1
|
Woode RA, Strubberg AM, Liu J, Walker NM, Clarke LL. Increased activity of epithelial Cdc42 Rho GTPase and tight junction permeability in the Cftr knockout intestine. Am J Physiol Gastrointest Liver Physiol 2024; 327:G545-G557. [PMID: 39104325 DOI: 10.1152/ajpgi.00211.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 05/23/2024] [Accepted: 07/03/2024] [Indexed: 08/07/2024]
Abstract
Increased intestinal permeability is a manifestation of cystic fibrosis (CF) in people with CF (pwCF) and in CF mouse models. CF transmembrane conductance regulator knockout (Cftr KO) mouse intestine exhibits increased proliferation and Wnt/β-catenin signaling relative to wild-type mice (WT). Since the Rho GTPase Cdc42 plays a central role in intestinal epithelial proliferation and tight junction remodeling, we hypothesized that Cdc42 may be altered in the Cftr KO crypts. Immunofluorescence showed distinct tight junction localization of Cdc42 in Cftr KO fresh crypts and enteroids, the latter indicating an epithelial-autonomous feature. Quantitative PCR and immunoblots revealed similar expression of Cdc42 in the Cftr KO crypts/enteroids relative to WT, whereas pulldown assays showed increased GTP-bound (active) Cdc42 in proportion to total Cdc42 in Cftr KO enteroids. Cdc42 activity in the Cftr KO and WT enteroids could be reduced by inhibition of the Wnt transducer Disheveled. With the use of a dye permeability assay, Cftr KO enteroids exhibited increased paracellular permeability to 3 kDa dextran relative to WT. Leak permeability and Cdc42 tight junction localization were reduced to a greater extent by inhibition of Wnt/β-catenin signaling with endo-IWR1 in Cftr KO relative to WT enteroids. Increased proliferation or inhibition of Cdc42 activity with ML141 in WT enteroids had no effect on permeability. In contrast, inhibition of Cdc42 with ML141 increased permeability to both 3 kDa dextran and tight junction impermeant 500 kDa dextran in Cftr KO enteroids. These data suggest that increased constitutive Cdc42 activity may alter the stability of paracellular permeability in Cftr KO crypt epithelium.NEW & NOTEWORTHY Increased tight junction localization and GTP-bound activity of the Rho GTPase Cdc42 was identified in small intestinal crypts and enteroids of cystic fibrosis (CF) transmembrane conductance regulator knockout (Cftr KO) mice. The increase in epithelial Cdc42 activity was associated with increased Wnt signaling. Paracellular flux of an uncharged solute (3 kDa dextran) in Cftr KO enteroids indicated a moderate leak permeability under basal conditions that was strongly exacerbated by Cdc42 inhibition. These findings suggest increased activity of Cdc42 in the Cftr KO intestine underlies alterations in intestinal permeability.
Collapse
Affiliation(s)
- Rowena A Woode
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Ashlee M Strubberg
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Jinghua Liu
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States
| | - Nancy M Walker
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States
| | - Lane L Clarke
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| |
Collapse
|
2
|
Wang Z, Zeng B, Xue H, Liu C, Song W. Blidingia sp. extracts improve intestinal health and reduce diarrhoea in weanling piglets. J Anim Physiol Anim Nutr (Berl) 2023; 107:1198-1205. [PMID: 37203256 DOI: 10.1111/jpn.13832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/12/2023] [Accepted: 04/13/2023] [Indexed: 05/20/2023]
Abstract
Blidingia sp. is a prominent fouling green macroalga and we previously found that extracts from Blidingia sp. alleviated intestinal inflammation in mice challenged with lipopolysaccharides. However, whether these extracts are effective in weanling piglets remains unknown. In the present study, Blidingia sp. extracts were supplemented in the diet and their effects on growth performance, incidence of diarrhoea and intestinal function in weanling piglets were explored. The results showed that diets supplemented with 0.1% or 0.5% Blidingia sp. extract significantly increased average daily body weight gain and feed intake in weanling piglets. Meanwhile, piglets supplemented with 0.5% Blidingia sp. extract showed decreased incidence of diarrhoea as well as reduced fecal water and Na+ content. Furthermore, the diet supplemented with 0.5% Blidingia sp. extracts improved intestinal morphology, as indicated by the results of hematoxylin and eosin staining. Diet supplemented with 0.5% Blidingia sp. extracts also improved tight junction function, as indicated by increased expression of Occludin, Claudin-1 and Zonula occludens-1, and alleviated the inflammatory response, as indicated by decreased tumor necrosis factor-α and interleukin-6 (IL6) contents and increased IL10 levels. Taken together, our results showed that Blidingia sp. extracts had beneficial effects in weanling piglets and we suggest that Blidingia sp. extracts could be potentially used as an additive for piglets.
Collapse
Affiliation(s)
- Zongling Wang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- Laboratory of Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Boxin Zeng
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- Laboratory of Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Haoran Xue
- Department of Clinical Laboratory, Qilu Hospital (Qingdao) of Shandong University, Qingdao, China
| | - Chunyan Liu
- Department of Integrated Traditional Chinese and Western Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Wei Song
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- Laboratory of Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
3
|
Marginal Zinc Deficiency Aggravated Intestinal Barrier Dysfunction and Inflammation through ETEC Virulence Factors in a Mouse Model of Diarrhea. Vet Sci 2022; 9:vetsci9090507. [PMID: 36136723 PMCID: PMC9503546 DOI: 10.3390/vetsci9090507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Enterotoxigenic Escherichia coli (ETEC) is one of the most common bacterial causes of diarrhea in children and farm animals. Zinc has received widespread attention for its roles in the prevention and treatment of diarrhea. However, zinc is also essential for the pathogenesis of ETEC. This study aimed to explore the accurate effect and mechanisms of marginal zinc deficiency on ETEC k88 infection and host intestinal health. Using the newly developed marginal zinc deficiency and ETEC k88 infection mouse model, we found that marginal zinc deficiency aggravated growth impairment, diarrhea, intestinal morphology, intestinal permeability, and inflammation induced by ETEC k88 infection. Consistently, intestinal ETEC k88 shedding was also higher in mice with marginal zinc deficiency. However, marginal zinc deficiency failed to affect host zinc levels and correspondingly the zinc-receptor GPR39 expression in the jejunum. In addition, marginal zinc deficiency upregulated the relative expression of virulence genes involved in heat-labile and heat-stable enterotoxins, motility, cellular adhesion, and biofilm formation in the cecum content of mice with ETEC infection. These findings provide a new explanation for zinc treatment of ETEC infection. Abstract Zinc is both essential and inhibitory for the pathogenesis of enterotoxigenic Escherichia coli (ETEC). However, the accurate effects and underlying mechanism of marginal zinc deficiency on ETEC infection are not fully understood. Here, a marginal zinc-deficient mouse model was established by feeding mice with a marginal zinc-deficient diet, and ETEC k88 was further administrated to mice after antibiotic disruption of the normal microbiota. Marginal zinc deficiency aggravated growth impairment, diarrhea, intestinal morphology, intestinal permeability, and inflammation induced by ETEC k88 infection. In line with the above observations, marginal zinc deficiency also increased the intestinal ETEC shedding, though the concentration of ETEC in the intestinal content was not different or even decreased in the stool. Moreover, marginal zinc deficiency failed to change the host’s zinc levels, as evidenced by the fact that the serum zinc levels and zinc-receptor GPR39 expression in jejunum were not significantly different in mice with ETEC challenge. Finally, marginal zinc deficiency upregulated the relative expression of virulence genes involved in heat-labile and heat-stable enterotoxins, motility, cellular adhesion, and biofilm formation in the cecum content of mice with ETEC infection. These findings demonstrated that marginal zinc deficiency likely regulates ETEC infection through the virulence factors, whereas it is not correlated with host zinc levels.
Collapse
|
4
|
Tan Q, di Stefano G, Tan X, Renjie X, Römermann D, Talbot SR, Seidler UE. Inhibition of Na + /H + exchanger isoform 3 improves gut fluidity and alkalinity in cystic fibrosis transmembrane conductance regulator-deficient and F508del mutant mice. Br J Pharmacol 2021; 178:1018-1036. [PMID: 33179259 DOI: 10.1111/bph.15323] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Constipation and intestinal obstructive episodes are major health problems in cystic fibrosis (CF) patients. Three FDA-approved drugs against constipation-prone irritable bowel syndrome were tested for their ability to increase luminal fluidity and alkalinity in cystic fibrosis transmembrane conductance regulator (CFTR) null (cftr-/- ) and F508del mutant (F508delmut/mut ) murine intestine. EXPERIMENTAL APPROACH Guanylate cyclase C agonist linaclotide, PGE1 analogue lubiprostone and intestine-specific NHE3 inhibitor tenapanor were perfused through a ~3 cm jejunal, proximal or mid-distal colonic segment in anaesthetized cftr-/- , F508delmut/mut and WT mice. Net fluid balance was determined gravimetrically and alkaline output by pH-stat back titration. KEY RESULTS Basal jejunal fluid absorptive rates were significantly higher and basal HCO3 - output was significantly lower in cftr-/- and F508delmut/mut compared to WT mice. In cftr-/- and F508delmut/mut mice, all three drugs significantly inhibited the fluid absorptive rate and increased alkaline output in the jejunum and tenapanor and lubiprostone, but not linaclotide, in the colon. After tenapanor pre-incubation, linaclotide elicited a robust fluid secretory response in WT jejunum, while no further change in absorptive rates was observed in cftr-/- and F508delmut/mut jejunum, suggesting that the increase in gut fluidity and alkalinity by linaclotide in CF gut is mediated via NHE3 inhibition. Lubiprostone also inhibited fluid absorption in cftr-/- and F508delmut/mut jejunum via NHE3 inhibition but had a residual NHE3-independent effect. CONCLUSION AND IMPLICATIONS Linaclotide, lubiprostone and tenapanor reduced fluid absorption and increased alkaline output in the CF gut. Their application may ameliorate constipation and reduce obstructive episodes in CF patients.
Collapse
Affiliation(s)
- Qinghai Tan
- Department of Gastroenterology, Hannover Medical School, Hanover, Germany
| | | | - Xinjie Tan
- Department of Gastroenterology, Hannover Medical School, Hanover, Germany
| | - Xiu Renjie
- Department of Gastroenterology, Hannover Medical School, Hanover, Germany
| | - Dorothee Römermann
- Department of Gastroenterology, Hannover Medical School, Hanover, Germany
| | - Steven R Talbot
- Institute of Veterinary Research, Hannover Medical School, Hanover, Germany
| | - Ursula E Seidler
- Department of Gastroenterology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
5
|
|
6
|
Seidler U, Nikolovska K. Slc26 Family of Anion Transporters in the Gastrointestinal Tract: Expression, Function, Regulation, and Role in Disease. Compr Physiol 2019; 9:839-872. [DOI: 10.1002/cphy.c180027] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Massip-Copiz MM, Santa-Coloma TA. Extracellular pH and lung infections in cystic fibrosis. Eur J Cell Biol 2018; 97:402-410. [PMID: 29933921 DOI: 10.1016/j.ejcb.2018.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/01/2018] [Accepted: 06/12/2018] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease caused by CFTR mutations. It is characterized by high NaCl concentration in sweat and the production of a thick and sticky mucus, occluding secretory ducts, intestine and airways, accompanied by chronic inflammation and infections of the lungs. This causes a progressive and lethal decline in lung function. Therefore, finding the mechanisms driving the high susceptibility to lung infections has been a key issue. For decades the prevalent hypothesis was that a reduced airway surface liquid (ASL) volume and composition, and the consequent increased mucus concentration (dehydration), create an environment favoring infections. However, a few years ago, in a pig model of CF, the Na+/K+ concentrations and the ASL volume were found intact. Immediately a different hypothesis arose, postulating a reduced ASL pH as the cause for the increased susceptibility to infections, due to a diminished bicarbonate secretion through CFTR. Noteworthy, a recent report found normal ASL pH values in CF children and in cultured primary airway cells, challenging the ASL pH hypothesis. On the other hand, recent evidences revitalized the hypothesis of a reduced ASL secretion. Thus, the role of the ASL pH in the CF is still a controversial matter. In this review we discuss the basis that sustain the role of CFTR in modulating the extracellular pH, and the recent results sustaining the different points of view. Finding the mechanisms of CFTR signaling that determine the susceptibility to infections is crucial to understand the pathophysiology of CF and related lung diseases.
