1
|
Thakur G, Lee HJ, Jeon RH, Lee SL, Rho GJ. Small Molecule-Induced Pancreatic β-Like Cell Development: Mechanistic Approaches and Available Strategies. Int J Mol Sci 2020; 21:E2388. [PMID: 32235681 PMCID: PMC7178115 DOI: 10.3390/ijms21072388] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetes is a metabolic disease which affects not only glucose metabolism but also lipid and protein metabolism. It encompasses two major types: type 1 and 2 diabetes. Despite the different etiologies of type 1 and 2 diabetes mellitus (T1DM and T2DM, respectively), the defining features of the two forms are insulin deficiency and resistance, respectively. Stem cell therapy is an efficient method for the treatment of diabetes, which can be achieved by differentiating pancreatic β-like cells. The consistent generation of glucose-responsive insulin releasing cells remains challenging. In this review article, we present basic concepts of pancreatic organogenesis, which intermittently provides a basis for engineering differentiation procedures, mainly based on the use of small molecules. Small molecules are more auspicious than any other growth factors, as they have unique, valuable properties like cell-permeability, as well as a nonimmunogenic nature; furthermore, they offer immense benefits in terms of generating efficient functional beta-like cells. We also summarize advances in the generation of stem cell-derived pancreatic cell lineages, especially endocrine β-like cells or islet organoids. The successful induction of stem cells depends on the quantity and quality of available stem cells and the efficient use of small molecules.
Collapse
Affiliation(s)
- Gitika Thakur
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (H.-J.L.); (S.-L.L.)
| | - Hyeon-Jeong Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (H.-J.L.); (S.-L.L.)
| | - Ryoung-Hoon Jeon
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| | - Sung-Lim Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (H.-J.L.); (S.-L.L.)
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (H.-J.L.); (S.-L.L.)
| |
Collapse
|
2
|
Thorsvik S, van Beelen Granlund A, Svendsen TD, Bakke I, Røyset ES, Flo TH, Damås JK, Østvik AE, Bruland T, Sandvik AK. Ulcer-associated cell lineage expresses genes involved in regeneration and is hallmarked by high neutrophil gelatinase-associated lipocalin (NGAL) levels. J Pathol 2019; 248:316-325. [PMID: 30746716 PMCID: PMC6618036 DOI: 10.1002/path.5258] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/13/2019] [Accepted: 02/07/2019] [Indexed: 01/16/2023]
Abstract
Neutrophil gelatinase-associated lipocalin (NGAL), also known as Lipocalin 2, is an antimicrobial protein, encoded by the gene LCN2, strongly upregulated in inflammatory bowel disease (IBD) and a promising biomarker for IBD. Here we demonstrate that NGAL is highly expressed in all parts of pyloric metaplasia, also known as the ulcer-associated cell lineage (UACL), a metaplastic cell lineage suggested to play a role in wound healing in Crohn's disease (CD). We further show NGAL expression in regenerative intestinal crypts and in undifferentiated patient-derived colonoids. This indicates that NGAL is important in the tissue regeneration process. The remarkable overexpression of NGAL in UACL led us to explore the pathobiology of these cells by transcriptome-wide RNA sequencing. This study is, to our knowledge, the first to characterize the UACL at this level. Biopsies with UACL and inflamed non-UACL epithelium from the terminal ileum of CD patients and epithelium from healthy controls were laser capture microdissected for RNA sequencing. Among the 180 genes differentially expressed between UACL and control epithelium, the ten most-upregulated genes specific for UACL were MUC5AC, PGC, MUC6, MUC5B, LCN2, POU2AF1, MUC1, SDC3, IGFBP5, and SLC7A5. PDX1 was among the most upregulated in both UACL and inflamed non-UACL epithelium. Immunohistochemistry and iDisco 3D visualization was used to characterize UACL histo-morphologically, and to validate protein expression of 11 selected differentially expressed genes. Among these genes, LCN2, NOTCH2, PHLDA1, IGFBP5, SDC3, BPIFB1, and RCN1 have previously not been linked to UACL. Gene expression results were analyzed for functional implications using MetaCore, showing that differentially expressed genes are enriched for genes involved in cell migration and motility, and for biomarkers of gastrointestinal neoplasia. These results support a role for UACL as part of the reepithelialization process during and after destructive intestinal inflammation. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Silje Thorsvik
- Centre of Molecular Inflammation Research, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Gastroenterology and Hepatology, St Olav's University Hospital, Trondheim, Norway
| | - Atle van Beelen Granlund
- Centre of Molecular Inflammation Research, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tarjei D Svendsen
- Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ingunn Bakke
- Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Medicine, St Olav's University Hospital, Trondheim, Norway
| | - Elin S Røyset
- Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Pathology, St Olav's University Hospital, Trondheim, Norway
| | - Trude H Flo
- Centre of Molecular Inflammation Research, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jan K Damås
- Centre of Molecular Inflammation Research, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Infectious Diseases, St Olav's University Hospital, Trondheim, Norway
| | - Ann E Østvik
- Centre of Molecular Inflammation Research, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Gastroenterology and Hepatology, St Olav's University Hospital, Trondheim, Norway
| | - Torunn Bruland
- Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Medicine, St Olav's University Hospital, Trondheim, Norway
| | - Arne K Sandvik
- Centre of Molecular Inflammation Research, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Gastroenterology and Hepatology, St Olav's University Hospital, Trondheim, Norway
| |
Collapse
|
3
|
Thompson CA, DeLaForest A, Battle MA. Patterning the gastrointestinal epithelium to confer regional-specific functions. Dev Biol 2018; 435:97-108. [PMID: 29339095 PMCID: PMC6615902 DOI: 10.1016/j.ydbio.2018.01.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/01/2018] [Accepted: 01/10/2018] [Indexed: 12/12/2022]
Abstract
