic fibrosis and may furthermore provide an opportunity to evaluate response to antifibrotic treatment with curcumin. Our study was to evaluate the feasibility of quantitative DCE-MRI in assessing pancreatic fibrosis and the antifibrotic effect of curcumin in a rat model of CP. MATERIALS AND METHODS Pancreatic fibrosis was induced by injecting dibutyltin dichloride (DBTC). Seventy rats were randomized to five groups: the control group (n = 10); DBTC for 2 weeks (n = 15); DBTC for 4 weeks (n = 15); DBTC + curcumin for 2 weeks (n = 15); DBTC + curcumin for 4 weeks (n = 15). DCE-MRI was performed at an 11.7 T MR scanner. DCE-MRI quantitative parameters (Ktrans, Ve, and Vp) were derived from an extended Tofts model. Fibrosis content and DCE-MRI parameters were compared among the above groups (one-way analysis of variance). The correlations between DCE-MRI parameters and pancreatic fibrosis content as well as the expression of α-SMA were computed by Spearman correlation coefficients. RESULTS Fifty-three rats survived and underwent MR imaging. Ktrans in rats 4 weeks after DBTC injection was significantly lower than DBTC 2 weeks rats and control rats (0.30 ± 0.06 min vs 0.49 ± 0.09 vs 0.62 ± 0.09, respectively). Vp in DBTC 4 weeks rats was also significantly lower than control rats (0.048 ± 0.010 min-1 vs 0.065 ± 0.011 min-1, respectively). Ktrans and Vp significantly correlated with fibrosis content of pancreas (r = -0.619 and -0.450, all P < 0.001), and the expression of α-SMA (r = -0.688 and -0.402, all P < 0.01). Ktrans and Vp in rats with daily curcumin treatment for 4 weeks were significantly higher than DBTC 4 weeks rats (Ktrans, 0.51 ± 0.09 vs 0.30 ± 0.06; Vp, 0.064 ± 0.015 vs 0.048 ± 0.010). CONCLUSION DCE-MRI parameters (Ktrans and Vp) have the potential to noninvasively assess pancreatic fibrosis and the antifibrotic treatment response of curcumin.
Collapse
Affiliation(s)
- Yimei Lu
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China (Y.L., T.Z., S.Y., J.L., H.L., D.Y., G.R., D.W.).
| | - Tingting Zhang
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China (Y.L., T.Z., S.Y., J.L., H.L., D.Y., G.R., D.W.).
| | - Shuyan Yang
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China (Y.L., T.Z., S.Y., J.L., H.L., D.Y., G.R., D.W.).
| | - Baofeng Yang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China (B.Y.); Human Phenome Institute, Fudan University, Shanghai 200433, China (B.Y.).
| | - Jinning Li
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China (Y.L., T.Z., S.Y., J.L., H.L., D.Y., G.R., D.W.).
| | - Huanhuan Liu
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China (Y.L., T.Z., S.Y., J.L., H.L., D.Y., G.R., D.W.).
| | - Defan Yao
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China (Y.L., T.Z., S.Y., J.L., H.L., D.Y., G.R., D.W.).
| | - Gang Ren
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China (Y.L., T.Z., S.Y., J.L., H.L., D.Y., G.R., D.W.).
| | - Dengbin Wang
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China (Y.L., T.Z., S.Y., J.L., H.L., D.Y., G.R., D.W.).
| |
Collapse
|
5
|
Sarkar R, Xu Z, Perera CJ, Apte MV. Emerging role of pancreatic stellate cell-derived extracellular vesicles in pancreatic cancer. Semin Cancer Biol 2023; 93:114-122. [PMID: 37225047 DOI: 10.1016/j.semcancer.2023.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/17/2023] [Accepted: 05/19/2023] [Indexed: 05/26/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer that is characterised by a prominent collagenous stromal reaction/desmoplasia surrounding tumour cells. Pancreatic stellate cells (PSCs) are responsible for the production of this stroma and have been shown to facilitate PDAC progression. Recently, extracellular vesicles (EVs), in particular, small extracellular vesicles (exosomes) have been a topic of interest in the field of cancer research for their emerging roles in cancer progression and diagnosis. EVs act as a form of intercellular communication by carrying their molecular cargo from one cell to another, regulating functions of the recipient cells. Although the knowledge of the bi-directional interactions between the PSCs and cancer cells that promote disease progression has advanced significantly over the past decade, studies on PSC-derived EVs in PDAC are currently rather limited. This review provides an overview of PDAC, pancreatic stellate cells and their interactions with cancer cells, as well as the currently known role of extracellular vesicles derived from PSCs in PDAC progression.
Collapse
Affiliation(s)
- Rohit Sarkar
- Pancreatic Research Group, South West Sydney Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia; Ingham Institute of Applied Medical Research, Sydney 2170, Australia
| | - Zhihong Xu
- Pancreatic Research Group, South West Sydney Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia; Ingham Institute of Applied Medical Research, Sydney 2170, Australia
| | - Chamini J Perera
- Pancreatic Research Group, South West Sydney Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia; Ingham Institute of Applied Medical Research, Sydney 2170, Australia.
| | - Minoti V Apte
- Pancreatic Research Group, South West Sydney Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia; Ingham Institute of Applied Medical Research, Sydney 2170, Australia
| |
Collapse
|
6
|
Pancreatic ductal adenocarcinoma: tumor microenvironment and problems in the development of novel therapeutic strategies. Clin Exp Med 2022:10.1007/s10238-022-00886-1. [DOI: 10.1007/s10238-022-00886-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/30/2022] [Indexed: 12/19/2022]
|
7
|
Activation of pancreatic stellate cells attenuates intracellular Ca 2+ signals due to downregulation of TRPA1 and protects against cell death induced by alcohol metabolites. Cell Death Dis 2022; 13:744. [PMID: 36038551 PMCID: PMC9421659 DOI: 10.1038/s41419-022-05186-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 01/21/2023]
Abstract
Alcohol abuse, an increasing problem in developed societies, is one of the leading causes of acute and chronic pancreatitis. Alcoholic pancreatitis is often associated with fibrosis mediated by activated pancreatic stellate cells (PSCs). Alcohol toxicity predominantly depends on its non-oxidative metabolites, fatty acid ethyl esters, generated from ethanol and fatty acids. Although the role of non-oxidative alcohol metabolites and dysregulated Ca2+ signalling in enzyme-storing pancreatic acinar cells is well established as the core mechanism of pancreatitis, signals in PSCs that trigger fibrogenesis are less clear. Here, we investigate real-time Ca2+ signalling, changes in mitochondrial potential and cell death induced by ethanol metabolites in quiescent vs TGF-β-activated PSCs, compare the expression of Ca2+ channels and pumps between the two phenotypes and the consequences these differences have on the pathogenesis of alcoholic pancreatitis. The extent of PSC activation in the pancreatitis of different aetiologies has been investigated in three animal models. Unlike biliary pancreatitis, alcohol-induced pancreatitis results in the activation of PSCs throughout the entire tissue. Ethanol and palmitoleic acid (POA) or palmitoleic acid ethyl ester (POAEE) act directly on quiescent PSCs, inducing cytosolic Ca2+ overload, disrupting mitochondrial functions, and inducing cell death. However, activated PSCs acquire remarkable resistance against ethanol metabolites via enhanced Ca2+-handling capacity, predominantly due to the downregulation of the TRPA1 channel. Inhibition or knockdown of TRPA1 reduces EtOH/POA-induced cytosolic Ca2+ overload and protects quiescent PSCs from cell death, similarly to the activated phenotype. Our results lead us to review current dogmas on alcoholic pancreatitis. While acinar cells and quiescent PSCs are prone to cell death caused by ethanol metabolites, activated PSCs can withstand noxious signals and, despite ongoing inflammation, deposit extracellular matrix components. Modulation of Ca2+ signals in PSCs by TRPA1 agonists/antagonists could become a strategy to shift the balance of tissue PSCs towards quiescent cells, thus limiting pancreatic fibrosis.
Collapse
|
8
|
Scales MK, Velez-Delgado A, Steele NG, Schrader HE, Stabnick AM, Yan W, Mercado Soto NM, Nwosu ZC, Johnson C, Zhang Y, Salas-Escabillas DJ, Menjivar RE, Maurer HC, Crawford HC, Bednar F, Olive KP, Pasca di Magliano M, Allen BL. Combinatorial Gli activity directs immune infiltration and tumor growth in pancreatic cancer. PLoS Genet 2022; 18:e1010315. [PMID: 35867772 PMCID: PMC9348714 DOI: 10.1371/journal.pgen.1010315] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/03/2022] [Accepted: 06/27/2022] [Indexed: 01/16/2023] Open
Abstract
Proper Hedgehog (HH) signaling is essential for embryonic development, while aberrant HH signaling drives pediatric and adult cancers. HH signaling is frequently dysregulated in pancreatic cancer, yet its role remains controversial, with both tumor-promoting and tumor-restraining functions reported. Notably, the GLI family of HH transcription factors (GLI1, GLI2, GLI3), remain largely unexplored in pancreatic cancer. We therefore investigated the individual and combined contributions of GLI1-3 to pancreatic cancer progression. At pre-cancerous stages, fibroblast-specific Gli2/Gli3 deletion decreases immunosuppressive macrophage infiltration and promotes T cell infiltration. Strikingly, combined loss of Gli1/Gli2/Gli3 promotes macrophage infiltration, indicating that subtle changes in Gli expression differentially regulate immune infiltration. In invasive tumors, Gli2/Gli3 KO fibroblasts exclude immunosuppressive myeloid cells and suppress tumor growth by recruiting natural killer cells. Finally, we demonstrate that fibroblasts directly regulate macrophage and T cell migration through the expression of Gli-dependent cytokines. Thus, the coordinated activity of GLI1-3 directs the fibroinflammatory response throughout pancreatic cancer progression.
Collapse
Affiliation(s)
- Michael K. Scales
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ashley Velez-Delgado
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Nina G. Steele
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Hannah E. Schrader
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Anna M. Stabnick
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Wei Yan
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Nayanna M. Mercado Soto
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Zeribe C. Nwosu
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Craig Johnson
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yaqing Zhang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | | | - Rosa E. Menjivar
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, United States of America
| | - H. Carlo Maurer
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York city, New York, United States of America
- Internal Medicine II, School of Medicine, Technische Universität München, Munich, Germany
| | - Howard C. Crawford
- Department of Surgery, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Filip Bednar
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kenneth P. Olive
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York city, New York, United States of America
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York city, New York, United States of America
| | - Marina Pasca di Magliano
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Benjamin L. Allen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
9
|
Yang Z, Xie Z, Wan J, Yi B, Xu T, Shu X, Zhao Z, Tang C. Current Trends and Research Hotspots in Pancreatic Stellate Cells: A Bibliometric Study. Front Oncol 2022; 12:896679. [PMID: 35719926 PMCID: PMC9198254 DOI: 10.3389/fonc.2022.896679] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/04/2022] [Indexed: 12/19/2022] Open
Abstract
Background Pancreatic stellate cells (PSCs) play crucial roles in acute/chronic pancreatitis and pancreatic cancer. In this study, bibliometric analysis was used to quantitatively and qualitatively analyze the literature related to PSCs from 1998-2021 to summarize the current trends and research topics in this field. Methods Relevant literature data were downloaded from the Science Citation Index Expanded Web of Science Core Collection (WoSCC) on April 07, 2021, using Clarivate Analytics. Biblioshiny R packages, VOSviewer, Citespace, BICOMB, gCLUTO, and the Online Analysis Platform of Literature Metrology (http://bibliometric.com) were used to analyze the manually selected data. Results A total of 958 relevant studies published in 48 countries or regions were identified. The United States of America (USA) had the highest number of publications, followed by the People's Republic of China, Germany, and Japan. Tohoku University (Japan), the University of New South Wales (Australia), the University of Texas MD Anderson Cancer Center (USA), Technical University of Munich (Germany), and University of Rostock (Germany) were the top five institutions with most publications. Nine major clusters were generated using reference co-citation analysis. Keyword burst detection revealed that progression (2016-2021), microenvironment (2016-2021), and tumor microenvironment (2017-2021) were the current frontier keywords. Biclustering analysis identified five research hotspots in the field of PSCs during 1998-2021. Conclusion In this study, a scientometric analysis of 958 original documents related to PSCs showed that the research topics of these studies are likely in the transition from acute/chronic pancreatitis to pancreatic cancer. The current research trends regarding PSCs are related to pancreatic cancer, such as tumor microenvironment. This study summarizes five research hotspots in the field of PSCs between 1998 and 2021 and thus may provide insights for future research.