Collapse
Affiliation(s)
- María Macarena Massip-Copiz
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED UCA-CONICET), The National Scientific and Technical Research Council (CONICET), and School of Medical Sciences, The Pontifical Catholic University of Argentina (UCA), Buenos Aires, Argentina
| | - Tomás Antonio Santa-Coloma
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED UCA-CONICET), The National Scientific and Technical Research Council (CONICET), and School of Medical Sciences, The Pontifical Catholic University of Argentina (UCA), Buenos Aires, Argentina.
| |
Collapse
|
8
|
Numata T, Sato-Numata K, Okada Y, Inoue R. Cellular mechanism for herbal medicine Junchoto to facilitate intestinal Cl -/water secretion that involves cAMP-dependent activation of CFTR. J Nat Med 2018; 72:694-705. [PMID: 29569221 PMCID: PMC5960480 DOI: 10.1007/s11418-018-1207-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/16/2018] [Indexed: 12/17/2022]
Abstract
Constipation is a common symptom frequently compromising the quality of daily life. Several mechanistically different drugs have been used to mitigate constipation, including Japanese herbal (Kampo) medicines. However, the mechanisms of their actions are often not well understood. Here we aimed to investigate the molecular mechanisms underlying the effects of Junchoto (JCT), a Kampo medicine empirically prescribed for chronic constipation. Cl− channel activity was measured by the patch-clamp method in human cystic fibrosis transmembrane conductance regulator (CFTR)-expressing HEK293T cells and human intestinal Caco-2 cells. cAMP was measured by a luciferase-based assay. Cell volume change was measured by a particle-sizing and particle-counting analyzer and video-microscopic measurement. In both CFTR-expressing HEK293T and Caco-2 cells, JCT dose-dependently induced whole-cell currents showing typical biophysical and pharmacological features of CFTR. Robust expression of CFTR was confirmed by RT-PCR and Western blotting in Caco-2 cells. Luciferase-based measurement revealed that JCT increases intracellular cAMP levels. Administration of the adenylate cyclase inhibitor SQ22536 or CFTR inhibitor-172, or treatment with small interfering RNAs (siRNA) targeting CFTR, abolished JCT-induced whole-cell currents, suggesting that elevated intracellular cAMP by JCT causes activation of CFTR in Caco-2 cells. Finally, blockade of CFTR activity by CFTR inhibitor-172 or siRNA-knockdown of CFTR or application of SQ22536 markedly reduced the degree of cell volume decrease induced by JCT. JCT can induce a Cl− efflux through the CFTR channel to promote water secretion, and this effect is likely mediated by increased cAMP production.
Collapse
Affiliation(s)
- Tomohiro Numata
- Department of Physiology, Graduate School of Medical Sciences, Fukuoka University, 7-45-1 Nanakuma, Johnan-ku, Fukuoka, 814-0180, Japan.
| | - Kaori Sato-Numata
- Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, Japan
| | - Yasunobu Okada
- Department of Molecular Cell Physiology Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Ryuji Inoue
- Department of Physiology, Graduate School of Medical Sciences, Fukuoka University, 7-45-1 Nanakuma, Johnan-ku, Fukuoka, 814-0180, Japan.
| |
Collapse
|
9
|
Wei X, Lu Z, Yang T, Gao P, Chen S, Liu D, Zhu Z. Stimulation of Intestinal Cl- Secretion Through CFTR by Caffeine Intake in Salt-Sensitive Hypertensive Rats. Kidney Blood Press Res 2018; 43:439-448. [DOI: 10.1159/000488256] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/09/2018] [Indexed: 11/19/2022] Open
|
10
|
Bicarbonate in cystic fibrosis. J Cyst Fibros 2017; 16:653-662. [PMID: 28732801 DOI: 10.1016/j.jcf.2017.06.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/22/2017] [Accepted: 06/22/2017] [Indexed: 11/20/2022]
Abstract
BACKGROUND Cystic fibrosis (CF, mucoviscidosis) is caused by mutations in the gene encoding CF transmembrane conductance regulator (CFTR), which is a chloride and bicarbonate channel necessary for fluid secretion and extracellular alkalization. For a long time, research concentrated on abnormal Cl- and Na+ transport, but neglected bicarbonate as a crucial factor in CF. METHODS The present short review reports early findings as well as recent insights into the role of CFTR for bicarbonate transport and its defects in CF. RESULTS The available data indicate impaired bicarbonate transport not only in pancreas, intestine, airways, and reproductive organs, but also in salivary glands, sweat duct and renal tubular epithelial cells. Defective bicarbonate transport is closely related to the impaired mucus properties and mucus blocking in secretory organs of CF patients, causing the life threatening lung disease. CONCLUSIONS Apart from the devastating lung disease, abrogated bicarbonate transport also leads to many other organ dysfunctions, which are outlined in the present review.
Collapse
|
11
|
Wanitchakool P, Ousingsawat J, Sirianant L, MacAulay N, Schreiber R, Kunzelmann K. Cl - channels in apoptosis. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2016; 45:599-610. [PMID: 27270446 DOI: 10.1007/s00249-016-1140-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/06/2016] [Accepted: 05/14/2016] [Indexed: 12/28/2022]
Abstract
A remarkable feature of apoptosis is the initial massive cell shrinkage, which requires opening of ion channels to allow release of K+, Cl-, and organic osmolytes to drive osmotic water movement and cell shrinkage. This article focuses on the role of the Cl- channels LRRC8, TMEM16/anoctamin, and cystic fibrosis transmembrane conductance regulator (CFTR) in cellular apoptosis. LRRC8A-E has been identified as a volume-regulated anion channel expressed in many cell types. It was shown to be required for regulatory and apoptotic volume decrease (RVD, AVD) in cultured cell lines. Its presence also determines sensitivity towards cytostatic drugs such as cisplatin. Recent data point to a molecular and functional relationship of LRRC8A and anoctamins (ANOs). ANO6, 9, and 10 (TMEM16F, J, and K) augment apoptotic Cl- currents and AVD, but it remains unclear whether these anoctamins operate as Cl- channels or as regulators of other apoptotic Cl- channels, such as LRRC8. CFTR has been known for its proapoptotic effects for some time, and this effect may be based on glutathione release from the cell and increase in cytosolic reactive oxygen species (ROS). Although we find that CFTR is activated by cell swelling, it is possible that CFTR serves RVD/AVD through accumulation of ROS and activation of independent membrane channels such as ANO6. Thus activation of ANO6 will support cell shrinkage and induce additional apoptotic events, such as membrane phospholipid scrambling.
Collapse
Affiliation(s)
- Podchanart Wanitchakool
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Jiraporn Ousingsawat
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Lalida Sirianant
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Nanna MacAulay
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rainer Schreiber
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany.
| |
Collapse
|
12
|
Abstract
Activation of ion channels and pores are essential steps during regulated cell death. Channels and pores participate in execution of apoptosis, necroptosis and other forms of caspase-independent cell death. Within the program of regulated cell death, these channels are strategically located. Ion channels can shrink cells and drive them towards apoptosis, resulting in silent, i.e. immunologically unrecognized cell death. Alternatively, activation of channels can induce cell swelling, disintegration of the cell membrane, and highly immunogenic necrotic cell death. The underlying cell death pathways are not strictly separated as identical stimuli may induce cell shrinkage and apoptosis when applied at low strength, but may also cause cell swelling at pronounced stimulation, resulting in regulated necrosis. Nevertheless, the precise role of ion channels during regulated cell death is far from being understood, as identical channels may support regulated death in some cell types, but may cause cell proliferation, cancer development, and metastasis in others. Along this line, the phospholipid scramblase and Cl(-)/nonselective channel anoctamin 6 (ANO6) shows interesting features, as it participates in apoptotic cell death during lower levels of activation, thereby inducing cell shrinkage. At strong activation, e.g. by stimulation of purinergic P2Y7 receptors, it participates in pore formation, causes massive membrane blebbing, cell swelling, and membrane disintegration. The LRRC8 proteins deserve much attention as they were found to have a major role in volume regulation, apoptotic cell shrinkage and resistance towards anticancer drugs.
Collapse
Affiliation(s)
- Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany.
| |
Collapse
|
13
|
Ikpa PT, Sleddens HFBM, Steinbrecher KA, Peppelenbosch MP, de Jonge HR, Smits R, Bijvelds MJC. Guanylin and uroguanylin are produced by mouse intestinal epithelial cells of columnar and secretory lineage. Histochem Cell Biol 2016; 146:445-55. [PMID: 27246004 PMCID: PMC5037145 DOI: 10.1007/s00418-016-1453-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2016] [Indexed: 01/12/2023]
Abstract
Guanylin (GN) and uroguanylin (UGN), through activation of guanylyl cyclase C (GCC), serve to control intestinal fluid homeostasis. Both peptides are produced in the intestinal epithelium, but their cellular origin has not been fully charted. Using quantitative PCR and an improved in situ hybridization technique (RNAscope), we have assessed the expression of GN (Guca2a), UGN (Guca2b), and GCC (Gucy2c) in mouse intestine. In the crypts of Lieberkühn, expression of Guca2a and Guca2b was restricted to cells of secretory lineage, at the crypt's base, and to a region above, previously identified as a common origin of cellular differentiation. In this compartment, comparatively uniform levels of Guca2a and Guca2b expression were observed throughout the length of the gut. In contrast, Guca2a and Guca2b expression in the villus-surface region was more variable, and reflected the distinct, but overlapping expression pattern observed previously. Accordingly, in jejunum and ileum, Guca2a and Guca2b were abundantly expressed by enterocytes, whereas in colon only Guca2a transcript was found in the surface region. In duodenum, only low levels of Guca2b transcript were observed in columnar cells, and Guca2a expression was restricted entirely to cells of the secretory lineage. Gucy2c was shown to be expressed relatively uniformly along the rostrocaudal and crypt-villus axes and was also found in the duodenal glands. Our study reveals novel aspects of the cellular localization of the GCC signaling axis that, apart from its role in the regulation of fluid balance, link it to pH regulation, cell cycle control, and host defense.