The gastrointestinal (GI) tract, in simplest terms, can be described as an epithelial-lined muscular tube extending along the cephalocaudal axis from the oral cavity to the anus. Although the general architecture of the GI tract organs is conserved from end to end, the presence of different epithelial tissue structures and unique epithelial cell types within each organ enables each to perform the distinct digestive functions required for efficient nutrient assimilation. Spatiotemporal regulation of signaling pathways and downstream transcription factors controls GI epithelial morphogenesis during development to confer essential regional-specific epithelial structures and functions. Here, we discuss the fundamental functions of each GI tract organ and summarize the diversity of epithelial structures present along the cephalocaudal axis of the GI tract. Next, we discuss findings, primarily from genetic mouse models, that have defined the roles of key transcription factors during epithelial morphogenesis, including p63, SOX2, SOX15, GATA4, GATA6, HNF4A, and HNF4G. Additionally, we examine how the Hedgehog, WNT, and BMP signaling pathways contribute to defining unique epithelial features along the cephalocaudal axis of the GI tract. Lastly, we examine the molecular mechanisms controlling regionalized cytodifferentiation of organ-specific epithelial cell types within the GI tract, concentrating on the stomach and small intestine. The delineation of GI epithelial patterning mechanisms in mice has provided fundamental knowledge to guide the development and refinement of three-dimensional GI organotypic culture models such as those derived from directed differentiation of human pluripotent stem cells and those derived directly from human tissue samples. Continued examination of these pathways will undoubtedly provide vital insights into the mechanisms of GI development and disease and may afford new avenues for innovative tissue engineering and personalized medicine approaches to treating GI diseases.
Collapse
Affiliation(s)
- Cayla A Thompson
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Ann DeLaForest
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Michele A Battle
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
4
|
Chen C, Fang R, Chou LC, Lowe AW, Sibley E. PDX1 regulation of FABP1 and novel target genes in human intestinal epithelial Caco-2 cells. Biochem Biophys Res Commun 2012; 423:183-7. [PMID: 22640736 DOI: 10.1016/j.bbrc.2012.05.113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 05/18/2012] [Indexed: 10/28/2022]
Abstract
The transcription factor pancreatic and duodenal homeobox 1 (PDX1) plays an essential role in pancreatic development and in maintaining proper islet function via target gene regulation. Few intestinal PDX1 targets, however, have been described. We sought to define novel PDX1-regulated intestinal genes. Caco-2 human intestinal epithelial cells were engineered to overexpress PDX1 and gene expression profiles relative to control cells were assessed. Expression of 80 genes significantly increased while that of 49 genes significantly decreased more than 4-fold following PDX1 overexpression in differentiated Caco-2 cells. Analysis of the differentially regulated genes with known functional annotations revealed genes encoding transcription factors, growth factors, kinases, digestive glycosidases, nutrient transporters, nutrient binding proteins, and structural components. The gene for fatty acid binding protein 1, liver, FABP1, is repressed by PDX1 in Caco-2 cells. PDX1 overexpression in Caco-2 cells also results in repression of promoter activity driven by the 0.6kb FABP1 promoter. PDX1 regulation of promoter activity is consistent with the decrease in FABP1 RNA abundance resulting from PDX1 overexpression and identifies FABP1 as a candidate PDX1 target. PDX1 repression of FABP1, LCT, and SI suggests a role for PDX1 in patterning anterior intestinal development.
Collapse
Affiliation(s)
- Chin Chen
- Division of Pediatric Gastroenterology, Stanford University School of Medicine, Stanford, CA 94305-5208, United States
| | | | | | | | | |
Collapse
|
5
|
Boundaries, junctions and transitions in the gastrointestinal tract. Exp Cell Res 2011; 317:2711-8. [PMID: 21802415 DOI: 10.1016/j.yexcr.2011.07.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 07/12/2011] [Accepted: 07/13/2011] [Indexed: 01/01/2023]
Abstract
Contiguous regions along the mammalian gastrointestinal tract, from the esophagus to the rectum, serve distinct digestive functions. Some organs, such as the esophagus and glandular stomach or the small bowel and colon, are separated by sharp boundaries. The duodenal, jejunal and ileal segments of the small intestine, by contrast, have imprecise borders. Because human esophageal and gastric cancers frequently arise in a background of tissue metaplasia and some intestinal disorders are confined to discrete regions, it is useful to appreciate the molecular and cellular basis of boundary formation and preservation. Here we review the anatomy and determinants of boundaries and transitions in the alimentary canal with respect to tissue morphology, gene expression, and, especially, transcriptional control of epithelial identity. We discuss the evidence for established and candidate molecular mechanisms of boundary formation, including the solitary and combinatorial actions of tissue-restricted transcription factors. Although the understanding remains sparse, genetic studies in mice do provide insights into dominant mechanisms and point the way for future investigation.
Collapse
|
6
|
Lade AG, Monga SPS. Beta-catenin signaling in hepatic development and progenitors: which way does the WNT blow? Dev Dyn 2010; 240:486-500. [PMID: 21337461 DOI: 10.1002/dvdy.22522] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2010] [Indexed: 12/19/2022] Open
Abstract
The Wnt/β-catenin pathway is an evolutionarily conserved signaling cascade that plays key roles in development and adult tissue homeostasis and is aberrantly activated in many tumors. Over a decade of work in mouse, chick, xenopus, and zebrafish models has uncovered multiple functions of this pathway in hepatic pathophysiology. Specifically, beta-catenin, the central component of the canonical Wnt pathway, is implicated in the regulation of liver regeneration, development, and carcinogenesis. Wnt-independent activation of beta-catenin by receptor tyrosine kinases has also been observed in the liver. In liver development across various species, through regulation of cell proliferation, differentiation, and maturation, beta-catenin directs foregut endoderm specification, hepatic specification of the foregut, and hepatic morphogenesis. Its role has also been defined in adult hepatic progenitors or oval cells especially in their expansion and differentiation. Thus, beta-catenin undergoes tight temporal regulation to exhibit pleiotropic effects during hepatic development and in hepatic progenitor biology.