Collapse
Affiliation(s)
- Zhaoming Yang
- Department of Hepatobiliary, Pancreatic and Splenic Surgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Zhiqin Xie
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jian Wan
- Department of Hepatobiliary, Pancreatic and Splenic Surgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Bo Yi
- Department of Hepatobiliary, Pancreatic and Splenic Surgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Tao Xu
- Department of Hepatobiliary, Pancreatic and Splenic Surgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Xiaorong Shu
- Medical Records Statistics Center, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Zhijian Zhao
- Department of Hepatobiliary, Pancreatic and Splenic Surgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Caixi Tang
- Department of Hepatobiliary, Pancreatic and Splenic Surgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| |
Collapse
|
10
|
Yang X, Chen J, Wang J, Ma S, Feng W, Wu Z, Guo Y, Zhou H, Mi W, Chen W, Yin B, Lin Y. Very-low-density lipoprotein receptor-enhanced lipid metabolism in pancreatic stellate cells promotes pancreatic fibrosis. Immunity 2022; 55:1185-1199.e8. [PMID: 35738281 DOI: 10.1016/j.immuni.2022.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/22/2022] [Accepted: 05/31/2022] [Indexed: 11/05/2022]
Abstract
Lipoprotein disorder is a common feature of chronic pancreatitis (CP); however, the relationship between lipoprotein disorder and pancreatic fibrotic environment is unclear. Here, we investigated the occurrence and mechanism of pancreatic stellate cell (PSC) activation by lipoprotein metabolites and the subsequent regulation of type 2 immune responses, as well as the driving force of fibrotic aggressiveness in CP. Single-cell RNA sequencing revealed the heterogeneity of PSCs and identified very-low-density lipoprotein receptor (VLDLR)+ PSCs that were characterized by a higher lipid metabolism. VLDLR promoted intracellular lipid accumulation, followed by interleukin-33 (IL-33) expression and release in PSCs. PSC-derived IL-33 strongly induced pancreatic group 2 innate lymphoid cells (ILC2s) to trigger a type 2 immune response accompanied by the activation of PSCs, eventually leading to fibrosis during pancreatitis. Our findings indicate that VLDLR-enhanced lipoprotein metabolism in PSCs promotes pancreatic fibrosis and highlight a dominant role of IL-33 in this pro-fibrotic cascade.
Collapse
Affiliation(s)
- Xuguang Yang
- Clinical Research Center, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Shanghai Pudong Hospital, Fudan University, Shanghai 201399, China.
| | - Jie Chen
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China; Department of Pediatric Surgery, Jiaxing Maternity and Child Health Care Hospital Affiliated to Jiaxing University, Jiaxing 314000, China
| | - Jun Wang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Shuai Ma
- Division of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Wenxue Feng
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Zhihao Wu
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Yangyang Guo
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Hong Zhou
- Department of Immunology, Anhui Medical University, Hefei, An Hui 230031, China
| | - Wenli Mi
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Wei Chen
- Clinical Research Center, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Bo Yin
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200032, China.
| | - Yuli Lin
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Shanghai Pudong Hospital, Fudan University, Shanghai 201399, China.
| |
Collapse
|
11
|
Jiang T, Wei F, Xie K. Clinical significance of pancreatic ductal metaplasia. J Pathol 2022; 257:125-139. [PMID: 35170758 DOI: 10.1002/path.5883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/06/2022] [Accepted: 02/14/2022] [Indexed: 11/08/2022]
Abstract
Pancreatic ductal metaplasia (PDM) is the stepwise replacement of differentiated somatic cells with ductal or ductal-like cells in the pancreas. PDM is usually triggered by cellular and environmental insults. PDM development may involve all cell lineages of the pancreas, and acinar cells with the highest plasticity are the major source of PDM. Pancreatic progenitor cells are also involved as cells of origin or transitional intermediates. PDM is heterogeneous at the histological, cellular, and molecular levels and only certain subsets of PDM develop further into pancreatic intraepithelial neoplasia (PanIN) and then pancreatic ductal adenocarcinoma (PDAC). The formation and evolution of PDM is regulated at the cellular and molecular levels through a complex network of signaling pathways. The key molecular mechanisms that drive PDM formation and its progression into PanIN/PDAC remain unclear, but represent key targets for reversing or inhibiting PDM. Alternatively, PDM could be a source of pancreas regeneration, including both exocrine and endocrine components. Cellular aging and apoptosis are obstacles to PDM-to-PanIN progression or pancreas regeneration. Functional identification of the cellular and molecular events driving senescence and apoptosis in PDM and its progression would help not only to restrict the development of PDM into PanIN/PDAC, but may also facilitate pancreatic regeneration. This review systematically assesses recent advances in the understanding of PDM physiology and pathology, with a focus on its implications for enhancing regeneration and prevention of cancer. © 2022 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Tingting Jiang
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, PR China
- Department of Pathology, The South China University of Technology School of Medicine, Guangzhou, PR China
| | - Fang Wei
- Institute of Digestive Diseases Research, The South China University of Technology School of Medicine, Guangzhou, PR China
| | - Keping Xie
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, PR China
- Department of Pathology, The South China University of Technology School of Medicine, Guangzhou, PR China
| |
Collapse
|
12
|
Cytoglobin attenuates pancreatic cancer growth via scavenging reactive oxygen species. Oncogenesis 2022; 11:23. [PMID: 35504863 PMCID: PMC9065067 DOI: 10.1038/s41389-022-00389-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 11/08/2022] Open
Abstract
Pancreatic cancer is a highly challenging malignancy with extremely poor prognosis. Cytoglobin (CYGB), a hemeprotein involved in liver fibrosis and cancer development, is expressed in pericytes of all organs. Here, we examined the role of CYGB in the development of pancreatic cancer. CYGB expression appeared predominately in the area surrounding adenocarcinoma and negatively correlated with tumor size in patients with pancreatic cancer. Directly injecting 7, 12-dimethylbenz[a]anthracene into the pancreatic tail in wild-type mice resulted in time-dependent induction of severe pancreatitis, fibrosis, and oxidative damage, which was rescued by Cygb overexpression in transgenic mice. Pancreatic cancer incidence was 93% in wild-type mice but only 55% in transgenic mice. Enhanced CYGB expression in human pancreatic stellate cells in vitro reduced cellular collagen synthesis, inhibited cell activation, increased expression of antioxidant-related genes, and increased CYGB secretion into the medium. Cygb-overexpressing or recombinant human CYGB (rhCYGB) -treated MIA PaCa-2 cancer cells exhibited dose-dependent cell cycle arrest at the G1 phase, diminished cell migration, and reduction in colony formation. RNA sequencing in rhCYGB-treated MIA PaCa-2 cells revealed downregulation of cell cycle and oxidative phosphorylation pathways. An increase in MIA PaCa-2 cell proliferation and reactive oxygen species production by H2O2 challenge was blocked by rhCYGB treatment or Cygb overexpression. PANC-1, OCUP-A2, and BxPC-3 cancer cells showed similar responses to rhCYGB. Known antioxidants N-acetyl cysteine and glutathione also inhibited cancer cell growth. These results demonstrate that CYGB suppresses pancreatic stellate cell activation, pancreatic fibrosis, and tumor growth, suggesting its potential therapeutic application against pancreatic cancer.
Collapse
|
13
|
Ferdek PE, Krzysztofik D, Stopa KB, Kusiak AA, Paw M, Wnuk D, Jakubowska MA. When healing turns into killing ‐ the pathophysiology of pancreatic and hepatic fibrosis. J Physiol 2022; 600:2579-2612. [DOI: 10.1113/jp281135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/12/2022] [Indexed: 01/18/2023] Open
Affiliation(s)
- Pawel E. Ferdek
- Department of Cell Biology Faculty of Biochemistry Biophysics and Biotechnology Jagiellonian University Krakow Poland
| | - Daria Krzysztofik
- Malopolska Centre of Biotechnology Jagiellonian University Krakow Poland
| | - Kinga B. Stopa
- Malopolska Centre of Biotechnology Jagiellonian University Krakow Poland
| | - Agnieszka A. Kusiak
- Department of Cell Biology Faculty of Biochemistry Biophysics and Biotechnology Jagiellonian University Krakow Poland
| | - Milena Paw
- Department of Cell Biology Faculty of Biochemistry Biophysics and Biotechnology Jagiellonian University Krakow Poland
| | - Dawid Wnuk
- Department of Cell Biology Faculty of Biochemistry Biophysics and Biotechnology Jagiellonian University Krakow Poland
| | | |
Collapse
|
14
|
Li S, Xie K. Ductal metaplasia in pancreas. Biochim Biophys Acta Rev Cancer 2022; 1877:188698. [DOI: 10.1016/j.bbcan.2022.188698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 02/07/2023]
|
15
|
Koyanagi YN, Oze I, Kasugai Y, Kawakatsu Y, Taniyama Y, Hara K, Shimizu Y, Imoto I, Ito H, Matsuo K. New insights into the genetic contribution of ALDH2 rs671 in pancreatic carcinogenesis: evaluation by mediation analysis. Cancer Sci 2022; 113:1441-1450. [PMID: 35102643 PMCID: PMC8990728 DOI: 10.1111/cas.15286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/12/2022] [Accepted: 01/23/2022] [Indexed: 11/26/2022] Open
Abstract
A functional variant on ALDH2 rs671 (G>A) confers a protective effect against alcohol‐induced carcinogenesis through an indirect pathway mediated by decreased alcohol consumption. Conversely, this variant also contributes to the accumulation of carcinogenic agents, resulting in a direct carcinogenic effect. This study aimed to separately quantify these two opposing effects of the rs671 A allele on pancreatic cancer risk and explore the impact of the rs671 A allele and alcohol consumption on pancreatic carcinogenesis. We included 426 cases and 1456 age‐ and sex‐matched controls. Odds ratio (OR) and 95% confidence interval (CI) for alcohol consumption were estimated using a conditional logistic regression model. By defining rs671 A allele and alcohol consumption as exposure and mediator, respectively, we used mediation analysis to decompose the total‐effect OR of the rs671 A allele into direct‐ and indirect‐effect ORs. Alcohol consumption (10 g/d) was associated with pancreatic cancer risk (OR, 1.05; 95% CI, 1.01‐1.10), but tests for interaction between the rs671 A allele and alcohol consumption were nonsignificant, indicating that the effect of alcohol consumption did not vary by genotype. Mediation analysis showed that the nonsignificant total effect (OR, 1.15; 95% CI, 0.92‐1.44) can be decomposed into the carcinogenic direct (OR, 1.34; 95% CI, 1.04‐1.72) and protective indirect effect (OR, 0.86; 95% CI, 0.77‐0.95). This study supports the association between alcohol consumption and pancreatic cancer risk and indicates the potential contribution of the rs671 A allele to pancreatic carcinogenesis through impaired metabolism of known or unknown ALDH2 substrates.