Collapse
Affiliation(s)
- Pauline T Ikpa
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Hein F B M Sleddens
- Department of Pathology, Erasmus MC University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Kris A Steinbrecher
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Hugo R de Jonge
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Ron Smits
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Marcel J C Bijvelds
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|
14
|
Foulke-Abel J, In J, Yin J, Zachos NC, Kovbasnjuk O, Estes MK, de Jonge H, Donowitz M. Human Enteroids as a Model of Upper Small Intestinal Ion Transport Physiology and Pathophysiology. Gastroenterology 2016; 150:638-649.e8. [PMID: 26677983 PMCID: PMC4766025 DOI: 10.1053/j.gastro.2015.11.047] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 11/05/2015] [Accepted: 11/25/2015] [Indexed: 01/18/2023]
Abstract
BACKGROUND & AIMS Human intestinal crypt-derived enteroids are a model of intestinal ion transport that require validation by comparison with cell culture and animal models. We used human small intestinal enteroids to study neutral Na(+) absorption and stimulated fluid and anion secretion under basal and regulated conditions in undifferentiated and differentiated cultures to show their functional relevance to ion transport physiology and pathophysiology. METHODS Human intestinal tissue specimens were obtained from an endoscopic biopsy or surgical resections performed at Johns Hopkins Hospital. Crypts were isolated, enteroids were propagated in culture, induced to undergo differentiation, and transduced with lentiviral vectors. Crypt markers, surface cell enzymes, and membrane ion transporters were characterized using quantitative reverse-transcription polymerase chain reaction, immunoblot, or immunofluorescence analyses. We used multiphoton and time-lapse confocal microscopy to monitor intracellular pH and luminal dilatation in enteroids under basal and regulated conditions. RESULTS Enteroids differentiated upon withdrawal of WNT3A, yielding decreased crypt markers and increased villus-like characteristics. Na(+)/H(+) exchanger 3 activity was similar in undifferentiated and differentiated enteroids, and was affected by known inhibitors, second messengers, and bacterial enterotoxins. Forskolin-induced swelling was completely dependent on cystic fibrosis transmembrane conductance regulator and partially dependent on Na(+)/H(+) exchanger 3 and Na(+)/K(+)/2Cl(-) cotransporter 1 inhibition in undifferentiated and differentiated enteroids. Increases in cyclic adenosine monophosphate with forskolin caused enteroid intracellular acidification in HCO3(-)-free buffer. Cyclic adenosine monophosphate-induced enteroid intracellular pH acidification as part of duodenal HCO3(-) secretion appears to require cystic fibrosis transmembrane conductance regulator and electrogenic Na(+)/HCO3(-) cotransporter 1. CONCLUSIONS Undifferentiated or crypt-like, and differentiated or villus-like, human enteroids represent distinct points along the crypt-villus axis; they can be used to characterize electrolyte transport processes along the vertical axis of the small intestine. The duodenal enteroid model showed that electrogenic Na(+)/HCO3(-) cotransporter 1 might be a target in the intestinal mucosa for treatment of secretory diarrheas.
Collapse
Affiliation(s)
- Jennifer Foulke-Abel
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Julie In
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jianyi Yin
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nicholas C Zachos
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Olga Kovbasnjuk
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Hugo de Jonge
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mark Donowitz
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
15
|
Abstract
The intestinal mucosa is a particularly dynamic environment in which the host constantly interacts with trillions of commensal microorganisms, known as the microbiota, and periodically interacts with pathogens of diverse nature. In this Review, we discuss how mucosal immunity is controlled in response to enteric bacterial pathogens, with a focus on the species that cause morbidity and mortality in humans. We explain how the microbiota can shape the immune response to pathogenic bacteria, and we detail innate and adaptive immune mechanisms that drive protective immunity against these pathogens. The vast diversity of the microbiota, pathogens and immune responses encountered in the intestines precludes discussion of all of the relevant players in this Review. Instead, we aim to provide a representative overview of how the intestinal immune system responds to pathogenic bacteria.
Collapse
|
16
|
Sirianant L, Wanitchakool P, Ousingsawat J, Benedetto R, Zormpa A, Cabrita I, Schreiber R, Kunzelmann K. Non-essential contribution of LRRC8A to volume regulation. Pflugers Arch 2016; 468:805-16. [DOI: 10.1007/s00424-016-1789-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 01/06/2016] [Indexed: 10/22/2022]
|
17
|
Abstract
Diarrhoeal disease remains a major health burden worldwide. Secretory diarrhoeas are caused by certain bacterial and viral infections, inflammatory processes, drugs and genetic disorders. Fluid secretion across the intestinal epithelium in secretory diarrhoeas involves multiple ion and solute transporters, as well as activation of cyclic nucleotide and Ca(2+) signalling pathways. In many secretory diarrhoeas, activation of Cl(-) channels in the apical membrane of enterocytes, including the cystic fibrosis transmembrane conductance regulator and Ca(2+)-activated Cl(-) channels, increases fluid secretion, while inhibition of Na(+) transport reduces fluid absorption. Current treatment of diarrhoea includes replacement of fluid and electrolyte losses using oral rehydration solutions, and drugs targeting intestinal motility or fluid secretion. Therapeutics in the development pipeline target intestinal ion channels and transporters, regulatory proteins and cell surface receptors. This Review describes pathogenic mechanisms of secretory diarrhoea, current and emerging therapeutics, and the challenges in developing antidiarrhoeal therapeutics.
Collapse
Affiliation(s)
- Jay R Thiagarajah
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Mark Donowitz
- Departments of Physiology and Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Ross 925, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Alan S Verkman
- Departments of Medicine and Physiology, 1246 Health Sciences East Tower, University of California, 500 Parnassus Avenue, San Francisco, CA 94143, USA
| |
Collapse
|
18
|
Liu J, Walker NM, Ootani A, Strubberg AM, Clarke LL. Defective goblet cell exocytosis contributes to murine cystic fibrosis-associated intestinal disease. J Clin Invest 2015; 125:1056-68. [PMID: 25642775 DOI: 10.1172/jci73193] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 12/18/2014] [Indexed: 01/12/2023] Open
Abstract
Cystic fibrosis (CF) intestinal disease is associated with the pathological manifestation mucoviscidosis, which is the secretion of tenacious, viscid mucus that plugs ducts and glands of epithelial-lined organs. Goblet cells are the principal cell type involved in exocytosis of mucin granules; however, little is known about the exocytotic process of goblet cells in the CF intestine. Using intestinal organoids from a CF mouse model, we determined that CF goblet cells have altered exocytotic dynamics, which involved intrathecal granule swelling that was abruptly followed by incomplete release of partially decondensated mucus. Some CF goblet cells exhibited an ectopic granule location and distorted cellular morphology, a phenotype that is consistent with retrograde intracellular granule movement during exocytosis. Increasing the luminal concentration of bicarbonate, which mimics CF transmembrane conductance regulator-mediated anion secretion, increased spontaneous degranulation in WT goblet cells and improved exocytotic dynamics in CF goblet cells; however, there was still an apparent incoordination between granule decondensation and exocytosis in the CF goblet cells. Compared with those within WT goblet cells, mucin granules within CF goblet cells had an alkaline pH, which may adversely affect the polyionic composition of the mucins. Together, these findings indicate that goblet cell dysfunction is an epithelial-autonomous defect in the CF intestine that likely contributes to the pathology of mucoviscidosis and the intestinal manifestations of obstruction and inflammation.
Collapse
|
19
|
Thiagarajah JR, Ko EA, Tradtrantip L, Donowitz M, Verkman A. Discovery and development of antisecretory drugs for treating diarrheal diseases. Clin Gastroenterol Hepatol 2014; 12:204-9. [PMID: 24316107 PMCID: PMC3935719 DOI: 10.1016/j.cgh.2013.12.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Diarrheal diseases constitute a significant global health burden and are a major cause of childhood mortality and morbidity. Treatment of diarrheal disease has centered on the replacement of fluid and electrolyte losses using oral rehydration solutions. Although oral rehydration solutions have been highly successful, significant mortality and morbidity due to diarrheal disease remains. Secretory diarrheas, such as those caused by bacterial and viral enterotoxins, result from activation of cyclic nucleotide and/or Ca(2+) signaling pathways in intestinal epithelial cells, enterocytes, which increase the permeability of Cl(-) channels at the lumen-facing membrane. Additionally, there is often a parallel reduction in intestinal Na(+) absorption. Inhibition of enterocyte Cl(-) channels, including the cystic fibrosis transmembrane conductance regulator and Ca(2+)-activated Cl(-) channels, represents an attractive strategy for antisecretory drug therapy. High-throughput screening of synthetic small-molecule collections has identified several classes of Cl(-) channel inhibitors that show efficacy in animal models of diarrhea but remain to be tested clinically. In addition, several natural product extracts with Cl(-) channel inhibition activity have shown efficacy in diarrhea models. However, a number of challenges remain to translate the promising bench science into clinically useful therapeutics, including efficiently targeting orally administered drugs to enterocytes during diarrhea, funding development costs, and carrying out informative clinical trials. Nonetheless, Cl(-) channel inhibitors may prove to be effective adjunctive therapy in a broad spectrum of clinical diarrheas, including acute infectious and drug-related diarrheas, short bowel syndrome, and congenital enteropathies.
Collapse
Affiliation(s)
- Jay R. Thiagarajah
- Departments of Medicine and Physiology, University of California, San Francisco, CA, USA, 94143-0521,Department of Gastroenterology, Hepatology and Nutrition, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115
| | - Eun-A Ko
- Departments of Medicine and Physiology, University of California, San Francisco, CA, USA, 94143-0521
| | - Lukmanee Tradtrantip
- Departments of Medicine and Physiology, University of California, San Francisco, CA, USA, 94143-0521
| | - Mark Donowitz
- Departments of Physiology and Medicine, Gastroenterology Division, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - A.S. Verkman
- Departments of Medicine and Physiology, University of California, San Francisco, CA, USA, 94143-0521
| |
Collapse
|
20
|
Jakab RL, Collaco AM, Ameen NA. Characterization of CFTR High Expresser cells in the intestine. Am J Physiol Gastrointest Liver Physiol 2013; 305:G453-65. [PMID: 23868408 PMCID: PMC3761243 DOI: 10.1152/ajpgi.00094.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The CFTR High Expresser (CHE) cells express eightfold higher levels of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel compared with neighboring enterocytes and were first identified by our laboratory (Ameen et al., Gastroenterology 108: 1016, 1995). We used double-label immunofluorescence microscopy to further study these enigmatic epithelial cells in rat intestine in vivo or ex vivo. CHE cells were found in duodenum, most frequent in proximal jejunum, and absent in ileum and colon. CFTR abundance increased in CHE cells along the crypt-villus axis. The basolateral Na(+)K(+)Cl(-) cotransporter NKCC1, a key transporter involved in Cl(-) secretion, was detected at similar levels in CHE cells and neighboring enterocytes at steady state. Microvilli appeared shorter in CHE cells, with low levels of Myosin 1a, a villus enterocyte-specific motor that retains sucrase/isomaltase in the brush-border membrane (BBM). CHE cells lacked alkaline phosphatase and absorptive villus enterocyte BBM proteins, including Na(+)H(+) exchanger NHE3, Cl(-)/HCO3(-) exchanger SLC26A6 (putative anion exchanger 1), and sucrase/isomaltase. High levels of the vacuolar-ATPase proton pump were observed in the apical domain of CHE cells. Levels of the NHE regulatory factor NHERF1, Na-K-ATPase, and Syntaxin 3 were similar to that of neighboring enterocytes. cAMP or acetylcholine stimulation robustly increased apical CFTR and basolateral NKCC1 disproportionately in CHE cells relative to neighboring enterocytes. These data strongly argue for a specialized role of CHE cells in Cl(-)-mediated "high-volume" fluid secretion on the villi of the proximal small intestine.