Collapse
|
7
|
Smooth-muscle-specific expression of neurotrophin-3 in mouse embryonic and neonatal gastrointestinal tract. Cell Tissue Res 2010; 340:267-86. [PMID: 20387078 DOI: 10.1007/s00441-010-0959-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2009] [Accepted: 02/26/2010] [Indexed: 12/20/2022]
Abstract
Vagal gastrointestinal (GI) afferents are essential for the regulation of eating, body weight, and digestion. However, their functional organization and the way that this develops are poorly understood. Neurotrophin-3 (NT-3) is crucial for the survival of vagal sensory neurons and is expressed in the developing GI tract, possibly contributing to their survival and to other aspects of vagal afferent development. The identification of the functions of this peripheral NT-3 thus requires a detailed understanding of the localization and timing of its expression in the developing GI tract. We have studied embryos and neonates expressing the lacZ reporter gene from the NT-3 locus and found that NT-3 is expressed predominantly in the smooth muscle of the outer GI wall of the stomach, intestines, and associated blood vessels and in the stomach lamina propria and esophageal epithelium. NT-3 expression has been detected in the mesenchyme of the GI wall by embryonic day 12.5 (E12.5) and becomes restricted to smooth muscle and lamina propria by E15.5, whereas its expression in blood vessels and esophageal epithelium is first observed at E15.5. Expression in most tissues is maintained at least until postnatal day 4. The lack of colocalization of beta-galactosidase and markers for myenteric ganglion cell types suggests that NT-3 is not expressed in these ganglia. Therefore, NT-3 expression in the GI tract is largely restricted to smooth muscle at ages when vagal axons grow into the GI tract, and when vagal mechanoreceptors form in smooth muscle, consistent with its role in these processes and in vagal sensory neuron survival.
Collapse
|
8
|
Chen C, Fang R, Davis C, Maravelias C, Sibley E. Pdx1 inactivation restricted to the intestinal epithelium in mice alters duodenal gene expression in enterocytes and enteroendocrine cells. Am J Physiol Gastrointest Liver Physiol 2009; 297:G1126-37. [PMID: 19808654 PMCID: PMC2850094 DOI: 10.1152/ajpgi.90586.2008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Null mutant mice lacking the transcription factor pancreatic and duodenal homeobox 1 (Pdx1) are apancreatic and survive only a few days after birth. The role of Pdx1 in regulating intestinal gene expression has therefore yet to be determined in viable mice with normal pancreatic development. We hypothesized that conditional inactivation of Pdx1 restricted to the intestinal epithelium would alter intestinal gene expression and cell differentiation. Pdx1(flox/flox);VilCre mice with intestine-specific Pdx1 inactivation were generated by crossing a transgenic mouse strain expressing Cre recombinase, driven by a mouse villin 1 gene promoter fragment, with a mutant mouse strain homozygous for loxP site-flanked Pdx1. Pdx1 protein is undetectable in all epithelial cells in the intestinal epithelium of Pdx1(flox/flox);VilCre mice. Goblet cell number and mRNA abundance for mucin 3 and mucin 13 genes in the proximal small intestine are comparable between Pdx1(flox/flox);VilCre and control mice. Similarly, Paneth cell number and expression of Paneth cell-related genes Defa1, Defcr-rs1, and Mmp7 in the proximal small intestine remain statistically unchanged by Pdx1 inactivation. Although the number of enteroendocrine cells expressing chromogranin A/B, gastric inhibitory polypeptide (Gip), or somatostatin (Sst) is unaffected in the Pdx1(flox/flox);VilCre mice, mRNA abundance for Gip and Sst is significantly reduced in the proximal small intestine. Conditional Pdx1 inactivation attenuates intestinal alkaline phosphatase (IAP) activity in the duodenal epithelium, consistent with an average 91% decrease in expression of the mouse enterocyte IAP gene, alkaline phosphatase 3 (a novel Pdx1 target candidate), in the proximal small intestine following Pdx1 inactivation. We conclude that Pdx1 is necessary for patterning appropriate gene expression in enterocytes and enteroendocrine cells of the proximal small intestine.
Collapse
Affiliation(s)
- Chin Chen
- Stanford Univ. School of Medicine, CA 94305-5208, USA.
| | - Rixun Fang
- 1Division of Pediatric Gastroenterology and
| | - Corrine Davis
- 2Department of Comparative Medicine, Stanford University School of Medicine, Stanford, California
| | | | | |
Collapse
|
9
|
Abstract
In this review, I summarize some aspects of murine pancreas development, with particular emphasis on the analysis of the ontogenetic relationships between different pancreatic cell types. Lineage analyses allow the identification of the progenitor cells from which mature cell types arise. The identification and successful in vitro culture of putative pancreatic stem cells is highly relevant for future cell replacement therapies in diabetic patients.