Collapse
Affiliation(s)
- Yuriko N Koyanagi
- Division of Cancer Information and Control, Department of Preventive Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Isao Oze
- Division of Cancer Epidemiology and Prevention, Department of Preventive Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Yumiko Kasugai
- Division of Cancer Epidemiology and Prevention, Department of Preventive Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan.,Department of Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukino Kawakatsu
- Division of Cancer Epidemiology and Prevention, Department of Preventive Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Yukari Taniyama
- Division of Cancer Information and Control, Department of Preventive Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Kazuo Hara
- Department of Gastroenterology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Yasuhiro Shimizu
- Department of Gastroenterological Surgery, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Issei Imoto
- Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Hidemi Ito
- Division of Cancer Information and Control, Department of Preventive Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan.,Department of Descriptive Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Department of Preventive Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan.,Department of Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
16
|
Hrabák P, Kalousová M, Krechler T, Zima T. Pancreatic stellate cells - rising stars in pancreatic pathologies. Physiol Res 2021. [DOI: 10.33549//physiolres.934783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Pluripotent pancreatic stellate cells (PSCs) receive growing interest in past decades. Two types of PSCs are recognized –vitamin A accumulating quiescent PSCs and activated PSCs- the main producents of extracellular matrix in pancreatic tissue. PSCs plays important role in pathogenesis of pancreatic fibrosis in pancreatic cancer and chronic pancreatitis. PSCs are intensively studied as potential therapeutical target because of their important role in developing desmoplastic stroma in pancreatic cancer. There also exists evidence that PSC are involved in other pathologies like type-2 diabetes mellitus. This article brings brief characteristics of PSCs and recent advances in research of these cells.
Collapse
Affiliation(s)
| | - M Kalousová
- 2Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic.
| | | | | |
Collapse
|
17
|
Cannon A, Thompson CM, Bhatia R, Armstrong KA, Solheim JC, Kumar S, Batra SK. Molecular mechanisms of pancreatic myofibroblast activation in chronic pancreatitis and pancreatic ductal adenocarcinoma. J Gastroenterol 2021; 56:689-703. [PMID: 34279724 PMCID: PMC9052363 DOI: 10.1007/s00535-021-01800-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/15/2021] [Indexed: 02/04/2023]
Abstract
Pancreatic fibrosis (PF) is an essential component of the pathobiology of chronic pancreatitis (CP) and pancreatic ductal adenocarcinoma (PDAC). Activated pancreatic myofibroblasts (PMFs) are crucial for the deposition of the extracellular matrix, and fibrotic reaction in response to sustained signaling. Consequently, understanding of the molecular mechanisms of PMF activation is not only critical for understanding CP and PDAC biology but is also a fertile area of research for the development of novel therapeutic strategies for pancreatic pathologies. This review analyzes the key signaling events that drive PMF activation including, initiating signals from transforming growth factor-β1, platelet derived growth factor, as well as other microenvironmental cues, like hypoxia and extracellular matrix rigidity. Further, we discussed the intracellular signal events contributing to PMF activation, and crosstalk with different components of tumor microenvironment. Additionally, association of epidemiologically established risk factors for CP and PDAC, like alcohol intake, tobacco exposure, and metabolic factors with PMF activation, is discussed to comprehend the role of lifestyle factors on pancreatic pathologies. Overall, this analysis provides insight into the biology of PMF activation and highlights salient features of this process, which offer promising therapeutic targets.
Collapse
Affiliation(s)
- Andrew Cannon
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Christopher Michael Thompson
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Rakesh Bhatia
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | | | - Joyce Christopher Solheim
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE 68198-5870, USA,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
18
|
Zheng M, Li H, Sun L, Brigstock DR, Gao R. Interleukin-6 participates in human pancreatic stellate cell activation and collagen I production via TGF-β1/Smad pathway. Cytokine 2021; 143:155536. [PMID: 33893003 DOI: 10.1016/j.cyto.2021.155536] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/24/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023]
Abstract
Pancreatic stellate cells (PSCs) play a key role in fibrogenesis during alcoholic chronic pancreatitis (ACP). Transforming growth factor-β1 (TGF-β1) is a major regulator of PSC activation and extracellular matrix production. Interleukin-6 (IL-6) has shown to participate in TGF-β1 production and rat PSC activation. This study aimed to investigate whether IL-6 promotes human PSC activation and collagen 1(Col1) production through the TGF-β1/Smad pathway. Our results showed that the expression of IL-6 and IL-6R in activated PSCs and macrophages (Mφs) were enhanced in the pancreas of ACP compared to healthy controls and that the mRNA expression of IL-6, IL-6R, TGF-β1, α-SMA or Col1a1 were significantly increased in the pancreas of ACP, showing positive correlations between elevated IL-6 levels and either TGF-β1 or α-SMA or Col1a1 levels and between elevated TGF-β1 levels and α-SMA or Col1a1 levels. In in vitro studies, we identified that IL-6R expression or IL-6 and TGF-β1 secretions were significantly increased in, respectively, Mφs and PSCs by ethanol (EtOH) or lipopolysaccharide (LPS) stimulation while EtOH- or LPS-induced α-SMA or Col1a1 mRNA and protein production in PSCs were partially blocked by IL-6 antibody. IL-6-induced TGF-β1 production in PSCs was antagonized by si-IL-6R RNA or by an inhibitor of STAT3. Additionally, IL-6-promoted α-SMA or Col1a1 protein production was blocked by TGF-β1 antibody and IL-6-induced phosphorylation of Smad2/3 and transcription of α-SMA and Col1a1 mRNA were antagonized by si-TGF-β1 RNA. Our findings indicate that IL-6 contributes to PSC activation and Col1 production through up-regulation of TGF-β1/Smad2/3 pathway.
Collapse
Affiliation(s)
- Meifang Zheng
- Department of Hepatic Biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, China
| | - Hongyan Li
- Department of Hepatic Biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, China
| | - Li Sun
- Department of Hepatic Biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, China
| | - David R Brigstock
- The Research Institute at Nationwide Children's Hospital, Columbus, OH United States
| | - Runping Gao
- Department of Hepatic Biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
19
|
Haber PS, Kortt NC. Alcohol use disorder and the gut. Addiction 2021; 116:658-667. [PMID: 32511812 DOI: 10.1111/add.15147] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/14/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023]
Abstract
Acute and chronic gastrointestinal problems are common in the setting of excessive alcohol use, and excessive alcohol use is associated with injury to all parts of the gastrointestinal tract. There is mounting evidence of gastrointestinal injury and increased cancer risk even from moderate alcohol consumption. The major causes of alcohol-related morbidity and mortality within the gastrointestinal system are liver disease, pancreatitis and gastrointestinal cancer. Other alcohol-related intestinal dysfunction is common but not life-threatening, leading to diarrhoea, malabsorption and nutritional deficiencies. This review describes non-neoplastic and neoplastic alcohol-related disorders of the gastrointestinal tract, omitting the liver, which has been reviewed elsewhere.
Collapse
Affiliation(s)
- Paul S Haber
- Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia.,University of Sydney, Sydney, NSW, 2050, Australia
| | | |
Collapse
|
20
|
Kazmierak W, Korolczuk A, Kurzepa J, Czechowska G, Boguszewska-Czubara A, Madro A. The influence of erythropoietin on apoptosis and fibrosis in the early phase of chronic pancreatitis in rats. Arch Med Sci 2021; 17:1100-1108. [PMID: 34336038 PMCID: PMC8314426 DOI: 10.5114/aoms.2020.99800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 08/01/2018] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Chronic pancreatitis (CP) is a continuing, inflammatory process of the pancreas, characterised by irreversible morphological changes. The identification of pancreatic stellate cells resulted in the development of research on the pathogenesis of CP. Erythropoietin (Epo) regulates the interaction between apoptosis and inflammation of the brain, kidney, and heart muscle. Erythropoietin receptors were also found in the pancreas, in particular on the islet cells. Our objective was to evaluate the influence of Epo on fibrosis and apoptosis in experimental CP. MATERIAL AND METHODS The experiments were performed on 48 male Wistar rats (250-350 g). The animals were divided into six equal groups (I - control, II - chronic cerulein - induced pancreatitis, III - 1 ml of Epo sc, IV - 0.5 ml of Epo sc, V - CP treated with 1 ml Epo, VI - CP treated with 0.5 ml Epo). The blood for gelatinases and pancreata for the morphological examinations and immunohistochemistry were collected. RESULTS A slight reduction of interstitial oedema and less severe fibrosis were noticed in the groups treated with Epo. Reduced expression of caspase-3 and α-actin, and a lack of Bcl-2 expression were observed in areas with inflammation. There was no expression of caspase-9 observed in all groups. There were no statistically significant differences between the groups in the activity of gelatinases. CONCLUSIONS Erythropoietin seems to have the effect of reducing fibrosis and apoptosis in an experimental model of CP.
Collapse
Affiliation(s)
- Weronika Kazmierak
- Department of Gastroenterology with Endoscopic Unit, Medical University of Lublin, Lublin, Poland
| | - Agnieszka Korolczuk
- Department of Clinical Pathomorphology, Medical University of Lublin, Lublin, Poland
| | - Jacek Kurzepa
- Department of Medicinal Chemistry, Medical University of Lublin, Lublin, Poland
| | - Grażyna Czechowska
- Department of Gastroenterology with Endoscopic Unit, Medical University of Lublin, Lublin, Poland
| | | | - Agnieszka Madro
- Department of Gastroenterology with Endoscopic Unit, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
21
|
Garcia PE, Scales MK, Allen BL, Pasca di Magliano M. Pancreatic Fibroblast Heterogeneity: From Development to Cancer. Cells 2020; 9:E2464. [PMID: 33198201 PMCID: PMC7698149 DOI: 10.3390/cells9112464] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is characterized by an extensive fibroinflammatory microenvironment that accumulates from the onset of disease progression. Cancer-associated fibroblasts (CAFs) are a prominent cellular component of the stroma, but their role during carcinogenesis remains controversial, with both tumor-supporting and tumor-restraining functions reported in different studies. One explanation for these contradictory findings is the heterogeneous nature of the fibroblast populations, and the different roles each subset might play in carcinogenesis. Here, we review the current literature on the origin and function of pancreatic fibroblasts, from the developing organ to the healthy adult pancreas, and throughout the initiation and progression of PDA. We also discuss clinical approaches to targeting fibroblasts in PDA.
Collapse
Affiliation(s)
- Paloma E. Garcia
- Program in Molecular and Cellular Pathology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48105, USA;
| | - Michael K. Scales
- Department of Cell and Developmental Biology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109, USA; (M.K.S.); (B.L.A.)
| | - Benjamin L. Allen
- Department of Cell and Developmental Biology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109, USA; (M.K.S.); (B.L.A.)
- Rogel Cancer Center, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marina Pasca di Magliano
- Department of Cell and Developmental Biology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109, USA; (M.K.S.); (B.L.A.)
- Rogel Cancer Center, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
22
|
Radoslavova S, Ouadid-Ahidouch H, Prevarskaya N. Ca2+ signaling is critical for pancreatic stellate cell’s pathophysiology : from fibrosis to cancer hallmarks. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2020.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Verloy R, Privat-Maldonado A, Smits E, Bogaerts A. Cold Atmospheric Plasma Treatment for Pancreatic Cancer-The Importance of Pancreatic Stellate Cells. Cancers (Basel) 2020; 12:cancers12102782. [PMID: 32998311 PMCID: PMC7601057 DOI: 10.3390/cancers12102782] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/17/2020] [Accepted: 09/26/2020] [Indexed: 01/18/2023] Open
Abstract
Simple Summary This review aims to highlight the potential of cold plasma, the fourth state of matter, as anti-cancer treatment for pancreatic cancer, and the importance of pancreatic stellate cells in the response to this treatment. Currently, a significant lack of basic research on cold plasma considering both pancreatic cancer and stellate cells exists. However, co-cultures of these populations can be advantageous, as they resemble the cell-to-cell interactions occurring in a tumor in response to therapy. Even more, these studies should be performed prior to clinical trials of cold plasma to avoid unforeseen responses to treatment. This review article provides a framework for future research of cold plasma therapies for pancreatic cancer, considering the critical role of pancreatic stellate cells in the disease and treatment outcome. Abstract Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with low five-year survival rates of 8% by conventional treatment methods, e.g., chemotherapy, radiotherapy, and surgery. PDAC shows high resistance towards chemo- and radiotherapy and only 15–20% of all patients can have surgery. This disease is predicted to become the third global leading cause of cancer death due to its significant rise in incidence. Therefore, the development of an alternative or combinational method is necessary to improve current approaches. Cold atmospheric plasma (CAP) treatments could offer multiple advantages to this emerging situation. The plasma-derived reactive species can induce oxidative damage and a cascade of intracellular signaling pathways, which could lead to cell death. Previous reports have shown that CAP treatment also influences cells in the tumor microenvironment, such as the pancreatic stellate cells (PSCs). These PSCs, when activated, play a crucial role in the propagation, growth and survival of PDAC tumors. However, the effect of CAP on PSCs is not yet fully understood. This review focuses on the application of CAP for PDAC treatment and the importance of PSCs in the response to treatment.