Collapse
Affiliation(s)
- Robert L. Jakab
- Departments of 1Pediatrics/Gastroenterology and Hepatology, and
| | - Anne M. Collaco
- Departments of 1Pediatrics/Gastroenterology and Hepatology, and
| | - Nadia A. Ameen
- Departments of 1Pediatrics/Gastroenterology and Hepatology, and ,2Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
21
|
Collaco AM, Geibel P, Lee BS, Geibel JP, Ameen NA. Functional vacuolar ATPase (V-ATPase) proton pumps traffic to the enterocyte brush border membrane and require CFTR. Am J Physiol Cell Physiol 2013; 305:C981-96. [PMID: 23986201 DOI: 10.1152/ajpcell.00067.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Vacuolar ATPases (V-ATPases) are highly conserved proton pumps that regulate organelle pH. Epithelial luminal pH is also regulated by cAMP-dependent traffic of specific subunits of the V-ATPase complex from endosomes into the apical membrane. In the intestine, cAMP-dependent traffic of cystic fibrosis transmembrane conductance regulator (CFTR) channels and the sodium hydrogen exchanger (NHE3) in the brush border regulate luminal pH. V-ATPase was found to colocalize with CFTR in intestinal CFTR high expresser (CHE) cells recently. Moreover, apical traffic of V-ATPase and CFTR in rat Brunner's glands was shown to be dependent on cAMP/PKA. These observations support a functional relationship between V-ATPase and CFTR in the intestine. The current study examined V-ATPase and CFTR distribution in intestines from wild-type, CFTR(-/-) mice and polarized intestinal CaCo-2BBe cells following cAMP stimulation and inhibition of CFTR/V-ATPase function. Coimmunoprecipitation studies examined V-ATPase interaction with CFTR. The pH-sensitive dye BCECF determined proton efflux and its dependence on V-ATPase/CFTR in intestinal cells. cAMP increased V-ATPase/CFTR colocalization in the apical domain of intestinal cells and redistributed the V-ATPase Voa1 and Voa2 trafficking subunits from the basolateral membrane to the brush border membrane. Voa1 and Voa2 subunits were localized to endosomes beneath the terminal web in untreated CFTR(-/-) intestine but redistributed to the subapical cytoplasm following cAMP treatment. Inhibition of CFTR or V-ATPase significantly decreased pHi in cells, confirming their functional interdependence. These data establish that V-ATPase traffics into the brush border membrane to regulate proton efflux and this activity is dependent on CFTR in the intestine.
Collapse
Affiliation(s)
- Anne M Collaco
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut
| | | | | | | | | |
Collapse
|
22
|
Chloride channel-targeted therapy for secretory diarrheas. Curr Opin Pharmacol 2013; 13:888-94. [PMID: 23992767 DOI: 10.1016/j.coph.2013.08.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 07/30/2013] [Accepted: 08/01/2013] [Indexed: 12/18/2022]
Abstract
Secretory diarrheas caused by bacterial and viral enterotoxins remain a significant cause of morbidity and mortality. Enterocyte Cl(-) channels represent an attractive class of targets for diarrhea therapy, as they are the final, rate-limiting step in enterotoxin-induced fluid secretion in the intestine. Activation of cyclic nucleotide and/or Ca(2+) signaling pathways in secretory diarrheas increases the conductance of Cl(-) channels at the enterocyte luminal membrane, which include the cystic fibrosis transmembrane conductance regulator (CFTR) and Ca(2+)-activated Cl(-) channels (CaCCs). High-throughput screens have yielded several chemical classes of small molecule CFTR and CaCC inhibitors that show efficacy in animal models of diarrheas. Natural-product diarrhea remedies with Cl(-) channel inhibition activity have also been identified, with one product recently receiving FDA approval for HIV-associated diarrhea.
Collapse
|
23
|
Chan HC, Chen H, Ruan Y, Sun T. Physiology and Pathophysiology of the Epithelial Barrier of the Female Reproductive Tract. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 763:193-217. [DOI: 10.1007/978-1-4614-4711-5_10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
24
|
Jakab RL, Collaco AM, Ameen NA. Cell-specific effects of luminal acid, bicarbonate, cAMP, and carbachol on transporter trafficking in the intestine. Am J Physiol Gastrointest Liver Physiol 2012; 303:G937-50. [PMID: 22936272 PMCID: PMC3469693 DOI: 10.1152/ajpgi.00452.2011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Changes in intestinal luminal pH affect mucosal ion transport. The aim of this study was to compare how luminal pH and specific second messengers modulate the membrane traffic of four major ion transporters (CFTR, NHE3, NKCC1, and NBCe1) in rat small intestine. Ligated duodenal, jejunal, and ileal segments were infused with acidic or alkaline saline, 8-Br-cAMP, or the calcium agonist carbachol in vivo for 20 min. Compared with untreated intestine, lumen pH was reduced after cAMP or carbachol and increased following HCO(3)(-)-saline. Following HCl-saline, lumen pH was restored to control pH levels. All four secretory stimuli resulted in brush-border membrane (BBM) recruitment of CFTR in crypts and villi. In villus enterocytes, CFTR recruitment was coincident with internalization of BBM NHE3 and basolateral membrane recruitment of the bicarbonate transporter NBCe1. Both cAMP and carbachol recruited NKCC1 to the basolateral membrane of enterocytes, while luminal acid or HCO(3)(-) retained NKCC1 in intracellular vesicles. Luminal acid resulted in robust recruitment of CFTR and NBCe1 to their respective enterocyte membrane domains in the upper third of the villi; luminal HCO(3)(-) induced similar membrane changes lower in the villi. These findings indicate that each stimulus promotes a specific transporter trafficking response along the crypt-villus axis. This is the first demonstration that physiologically relevant secretory stimuli exert their actions in villus enterocytes by membrane recruitment of CFTR and NBCe1 in tandem with NHE3 internalization.
Collapse
Affiliation(s)
- Robert L. Jakab
- 1Departments of Pediatrics/Gastroenterology and Hepatology, and
| | - Anne M. Collaco
- 1Departments of Pediatrics/Gastroenterology and Hepatology, and
| | - Nadia A. Ameen
- 1Departments of Pediatrics/Gastroenterology and Hepatology, and ,2Cellular and Molecular Physiology Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
25
|
Chen H, Ruan YC, Xu WM, Chen J, Chan HC. Regulation of male fertility by CFTR and implications in male infertility. Hum Reprod Update 2012; 18:703-13. [PMID: 22709980 DOI: 10.1093/humupd/dms027] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-activated Cl(-) and HCO(3)(-) conducting channel, mutations of which are known to be associated with male infertility. However, the underlying mechanisms remain elusive. METHODS Literature databases were searched for papers on the topics related to CFTR and male fertility and infertility with relevant keywords. Unpublished data from authors' laboratory were also included for analysis. RESULTS Clinical evidence shows increased mutation frequency or reduced CFTR expression in men with congenital bilateral absence of vas deferens (CBAVD) or sperm abnormalities, such as azoospermia teratospermia and oligoasthenospermia. Studies on primary rodent Sertoli cells and germ cells, as well as testes from CFTR knockout mice or a cryptorchidism model, yield findings indicating the involvement of CFTR in spermatogensis through the HCO(3)(-)/sAC/cAMP/CREB(CREM) pathway and the NF-κB/COX-2/PGE(2) pathway. Evidence also reveals a critical role of CFTR in sperm capacitation by directly or indirectly mediating HCO(3)(-) entry that is essential for capacitation. CFTR is emerging as a versatile player with roles in mediating different signaling pathways pertinent to various reproductive processes, in addition to its long-recognized role in electrolyte and fluid transport that regulates the luminal microenvironment of the male reproductive tract. CONCLUSIONS CFTR is a key regulator of male fertility, a defect of which may result in different forms of male infertility other than CBAVD. It would be worthwhile to further investigate the potential of developing novel diagnostic and contraceptive methods targeting CFTR.
Collapse
Affiliation(s)
- Hui Chen
- Sichuan University - The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| | | | | | | | | |
Collapse
|
26
|
Liu J, Walker NM, Cook MT, Ootani A, Clarke LL. Functional Cftr in crypt epithelium of organotypic enteroid cultures from murine small intestine. Am J Physiol Cell Physiol 2012; 302:C1492-503. [PMID: 22403785 DOI: 10.1152/ajpcell.00392.2011] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Physiological studies of intact crypt epithelium have been limited by problems of accessibility in vivo and dedifferentiation in standard primary culture. Investigations of murine intestinal stem cells have recently yielded a primary intestinal culture in three-dimensional gel suspension that recapitulates crypt structure and epithelial differentiation (Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, Van Es JH, Abo A, Kujala P, Peters PJ, Clevers H. Nature 459: 262-265, 2009). We investigated the utility of murine intestinal crypt cultures (termed "enteroids") for physiological studies of crypt epithelium by focusing on the transport activity of the cystic fibrosis transmembrane conductance regulator Cftr. Enteroids had multiple crypts with well-differentiated goblet and Paneth cells that degranulated on exposure to the muscarinic agonist carbachol. Modified growth medium provided a crypt proliferation rate, as measured by 5-ethynyl-2'-deoxyuridine labeling, which was similar to proliferation in vivo. Immunoblots demonstrated equivalent Cftr expression in comparisons of freshly isolated crypts with primary and passage 1 enteroids. Apparent enteroid differences in mRNA expression of other transporters were primarily associated with villous epithelial contamination of freshly isolated crypts. Microelectrode analysis revealed cAMP-stimulated membrane depolarization in enteroid epithelium from wild-type (WT) but not Cftr knockout (KO) mice. Morphological and microfluorimetric studies, respectively, demonstrated Cftr-dependent cell shrinkage and lower intracellular pH in WT enteroid epithelium in contrast to Cftr KO epithelium or WT epithelium treated with Cftr inhibitor 172. We conclude that crypt epithelium of murine enteroids exhibit Cftr expression and activity that recapitulates crypt epithelium in vivo. Enteroids provide a primary culture model that is suitable for physiological studies of regenerating crypt epithelium.
Collapse
Affiliation(s)
- Jinghua Liu
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | |
Collapse
|
27
|
Abstract
Na(+) and Cl(-) movement across the intestinal epithelium occurs by several interconnected mechanisms: (a) nutrient-coupled Na(+) absorption, (b) electroneutral NaCl absorption, (c) electrogenic Cl(-) secretion by CFTR, and (d) electrogenic Na(+) absorption by ENaC. All these transport modes require a favorable electrochemical gradient maintained by the basolateral Na(+)/K(+)-ATPase, a Cl(-) channel, and K(+) channels. Electroneutral NaCl absorption is observed from the small intestine to the distal colon. This transport is mediated by apical Na(+)/H(+) (NHE2/3) and Cl(-)/HCO(3)(-) (Slc26a3/a6 and others) exchangers that provide the major route of NaCl absorption. Electroneutral NaCl absorption and Cl(-) secretion by CFTR are oppositely regulated by the autonomic nerve system, the immune system, and the endocrine system via PKAα, PKCα, cGKII, and/or SGK1. This integrated regulation requires the formation of macromolecular complexes, which are mediated by the NHERF family of scaffold proteins and involve internalization of NHE3. Through use of knockout mice and human mutations, a more detailed understanding of the integrated as well as subtle regulation of electroneutral NaCl absorption by the mammalian intestine has emerged.