Collapse
|
10
|
Cole AG, Rizzo F, Martinez P, Fernandez-Serra M, Arnone MI. Two ParaHox genes, SpLox and SpCdx, interact to partition the posterior endoderm in the formation of a functional gut. Development 2009; 136:541-9. [PMID: 19144720 DOI: 10.1242/dev.029959] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report the characterization of the ortholog of the Xenopus XlHbox8 ParaHox gene from the sea urchin Strongylocentrotus purpuratus, SpLox. It is expressed during embryogenesis, first appearing at late gastrulation in the posterior-most region of the endodermal tube, becoming progressively restricted to the constriction between the mid- and hindgut. The physiological effects of the absence of the activity of this gene have been analyzed through knockdown experiments using gene-specific morpholino antisense oligonucleotides. We show that blocking the translation of the SpLox mRNA reduces the capacity of the digestive tract to process food, as well as eliminating the morphological constriction normally present between the mid- and hindgut. Genetic interactions of the SpLox gene are revealed by the analysis of the expression of a set of genes involved in endoderm specification. Two such interactions have been analyzed in more detail: one involving the midgut marker gene Endo16, and another involving the other endodermally expressed ParaHox gene, SpCdx. We find that SpLox is able to bind Endo16 cis-regulatory DNA, suggesting direct repression of Endo16 expression in presumptive hindgut territories. More significantly, we provide the first evidence of interaction between ParaHox genes in establishing hindgut identity, and present a model of gene regulation involving a negative-feedback loop.
Collapse
Affiliation(s)
- Alison G Cole
- Stazione Zoologica Anton Dohrn di Napoli, Villa Comunale, 80121 Napoli, Italy
| | | | | | | | | |
Collapse
|
11
|
Abstract
The development of insulin-producing pancreatic beta (beta)-cells represents the culmination of a complex developmental program. Cells of the posterior foregut assume a pancreatic identity, cells within the expanding pancreatic primordia adopt an endocrine fate, and a subset of these precursors becomes competent to generate beta-cells. Postnatally, beta-cells are primarily maintained by self-duplication rather than new differentiation. Although major gaps in our knowledge still persist, experiments across several organisms have shed increasing light on the steps of beta-cell specification and differentiation. Increasing our understanding of the extrinsic, as well as intrinsic, mechanisms that control these processes should facilitate efforts to regenerate this important cell type in humans.
Collapse
Affiliation(s)
- L Charles Murtaugh
- University of Utah, Department of Human Genetics, Salt Lake City, UT 84112, USA.
| |
Collapse
|
12
|
Fukuda A, Kawaguchi Y, Furuyama K, Kodama S, Horiguchi M, Kuhara T, Koizumi M, Boyer DF, Fujimoto K, Doi R, Kageyama R, Wright CV, Chiba T. Ectopic pancreas formation in Hes1 -knockout mice reveals plasticity of endodermal progenitors of the gut, bile duct, and pancreas. J Clin Invest 2006; 116:1484-93. [PMID: 16710472 PMCID: PMC1462947 DOI: 10.1172/jci27704] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Accepted: 03/22/2006] [Indexed: 01/26/2023] Open
Abstract
Ectopic pancreas is a developmental anomaly occasionally found in humans. Hes1, a main effector of Notch signaling, regulates the fate and differentiation of many cell types during development. To gain insights into the role of the Notch pathway in pancreatic fate determination, we combined the use of Hes1-knockout mice and lineage tracing employing the Cre/loxP system to specifically mark pancreatic precursor cells and their progeny in Ptf1a-cre and Rosa26 reporter mice. We show that inactivation of Hes1 induces misexpression of Ptf1a in discrete regions of the primitive stomach and duodenum and throughout the common bile duct. All ectopic Ptf1a-expressing cells were reprogrammed, or transcommitted, to multipotent pancreatic progenitor status and subsequently differentiated into mature pancreatic exocrine, endocrine, and duct cells. This process recapitulated normal pancreatogenesis in terms of morphological and genetic features. Furthermore, analysis of Hes1/Ptf1a double mutants revealed that ectopic Ptf1a-cre lineage-labeled cells adopted the fate of region-appropriate gut epithelium or endocrine cells similarly to Ptf1a-inactivated cells in the native pancreatic buds. Our data demonstrate that the Hes1-mediated Notch pathway is required for region-appropriate specification of pancreas in the developing foregut endoderm through regulation of Ptf1a expression, providing novel insight into the pathogenesis of ectopic pancreas development in a mouse model.
Collapse
Affiliation(s)
- Akihisa Fukuda
- Department of Surgery and Surgical Basic Science and
Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
Japan Society for the Promotion of Science (JSPS), Tokyo, Japan.
Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Japan.
Vanderbilt Developmental Biology Program, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Yoshiya Kawaguchi
- Department of Surgery and Surgical Basic Science and
Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
Japan Society for the Promotion of Science (JSPS), Tokyo, Japan.
Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Japan.
Vanderbilt Developmental Biology Program, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Kenichiro Furuyama
- Department of Surgery and Surgical Basic Science and
Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
Japan Society for the Promotion of Science (JSPS), Tokyo, Japan.
Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Japan.
Vanderbilt Developmental Biology Program, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Sota Kodama
- Department of Surgery and Surgical Basic Science and
Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
Japan Society for the Promotion of Science (JSPS), Tokyo, Japan.
Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Japan.
Vanderbilt Developmental Biology Program, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Masashi Horiguchi
- Department of Surgery and Surgical Basic Science and
Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
Japan Society for the Promotion of Science (JSPS), Tokyo, Japan.
Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Japan.
Vanderbilt Developmental Biology Program, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Takeshi Kuhara
- Department of Surgery and Surgical Basic Science and
Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
Japan Society for the Promotion of Science (JSPS), Tokyo, Japan.
Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Japan.
Vanderbilt Developmental Biology Program, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Masayuki Koizumi
- Department of Surgery and Surgical Basic Science and
Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
Japan Society for the Promotion of Science (JSPS), Tokyo, Japan.
Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Japan.
Vanderbilt Developmental Biology Program, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Daniel F. Boyer
- Department of Surgery and Surgical Basic Science and
Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
Japan Society for the Promotion of Science (JSPS), Tokyo, Japan.
Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Japan.
Vanderbilt Developmental Biology Program, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Koji Fujimoto
- Department of Surgery and Surgical Basic Science and
Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
Japan Society for the Promotion of Science (JSPS), Tokyo, Japan.
Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Japan.
Vanderbilt Developmental Biology Program, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Ryuichiro Doi
- Department of Surgery and Surgical Basic Science and
Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
Japan Society for the Promotion of Science (JSPS), Tokyo, Japan.
Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Japan.
Vanderbilt Developmental Biology Program, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Ryoichiro Kageyama
- Department of Surgery and Surgical Basic Science and
Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
Japan Society for the Promotion of Science (JSPS), Tokyo, Japan.
Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Japan.
Vanderbilt Developmental Biology Program, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Christopher V.E. Wright
- Department of Surgery and Surgical Basic Science and
Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
Japan Society for the Promotion of Science (JSPS), Tokyo, Japan.
Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Japan.
Vanderbilt Developmental Biology Program, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Tsutomu Chiba
- Department of Surgery and Surgical Basic Science and
Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
Japan Society for the Promotion of Science (JSPS), Tokyo, Japan.
Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Japan.
Vanderbilt Developmental Biology Program, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
Institute for Virus Research, Kyoto University, Kyoto, Japan
| |
Collapse
|
13
|
Fang R, Olds LC, Sibley E. Spatio-temporal patterns of intestine-specific transcription factor expression during postnatal mouse gut development. Gene Expr Patterns 2005; 6:426-32. [PMID: 16377257 DOI: 10.1016/j.modgep.2005.09.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Revised: 08/22/2005] [Accepted: 09/08/2005] [Indexed: 10/25/2022]
Abstract
The small intestine matures from a primitive tube into morphologically and functionally distinct regions during gut development. Maximal expression of the genes encoding the digestive enzymes lactase-phlorizin hydrolase and sucrase-isomaltase is spatially restricted to distinct segments along the anterior-posterior axis of the small intestine and is temporally regulated during postnatal maturation. Transcription factors capable of interacting with the intestinal lactase and sucrase gene promoters are candidate regulators of spatio-temporal patterning during gut development and maturation. We aimed to quantitatively examine and compare the relative expression levels of a set of intestine-specific transcription factors along the anterior-posterior gut axis during postnatal maturation. Our analysis was focused on the transcription factors capable of regulating the intestinal lactase and sucrase-isomaltase genes. A real-time PCR protocol was used to quantitatively examine and compare spatially and temporally the relative transcript abundance levels for intestine-specific factors during postnatal intestinal maturation. Distinct spatial expressions patterns were detected along the length of the small intestine for PDX-1, Cdx-2, GATA-4, GATA-5, GATA-6, HNF-1alpha, HNF-1beta and CDP transcription factor genes. There is a general decline in transcript abundance for the factor genes during postnatal maturation. Defining the spatio-temporal expression patterns for intestine-specific transcription factor genes contributes to investigation of the roles that factor gradients play in mediating gut development and differentiation.
Collapse
Affiliation(s)
- Rixun Fang
- Division of Pediatric Gastroenterology, Stanford University School of Medicine, 750 Welch Road, Suite 116, Palo Alto, CA 94304, USA
| | | | | |
Collapse
|
14
|
West AR, Oates PS. Decreased sucrase and lactase activity in iron deficiency is accompanied by reduced gene expression and upregulation of the transcriptional repressor PDX-1. Am J Physiol Gastrointest Liver Physiol 2005; 289:G1108-14. [PMID: 16081762 DOI: 10.1152/ajpgi.00195.2005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Disaccharidases are important digestive enzymes whose activities can be reduced by iron deficiency. We hypothesise that this is due to reduced gene expression, either by impairment to enterocyte differentiation or by iron-sensitive mechanisms that regulate mRNA levels in enterocytes. Iron-deficient Wistar rats were generated by dietary means. The enzyme activities and kinetics of sucrase and lactase were tested as well as the activity of intestinal alkaline phosphatase (IAP)-II because it is unrelated to carbohydrate digestion. mRNA levels of beta-actin, sucrase, lactase, and the associated transcription factors pancreatic duodenal homeobox (PDX)-1, caudal-related homeobox (CDX)-2, GATA-binding protein (GATA)-4, and hepatocyte nuclear factor (HNF)-1 were measured by real-time PCR. Spatial patterns of protein and gene expression were assessed by immunofluorescence and in situ hybridization, respectively. It was found that iron-deficient rats had significantly lower sucrase (19.5% lower) and lactase (56.8% lower) but not IAP-II activity than control rats. Kinetic properties of both enzymes remained unchanged from controls, suggesting a decrease in the quantity of enzyme present. Sucrase and lactase mRNA levels were reduced by 44.5% and 67.9%, respectively, by iron deficiency, suggesting that enzyme activity is controlled primarily by gene expression. Iron deficiency did not affect the pattern of protein and gene expression along the crypt to villus axis. Expression of PDX-1, a repressor of sucrase and lactase promoters, was 4.5-fold higher in iron deficiency, whereas CDX-2, GATA-4, and HNF-1 levels were not significantly different. These data suggest that decreases in sucrase and lactase activities result from a reduction in gene expression, following from increased levels of the transcriptional repressor PDX-1.