Collapse
Affiliation(s)
- Ruben Verloy
- Plasma Lab for Applications in Sustainability and Medicine-ANTwerp, University of Antwerp, 2610 Wilrijk, Belgium;
- Center for Oncological Research, University of Antwerp, 2610 Wilrijk, Belgium;
- Correspondence: (R.V.); (A.P.-M.); Tel.: +32-3265-2343 (R.V. & A.P.-M.)
| | - Angela Privat-Maldonado
- Plasma Lab for Applications in Sustainability and Medicine-ANTwerp, University of Antwerp, 2610 Wilrijk, Belgium;
- Center for Oncological Research, University of Antwerp, 2610 Wilrijk, Belgium;
- Correspondence: (R.V.); (A.P.-M.); Tel.: +32-3265-2343 (R.V. & A.P.-M.)
| | - Evelien Smits
- Center for Oncological Research, University of Antwerp, 2610 Wilrijk, Belgium;
| | - Annemie Bogaerts
- Plasma Lab for Applications in Sustainability and Medicine-ANTwerp, University of Antwerp, 2610 Wilrijk, Belgium;
| |
Collapse
|
24
|
Żorniak M, Sirtl S, Mayerle J, Beyer G. What Do We Currently Know about the Pathophysiology of Alcoholic Pancreatitis: A Brief Review. Visc Med 2020; 36:182-190. [PMID: 32775348 PMCID: PMC7383280 DOI: 10.1159/000508173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/21/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Alcoholic pancreatitis is a serious medical concern worldwide and remains to be one of the common causes of pancreatic disease. SUMMARY While alcohol consumption causes direct damage to pancreatic tissue, only a small percentage of active drinkers will develop pancreatitis. An explanation of this phenomenon is probably that alcohol increases pancreatic vulnerability to damage; however, the simultaneous presence of additional risk factors and pancreatic costressors is required to increase the risk of pancreatitis and its complications caused by alcohol misuse. Recently, a number of important genetic as well as environmental factors influencing the risk of alcoholic pancreatitis have been described. KEY MESSAGES In brief, this review reports established factors for the development of alcoholic pancreatitis and summarizes recent progress made in basic and clinical research.
Collapse
Affiliation(s)
- Michał Żorniak
- Medical Department II, University Hospital, LMU Munich, Munich, Germany
- Department of Gastroenterology, Medical University of Silesia, Katowice, Poland
| | - Simon Sirtl
- Medical Department II, University Hospital, LMU Munich, Munich, Germany
| | - Julia Mayerle
- Medical Department II, University Hospital, LMU Munich, Munich, Germany
| | - Georg Beyer
- Medical Department II, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
25
|
Choi JW, Jeong JH, Jo IJ, Kim DG, Shin JY, Kim MJ, Choi BM, Shin YK, Song HJ, Bae GS, Park SJ. Preventive Effects of Gardenia jasminoides on Cerulein-Induced Chronic Pancreatitis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:987-1003. [PMID: 32431181 DOI: 10.1142/s0192415x20500470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Our previous report revealed that Gardenia jasminoides (GJ) has protective effects against acute pancreatitis. So, we examined whether aqueous extract of GJ has anti-inflammation and antifibrotic effects even against cerulein-induced chronic pancreatitis (CP). CP was induced in mice by an intraperitoneal injection of a stable cholecystokinin (CCK) analogue, cerulein, six times a day, four days per week for three weeks. GJ extract (0.1 or 1[Formula: see text]g/kg) or saline (control group) were intraperitoneally injected 1[Formula: see text]h before first cerulein injection. After three weeks of stimulation, the pancreas was harvested for the examination of several fibrotic parameters. In addition, pancreatic stellate cells (PSCs) were isolated using gradient methods to examine the antifibrogenic effects of GJ. In the cerulein-induced CP mice, the histological features of the pancreas showed severe tissue damage such as enlarged interstitial spaces, inflammatory cell infiltrate and glandular atrophy, and tissue fibrosis. However, treatment of GJ reduced the severity of CP such as pancreatic edema and inflammatory cell infiltration. Furthermore, treatment of GJ increased pancreatic acinar cell survival, and reduced pancreatic fibrosis and activation of PSC in vivo and in vitro. In addition, GJ treatment inhibited the activation of c-Jun N-terminal kinase (JNK) and extracellular signal-regulated protein kinase (ERK) in the PSCs. These results suggest that GJ attenuated the severity of CP and the pancreatic fibrosis by inhibiting JNK and ERK activation during CP.
Collapse
Affiliation(s)
- Ji-Won Choi
- Department of Herbology, Wonkwang University School of Korean Medicine, Iksan 54538, Republic of Korea.,Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan 54538, Republic of Korea
| | - Jun-Hyeok Jeong
- Department of Herbology, Wonkwang University School of Korean Medicine, Iksan 54538, Republic of Korea
| | - Il-Joo Jo
- Division of Beauty Sciences, Wonkwang University School of Natural Sciences, Iksan 54538, Republic of Korea
| | - Dong-Gu Kim
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan 54538, Republic of Korea
| | - Joon Yeon Shin
- Department of Herbology, Wonkwang University School of Korean Medicine, Iksan 54538, Republic of Korea
| | - Myoung-Jin Kim
- Department of Herbology, Wonkwang University School of Korean Medicine, Iksan 54538, Republic of Korea
| | - Byung-Min Choi
- Department of Biochemistry, Wonkwang University School of Medicine, Iksan 54538, Republic of Korea
| | - Yong Kook Shin
- Major in Integrated Oriental Medical Bioscience, College of Health Biotechnology, Semyung University, Jecheon 27136, Republic of Korea
| | - Ho-Joon Song
- Department of Herbology, Wonkwang University School of Korean Medicine, Iksan 54538, Republic of Korea
| | - Gi-Sang Bae
- Department of Pharmacology, Wonkwang University School of Korean Medicine, Iksan 54538, Republic of Korea.,Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan 54538, Republic of Korea
| | - Sung-Joo Park
- Department of Herbology, Wonkwang University School of Korean Medicine, Iksan 54538, Republic of Korea.,Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan 54538, Republic of Korea
| |
Collapse
|
26
|
Rasineni K, Srinivasan MP, Balamurugan AN, Kaphalia BS, Wang S, Ding WX, Pandol SJ, Lugea A, Simon L, Molina PE, Gao P, Casey CA, Osna NA, Kharbanda KK. Recent Advances in Understanding the Complexity of Alcohol-Induced Pancreatic Dysfunction and Pancreatitis Development. Biomolecules 2020; 10:biom10050669. [PMID: 32349207 PMCID: PMC7277520 DOI: 10.3390/biom10050669] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 02/05/2023] Open
Abstract
Chronic excessive alcohol use is a well-recognized risk factor for pancreatic dysfunction and pancreatitis development. Evidence from in vivo and in vitro studies indicates that the detrimental effects of alcohol on the pancreas are from the direct toxic effects of metabolites and byproducts of ethanol metabolism such as reactive oxygen species. Pancreatic dysfunction and pancreatitis development are now increasingly thought to be multifactorial conditions, where alcohol, genetics, lifestyle, and infectious agents may determine the initiation and course of the disease. In this review, we first highlight the role of nonoxidative ethanol metabolism in the generation and accumulation of fatty acid ethyl esters (FAEEs) that cause multi-organellar dysfunction in the pancreas which ultimately leads to pancreatitis development. Further, we discuss how alcohol-mediated altered autophagy leads to the development of pancreatitis. We also provide insights into how alcohol interactions with other co-morbidities such as smoking or viral infections may negatively affect exocrine and endocrine pancreatic function. Finally, we present potential strategies to ameliorate organellar dysfunction which could attenuate pancreatic dysfunction and pancreatitis severity.
Collapse
Affiliation(s)
- Karuna Rasineni
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.A.C.); (N.A.O.); (K.K.K.)
- Research Service, Veterans’ Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Correspondence: ; Tel.: +1-402-995-3548; Fax: +1-402-995-4600
| | - Mukund P. Srinivasan
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555-0419, USA; (M.P.S.); (B.S.K.)
| | - Appakalai N. Balamurugan
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Department of Surgery, University of Cincinnati, Cincinnati, OH 45229, USA;
| | - Bhupendra S. Kaphalia
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555-0419, USA; (M.P.S.); (B.S.K.)
| | - Shaogui Wang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, MO 66160, USA; (S.W.); (W.-X.D.)
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, MO 66160, USA; (S.W.); (W.-X.D.)
| | - Stephen J. Pandol
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (S.J.P.); (A.L.)
| | - Aurelia Lugea
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (S.J.P.); (A.L.)
| | - Liz Simon
- Department of Physiology, Louisiana State University Health Sciences Center-New Orleans, New Orleans, LA 70112, USA; (L.S.); (P.E.M.)
| | - Patricia E. Molina
- Department of Physiology, Louisiana State University Health Sciences Center-New Orleans, New Orleans, LA 70112, USA; (L.S.); (P.E.M.)
| | - Peter Gao
- Program Director, Division of Metabolism and Health Effects, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892-6902, USA;
| | - Carol A. Casey
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.A.C.); (N.A.O.); (K.K.K.)
- Research Service, Veterans’ Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Natalia A. Osna
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.A.C.); (N.A.O.); (K.K.K.)
- Research Service, Veterans’ Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Kusum K. Kharbanda
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.A.C.); (N.A.O.); (K.K.K.)
- Research Service, Veterans’ Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| |
Collapse
|
27
|
Agarwal S, Sharma S, Gunjan D, Singh N, Kaushal K, Poudel S, Anand A, Gopi S, Mohta S, Sonika U, Saraya A. Natural course of chronic pancreatitis and predictors of its progression. Pancreatology 2020; 20:347-355. [PMID: 32107194 DOI: 10.1016/j.pan.2020.02.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/26/2020] [Accepted: 02/06/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND The natural course of chronic pancreatitis(CP) and its complications has been inadequately explored. We aimed to describe the natural history and factors affecting the progression of alcoholic(ACP), idiopathic juvenile(IJCP) and idiopathic senile(ISCP) variants of CP. METHODS This study was a retrospective analysis from a prospectively maintained database of patients with CP following up at a tertiary care centre from 1998 to 2019. Cumulative rates of pain resolution, diabetes, steatorrhea, pseudocysts and pancreatic cancer were computed using Kaplan-Meier analysis, and the factors affecting their incidence were identified on multivariable-adjusted Cox-proportional-hazards model. RESULTS A total of 1415 patients were included, with 540(38.1%) ACP, 668(47.2%) IJCP and 207(14.6%) ISCP with a median follow-up of 3.5 years(Inter-quartile range: 1.5-7.5 years). Diabetes occurred at 11.5, 28 and 5.8 years(p < 0.001) while steatorrhea occurred at 16, 24 and 18 years(p = 0.004) after onset for ACP, IJCP and ISCP respectively. Local complications including pseudocysts occurred predominantly in ACP(p < 0.001). Ten-year risk of pancreatic cancer was 0.9%, 0.2% and 5.2% in ACP, IJCP and ISCP, respectively(p < 0.001). Pain resolution occurred more frequently in patients with older age of onset[Multivariate Hazard Ratio(HR):1.7(95%CI:1.4-2.0; p < 0.001)], non-smokers[HR:0.51(95%CI:0.34-0.78); p = 0.002] and in non-calcific CP[HR:0.81(0.66-1.0); p = 0.047]. Occurrence of steatorrhea[HR:1.3(1.03-1.7); p = 0.028] and diabetes[HR:2.7(2.2-3.4); p < 0.001] depended primarily on age at onset. Occurrence of pancreatic cancer depended on age at onset[HR:12.1(4.7-31.2); p < 0.001], smoking-history[HR:6.5(2.2-19.0); p < 0.001] and non-alcoholic etiology[HR:0.14(0.05-0.4); p < 0.001]. CONCLUSION ACP, IJCP and ISCP represent distinct entities with different natural course. Age at onset of CP plays a major prognostic role in all manifestations, with alcohol predominantly causing local inflammatory complications.