Collapse
Affiliation(s)
- Akira Kato
- Biological Sciences, Tokyo Institute of Technology, Yokohama, Japan.
| | | |
Collapse
|
28
|
Jakab RL, Collaco AM, Ameen NA. Physiological relevance of cell-specific distribution patterns of CFTR, NKCC1, NBCe1, and NHE3 along the crypt-villus axis in the intestine. Am J Physiol Gastrointest Liver Physiol 2011; 300:G82-98. [PMID: 21030607 PMCID: PMC3025502 DOI: 10.1152/ajpgi.00245.2010] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 10/27/2010] [Indexed: 01/31/2023]
Abstract
We examined the cell-specific subcellular expression patterns for sodium- and potassium-coupled chloride (NaK2Cl) cotransporter 1 (NKCC1), Na(+) bicarbonate cotransporter (NBCe1), cystic fibrosis transmembrane conductance regulator (CFTR), and Na(+)/H(+) exchanger 3 (NHE3) to understand the functional plasticity and synchronization of ion transport functions along the crypt-villus axis and its relevance to intestinal disease. In the unstimulated intestine, all small intestinal villus enterocytes coexpressed apical CFTR and NHE3, basolateral NBCe1, and mostly intracellular NKCC1. All (crypt and villus) goblet cells strongly expressed basolateral NKCC1 (at approximately three-fold higher levels than villus enterocytes), but no CFTR, NBCe1, or NHE3. Lower crypt cells coexpressed apical CFTR and basolateral NKCC1, but no NHE3 or NBCe1 (except NBCe1-expressing proximal colonic crypts). CFTR, NBCe1, and NKCC1 colocalized with markers of early and recycling endosomes, implicating endocytic recycling in cell-specific anion transport. Brunner's glands of the proximal duodenum coexpressed high levels of apical/subapical CFTR and basolateral NKCC1, but very low levels of NBCe1, consistent with secretion of Cl(-)-enriched fluid into the crypt. The cholinergic agonist carbachol rapidly (within 10 min) reduced cell volume along the entire crypt/villus axis and promoted NHE3 internalization into early endosomes. In contrast, carbachol induced membrane recruitment of NKCC1 and CFTR in all crypt and villus enterocytes, NKCC1 in all goblet cells, and NBCe1 in all villus enterocytes. These observations support regulated vesicle traffic in Cl(-) secretion by goblet cells and Cl(-) and HCO(3)(-) secretion by villus enterocytes during the transient phase of cholinergic stimulation. Overall, the carbachol-induced membrane trafficking profile of the four ion transporters supports functional plasticity of the small intestinal villus epithelium that enables it to conduct both absorptive and secretory functions.
Collapse
Affiliation(s)
- Robert L Jakab
- Department of Pediatrics/Gastroenterology and Hepatology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
29
|
Walker NM, Simpson JE, Hoover EE, Brazill JM, Schweinfest CW, Soleimani M, Clarke LL. Functional activity of Pat-1 (Slc26a6) Cl(−)/HCO₃(−) exchange in the lower villus epithelium of murine duodenum. Acta Physiol (Oxf) 2011; 201:21-31. [PMID: 20969732 DOI: 10.1111/j.1748-1716.2010.02210.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS The apical membrane anion exchanger putative anion transporter-1 (Pat-1) is expressed at significant levels in the lower villus epithelium of murine duodenum. However, previous studies of Cl(−)/HCO₃(−) exchange in the lower villus have failed to demonstrate Pat-1 function. Those studies routinely included luminal glucose which induces Na(+) -coupled glucose transport and acidifies the villus epithelium. Since Pat-1 has been proposed to be an electrogenic 1Cl(−)/2HCO₃(−) exchanger, membrane depolarization or cell acidification during glucose transport may obscure Pat-1 activity. Therefore, we investigated the effects of luminal glucose on Cl(−)(IN)/HCO₃(−) (OUT) exchange activity in the lower villus epithelium. METHODS Cl(−)(IN) /HCO (−) (OUT) exchange of villus epithelium in duodenal mucosa from Pat-1 knockout (KO), Slc26a3 [down-regulated in adenoma (Dra)] KO, cystic fibrosis transmembrane conductance regulator (Cftr) KO and wild-type (WT) littermate mice was measured using the pH-sensitive dye 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein. Short-circuit current (I(sc) ) was measured in Ussing chambers. RESULTS During glucose absorption, Cl(−)(IN)/HCO₃(−) (OUT) exchange in the lower villus epithelium was abolished in the Dra KO and unaffected in the Pat-1 KO relative to WT. However, during electroneutral mannose absorption or electrogenic α-D-methyl glucoside absorption, Cl(−)(IN) /HCO₃(−) (OUT) exchange was reduced in both Pat-1 KO and Dra KO villi. Exposure to high [K(+)] abolished Cl(−)(IN) /HCO₃(−) (OUT) exchange in the Dra KO but not the Dra/Cftr double KO epithelium, suggesting that Pat-1 activity is little affected by membrane depolarization except in the presence of Cftr. CONCLUSIONS The metabolic and electrogenic activity of glucose transport obscures Cl(−)(IN) /HCO₃(−) (OUT) exchange activity of Pat-1 in the lower villus. The inhibitory effects of membrane depolarization on Pat-1 Cl(−)(IN) /HCO₃(−) (OUT) exchange may require concurrent membrane association with Cftr.
Collapse
Affiliation(s)
- N M Walker
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, 65211, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Coon S, Kekuda R, Saha P, Sundaram U. Reciprocal regulation of the primary sodium absorptive pathways in rat intestinal epithelial cells. Am J Physiol Cell Physiol 2010; 300:C496-505. [PMID: 21148403 DOI: 10.1152/ajpcell.00292.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sodium absorption in the mammalian small intestine occurs predominantly by two primary pathways that include Na/H exchange (NHE3) and Na-glucose cotransport (SGLT1) on the brush border membrane (BBM) of villus cells. However, whether NHE3 and SGLT1 function together to regulate intestinal sodium absorption is unknown. Nontransformed small intestinal epithelial cells (IEC-18) were transfected with either NHE3 or SGLT1 small interfering RNAs (siRNAs) and were grown in confluent monolayers on transwell plates to measure the effects on Na absorption. Uptake studies were performed as well as molecular studies to determine the effects on NHE3 and SGLT1 activity. When IEC-18 monolayers were transfected with silencing NHE3 RNA, the cells demonstrated decreased NHE3 activity as well as decreased NHE3 mRNA and protein. However, in NHE3 siRNA-transected cells, SGLT1 activity, mRNA, and protein in the BBM were significantly increased. Thus, inhibition of NHE3 expression regulates the expression and function of SGLT1 in the BBM of intestinal epithelial cells. In addition, IEC-18 cells transected with silencing SGLT1 RNA demonstrated an inhibition of Na-dependent glucose uptake and a decrease in SGLT1 activity, mRNA, and protein levels. However, in these cells, Na/H exchange activity was significantly increased. Furthermore, NHE3 mRNA and protein levels were also increased. Therefore, the inhibition of SGLT1 expression stimulates the transcription and function of NHE3 and vice versa in the BBM of intestinal epithelial cells. Thus this study demonstrates that the major sodium absorptive pathways together function to regulate sodium absorption in epithelial cells.
Collapse
Affiliation(s)
- Steven Coon
- West Virginia Univ. School of Medicine, Morgantown, WV 26506, USA
| | | | | | | |
Collapse
|
31
|
Alper SL, Stewart AK, Vandorpe DH, Clark JS, Horack RZ, Simpson JE, Walker NM, Clarke LL. Native and recombinant Slc26a3 (downregulated in adenoma, Dra) do not exhibit properties of 2Cl-/1HCO3- exchange. Am J Physiol Cell Physiol 2010; 300:C276-86. [PMID: 21068358 DOI: 10.1152/ajpcell.00366.2010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The recent proposal that Dra/Slc26a3 mediates electrogenic 2Cl(-)/1HCO(3)(-) exchange suggests a required revision of classical concepts of electroneutral Cl(-) transport across epithelia such as the intestine. We investigated 1) the effect of endogenous Dra Cl(-)/HCO(3)(-) activity on apical membrane potential (V(a)) of the cecal surface epithelium using wild-type (WT) and knockout (KO) mice; and 2) the electrical properties of Cl(-)/(OH(-))HCO(3)(-) exchange by mouse and human orthologs of Dra expressed in Xenopus oocytes. Ex vivo (36)Cl(-) fluxes and microfluorometry revealed that cecal Cl(-)/HCO(3)(-) exchange was abolished in the Dra KO without concordant changes in short-circuit current. In microelectrode studies, baseline V(a) of Dra KO surface epithelium was slightly hyperpolarized relative to WT but depolarized to the same extent as WT during luminal Cl(-) substitution. Subsequent studies indicated that Cl(-)-dependent V(a) depolarization requires the anion channel Cftr. Oocyte studies demonstrated that Dra-mediated exchange of intracellular Cl(-) for extracellular HCO(3)(-) is accompanied by slow hyperpolarization and a modest outward current, but that the steady-state current-voltage relationship is unaffected by Cl(-) removal or pharmacological blockade. Further, Dra-dependent (36)Cl(-) efflux was voltage-insensitive in oocytes coexpressing the cation channels ENaC or ROMK. We conclude that 1) endogenous Dra and recombinant human/mouse Dra orthologs do not exhibit electrogenic 2Cl(-)/1HCO(3)(-) exchange; and 2) acute induction of Dra Cl(-)/HCO(3)(-) exchange is associated with secondary membrane potential changes representing homeostatic responses. Thus, participation of Dra in coupled NaCl absorption and in uncoupled HCO(3)(-) secretion remains compatible with electroneutrality of these processes, and with the utility of electroneutral transport models for predicting epithelial responses in health and disease.