Collapse
Affiliation(s)
- Adrian R West
- Physiology, School of Biomedical and Chemical Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | | |
Collapse
|
15
|
Maier EA, Dusing MR, Wiginton DA. Cdx binding determines the timing of enhancer activation in postnatal duodenum. J Biol Chem 2005; 280:13195-202. [PMID: 15677472 DOI: 10.1074/jbc.m413158200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In mammalian intestine, adenosine deaminase (ADA) is expressed at high levels only along the villi of the duodenal epithelium. A duodenum-specific enhancer identified in the second intron of the human ADA gene controls this pattern of expression. This enhancer faithfully recapitulates this expression pattern in transgenic mice, when included in CAT reporter gene constructions. Multiple binding sites for PDX-1 and GATA factors were previously identified within the approximately 300-bp region that encompasses the enhancer. Mutation analyses demonstrated that binding of PDX-1 and of GATA-4 was absolutely essential for enhancer function. In the present study, we have identified additional enhancer binding sites for Cdx factors, for YY1, and for NFI family members. Detailed EMSA studies were used to confirm binding at these sites. This brings the number of confirmed binding sites within the enhancer to thirteen, with five different factors or family of factors contributing to the putative enhanceosome complex. Mutation analysis was utilized to examine the specific roles of the newly identified sites. Two sites were identified that bound both Cdx1 and Cdx2. Mutations were identified in these two sites that completely and specifically eliminated Cdx binding. In transgenic mice, these enhancer mutations dramatically changed the developmental timing of enhancer activation (delaying it by 2-3 weeks) without affecting other aspects of enhancer function. In the chromatin context of certain transgenic insertion sites, mutation of the two YY1 sites to specifically ablate binding caused a delay in enhancer activation similar to that observed with the Cdx mutations. No overt changes were observed from mutation of the NFI site.
Collapse
Affiliation(s)
- Elizabeth A Maier
- Department of Pediatrics, Division of Developmental Biology, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio 45229, USA
| | | | | |
Collapse
|
16
|
Imai J, Katagiri H, Yamada T, Ishigaki Y, Ogihara T, Uno K, Hasegawa Y, Gao J, Ishihara H, Sasano H, Mizuguchi H, Asano T, Oka Y. Constitutively active PDX1 induced efficient insulin production in adult murine liver. Biochem Biophys Res Commun 2005; 326:402-9. [PMID: 15582592 DOI: 10.1016/j.bbrc.2004.11.047] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Indexed: 11/19/2022]
Abstract
To generate insulin-producing cells in the liver, recombinant adenovirus containing a constitutively active mutant of PDX1 (PDX1-VP16), designed to activate target genes without the need for protein partners, was prepared and administered intravenously to streptozotocin (STZ)-treated diabetic mice. The effects were compared with those of administering wild-type PDX1 (wt-PDX1) adenovirus. Administration of these adenoviruses at 2x10(8)pfu induced similar levels of PDX1 protein expression in the liver. While wt-PDX1 expression exerted small effects on blood glucose levels, treatment with PDX1-VP16 adenovirus efficiently induced insulin production in hepatocytes, resulting in reversal of STZ-induced hyperglycemia. The effects were sustained through day 40 when exogenous PDX1-VP16 protein expression was undetectable in the liver. Endogenous PDX1 protein came to be expressed in the liver, which is likely to be the mechanism underlying the sustained effects. On the other hand, albumin and transferrin expressions were observed in insulin-producing cells in the liver, suggesting preservation of hepatocytic functions. Thus, transient expression of an active mutant of PDX1 in the liver induced sustained PDX1 and insulin expressions without loss of hepatocytic function.
Collapse
Affiliation(s)
- Junta Imai
- Division of Molecular Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wang Z, Fang R, Olds LC, Sibley E. Transcriptional regulation of the lactase-phlorizin hydrolase promoter by PDX-1. Am J Physiol Gastrointest Liver Physiol 2004; 287:G555-61. [PMID: 15107297 DOI: 10.1152/ajpgi.00011.2004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Lactase-phlorizin hydrolase gene expression is spatially restricted along the anterior-posterior gut axis. Lactase gene transcription is maximal in the distal duodenum and jejunum in adult mammals and is barely detectable in the proximal duodenum. By contrast, pancreatic duodenal homeobox-1 (PDX-1) protein is expressed maximally in the proximal duodenum. This study aimed to determine the role of PDX-1 in regulating lactase gene promoter activity in intestinal epithelial cells. Caco-2 cells were cotransfected with lactase promoter-reporter constructs in the presence of a PDX-1 expression vector and assayed for luciferase activity. PDX-1 cotransfection results in repression of lactase promoter activity. Sequence analysis of the lactase promoter revealed a putative PDX-1 DNA binding site in the proximal 100-bp lactase gene promoter. EMSAs demonstrated that PDX-1 can interact with the lactase promoter binding site but not with a site in which the core PDX-1 binding sequence TAAT is mutated. Site-directed mutagenesis of the PDX-1 core binding site in the lactase promoter-reporter construct suggests that PDX-1 can function independently of DNA binding to its consensus binding site. Stable overexpression of PDX-1 results in repression of the endogenous human lactase gene in differentiated Caco-2 cells. Given the contrasting spatial expression pattern, PDX-1 may function to specify the anterior boundary of lactase expression in the small intestine and is thus a candidate regulator of anterior spatial restriction in the gut.
Collapse
Affiliation(s)
- Zhi Wang
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94304, USA
| | | | | | | |
Collapse
|
18
|
Abstract
In this review, analyses of the ontogenetic relations between the different pancreatic cell types are summarized. Lineage analyses allow identification of progenitor cells from which mature cell types differentiate. This knowledge is highly relevant for future cell replacement therapies in diabetic patients, helping to define the identity of putative pancreatic stem cells.