Collapse
Affiliation(s)
- Samagra Agarwal
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sanchit Sharma
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Deepak Gunjan
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Namrata Singh
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Kanav Kaushal
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Shekhar Poudel
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Abhinav Anand
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Srikant Gopi
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Srikant Mohta
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Ujjwal Sonika
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Anoop Saraya
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
28
|
Ramakrishnan P, Loh WM, Gopinath SC, Bonam SR, Fareez IM, Mac Guad R, Sim MS, Wu YS. Selective phytochemicals targeting pancreatic stellate cells as new anti-fibrotic agents for chronic pancreatitis and pancreatic cancer. Acta Pharm Sin B 2020; 10:399-413. [PMID: 32140388 PMCID: PMC7049637 DOI: 10.1016/j.apsb.2019.11.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/23/2019] [Accepted: 10/29/2019] [Indexed: 12/15/2022] Open
Abstract
Activated pancreatic stellate cells (PSCs) have been widely accepted as a key precursor of excessive pancreatic fibrosis, which is a crucial hallmark of chronic pancreatitis (CP) and its formidable associated disease, pancreatic cancer (PC). Hence, anti-fibrotic therapy has been identified as a novel therapeutic strategy for treating CP and PC by targeting PSCs. Most of the anti-fibrotic agents have been limited to phase I/II clinical trials involving vitamin analogs, which are abundant in medicinal plants and have proved to be promising for clinical application. The use of phytomedicines, as new anti-fibrotic agents, has been applied to a variety of complementary and alternative approaches. The aim of this review was to present a focused update on the selective new potential anti-fibrotic agents, including curcumin, resveratrol, rhein, emodin, green tea catechin derivatives, metformin, eruberin A, and ellagic acid, in combating PSC in CP and PC models. It aimed to describe the mechanism(s) of the phytochemicals used, either alone or in combination, and the associated molecular targets. Most of them were tested in PC models with similar mechanism of actions, and curcumin was tested intensively. Future research may explore the issues of bioavailability, drug design, and nano-formulation, in order to achieve successful clinical outcomes with promising activity and tolerability.
Collapse
Affiliation(s)
- Puvanesswaray Ramakrishnan
- Ageing and Age-Associated Disorders Research Group, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Wei Mee Loh
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Subash C.B. Gopinath
- School of Bioprocess Engineering, Universiti Malaysia Perlis, Arau 02600, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Kangar 01000, Malaysia
| | - Srinivasa Reddy Bonam
- UMR 7242, CNRS-University of Strasbourg, Biotechnology and Cell Signaling/Laboratory of Excellence Medalis, Illkirch 67400, France
| | - Ismail M. Fareez
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Selangor 42610, Malaysia
| | - Rhanye Mac Guad
- Department of Biomedical Science and Therapeutics, Faculty of Medicine and Health Science, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Maw Shin Sim
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University of Malaya, Kuala Lumpur 50603, Malaysia
- Corresponding authors. Tel./fax: +60 3 51022709 (Yuan Seng Wu); +60 3 79675749 (Maw Shin Sim).
| | - Yuan Seng Wu
- Department of Biochemistry, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Selangor 42610, Malaysia
- Corresponding authors. Tel./fax: +60 3 51022709 (Yuan Seng Wu); +60 3 79675749 (Maw Shin Sim).
| |
Collapse
|
29
|
Takahashi T, Miao Y, Kang F, Dolai S, Gaisano HY. Susceptibility Factors and Cellular Mechanisms Underlying Alcoholic Pancreatitis. Alcohol Clin Exp Res 2020; 44:777-789. [PMID: 32056245 DOI: 10.1111/acer.14304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/03/2020] [Indexed: 12/16/2022]
Abstract
Alcohol is a major cause of acute and chronic pancreatitis. There have been some recent advances in the understanding of the mechanisms underlying alcoholic pancreatitis, which include perturbation in mitochondrial function and autophagy and ectopic exocytosis, with some of these cellular events involving membrane fusion soluble N-ethylmaleimide-sensitive factor receptor protein receptor proteins. Although new insights have been unraveled recently, the precise mechanisms remain complex, and their finer details have yet to be established. The overall pathophysiology of pancreatitis involves not only the pancreatic acinar cells but also the stellate cells and duct cells. Why only some are more susceptible to pancreatitis and with increased severity, while others are not, would suggest that there may be undefined protective factors or mechanisms that enhance recovery and regeneration after injury. Furthermore, there are confounding influences of lifestyle factors such as smoking and diet, and genetic background. Whereas alcohol and smoking cessation and a generally healthy lifestyle are intuitively the advice given to these patients afflicted with alcoholic pancreatitis in order to reduce disease recurrence and progression, there is as yet no specific treatment. A more complete understanding of the pathogenesis of pancreatitis from which novel therapeutic targets could be identified will have a great impact, particularly with the stubbornly high fatality (>30%) of severe pancreatitis. This review focuses on the susceptibility factors and underlying cellular mechanisms of alcohol injury on the exocrine pancreas.
Collapse
Affiliation(s)
- Toshimasa Takahashi
- From the, Departments of Medicine and Physiology, University of Toronto, Toronto, ON, Canada
| | - Yifan Miao
- From the, Departments of Medicine and Physiology, University of Toronto, Toronto, ON, Canada
| | - Fei Kang
- From the, Departments of Medicine and Physiology, University of Toronto, Toronto, ON, Canada
| | - Subhankar Dolai
- From the, Departments of Medicine and Physiology, University of Toronto, Toronto, ON, Canada
| | - Herbert Y Gaisano
- From the, Departments of Medicine and Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
30
|
Kusiak AA, Szopa MD, Jakubowska MA, Ferdek PE. Signaling in the Physiology and Pathophysiology of Pancreatic Stellate Cells - a Brief Review of Recent Advances. Front Physiol 2020; 11:78. [PMID: 32116785 PMCID: PMC7033654 DOI: 10.3389/fphys.2020.00078] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/23/2020] [Indexed: 12/12/2022] Open
Abstract
The interest in pancreatic stellate cells (PSCs) has been steadily growing over the past two decades due mainly to the central role these cells have in the desmoplastic reaction associated with diseases of the pancreas, such as pancreatitis or pancreatic cancer. In recent years, the scientific community has devoted substantial efforts to understanding the signaling pathways that govern PSC activation and interactions with neoplastic cells. This mini review aims to summarize some very recent findings on signaling in PSCs and highlight their impact to the field.
Collapse
Affiliation(s)
- Agnieszka A Kusiak
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Mateusz D Szopa
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | | | - Pawel E Ferdek
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
31
|
Jin G, Hong W, Guo Y, Bai Y, Chen B. Molecular Mechanism of Pancreatic Stellate Cells Activation in Chronic Pancreatitis and Pancreatic Cancer. J Cancer 2020; 11:1505-1515. [PMID: 32047557 PMCID: PMC6995390 DOI: 10.7150/jca.38616] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/08/2019] [Indexed: 12/14/2022] Open
Abstract
Activated pancreatic stellate cells (PSCs) are the main effector cells in the process of fibrosis, a major pathological feature in pancreatic diseases that including chronic pancreatitis and pancreatic cancer. During tumorigenesis, quiescent PSCs change into an active myofibroblast-like phenotype which could create a favorable tumor microenvironment and facilitate cancer progression by increasing proliferation, invasiveness and inducing treatment resistance of pancreatic cancer cells. Many cellular signals are revealed contributing to the activation of PSCs, such as transforming growth factor-β, platelet derived growth factor, mitogen-activated protein kinase (MAPK), Smads, nuclear factor-κB (NF-κB) pathways and so on. Therefore, investigating the role of these factors and signaling pathways in PSCs activation will promote the development of PSCs-specific therapeutic strategies that may provide novel options for pancreatic cancer therapy. In this review, we systematically summarize the current knowledge about PSCs activation-associated stimulating factors and signaling pathways and hope to provide new strategies for the treatment of pancreatic diseases.
Collapse
Affiliation(s)
- Guihua Jin
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Weilong Hong
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yangyang Guo
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yongheng Bai
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Bicheng Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
32
|
Shabanzadeh DM, Novovic S. Alcohol, smoking and benign hepato-biliary disease. Best Pract Res Clin Gastroenterol 2017; 31:519-527. [PMID: 29195671 DOI: 10.1016/j.bpg.2017.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/29/2017] [Accepted: 09/03/2017] [Indexed: 01/31/2023]
Abstract
Gallstone disease and pancreatitis are the most frequent benign hepato-biliary causes of hospital admissions. Gallstone disease is prevalent, but symptomatic disease develops only in about one out of five carriers. Alcohol intake seems to protect gallstone formation in cohort studies possibly through effects on bile cholesterol metabolism, the enterohepatic circulation, and gallbladder function. The impact of smoking on gallstone formation seems minor. Both alcohol intake and smoking do not alter the clinical course of gallstone disease carriers. Cholecystectomy is the preferred treatment for symptomatic gallstone disease. Studies about the impact of alcohol and smoking on the post-cholecystectomy state are few and future studies should be performed. Pancreatitis is associated with both excessive alcohol intake and smoking in observational studies. Interpretation of associations with pancreatitis is hampered by an incomplete understanding of underlying mechanisms and by the co-existence of excessive alcohol intake and smoking. Smoking cessation and alcohol abstinence is recommended in the treatment of pancreatitis, but higher-level evidence is needed.
Collapse
Affiliation(s)
- Daniel Mønsted Shabanzadeh
- Digestive Disease Center, Bispebjerg University Hospital, Copenhagen, Denmark; Research Centre for Prevention and Health, Denmark.
| | - Srdan Novovic
- Department of Gastroenterology and Gastrointestinal Surgery, Copenhagen University Hospital Hvidovre, Denmark.
| |
Collapse
|
33
|
Schneider A, Rosendahl J, Bugert P, Weiss C, Unterschütz H, Kylanpää-Bäck ML, Lempinen M, Kemppainen E, Diaconu BL, Ebert MP, Pfützer RH. Genetic Variants in the Manganese Superoxide Dismutase 2 Gene and in the Catalase Gene are not Associated With Alcoholic Chronic Pancreatitis. Alcohol Alcohol 2017; 52:535-541. [PMID: 28655148 DOI: 10.1093/alcalc/agx039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 06/07/2017] [Indexed: 11/14/2022] Open
Abstract
Aims Oxidative stress may contribute to the development of chronic pancreatitis (CP). The enzymes manganese superoxide dismutase 2 (MnSOD, SOD2) and catalase (CAT) counteract free radical activity within the mitochondria and the cytosol. Moreover, CAT activity contributes to the transformation of ethanol to acetaldehyde, a toxic intermediate product of ethanol metabolism, which has been associated with pancreatic damage. Common functional polymorphisms have been described in the MnSOD gene [rs4880, NM_000636.3:c.47 T > C, alanine (ALA) to valine (Val)] and in the CAT promoter region [rs1001179, NG_013339.1:g.4760 C > T]. We investigated whether these polymorphisms are associated with alcoholic CP. Methods We genotyped 470 patients with alcoholic CP for these MnSOD and CAT polymorphisms. We also analysed these variants in 357 healthy control subjects, and in an additional control group of 113 individuals with non-alcoholic CP. We used the age at onset of CP as marker of disease severity and investigated whether different genotypes are associated with different ages at onset. In patients with alcoholic CP, we investigated whether an interaction exists between smoking behaviour and genotypes by comparing genotype distributions in smokers and non-smokers. Results We did not observe significant differences of genotype frequencies between patient groups and controls. In patient groups, we did not find significant differences in the ages at onset between different genotypes. We did not observe an interaction between these polymorphisms. We did not find an association of these variants with smoking behaviour. Conclusions The investigated MnSOD and CAT polymorphisms do not predispose to the development of alcoholic CP. Short summary Patients with alcoholic pancreatitis and controls were genotyped for polymorphisms in oxidative stress genes. There were no significant differences of genotype frequencies between patients and controls, and no association with the age at onset of disease was observed. The polymorphisms are not associated with the development of alcoholic pancreatitis.