Collapse
Affiliation(s)
- Seth L Alper
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Gawenis LR, Bradford EM, Alper SL, Prasad V, Shull GE. AE2 Cl-/HCO3- exchanger is required for normal cAMP-stimulated anion secretion in murine proximal colon. Am J Physiol Gastrointest Liver Physiol 2010; 298:G493-503. [PMID: 20110461 PMCID: PMC2853300 DOI: 10.1152/ajpgi.00178.2009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Anion secretion by colonic epithelium is dependent on apical CFTR-mediated anion conductance and basolateral ion transport. In many tissues, the NKCC1 Na(+)-K(+)-2Cl(-) cotransporter mediates basolateral Cl(-) uptake. However, additional evidence suggests that the AE2 Cl(-)/HCO(3)(-) exchanger, when coupled with the NHE1 Na(+)/H(+) exchanger or a Na(+)-HCO(3)(-) cotransporter (NBC), contributes to HCO(3)(-) and/or Cl(-) uptake. To analyze the secretory functions of AE2 in proximal colon, short-circuit current (I(sc)) responses to cAMP and inhibitors of basolateral anion transporters were measured in muscle-stripped wild-type (WT) and AE2-null (AE2(-/-)) proximal colon. In physiological Ringer, the magnitude of cAMP-stimulated I(sc) was the same in WT and AE2(-/-) colon. However, the I(sc) response in AE2(-/-) colon exhibited increased sensitivity to the NKCC1 inhibitor bumetanide and decreased sensitivity to the distilbene derivative SITS (which inhibits AE2 and some NBCs), indicating that loss of AE2 results in a switch to increased NKCC1-supported anion secretion. Removal of HCO(3)(-) resulted in robust cAMP-stimulated I(sc) in both AE2(-/-) and WT colon that was largely mediated by NKCC1, whereas removal of Cl(-) resulted in sharply decreased cAMP-stimulated I(sc) in AE2(-/-) colon relative to WT controls. Inhibition of NHE1 had no effect on cAMP-stimulated I(sc) in AE2(-/-) colon but caused a switch to NKCC1-supported secretion in WT colon. Thus, in AE2(-/-) colon, Cl(-) secretion supported by basolateral NKCC1 is enhanced, whereas HCO(3)(-) secretion is diminished. These results show that AE2 is a component of the basolateral ion transport mechanisms that support anion secretion in the proximal colon.
Collapse
Affiliation(s)
- Lara R. Gawenis
- 1Department of Physiology, University of Utah, Salt Lake City, Utah;
| | - Emily M. Bradford
- 2Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio; and
| | - Seth L. Alper
- 3Renal Division and Molecular and Vascular Medicine Unit, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Vikram Prasad
- 2Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio; and
| | - Gary E. Shull
- 2Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio; and
| |
Collapse
|
33
|
AE2 Cl-/HCO3- exchanger is required for normal cAMP-stimulated anion secretion in murine proximal colon. Am J Physiol Gastrointest Liver Physiol 2010. [PMID: 20110461 DOI: 10.1152/ajpgi.00178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Anion secretion by colonic epithelium is dependent on apical CFTR-mediated anion conductance and basolateral ion transport. In many tissues, the NKCC1 Na(+)-K(+)-2Cl(-) cotransporter mediates basolateral Cl(-) uptake. However, additional evidence suggests that the AE2 Cl(-)/HCO(3)(-) exchanger, when coupled with the NHE1 Na(+)/H(+) exchanger or a Na(+)-HCO(3)(-) cotransporter (NBC), contributes to HCO(3)(-) and/or Cl(-) uptake. To analyze the secretory functions of AE2 in proximal colon, short-circuit current (I(sc)) responses to cAMP and inhibitors of basolateral anion transporters were measured in muscle-stripped wild-type (WT) and AE2-null (AE2(-/-)) proximal colon. In physiological Ringer, the magnitude of cAMP-stimulated I(sc) was the same in WT and AE2(-/-) colon. However, the I(sc) response in AE2(-/-) colon exhibited increased sensitivity to the NKCC1 inhibitor bumetanide and decreased sensitivity to the distilbene derivative SITS (which inhibits AE2 and some NBCs), indicating that loss of AE2 results in a switch to increased NKCC1-supported anion secretion. Removal of HCO(3)(-) resulted in robust cAMP-stimulated I(sc) in both AE2(-/-) and WT colon that was largely mediated by NKCC1, whereas removal of Cl(-) resulted in sharply decreased cAMP-stimulated I(sc) in AE2(-/-) colon relative to WT controls. Inhibition of NHE1 had no effect on cAMP-stimulated I(sc) in AE2(-/-) colon but caused a switch to NKCC1-supported secretion in WT colon. Thus, in AE2(-/-) colon, Cl(-) secretion supported by basolateral NKCC1 is enhanced, whereas HCO(3)(-) secretion is diminished. These results show that AE2 is a component of the basolateral ion transport mechanisms that support anion secretion in the proximal colon.
Collapse
|
34
|
Ducts isolated from the pancreas of CFTR-null mice secrete fluid. Pflugers Arch 2009; 459:203-14. [PMID: 19655163 DOI: 10.1007/s00424-009-0704-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 07/21/2009] [Indexed: 01/01/2023]
Abstract
The pancreatic pathology in cystic fibrosis (CF) is normally attributed to the failure of ductal fluid secretion resulting from the lack of functional CF transmembrane conductance regulator (CFTR). However, murine models of CF show little or no pancreatic pathology. To resolve this dichotomy we analysed the transport mechanisms involved in fluid and electrolyte secretion by pancreatic ducts isolated from CFTR-null mice. Experiments were performed on cultured interlobular duct segments isolated from the pancreas of the Cftr(tm1Cam) strain of CFTR-null mouse. Fluid secretion to the closed luminal space was measured by video microscopy. The secretory response of ducts isolated from CF mice to cAMP-elevating agonists forskolin and secretin was significantly reduced compared with wild type but not abolished. The Cl(-)- and HCO(3) (-) -dependent components of the ductal secretion were affected equally by the absence of CFTR. The secretory response to carbachol stimulation was unaltered in CF ducts. Loading the ductal cells with the Ca2+ chelator BAPTA completely abolished carbachol-evoked secretion, but did not affect forskolin-evoked secretion in CF or wild-type ducts. We conclude that pancreatic duct cells from CF mice can secrete a significant amount of water and electrolytes by a cAMP-stimulated mechanism that is independent of CFTR and cannot be ascribed to the activation of calcium-activated chloride channels.
Collapse
|
35
|
Walker NM, Simpson JE, Brazill JM, Gill RK, Dudeja PK, Schweinfest CW, Clarke LL. Role of down-regulated in adenoma anion exchanger in HCO3- secretion across murine duodenum. Gastroenterology 2009; 136:893-901. [PMID: 19121635 PMCID: PMC2694732 DOI: 10.1053/j.gastro.2008.11.016] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 10/17/2008] [Accepted: 11/06/2008] [Indexed: 12/30/2022]
Abstract
BACKGROUND & AIMS The current model of duodenal HCO(3)(-) secretion proposes that basal secretion results from Cl(-)/HCO(3)(-) exchange, whereas cyclic adenosine monophosphate (cAMP)-stimulated secretion depends on a cystic fibrosis transmembrane conductance regulator channel (Cftr)-mediated HCO(3)(-) conductance. However, discrepancies in applying the model suggest that Cl(-)/HCO(3)(-) exchange also contributes to cAMP-stimulated secretion. Of 2 candidate Cl(-)/HCO(3)(-) exchangers, studies of putative anion transporter-1 knockout (KO) mice find little contribution of putative anion transporter-1 to basal or cAMP-stimulated secretion. Therefore, the role of down-regulated in adenoma (Dra) in duodenal HCO(3)(-) secretion was investigated using DraKO mice. METHODS Duodenal HCO(3)(-) secretion was measured by pH stat in Ussing chambers. Apical membrane Cl(-)/HCO(3)(-) exchange was measured by microfluorometry of intracellular pH in intact villous epithelium. Dra expression was assessed by immunofluorescence. RESULTS Basal HCO(3)(-) secretion was reduced approximately 55%-60% in the DraKO duodenum. cAMP-stimulated HCO(3)(-) secretion was reduced approximately 50%, but short-circuit current was unchanged, indicating normal Cftr activity. Microfluorimetry of villi demonstrated that Dra is the dominant Cl(-)/HCO(3)(-) exchanger in the lower villous epithelium. Dra expression increased from villous tip to crypt. DraKO and wild-type villi also demonstrated regulation of apical Na(+)/H(+) exchange by Cftr-dependent cell shrinkage during luminal Cl(-) substitution. CONCLUSIONS In murine duodenum, Dra Cl(-)/HCO(3)(-) exchange is concentrated in the lower crypt-villus axis where it is subject to Cftr regulation. Dra activity contributes most basal HCO(3)(-) secretion and approximately 50% of cAMP-stimulated HCO(3)(-) secretion. Dra Cl(-)/HCO(3)(-) exchange should be considered in efforts to normalize HCO(3)(-) secretion in duodenal disorders such as ulcer disease and cystic fibrosis.
Collapse
Affiliation(s)
- Nancy M. Walker
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Janet E. Simpson
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri,Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Jennifer M. Brazill
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Ravinder K. Gill
- Department of Medicine, University of Illinois at Chicago and Jesse Brown VA Medical Center, Chicago, IL
| | - Pradeep K. Dudeja
- Department of Medicine, University of Illinois at Chicago and Jesse Brown VA Medical Center, Chicago, IL
| | | | - Lane L. Clarke
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri,Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| |
Collapse
|
36
|
Mizumori M, Choi Y, Guth PH, Engel E, Kaunitz JD, Akiba Y. CFTR inhibition augments NHE3 activity during luminal high CO2 exposure in rat duodenal mucosa. Am J Physiol Gastrointest Liver Physiol 2008; 294:G1318-27. [PMID: 18420826 DOI: 10.1152/ajpgi.00025.2008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We hypothesized that the function of duodenocyte apical membrane acid-base transporters are essential for H(+) absorption from the lumen. We thus examined the effect of inhibition of Na(+)/H(+) exchanger-3 (NHE3), cystic fibrosis transmembrane regulator (CFTR), or apical anion exchangers on transmucosal CO(2) diffusion and HCO(3)(-) secretion in rat duodenum. Duodena were perfused with a pH 6.4 high CO(2) solution or pH 2.2 low CO(2) solution with the NHE3 inhibitor, S3226, the anion transport inhibitor, DIDS, or pretreatment with the potent CFTR inhibitor, CFTR(inh)-172, with simultaneous measurements of luminal and portal venous (PV) pH and carbon dioxide concentration ([CO(2)]). Luminal high CO(2) solution increased CO(2) absorption and HCO(3)(-) secretion, accompanied by PV acidification and PV Pco(2) increase. During CO(2) challenge, CFTR(inh)-172 induced HCO(3)(-) absorption, while inhibiting PV acidification. S3226 reversed CFTR(inh)-associated HCO(3)(-) absorption. Luminal pH 2.2 challenge increased H(+) and CO(2) absorption and acidified the PV, inhibited by CFTR(inh)-172 and DIDS, but not by S3226. CFTR inhibition and DIDS reversed HCO(3)(-) secretion to absorption and inhibited PV acidification during CO(2) challenge, suggesting that HCO(3)(-) secretion helps facilitate CO(2)/H(+) absorption. Furthermore, CFTR inhibition prevented CO(2)-induced cellular acidification reversed by S3226. Reversal of increased HCO(3)(-) loss by NHE3 inhibition and reduced intracellular acidification during CFTR inhibition is consistent with activation or unmasking of NHE3 activity by CFTR inhibition, increasing cell surface H(+) available to neutralize luminal HCO(3)(-) with consequent CO(2) absorption. NHE3, by secreting H(+) into the luminal microclimate, facilitates net transmucosal HCO(3)(-) absorption with a mechanism similar to proximal tubular HCO(3)(-) absorption.
Collapse
Affiliation(s)
- Misa Mizumori
- Department of Medicine, School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
NHE3 is the brush-border (BB) Na+/H+exchanger of small intestine, colon, and renal proximal tubule which is involved in large amounts of neutral Na+absorption. NHE3 is a highly regulated transporter, being both stimulated and inhibited by signaling that mimics the postprandial state. It also undergoes downregulation in diarrheal diseases as well as changes in renal disorders. For this regulation, NHE3 exists in large, multiprotein complexes in which it associates with at least nine other proteins. This review deals with short-term regulation of NHE3 and the identity and function of its recognized interacting partners and the multiprotein complexes in which NHE3 functions.