Collapse
Affiliation(s)
- Pedro Luis Herrera Merino
- Department of Genetic Medicine and Development, University of Geneva Medical School, CH-1211 Geneva 4, Switzerland.
| |
Collapse
|
19
|
Developmental biology of the pancreas. Cell Biochem Biophys 2004. [DOI: 10.1007/bf02739018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Abstract
In recent years, there have been a number of well-documented examples demonstrating that one cell type can be converted to another. Two such examples are the appearance of ectopic pancreas in the liver and formation of hepatic tissue in the pancreas. The conversion of liver to pancreas raises the intriguing possibility of generating insulin-producing beta cells for therapeutic transplantation into diabetics. There is now a striking addition to the growing list of pancreatic conversions: the formation of pancreatic tissue in the developing biliary system.
Collapse
Affiliation(s)
- Zoë D Burke
- Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, UK
| | | | | |
Collapse
|
21
|
Miyatsuka T, Kaneto H, Kajimoto Y, Hirota S, Arakawa Y, Fujitani Y, Umayahara Y, Watada H, Yamasaki Y, Magnuson MA, Miyazaki J, Hori M. Ectopically expressed PDX-1 in liver initiates endocrine and exocrine pancreas differentiation but causes dysmorphogenesis. Biochem Biophys Res Commun 2003; 310:1017-25. [PMID: 14550306 DOI: 10.1016/j.bbrc.2003.09.108] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
To date, the potency of pancreatic and duodenal homeobox gene 1 (PDX-1) in inducing differentiation into insulin-producing cells has been demonstrated in some cells and tissues. In order to carry out efficient screening of somatic tissues and cells that can transdifferentiate into beta-cell-like cells in response to PDX-1, we generated CAG-CAT-PDX1 transgenic mice carrying a transgene cassette composed of the chicken beta-actin gene (CAG) promoter and a floxed stuffer DNA sequence (CAT) linked to PDX-1 cDNA. When the mice were crossed with Alb-Cre mice, which express the Cre recombinase driven by the rat albumin gene promoter, PDX-1 was expressed in more than 50% of hepatocytes and cholangiocytes. The PDX-1 (+) livers expressed a variety of endocrine hormone genes such as insulin, glucagon, somatostatin, and pancreatic polypeptide. In addition, they expressed exocrine genes such as elastase-1 and chymotrypsinogen 1B. However, the mice exhibited marked jaundice due to conjugated hyperbilirubinemia, and the liver tissue displayed abnormal lobe structures and multiple cystic lesions. Thus, the in vivo ectopic expression of PDX-1 in albumin-producing cells was able to initiate but not complete the differentiation of liver cells into pancreatic cells. The conditional PDX-1 transgenic mouse system developed in this study appeared to be useful for efficient screening of PDX-1 responsive somatic tissues and cells.
Collapse
Affiliation(s)
- T Miyatsuka
- Department of Internal Medicine and Therapeutics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Recent advances in pancreatic islet transplantation emphasize the potential of this approach for the long-term control of blood glucose levels in diabetic patients. However, tissue-replacement therapy will become widely available as a treatment for diabetes only when new sources of islets and insulin-producing cells are found. Here, we review recent evidence that documents the potential of mature liver as a source of tissue for generating a functional endocrine pancreas, by ectopic expression of pancreatic transcription and differentiation factors. When key events in the transconversion process have been identified, using the liver as a source of pancreatic tissue might provide a valuable approach for replacing impaired beta cell function in diabetics.
Collapse
|
23
|
Dusing MR, Florence EA, Wiginton DA. High-level activation by a duodenum-specific enhancer requires functional GATA binding sites. Am J Physiol Gastrointest Liver Physiol 2003; 284:G1053-65. [PMID: 12571085 DOI: 10.1152/ajpgi.00483.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The purine metabolic gene adenosine deaminase (ADA) is expressed at high levels in a well-defined spatiotemporal pattern in the villous epithelium of proximal small intestine. A duodenum-specific enhancer module responsible for this expression pattern has been identified in the second intron of the human ADA gene. It has previously been shown that binding of the factor PDX-1 is essential for function of this enhancer. The studies presented here examine the proposed roles of GATA factors in the enhancer. Site-directed mutagenesis of the enhancer's GATA binding sites crippled enhancer function in 10 lines of transgenic mice, with 9 of the lines demonstrating <1% of normal activity. Detailed studies along the longitudinal axis of mouse small intestine indicate that GATA-4 and GATA-5 mRNA levels display a reciprocal pattern, with low levels of GATA-6 throughout. Interestingly, gel shift studies with duodenal nuclear extracts showed binding only by GATA-4.