Collapse
Affiliation(s)
- Alexander Schneider
- Department of Medicine II, University Medical Centre Mannheim, Medical Faculty of the University of Heidelberg, Mannheim, Germany
| | - Jonas Rosendahl
- University Clinic and Policlinic of Internal Medicine I, University Clinic of Halle, Ernst-Grube-Straße 40, 06120 Halle (Saale), Germany
| | - Peter Bugert
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim of the University of Heidelberg, German Red Cross Blood Service of Baden-Württemberg-Hessen, Friedrich-Ebert-Straße 107, 68167 Mannheim, Germany
| | - Christel Weiss
- Department of Medical Statistics, University Medical Centre Mannheim, Medical Faculty of the University of Heidelberg, Ludolf-Krehl-Straße 13-17, D-68167 Mannheim, Germany
| | - Heike Unterschütz
- Department of Medicine II, University Medical Centre Mannheim, Medical Faculty of the University of Heidelberg, Mannheim, Germany
| | - Marja-Leena Kylanpää-Bäck
- Department of Surgery, Helsinki University Central Hospital, PO Box 263, Kasarmikatu 11-13, FIN-00029, Helsinki, Finland
| | - Marko Lempinen
- Department of Surgery, Helsinki University Central Hospital, PO Box 263, Kasarmikatu 11-13, FIN-00029, Helsinki, Finland
| | - Esko Kemppainen
- Department of Surgery, Helsinki University Central Hospital, PO Box 263, Kasarmikatu 11-13, FIN-00029, Helsinki, Finland
| | - Brindusa L Diaconu
- 3rd Medical Clinic, University of Medicine and Pharmacy, Str. Victor Babes Nr. 8, 400012 Cluj-Napoca, Romania
| | - Matthias P Ebert
- Department of Medicine II, University Medical Centre Mannheim, Medical Faculty of the University of Heidelberg, Mannheim, Germany
| | - Roland H Pfützer
- Department of Medicine II, University Medical Centre Mannheim, Medical Faculty of the University of Heidelberg, Mannheim, Germany.,Department of Internal Medicine, Klinikum Döbeln, Sörmitzer Str. 10, 04720 Döbeln, Germany
| |
Collapse
|
34
|
Lew D, Afghani E, Pandol S. Chronic Pancreatitis: Current Status and Challenges for Prevention and Treatment. Dig Dis Sci 2017; 62:1702-1712. [PMID: 28501969 PMCID: PMC5507364 DOI: 10.1007/s10620-017-4602-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 05/02/2017] [Indexed: 12/21/2022]
Abstract
This paper reviews the current status of our understanding of the epidemiology, diagnosis, and management of the continuum of pancreatic diseases from acute and recurrent acute pancreatitis to chronic pancreatitis and the diseases that are often linked with pancreatitis including diabetes mellitus and pancreatic cancer. In addition to reviewing the current state of the field, we identify gaps in knowledge that are necessary to address to improve patient outcomes in these conditions.
Collapse
Affiliation(s)
- Daniel Lew
- Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA, 90048, USA
| | - Elham Afghani
- Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA, 90048, USA
| | - Stephen Pandol
- Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA, 90048, USA.
| |
Collapse
|
35
|
Nielsen MFB, Mortensen MB, Detlefsen S. Identification of markers for quiescent pancreatic stellate cells in the normal human pancreas. Histochem Cell Biol 2017; 148:359-380. [PMID: 28540429 DOI: 10.1007/s00418-017-1581-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2017] [Indexed: 12/16/2022]
Abstract
Pancreatic stellate cells (PSCs) play a central role as source of fibrogenic cells in pancreatic cancer and chronic pancreatitis. In contrast to quiescent hepatic stellate cells (qHSCs), a specific marker for quiescent PSCs (qPSCs) that can be used in formalin-fixed and paraffin embedded (FFPE) normal human pancreatic tissue has not been identified. The aim of this study was to identify a marker enabling the identification of qPSCs in normal human FFPE pancreatic tissue. Immunohistochemical (IHC), double-IHC, immunofluorescence (IF) and double-IF analyses were carried out using a tissue microarray consisting of cores with normal human pancreatic tissue. Cores with normal human liver served as control. Antibodies directed against adipophilin, α-SMA, CD146, CRBP-1, cytoglobin, desmin, GFAP, nestin, S100A4 and vinculin were examined, with special emphasis on their expression in periacinar cells in the normal human pancreas and perisinusoidal cells in the normal human liver. The immunolabelling capacity was evaluated according to a semiquantitative scoring system. Double-IF of the markers of interest together with markers for other periacinar cells was performed. Moreover, the utility of histochemical stains for the identification of human qPSCs was examined, and their ultrastructure was revisited by electron microscopy. Adipophilin, CRBP-1, cytoglobin and vinculin were expressed in qHSCs in the liver, whereas cytoglobin and adipophilin were expressed in qPSCs in the pancreas. Adipophilin immunohistochemistry was highly dependent on the preanalytical time interval (PATI) from removal of the tissue to formalin fixation. Cytoglobin, S100A4 and vinculin were expressed in periacinar fibroblasts (FBs). The other examined markers were negative in human qPSCs. Our data indicate that cytoglobin and adipophilin are markers of qPSCs in the normal human pancreas. However, the use of adipophilin as a qPSC marker may be limited due to its high dependence on optimal PATI. Cytoglobin, on the other hand, is a sensitive marker for qPSCs but is expressed in FBs as well.
Collapse
Affiliation(s)
- Michael Friberg Bruun Nielsen
- Department of Pathology, Odense University Hospital, J.B. Winsløws Vej 15, 5000, Odense C, Denmark.,Department of Clinical Research, University of Southern Denmark, J.B. Winsløws Vej 19, 5000, Odense C, Denmark
| | - Michael Bau Mortensen
- Department of Clinical Research, University of Southern Denmark, J.B. Winsløws Vej 19, 5000, Odense C, Denmark.,Department of Surgery, HPB Section, Odense University Hospital, Sdr. Boulevard 29, 5000, Odense C, Denmark
| | - Sönke Detlefsen
- Department of Pathology, Odense University Hospital, J.B. Winsløws Vej 15, 5000, Odense C, Denmark. .,Department of Clinical Research, University of Southern Denmark, J.B. Winsløws Vej 19, 5000, Odense C, Denmark.
| |
Collapse
|
36
|
Ferdek PE, Jakubowska MA. Biology of pancreatic stellate cells-more than just pancreatic cancer. Pflugers Arch 2017; 469:1039-1050. [PMID: 28382480 PMCID: PMC5554282 DOI: 10.1007/s00424-017-1968-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/13/2017] [Accepted: 03/16/2017] [Indexed: 01/18/2023]
Abstract
Pancreatic stellate cells, normally quiescent, are capable of remarkable transition into their activated myofibroblast-like phenotype. It is now commonly accepted that these cells play a pivotal role in the desmoplastic reaction present in severe pancreatic disorders. In recent years, enormous scientific effort has been devoted to understanding their roles in pancreatic cancer, which continues to remain one of the most deadly diseases. Therefore, it is not surprising that considerably less attention has been given to studying physiological functions of pancreatic stellate cells. Here, we review recent advances not only in the field of pancreatic stellate cell pathophysiology but also emphasise their roles in physiological processes.
Collapse
Affiliation(s)
- Pawel E Ferdek
- Medical Research Council Group, Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, CF10 3AX, UK.
| | - Monika A Jakubowska
- Medical Research Council Group, Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, CF10 3AX, UK
| |
Collapse
|
37
|
Antifibrotic Effect of Saturated Fatty Acids via Endoplasmic Reticulum Stress Response in Rat Pancreatic Stellate Cells. Pancreas 2017; 46:385-394. [PMID: 28099257 PMCID: PMC5303125 DOI: 10.1097/mpa.0000000000000757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES We investigated the effect of saturated fatty acids on chronic pancreatitis pathogenesis by elucidating the endoplasmic reticulum (ER) stress response in pancreatic stellate cells (PSCs), which are major effector cells in pancreatic fibrosis. METHODS Wistar Bonn/Kobori rats were fed either control diet or high-fat diet (HFD) for 4 weeks. Meanwhile, cultured rat PSCs were stimulated with thapsigargin, an ER stress inducer, or palmitic acid (PA). Pancreatic fibrosis, expressions of fibrosis-related and ER stress-related proteins and mRNA, cell viability, and apoptosis were examined. RESULTS The HFD reduced fibrosis and α-smooth muscle actin expression (ie, activated PSCs) but upregulated ER stress-related mRNA expression in the pancreas of young HFD-fed Wistar Bonn/Kobori rats. Induction of ER stress response in PSCs with thapsigargin or PA induced apoptosis, activated the protein kinase-like ER kinase (PERK) pathway, inhibited cell viability, and downregulated fibrosis-related protein and mRNA expression. The PERK inhibitor negated PA-induced ER stress response. CONCLUSIONS Saturated fatty acids can inhibit but may not promote the fibrogenesis of chronic pancreatitis, at least in the early stage, via an ER stress response (ie, the PERK pathway) in PSCs. Moreover, induction of an apoptotic ER stress response in PSCs might be a novel therapeutic strategy for pancreatic fibrosis.
Collapse
|
38
|
Muller S, Klingbeil SM, Sandica A, Jaster R. Uncoupling protein 2 deficiency reduces proliferative capacity of murine pancreatic stellate cells. Hepatobiliary Pancreat Dis Int 2016; 15:647-654. [PMID: 27919855 DOI: 10.1016/s1499-3872(16)60154-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Uncoupling protein 2 (UCP2) has been suggested to inhibit mitochondrial production of reactive oxygen species (ROS) by decreasing the mitochondrial membrane potential. Experimental acute pancreatitis is associated with increased UCP2 expression, whereas UCP2 deficiency retards regeneration of aged mice from acute pancreatitis. Here, we have addressed biological and molecular functions of UCP2 in pancreatic stellate cells (PSCs), which are involved in pancreatic wound repair and fibrogenesis. METHODS PSCs were isolated from 12 months old (aged) UCP2-/- mice and animals of the wild-type (WT) strain C57BL/6. Proliferation and cell death were assessed by employing trypan blue staining and a 5-bromo-2'-deoxyuridine incorporation assay. Intracellular fat droplets were visualized by oil red O staining. Levels of mRNA were determined by RT-PCR, while protein expression was analyzed by immunoblotting and immunofluorescence analysis. Intracellular ROS levels were measured with 2', 7'-dichlorofluorescin diacetate. Expression of senescence-associated beta-galactosidase (SA beta-Gal) was used as a surrogate marker of cellular senescence. RESULTS PSCs derived from UCP2-/- mice proliferated at a lower rate than cells from WT mice. In agreement with this observation, the UCP2 inhibitor genipin displayed dose-dependent inhibitory effects on WT PSC growth. Interestingly, ROS levels in PSCs did not differ between the two strains, and PSCs derived from UCP2-/- mice did not senesce faster than those from corresponding WT cells. PSCs from UCP2-/- mice and WT animals were also indistinguishable with respect to the activation-dependent loss of intracellular fat droplets, expression of the activation marker alpha-smooth muscle actin, type I collagen and the autocrine/paracrine mediators interleukin-6 and transforming growth factor-beta1. CONCLUSIONS A reduced proliferative capacity of PSC from aged UCP2-/- mice may contribute to the retarded regeneration after acute pancreatitis. Apart from their slower growth, PSC of UCP2-/- mice displayed no functional abnormalities. The antifibrotic potential of UCP2 inhibitors deserves further attention.