Collapse
Affiliation(s)
- Mark Donowitz
- Department of Medicine, GI Division, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
38
|
Simpson JE, Schweinfest CW, Shull GE, Gawenis LR, Walker NM, Boyle KT, Soleimani M, Clarke LL. PAT-1 (Slc26a6) is the predominant apical membrane Cl-/HCO3- exchanger in the upper villous epithelium of the murine duodenum. Am J Physiol Gastrointest Liver Physiol 2007; 292:G1079-88. [PMID: 17170027 DOI: 10.1152/ajpgi.00354.2006] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Basal HCO(3)(-) secretion across the duodenum has been shown in several species to principally involve the activity of apical membrane Cl(-)/HCO(3)(-) exchanger(s). To investigate the identity of relevant anion exchanger(s), experiments were performed using wild-type (WT) mice and mice with gene-targeted deletion of the following Cl(-)/HCO(3)(-) exchangers localized to the apical membrane of murine duodenal villi: Slc26a3 [down-regulated in adenoma (DRA)], Slc26a6 [putative anion transporter 1 (PAT-1)], and Slc4a9 [anion exchanger 4 (AE4)]. RT-PCR of the isolated villous epithelium demonstrated PAT-1, DRA, and AE4 mRNA expression. Using the pH-sensitive dye BCECF, anion exchange rates were measured across the apical membrane of epithelial cells in the upper villus of the intact duodenal mucosa. Under basal conditions, Cl(-)/HCO(3)(-) exchange activity was reduced by 65-80% in the PAT-1(-) duodenum, 30-40% in the DRA(-) duodenum, and <5% in the AE4(-) duodenum compared with the WT duodenum. SO(4)(2-)/HCO(3)(-) exchange was eliminated in the PAT-1(-) duodenum but was not affected in the DRA(-) and AE4(-) duodenum relative to the WT duodenum. Intracellular pH (pH(i)) was reduced in the PAT-1(-) villous epithelium but increased to WT levels in the absence of CO(2)/HCO(3)(-) or during methazolamide treatment. Further experiments under physiological conditions indicated active pH(i) compensation in the PAT-1(-) villous epithelium by combined activities of Na(+)/H(+) exchanger 1 and Cl(-)-dependent transport processes at the basolateral membrane. We conclude that 1) PAT-1 is the major contributor to basal Cl(-)/HCO(3)(-) and SO(4)(2-)/HCO(3)(-) exchange across the apical membrane and 2) PAT-1 plays a role in pH(i) regulation in the upper villous epithelium of the murine duodenum.
Collapse
Affiliation(s)
- Janet E Simpson
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Gawenis LR, Bradford EM, Prasad V, Lorenz JN, Simpson JE, Clarke LL, Woo AL, Grisham C, Sanford LP, Doetschman T, Miller ML, Shull GE. Colonic anion secretory defects and metabolic acidosis in mice lacking the NBC1 Na+/HCO3- cotransporter. J Biol Chem 2006; 282:9042-52. [PMID: 17192275 DOI: 10.1074/jbc.m607041200] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The NBC1 Na+/HCO3- cotransporter is expressed in many tissues, including kidney and intestinal epithelia. NBC1 mutations cause proximal renal tubular acidosis in humans, consistent with its role in HCO3- absorption in the kidney. In intestinal and colonic epithelia, NBC1 localizes to basolateral membranes and is thought to function in anion secretion. To test the hypothesis that NBC1 plays a role in transepithelial HCO3- secretion in the intestinal tract, null mutant (NBC1-/-) mice were prepared by targeted disruption of its gene (Slc4a4). NBC1-/- mice exhibited severe metabolic acidosis, growth retardation, reduced plasma Na+, hyperal-dosteronism, splenomegaly, abnormal dentition, intestinal obstructions, and death before weaning. Intracellular pH (pH(i)) was not altered in cAMP-stimulated epithelial cells of NBC1-/- cecum, but pH(i) regulation during sodium removal and readdition was impaired. Bioelectric measurements of NBC1-/- colons revealed increased amiloride-sensitive Na+ absorption. In Ringer solution containing both Cl- and HCO3-, the magnitude of cAMP-stimulated anion secretion was normal in NBC1-/- distal colon but increased in proximal colon, with the increase largely supported by enhanced activity of the basolateral NKCC1 Na+-K+-2Cl- cotransporter. Anion substitution studies in which carbonic anhydrase was inhibited and transepithelial anion conductance was limited to HCO3- revealed a sharp decrease in both cAMP-stimulated HCO3- secretion and SITS-sensitive current in NBC1-/- proximal colon. These results are consistent with the known function of NBC1 in HCO3- absorption in the kidney and demonstrate that NBC1 activity is a component of the basolateral mechanisms for HCO3- uptake during cAMP-stimulated anion secretion in the proximal colon.
Collapse
Affiliation(s)
- Lara R Gawenis
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Lamprecht G, Seidler U. The emerging role of PDZ adapter proteins for regulation of intestinal ion transport. Am J Physiol Gastrointest Liver Physiol 2006; 291:G766-77. [PMID: 16798722 DOI: 10.1152/ajpgi.00135.2006] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In the gastrointestinal tract, CFTR, in conjunction with one or several members of the SLC26 anion exchanger family, mediates electrogenic Cl- and HCO3- secretion. Na+/H+ exchanger isoform NHE3, on the other hand, coupled to one or several of the SLC26 isoforms, mediates electroneutral NaCl absorption. The agonist-induced activation of anion secretion and inhibition of salt absorption causes secretory diarrhea. Current dogma sees the formation of a multiprotein complex of transport proteins, postsynaptic density-95/discs large/zonula occludens-1 (PDZ) adapter proteins, anchoring proteins, the cytoskeleton, and the involved protein kinases as one crucial step in the regulation of these transport processes. Data obtained in heterologous expression studies suggest an important role of these PDZ adapter proteins in trafficking, endocytic recycling, and membrane retention of the respective transmembrane proteins. This article reviews recent advances in our understanding of the role of the PDZ adapter proteins NHERF, E3KARP, PDZK1, IKEPP (NHERF-1 to NHERF-4), CAL, and Shank-2 that bind to CFTR, NHE3, and the intestinal SLC26 members in the regulation of intestinal fluid transport. Current concepts are mostly derived from heterologous expression studies and studies on their role in organ physiology are still in infancy. Recently, however, PDZ adapter protein-deficient mice and organ-specific cell lines have become available, and the first results suggest a more cell-type and possibly signal-specific role of these adapter proteins. This opens the potential for drug development targeted to PDZ domain interactions, which is, in theory, one of the most efficient antidiarrheal strategies.
Collapse
Affiliation(s)
- G Lamprecht
- First Medical Department, University of Tuebingen, Germany
| | | |
Collapse
|
41
|
Walker NM, Simpson JE, Levitt RC, Boyle KT, Clarke LL. Talniflumate increases survival in a cystic fibrosis mouse model of distal intestinal obstructive syndrome. J Pharmacol Exp Ther 2005; 317:275-83. [PMID: 16354791 DOI: 10.1124/jpet.105.094847] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Intestinal disease in cystic fibrosis (CF) mice closely mirrors aspects of obstructive syndromes in CF patients. The pathogenesis involves accumulation of mucoid debris in the crypts that fuse with intestinal content to form obstructing mucofeculant impactions. Treatment involves modalities that increase the fluidity of the luminal content, such as osmotic laxatives and liquid diets. We investigated the effects of talniflumate (Lomucin, Genaera Corporation, Plymouth Meeting, PA), a compound that may be beneficial to treatment of CF intestinal disease based on three mechanisms of action: mucus synthesis inhibition by blockade of the murine calcium-activated chloride channel 3 (mCLCA3), nonsteroidal anti-inflammatory effects, and inhibition of Cl(-)/HCO (-)(3) exchanger(s) involved in intestinal NaCl absorption. Cohorts of CF mice were fed control diet or diets containing either talniflumate (0.4 mg/g chow) or ibuprofen (0.4 mg/g chow) for 21 days to assess survival. Talniflumate significantly increased CF mouse survival from 26 to 77%, whereas ibuprofen had no effect (22% survival). Oral talniflumate did not alter crypt goblet cell numbers or change intestinal expression of mCLCA3 but tended to decrease crypt mucoid impaction. Ussing chamber studies indicated that talniflumate slightly increased the basal short-circuit current of CF intestine, but the change was not sensitive to secretagogue stimulation or bumetanide inhibition. In contrast, intracellular pH measurements of intact intestinal villous epithelium indicated that talniflumate significantly inhibited apical membrane Cl(-)/HCO (-)(3) exchange by >50%. We conclude that oral talniflumate increases the survival of CF mice, possibly by the beneficial effects of decreasing small intestinal NaCl absorption through the inhibition of apical membrane Cl(-)/HCO (-)(3) exchanger(s).
Collapse
Affiliation(s)
- Nancy M Walker
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, 65211, USA
| | | | | | | | | |
Collapse
|
42
|
Schweigel M, Freyer M, Leclercq S, Etschmann B, Lodemann U, Böttcher A, Martens H. Luminal hyperosmolarity decreases Na transport and impairs barrier function of sheep rumen epithelium. J Comp Physiol B 2005; 175:575-91. [PMID: 16177895 DOI: 10.1007/s00360-005-0021-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Revised: 06/29/2005] [Accepted: 07/01/2005] [Indexed: 10/25/2022]
Abstract
The effects of luminal hyperosmolarity on Na and Cl transport were studied in rumen epithelium of sheep. An increase of luminal osmotic pressure with mannitol (350 and 450 mosm/l) caused a significant increase of tissue conductance, G (T), which is linearly correlated with flux rates of (51)Cr-EDTA and indicates an increase of passive permeability. Studies with microelectrodes revealed, that an increase of the osmotic pressure caused a significant increase of the conductance of the shunt pathway from 1.23 +/- 0.10 (control) to 1.92 +/- 0.14 mS cm(-2) (450 mosm/l) without a change of fractional resistance. Hyperosmolarity significantly increased J (sm) and reduced J (net) Na. The effect of hyperosmolarity on J (ms) Na is explained by two independent and opposed effects: increase of passive permeability and inhibition of the Na(+)/H(+) exchanger. Hypertonic buffer solution induced a decrease of the intracellular pH (pH(i)) of isolated ruminal cells, which is consistent with an inhibition of Na(+)/H(+) exchange, probably isoform NHE-3, because NHE-3-mRNA was detectable in rumen epithelium. These data are in contrast to previous reports and reveal a disturbed Na transport and an impaired barrier function of the rumen epithelium, which predisposes translocation of rumen endotoxins and penetration of bacteria.
Collapse
Affiliation(s)
- Monika Schweigel
- Forschungsinstitut für die Biologie landwirtschaftlicher Nutztiere-FBN, Forschungsbereich Ernährungsphysiologie Oskar Kellner, Wilhelm-Stahl-Allee, Dummerstorf, Germany
| | | | | | | | | | | | | |
Collapse
|
43
|
Borowitz D, Durie PR, Clarke LL, Werlin SL, Taylor CJ, Semler J, De Lisle RC, Lewindon P, Lichtman SM, Sinaasappel M, Baker RD, Baker SS, Verkade HJ, Lowe ME, Stallings VA, Janghorbani M, Butler R, Heubi J. Gastrointestinal outcomes and confounders in cystic fibrosis. J Pediatr Gastroenterol Nutr 2005; 41:273-85. [PMID: 16131979 DOI: 10.1097/01.mpg.0000178439.64675.8d] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
44
|
Simpson JE, Gawenis LR, Walker NM, Boyle KT, Clarke LL. Chloride conductance of CFTR facilitates basal Cl-/HCO3- exchange in the villous epithelium of intact murine duodenum. Am J Physiol Gastrointest Liver Physiol 2005; 288:G1241-51. [PMID: 15650130 DOI: 10.1152/ajpgi.00493.2004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Villi of the proximal duodenum are situated for direct exposure to gastric acid chyme. However, little is known about active bicarbonate secretion across villi that maintains the protective alkaline mucus barrier, a process that may be compromised in cystic fibrosis (CF), i.e., in the absence of a functional CF transmembrane conductance regulator (CFTR) anion channel. We investigated Cl(-)/HCO(3)(-) exchange activity across the apical membrane of epithelial cells located at the midregion of villi in intact duodenal mucosa from wild-type (WT) and CF mice using the pH-sensitive dye BCECF. Under basal conditions, the Cl(-)/HCO(3)(-) exchange rate was reduced by approximately 35% in CF compared with WT villous epithelium. Cl(-)/HCO(3)(-) exchange in WT and CF villi responded similarly to inhibitors of anion exchange, and membrane depolarization enhanced rates of Cl(-)(out)/HCO(3)(-)(in) exchange in both epithelia. In anion substitution studies, anion(in)/HCO(3)(-)(out) exchange rates were greater in WT epithelium using Cl(-) or NO(3)(-), but decreased to the level of the CF epithelium using the CFTR-impermeant anion, SO(4)(2-). Similarly, treatment of WT epithelium with the CFTR-selective blocker glybenclamide decreased the Cl(-)/HCO(3)(-) exchange rate to the level of CF epithelium. The mRNA expression of Slc26a3 (downregulated in adenoma) and Slc26a6 (putative anion exchanger-1) was similar between WT and CF duodena. From these studies of murine duodenum, we conclude 1) characteristics of Cl(-)/HCO(3)(-) exchange in the villous epithelium are most consistent with Slc26a6 activity, and 2) Cl(-) channel activity of CFTR facilitates apical membrane Cl(-)(in)/HCO(3)(-)(out) exchange by providing a Cl(-) "leak" under basal conditions.
Collapse
Affiliation(s)
- Janet E Simpson
- Departments of Biomedical Sciences , Univ. of Missouri-Columbia, Columbia, MO 65211, USA
| | | | | | | | | |
Collapse
|
45
|
Bijvelds MJC, Bronsveld I, Havinga R, Sinaasappel M, de Jonge HR, Verkade HJ. Fat absorption in cystic fibrosis mice is impeded by defective lipolysis and post-lipolytic events. Am J Physiol Gastrointest Liver Physiol 2005; 288:G646-53. [PMID: 15528257 DOI: 10.1152/ajpgi.00295.2004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cystic fibrosis (CF) is frequently associated with progressive loss of exocrine pancreas function, leading to incomplete digestion and absorption of dietary fat. Supplementing patients with pancreatic lipase reduces fat excretion, but it does not completely correct fat malabsorption, indicating that additional pathological processes affect lipolysis and/or uptake of lipolytic products. To delineate the role of such (post) lipolytic processes in CF-related fat malabsorption, we assessed fat absorption, lipolysis, and fatty acid uptake in two murine CF models by measuring fecal fat excretion and uptake of oleate- and triolein-derived lipid. Pancreatic and biliary function was investigated by determining lipase secretion and biliary bile salt (BS) secretion, respectively. A marked increase in fecal fat excretion was observed in cftr null mice but not in homozygous DeltaF508 mice. Fecal BS loss was enhanced in both CF models, but biliary BS secretion rates were similar. Uptake of free fatty acid was delayed in both CF models, but only in null mice was a specific reduction in lipolytic activity apparent, characterized by strongly reduced triglyceride absorption. Impaired lipolysis was not due to reduced pancreatic lipase secretion. Suppression of gastric acid secretion partially restored lipolytic activity and lipid uptake, indicating that incomplete neutralization of gastric acid impedes fat absorption. We conclude that fat malabsorption in cftr null mice is caused by impairment of lipolysis, which may result from aberrant duodenal pH regulation.
Collapse
Affiliation(s)
- Marcel J C Bijvelds
- Dept. of Biochemistry, Erasmus MC, Postbus 1738, NL-3000 DR Rotterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
46
|
Gawenis LR, Hut H, Bot AGM, Shull GE, de Jonge HR, Stien X, Miller ML, Clarke LL. Electroneutral sodium absorption and electrogenic anion secretion across murine small intestine are regulated in parallel. Am J Physiol Gastrointest Liver Physiol 2004; 287:G1140-9. [PMID: 15284023 DOI: 10.1152/ajpgi.00177.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Electrolyte transport processes of small intestinal epithelia maintain a balance between hydration of the luminal contents and systemic fluid homeostasis. Under basal conditions, electroneutral Na(+) absorption mediated by Na(+)/H(+) exchanger 3 (NHE3) predominates; under stimulated conditions, increased anion secretion mediated by CFTR occurs concurrently with inhibition of Na(+) absorption. Homeostatic adjustments to diseases that chronically affect the activity of one transporter (e.g., cystic fibrosis) may include adaptations in the opposing transport process to prevent enterosystemic fluid imbalance. To test this hypothesis, we measured electrogenic anion secretion (indexed by the short-circuit current) across NHE3-null [NHE3(-)] murine small intestine and electroneutral Na(+) absorption (by radioisotopic flux analysis) across small intestine of mice with gene-targeted disruptions of the anion secretory pathway, i.e., CFTR-null [CFTR(-)] or Na(+)-K(+)-2Cl(-) cotransporter-null [NKCC1(-)]. Protein expression of NHE3 and CFTR in the intestinal epithelia was measured by immunoblotting. In NHE3(-), compared with wild-type small intestine, maximal and bumetanide-sensitive anion secretion following cAMP stimulation was significantly reduced, and there was a corresponding decrease in CFTR protein expression. In CFTR(-) and NKCC1(-) intestine, Na(+) absorption was significantly reduced compared with wild-type. NHE3 protein expression was decreased in the CFTR(-) intestine but was unchanged in the NKCC1(-) intestine, indicating that factors independent of expression also downregulate NHE3 activity. Together, these data support the concept that absorptive and secretory processes determining NaCl and water movement across the intestinal epithelium are regulated in parallel to maintain balance between the systemic fluid volume and hydration of the luminal contents.
Collapse
Affiliation(s)
- Lara R Gawenis
- Dalton Cardiovascular Research Center, Department of Biomedical Sciences, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Coates SW, Högenauer C, Santa Ana CA, Rosenblatt RL, Emmett M, Fordtran JS. Inhibition of neutral sodium absorption by a prostaglandin analogue in patients with cystic fibrosis. Gastroenterology 2004; 127:65-72. [PMID: 15236173 DOI: 10.1053/j.gastro.2004.03.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS In normal intestine, cyclic nucleotides (adenosine 3',5'-cyclic monophosphate [cAMP], guanosine 3',5'-cyclic monophosphate) and Ca(2+) inhibit neutral sodium absorption. In contrast, in the jejunum of a knockout mouse model of cystic fibrosis (CF), agents that elevate intracellular cAMP levels did not inhibit neutral sodium absorption, suggesting that the antiabsorptive effect of cAMP is dependent on the cystic fibrosis transmembrane conductance regulator (CFTR). The aim of the present study was to determine if a prostaglandin E(1) analogue, which causes elevation of intracellular cAMP and Ca(2+) levels, inhibits neutral sodium absorption in patients with CF in vivo. METHODS Electrolyte and water absorption/secretion was measured during steady state perfusion of the jejunum with a balanced electrolyte solution. Patients with CF and healthy subjects were studied under basal conditions and during intraluminal infusion of a prostaglandin E(1) analogue (misoprostol). RESULTS The rate of neutral sodium absorption in the basal state was similar in healthy subjects and patients with CF. Prostaglandin infusion markedly reduced neutral sodium absorption in both healthy subjects and patients with CF. Prostaglandin caused high rates of electrolyte and water secretion in healthy subjects but only trivial rates of secretion in patients with CF. CONCLUSIONS CFTR mutations causing CF in humans do not prevent prostaglandin E(1) inhibition of neutral sodium absorption, even though these mutations produce a severe defect in prostaglandin-stimulated electrolyte secretion. These findings suggest that an intact antiabsorptive response to either cAMP or Ca(2+) may contribute to the relatively low level of intestinal disease in patients with CF.
Collapse
Affiliation(s)
- Stephen W Coates
- Department of Internal Medicine, Baylor University Medical Center, Dallas, Texas 75246, USA
| | | | | | | | | | | |
Collapse
|
48
|
Gawenis LR, Boyle KT, Palmer BA, Walker NM, Clarke LL. Lateral intercellular space volume as a determinant of CFTR-mediated anion secretion across small intestinal mucosa. Am J Physiol Gastrointest Liver Physiol 2004; 286:G1015-23. [PMID: 14764448 DOI: 10.1152/ajpgi.00468.2003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Studies of full-thickness, small intestinal preparations have shown that maximal anion secretion [indexed by short-circuit current (I(sc))] during intracellular cAMP (cAMP(i)) stimulation is transient and followed by a decline toward baseline. Declining I(sc) is preceded by decreases in transepithelial conductance (G(t)), which in the small intestine reflects the lateral intercellular space (LIS) volume of the paracellular pathway. We hypothesized that decreases in LIS volume limit the magnitude and duration of cAMP(i)-stimulated anion secretion. Experimental manipulations to increase the patency of the LIS (assessed by G(t) and electron microscopy) were investigated for an effect on the magnitude of cAMP(i)-stimulated anion secretion (assessed by the I(sc) and isotopic fluxes) across murine small intestine. In control studies, changes of G(t) after cAMP(i) stimulation were associated with a morphological "collapse" of the LIS, which did not occur in intestine of CFTR-null mice. Removal of the outer intestinal musculature, exposure to a serosal hypertonic solution, or increased serosal hydrostatic pressure minimized reductions in G(t) and increased the cAMP(i)-stimulated I(sc) response. Increased I(sc) primarily resulted from increased Cl(-) secretion that was largely bumetanide sensitive. However, bumetanide-insensitive I(sc) was also increased, and similar increases occurred in the Na(+)-K(+)-2Cl(-) cotransporter (NKCC1)-null intestine, indicating that activities of non-NKCC1 anion uptake proteins are also affected by LIS volume. Thus LIS patency is an important determinant of the magnitude and duration of CFTR-mediated anion secretion in murine small intestine. Decreases in LIS volume may limit the pool of available anions to basolateral transporters involved in transepithelial secretion.
Collapse
Affiliation(s)
- Lara R Gawenis
- Dalton Cardiovascular Research Center and the Department of Biomedical Sciences, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | | | | | | | | |
Collapse
|