Collapse
Affiliation(s)
- Sarah Muller
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, E.-Heydemann-Str. 6, 18057 Rostock, Germany.
| | | | | | | |
Collapse
|
39
|
Nielsen MFB, Mortensen MB, Detlefsen S. Key players in pancreatic cancer-stroma interaction: Cancer-associated fibroblasts, endothelial and inflammatory cells. World J Gastroenterol 2016; 22:2678-2700. [PMID: 26973408 PMCID: PMC4777992 DOI: 10.3748/wjg.v22.i9.2678] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/19/2015] [Accepted: 01/11/2016] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) is the most aggressive type of common cancers, and in 2014, nearly 40000 patients died from the disease in the United States. Pancreatic ductal adenocarcinoma, which accounts for the majority of PC cases, is characterized by an intense stromal desmoplastic reaction surrounding the cancer cells. Cancer-associated fibroblasts (CAFs) are the main effector cells in the desmoplastic reaction, and pancreatic stellate cells are the most important source of CAFs. However, other important components of the PC stroma are inflammatory cells and endothelial cells. The aim of this review is to describe the complex interplay between PC cells and the cellular and non-cellular components of the tumour stroma. Published data have indicated that the desmoplastic stroma protects PC cells against chemotherapy and radiation therapy and that it might promote the proliferation and migration of PC cells. However, in animal studies, experimental depletion of the desmoplastic stroma and CAFs has led to more aggressive cancers. Hence, the precise role of the tumour stroma in PC remains to be elucidated. However, it is likely that a context-dependent therapeutic modification, rather than pure depletion, of the PC stroma holds potential for the development of new treatment strategies for PC patients.
Collapse
|
40
|
Hu Y, Sheng Y, Yu M, Li K, Ren G, Xu X, Qu J. Antioxidant activity of Inonotus obliquus polysaccharide and its amelioration for chronic pancreatitis in mice. Int J Biol Macromol 2016; 87:348-56. [PMID: 26955745 DOI: 10.1016/j.ijbiomac.2016.03.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 02/02/2016] [Accepted: 03/04/2016] [Indexed: 12/16/2022]
Abstract
Inonotus obliquus polysaccharide (IOP) was extracted by water with a yield of 9.83% and purified by an anion-exchange DEAE cellulose column and Sephadex G-200 gel with a polysaccharide content of 98.6%. The scavenging activities for 2,2-diphenyl-1-picryl-hydrazyl (DPPH) and hydroxyl radicals of IOP were 82.3% and 81.3% respectively at a concentration of 5 mg/mL. IOP was composed of Man, Rha, Glu, Gal, Xyl and Ara in a molar ratio of 9.81:3.6:29.1:20.5:21.6:5.4 respectively. The gel permeation chromatography indicated that IOP was a homogeneous polysaccharide with molecular weight of 32.5 kDa. IOP helped to alleviate pancreatic acinar atrophy and weight loss for chronic pancreatitis (CP) mice induced by Diethyldithiocarbamate (DDC). The SOD level was increased most by IOP-H treatment (400 mg/kg body weight). MDA, IL-1β and LDH were significantly decreased by IOP treatment, especially hydroxyproline, IFN-γ and AMS levels were decreased 39.18%, 37.82% and 41.57% by IOP-H treatment respectively compared to MC group. In conclusion, IOP possessed strong antioxidant activity for scavenging free radicals in vitro and vivo which could be propitious to CP therapy in mice.
Collapse
Affiliation(s)
- Yang Hu
- College of Resources and Environmental science, Northeast Agricultural University, Harbin 150030, PR China
| | - Yi Sheng
- The Fourth Affiliated Hospital, Harbin Medical University, Harbin 150001, PR China
| | - Min Yu
- Drug Safety Evaluation Center, Heilongjiang University of Chinese Medicine, Harbin 150040, PR China
| | - Koukou Li
- College of Resources and Environmental science, Northeast Agricultural University, Harbin 150030, PR China
| | - Guangming Ren
- College of Resources and Environmental science, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiuhong Xu
- College of Resources and Environmental science, Northeast Agricultural University, Harbin 150030, PR China
| | - Juanjuan Qu
- College of Resources and Environmental science, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
41
|
Acetaldehyde Induces Cytotoxicity of SH-SY5Y Cells via Inhibition of Akt Activation and Induction of Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:4512309. [PMID: 26649137 PMCID: PMC4663355 DOI: 10.1155/2016/4512309] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 07/14/2015] [Indexed: 12/23/2022]
Abstract
Excessive alcohol consumption can lead to brain tissue damage and cognitive dysfunction. It has been shown that heavy drinking is associated with an earlier onset of neurodegenerative diseases such as Alzheimer's disease. Acetaldehyde, the most toxic metabolite of ethanol, is speculated to mediate the brain tissue damage and cognitive dysfunction induced by the chronic excessive consumption of alcohol. However, the exact mechanisms by which acetaldehyde induces neurotoxicity are not totally understood. In this study, we investigated the cytotoxic effects of acetaldehyde in SH-SY5Y cells and found that acetaldehyde induced apoptosis of SH-SY5Y cells by downregulating the expression of antiapoptotic Bcl-2 and Bcl-xL and upregulating the expression of proapoptotic Bax. Acetaldehyde treatment led to a significant decrease in the levels of activated Akt and cyclic AMP-responsive element binding protein (CREB). In addition, acetaldehyde induced the activation of p38 mitogen-activated protein kinase (MAPK) while inhibiting the activation of extracellular signal-regulated kinases (ERKs, p44/p42MAPK). Meanwhile, acetaldehyde treatment caused an increase in the production of reactive oxygen species and elevated the oxidative stress in SH-SY5Y cells. Therefore, acetaldehyde induces cytotoxicity of SH-SY5Y cells via promotion of apoptotic signaling, inhibition of cell survival pathway, and induction of oxidative stress.
Collapse
|
42
|
Lee ATK, Xu Z, Pothula SP, Patel MB, Pirola RC, Wilson JS, Apte MV. Alcohol and cigarette smoke components activate human pancreatic stellate cells: implications for the progression of chronic pancreatitis. Alcohol Clin Exp Res 2015; 39:2123-33. [PMID: 26463405 DOI: 10.1111/acer.12882] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 08/16/2015] [Indexed: 12/30/2022]
Abstract
BACKGROUND Chronic pancreatitis, a known complication of alcohol abuse, is characterized histopathologically by prominent fibrosis. Pancreatic stellate cells (PSCs) are responsible for producing this fibrous tissue in chronic pancreatitis and are activated by alcohol. Progression of alcoholic chronic pancreatitis (as assessed by calcification and fibrosis) is thought to be facilitated by concurrent smoking, but the mechanisms are unknown. This study aimed to (a) determine whether human PSCs (hPSCs) and rat PSCs express nicotinic acetylcholine receptors (nAChRs), which are known to bind 2 important components of cigarette smoke, namely nicotine and nicotine-derived nitrosamine ketone (NNK), and (b) examine the effects of cigarette smoke components in the presence and absence of alcohol on PSC activation in vitro. METHODS Western blotting was used to detect the presence of nAChRs in primary cultures of PSCs. Clinically relevant concentrations of cigarette smoke components (either cigarette smoke extract [CSE], NNK, or nicotine) ± ethanol (EtOH) were used to treat primary cultures of PSCs, and stellate cell activation was assessed by cell migration, proliferation, collagen production, and apoptosis. RESULTS We demonstrate, for the first time, that PSCs express nAChRs (isoforms α3, α7, β, ε) and that the expression of the α7 isoform in hPSCs is induced by CSE + EtOH. We also provide novel findings that PSCs are activated by CSE and NNK (both alone and in combination with EtOH) as evidenced by an increase in cell migration and/or proliferation. Further, we demonstrate that activation of PSCs by CSE + EtOH and NNK + EtOH may be mediated via nAChRs on the cells. CONCLUSIONS PSCs are activated by clinically relevant concentrations of cigarette smoke components (CSE and NNK), alone and in combination with EtOH. Thus, in alcoholics who smoke, progression of pancreatic fibrosis may be facilitated by the combined effects of alcohol and cigarette smoke components on hPSC behavior.
Collapse
Affiliation(s)
- Alexandra T K Lee
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine, Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
- School of Medical Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Zhihong Xu
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine, Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
| | - Srinivasa P Pothula
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine, Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
| | - Mishaal B Patel
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine, Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
- School of Medical Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Romano C Pirola
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine, Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
| | - Jeremy S Wilson
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine, Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
| | - Minoti V Apte
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine, Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
| |
Collapse
|
43
|
Sendler M, Beyer G, Mahajan UM, Kauschke V, Maertin S, Schurmann C, Homuth G, Völker U, Völzke H, Halangk W, Wartmann T, Weiss FU, Hegyi P, Lerch MM, Mayerle J. Complement Component 5 Mediates Development of Fibrosis, via Activation of Stellate Cells, in 2 Mouse Models of Chronic Pancreatitis. Gastroenterology 2015; 149:765-76.e10. [PMID: 26001927 PMCID: PMC4560830 DOI: 10.1053/j.gastro.2015.05.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 05/09/2015] [Accepted: 05/12/2015] [Indexed: 01/06/2023]
Abstract
BACKGROUND & AIMS Little is known about the pathogenic mechanisms of chronic pancreatitis. We investigated the roles of complement component 5 (C5) in pancreatic fibrogenesis in mice and patients. METHODS Chronic pancreatitis was induced by ligation of the midpancreatic duct, followed by a single supramaximal intraperitoneal injection of cerulein, in C57Bl6 (control) and C5-deficient mice. Some mice were given injections of 2 different antagonists of the receptor for C5a over 21 days. In a separate model, mice were given injections of cerulein for 10 weeks to induce chronic pancreatitis. Direct effects of C5 were studied in cultured primary cells. We performed genotype analysis for the single-nucleotide polymorphisms rs 17611 and rs 2300929 in C5 in patients with pancreatitis and healthy individuals (controls). Blood cells from 976 subjects were analyzed by transcriptional profiling. RESULTS During the initial phase of pancreatitis, levels of pancreatic damage were similar between C5-deficient and control mice. During later stages of pancreatitis, C5-deficient mice and mice given injections of C5a-receptor antagonists developed significantly less pancreatic fibrosis than control mice. Primary pancreatic stellate cells were activated in vitro by C5a. There were no differences in the rs 2300929 SNP between subjects with or without pancreatitis, but the minor allele rs17611 was associated with a significant increase in levels of C5 in whole blood. CONCLUSIONS In mice, loss of C5 or injection of a C5a-receptor antagonist significantly reduced the level of fibrosis of chronic pancreatitis, but this was not a consequence of milder disease in early stages of pancreatitis. C5 might be a therapeutic target for chronic pancreatitis.
Collapse
Affiliation(s)
- Matthias Sendler
- Department of Medicine A, University Medicine, Ernst-Moritz-Arndt University, Greifswald, Germany
| | - Georg Beyer
- Department of Medicine A, University Medicine, Ernst-Moritz-Arndt University, Greifswald, Germany
| | - Ujjwal M. Mahajan
- Department of Medicine A, University Medicine, Ernst-Moritz-Arndt University, Greifswald, Germany
| | - Vivien Kauschke
- Department of Medicine A, University Medicine, Ernst-Moritz-Arndt University, Greifswald, Germany
| | - Sandrina Maertin
- Department of Medicine A, University Medicine, Ernst-Moritz-Arndt University, Greifswald, Germany
| | - Claudia Schurmann
- Interfaculty Institutes for Genetics and Functional Genomics, University Medicine, Ernst-Moritz-Arndt University, Greifswald, Germany
| | - Georg Homuth
- Interfaculty Institutes for Genetics and Functional Genomics, University Medicine, Ernst-Moritz-Arndt University, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institutes for Genetics and Functional Genomics, University Medicine, Ernst-Moritz-Arndt University, Greifswald, Germany
| | - Henry Völzke
- Institute for Community Medicine, University Medicine, Ernst-Moritz-Arndt University, Greifswald, Germany
| | - Walter Halangk
- Department of Surgery, Division of Experimental Surgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Thomas Wartmann
- Department of Surgery, Division of Experimental Surgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Frank-Ulrich Weiss
- Department of Medicine A, University Medicine, Ernst-Moritz-Arndt University, Greifswald, Germany
| | - Peter Hegyi
- First Department of Medicine, University of Szeged, Szeged, Hungary,MTA-SZTE Lendulet Translational Gastroenterology Research Group, Szeged, Hungary
| | - Markus M. Lerch
- Department of Medicine A, University Medicine, Ernst-Moritz-Arndt University, Greifswald, Germany
| | - Julia Mayerle
- Department of Medicine A, University Medicine, Ernst-Moritz-Arndt University, Greifswald, Germany.
| |
Collapse
|
44
|
Zakhari S. Chronic alcohol drinking: Liver and pancreatic cancer? Clin Res Hepatol Gastroenterol 2015; 39 Suppl 1:S86-91. [PMID: 26193868 DOI: 10.1016/j.clinre.2015.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 05/13/2015] [Accepted: 05/16/2015] [Indexed: 02/07/2023]
Abstract
Cancer is a multifactorial disease that results from complex interactions of numerous risk factors - genetic and environmental - over time, eventually leading to the diseased phenotypes. Thus, while epidemiological studies can point to risk factors, they cannot determine cause and effect relationships, and are unable to give biological and clinical insights into carcinogenesis. The link between any risk factor and carcinogenesis needs to be validated in experimental models. This is particularly true in epidemiological studies on alcohol consumption and its consequences. While there is no doubt that heavy alcohol consumption has devastating health effects, the inconsistencies in alcohol-related epidemiological studies and cancer suffer from possible sources of the variability in outcomes, ranging from inaccuracy of self-report of consumption to the problem of correlating cancer that started decades earlier to current or recent alcohol consumption. To further study the interactions between alcohol and cancer, the use of "Molecular Pathological Epidemiology" (MPE) advocated by Ogino et al. for dissecting the interplay between etiological factors, cellular and molecular characteristics, and disease progression in cancer is appropriate. MPE does not consider cancer as a single entity, rather it integrates analyses of epidemiological studies with the macroenvironment and molecular and microenvironment. This approach allows investigating the relationships between potential etiological agents and cancer based on molecular signatures. More research is needed to fully elucidate the link between heavy alcohol consumption and pancreatic cancer, and to further investigate the roles of acetaldehyde and FAEEs in pancreatic carcinogenesis.
Collapse
Affiliation(s)
- Samir Zakhari
- 1250 Eye Street, NW, suite 400, Washington, DC 20005, USA.
| |
Collapse
|
45
|
Genetic susceptibility factors for alcohol-induced chronic pancreatitis. Pancreatology 2015; 15:S23-31. [PMID: 26149858 DOI: 10.1016/j.pan.2015.05.476] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 04/10/2015] [Accepted: 05/27/2015] [Indexed: 12/11/2022]
Abstract
Chronic pancreatitis is a progressive inflammatory disease of the pancreas and frequently associated with immoderate alcohol consumption. Since only a small proportion of alcoholics eventually develop chronic pancreatitis genetic susceptibility factors have long been suspected to contribute to the pathogenesis of the disease. Smaller studies in ethnically defined populations have found that not only polymorphism in proteins involved in the metabolism of ethanol, such as Alcohol Dehydrogenase and Aldehyde Dehydrogenase, can confer a risk for developing chronic pancreatitis but also mutations that had previously been reported in association with idiopathic pancreatitis, such as SPINK1 mutations. In a much broader approach employing genome wide search strategies the NAPS study found that polymorphisms in the Trypsin locus (PRSS1 rs10273639), and the Claudin 2 locus (CLDN2-RIPPLY1-MORC4 locus rs7057398 and rs12688220) confer an increased risk of developing alcohol-induced pancreatitis. These results from North America have now been confirmed by a European consortium. In another genome wide approach polymorphisms in the genes encoding Fucosyltransferase 2 (FUT2) non-secretor status and blood group B were not only found in association with higher serum lipase levels in healthy volunteers but also to more than double the risk for developing alcohol-associated chronic pancreatitis. These novel genetic associations will allow to investigate the pathophysiological and biochemical basis of alcohol-induced chronic pancreatitis on a cellular level and in much more detail than previously possible.
Collapse
|
46
|
Lugea A, Waldron RT, Pandol SJ. Pancreatic adaptive responses in alcohol abuse: Role of the unfolded protein response. Pancreatology 2015; 15:S1-5. [PMID: 25736240 PMCID: PMC4515411 DOI: 10.1016/j.pan.2015.01.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/22/2015] [Accepted: 01/27/2015] [Indexed: 12/11/2022]
Abstract
The majority of those who drink excessive amounts of alcohol do not develop pancreatic disease. One overarching hypothesis is that alcohol abuse requires additional risk factors, either environmental or genetic, for disease to occur. However, another reason be a result of alcohol-induced activation of adaptive systems that protect the pancreas from the toxic effects of alcohol. We show that mechanisms within the unfolded protein response (UPR) of the endoplasmic reticulum (ER) that can lead to protection of the pancreas from pancreatic diseases with alcohol abuse. The remarkable ability of the pancreas to adapt its machinery to alcohol abuse using UPR systems and continue functioning is the likely reason that pancreatitis from alcohol abuse does not occur in the majority of heavy drinkers. These findings indicate that methods to enhance the protective responses of the UPR can provide opportunities for prevention and treatment of pancreatic diseases.
Collapse
Affiliation(s)
- Aurelia Lugea
- Cedars-Sinai Medical Center and VA Greater Los Angeles Health Care System, Los Angeles, CA, USA
| | - Richard T Waldron
- Cedars-Sinai Medical Center and VA Greater Los Angeles Health Care System, Los Angeles, CA, USA
| | - Stephen J Pandol
- Cedars-Sinai Medical Center and VA Greater Los Angeles Health Care System, Los Angeles, CA, USA.
| |
Collapse
|
47
|
Xu C, Shen J, Zhang J, Jia Z, He Z, Zhuang X, Xu T, Shi Y, Zhu S, Wu M, Han W. Recombinant interleukin-1 receptor antagonist attenuates the severity of chronic pancreatitis induced by TNBS in rats. Biochem Pharmacol 2015; 93:449-60. [PMID: 25559498 DOI: 10.1016/j.bcp.2014.12.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 12/23/2014] [Accepted: 12/23/2014] [Indexed: 12/16/2022]
Abstract
Chronic pancreatitis (CP) is a common disease in the department of gastroenterology, with the main symptoms of exocrine and/or endocrine insufficiency and abdominal pain. The pathogenic mechanism of CP is still not fully clarified and the aims of treatment now are to relieve symptoms. In this study, we attempted to find a connection between interleukin-1β (IL-1β) and interleukin-1 receptor antagonist (IL-1Ra) in trinitrobenzene sulfonic acid (TNBS)-induced chronic pancreatitis, and then the therapeutic effect of recombinant IL-1Ra was also detected in the CP model. Chronic pancreatitis was induced by intraductal infusion of TNBS in SD rats followed by a consecutive administration of rIL-1Ra, and the histological changes and collagen content in the pancreas were measured, as well as the abdominal hypersensitivity. We found that rhIL-1Ra could attenuate the severity of chronic pancreatic injury, modulate the extracellular matrix secretion, focal proliferation and apoptosis, and cellular immunity in TNBS-induced CP. Interestingly, rIL-1Ra could also block the pancreatitis-induced referred abdominal hypersensitivity. In conclusion, IL-1Ra may play a protective role in CP and rIL-1Ra would be a potential therapeutic target for the treatment of CP, while its possible mechanisms and clinical usage still need further investigation.
Collapse
Affiliation(s)
- Chunfang Xu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jiaqing Shen
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| | - Jing Zhang
- Central Research Institute, Shanghai Pharmaceuticals Holding Co. Ltd., Shanghai 200219, China
| | - Zhenyu Jia
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Zhilong He
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Xiaohui Zhuang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Ting Xu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yuqi Shi
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Shunying Zhu
- Shanghai Municipality Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Mingyuan Wu
- Laboratory of Regeneromics, School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, China
| | - Wei Han
- Laboratory of Regeneromics, School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, China
| |
Collapse
|
48
|
Affiliation(s)
- E I Galperin
- Department of hepatopancreatobiliary and regenerative surgery, I.M.Sechenov First Moscow State Medical University, Health Ministry of the Russian Federation, Moscow
| | - I A Semenenko
- Department of hepatopancreatobiliary and regenerative surgery, I.M.Sechenov First Moscow State Medical University, Health Ministry of the Russian Federation, Moscow
| |
Collapse
|
49
|
Rocco A, Compare D, Angrisani D, Zamparelli MS, Nardone G. Alcoholic disease: liver and beyond. World J Gastroenterol 2014; 20:14652-9. [PMID: 25356028 PMCID: PMC4209531 DOI: 10.3748/wjg.v20.i40.14652] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 05/07/2014] [Accepted: 05/19/2014] [Indexed: 02/06/2023] Open
Abstract
The harmful use of alcohol is a worldwide problem. It has been estimated that alcohol abuse represents the world's third largest risk factor for disease and disability; it is a causal factor of 60 types of diseases and injuries and a concurrent cause of at least 200 others. Liver is the main organ responsible for metabolizing ethanol, thus it has been considered for long time the major victim of the harmful use of alcohol. Ethanol and its bioactive products, acetaldehyde-acetate, fatty acid ethanol esters, ethanol-protein adducts, have been regarded as hepatotoxins that directly and indirectly exert their toxic effect on the liver. A similar mechanism has been postulated for the alcohol-related pancreatic damage. Alcohol and its metabolites directly injure acinar cells and elicit stellate cells to produce and deposit extracellular matrix thus triggering the "necrosis-fibrosis" sequence that finally leads to atrophy and fibrosis, morphological hallmarks of alcoholic chronic pancreatitis. Even if less attention has been paid to the upper and lower gastrointestinal tract, ethanol produces harmful effects by inducing: (1) direct damaging of the mucosa of the esophagus and stomach; (2) modification of the sphincterial pressure and impairment of motility; and (3) alteration of gastric acid output. In the intestine, ethanol can damage the intestinal mucosa directly or indirectly by altering the resident microflora and impairing the mucosal immune system. Notably, disruption of the intestinal mucosal barrier of the small and large intestine contribute to liver damage. This review summarizes the most clinically relevant alcohol-related diseases of the digestive tract focusing on the pathogenic mechanisms by which ethanol damages liver, pancreas and gastrointestinal tract.
Collapse
|
50
|
Cao WL, Xiang XH, Chen K, Xu W, Xia SH. Potential role of NADPH oxidase in pathogenesis of pancreatitis. World J Gastrointest Pathophysiol 2014; 5:169-177. [PMID: 25133019 PMCID: PMC4133516 DOI: 10.4291/wjgp.v5.i3.169] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 03/25/2014] [Accepted: 06/16/2014] [Indexed: 02/06/2023] Open
Abstract
Studies have demonstrated that reactive oxygen species (ROS) are closely related to inflammatory disorders. Nicotinamide adenine dinucleotide phosphate oxidase (NOX), originally found in phagocytes, is the main source of ROS in nonphagocytic cells. Besides directly producing the detrimental highly reactive ROS to act on biomolecules (lipids, proteins, and nucleic acids), NOX can also activate multiple signal transduction pathways, which regulate cell growth, proliferation, differentiation and apoptosis by producing ROS. Recently, research on pancreatic NOX is no longer limited to inflammatory cells, but extends to the aspect of pancreatic acinar cells and pancreatic stellate cells, which are considered to be potentially associated with pancreatitis. In this review, we summarize the literature on NOX protein structure, activation, function and its role in the pathogenesis of pancreatitis.
Collapse
|