Collapse
Affiliation(s)
- Mary R Dusing
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio 45229, USA
| | | | | |
Collapse
|
24
|
Ritz-Laser B, Gauthier BR, Estreicher A, Mamin A, Brun T, Ris F, Salmon P, Halban PA, Trono D, Philippe J. Ectopic expression of the beta-cell specific transcription factor Pdx1 inhibits glucagon gene transcription. Diabetologia 2003; 46:810-21. [PMID: 12783165 DOI: 10.1007/s00125-003-1115-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2003] [Revised: 03/14/2003] [Indexed: 10/26/2022]
Abstract
AIMS/HYPOTHESIS The transcription factor Pdx1 is required for the development and differentiation of all pancreatic cells. Beta-cell specific inactivation of Pdx1 in developing or adult mice leads to an increase in glucagon-expressing cells, suggesting that absence of Pdx1could favour glucagon gene expression by a default mechanism. METHOD We investigated the inhibitory role of Pdx1 on glucagon gene expression in vitro. The glucagonoma cell line InR1G9 was transduced with a Pdx1-encoding lentiviral vector and insulin and glucagon mRNA levels were analysed by northern blot and real-time PCR. To understand the mechanism by which Pdx1 inhibits glucagon gene expression, we studied its effect on glucagon promoter activity in non-islet cells using transient transfections and gel-shift analysis. RESULTS In glucagonoma cells transduced with a Pdx1-encoding lentiviral vector, insulin gene expression was induced while glucagon mRNA levels were reduced by 50 to 60%. In the heterologous cell line BHK-21, Pdx1 inhibited by 60 to 80% the activation of the alpha-cell specific element G1 conferred by Pax-6 and/or Cdx-2/3. Although Pdx1 could bind three AT-rich motifs within G1, two of which are binding sites for Pax-6 and Cdx-2/3, the affinity of Pdx1 for G1 was much lower as compared to Pax-6. In addition, Pdx1 inhibited Pax-6 mediated activation through G3, to which Pdx1 was unable to bind. Moreover, a mutation impairing DNA binding of Pdx1 had no effect on its inhibition on Cdx-2/3. Since Pdx1 interacts directly with Pax-6 and Cdx-2/3 forming heterodimers, we suggest that Pdx1 inhibits glucagon gene transcription through protein to protein interactions with Pax-6 and Cdx-2/3. CONCLUSION/INTERPRETATION Cell-specific expression of the glucagon gene can only occur when Pdx1 expression extinguishes from the early alpha cell precursor.
Collapse
Affiliation(s)
- B Ritz-Laser
- Diabetes Unit, University Hospital Geneva, 24, rue Micheli-du-Crest, 1211 Geneva 14, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
BACKGROUND The liver and the pancreas arise from adjacent regions of endoderm in embryonic development. Pdx1 is a key transcription factor that is essential for the development of the pancreas and is not expressed in the liver. The aim of this study was to determine whether a gene overexpression protocol based on Pdx1 would be able to cause conversion of liver to pancreas. RESULTS We show that a modified form of Pdx1, carrying the VP16 transcriptional activation domain, can cause conversion of liver to pancreas, both in vivo and in vitro. Transgenic Xenopus tadpoles carrying the construct TTR-Xlhbox8-VP16:Elas-GFP were prepared. Xlhbox8 is the Xenopus homolog of Pdx1, the TTR (transthyretin) promoter directs expression to the liver, and the GFP is under the control of an elastase promoter and provides a real-time visible marker of pancreatic differentiation. In the transgenic tadpoles, part or all of the liver is converted to pancreas, containing both exocrine and endocrine cells, while liver differentiation products are lost from the regions converted to pancreas. The timing of events is such that the liver is differentiating by the time Xlhbox8-VP16 is expressed, so we consider this a transdifferentiation event rather than a reprogramming of embryonic development. Furthermore, this same construct will bring about transdifferentiation of human hepatocytes in culture, with formation of both exocrine and endocrine cells. CONCLUSIONS We consider that the conversion of liver to pancreas could be the basis of a new type of therapy for insulin-dependent diabetes. Although expression of the transgene is transient, once the ectopic pancreas is established, it persists thereafter.
Collapse
Affiliation(s)
- Marko E Horb
- Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, BA2 7AY, Bath, United Kingdom.
| | | | | | | |
Collapse
|
26
|
Abstract
Transdifferentiation is the name used to describe the direct conversion of one differentiated cell type into another. Cells which have the potential to interconvert by transdifferentiation generally arise from adjacent regions in the developing embryo. For example, the liver and pancreas arise from the same region of the endoderm. The transdifferentiation of pancreas to liver (and vice versa) has been observed in animal experiments and in certain human pathologies. Understanding transdifferentiation is important to developmental biologists because it will help elucidate the cellular and molecular differences that distinguish neighbouring regions of the embryo. While the in vivo models for the transdifferentiation of liver to pancreas have been valuable, it is more difficult to extrapolate from these studies to individual changes at the cellular or molecular levels. The recent development of two in vitro systems (AR42J cells and embryonic pancreatic cultures) for the transdifferentiation of pancreas to liver has shown that an environmental change in the form of an exogenous glucocorticoid can cause the conversion of pancreatic exocrine cells into hepatocytes. The AR42J cell system has been used to elucidate the cell lineage and the molecular basis of transdifferentiation of pancreas to liver.
Collapse
Affiliation(s)
- Chia Ning Shen
- Developmental Biology Programme, Department of Biology and Biochemistry, University of Bath, BA2 7AY Bath, UK
| | | | | | | |
Collapse
|
27
|
Uesaka T, Lu H, Katoh O, Watanabe H. Heparin-binding EGF-like growth factor gene transcription regulated by Cdx2 in the intestinal epithelium. Am J Physiol Gastrointest Liver Physiol 2002; 283:G840-7. [PMID: 12223343 DOI: 10.1152/ajpgi.00075.2002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Development and differentiation of the intestinal epithelium appear to be regulated by various growth factors. Using cDNA microarrays, we identified heparin-binding EGF-like growth factor (HB-EGF) as one of the genes induced by intestinal-specific transcription factor Cdx2 in an intestinal undifferentiated rat cell line, intestinal epithelial cell (IEC)-6. Both Cdx2 and HB-EGF stimulated cell proliferation and migration, and their effects were inhibited partially by an EGF receptor-specific tyrosine kinase inhibitor, PD-153035. HB-EGF may function as one of the mediators of Cdx2 and may be associated with the proliferation and migration in the intestinal epithelium. The Cdx2 protein can bind to the Cdx2-binding element of the HB-EGF gene. Reporter gene analyses showed that the HB-EGF gene promoter is Cdx2 responsive and that the activity of the promoter in the IEC-6 cells depends on the number of consensus Cdx2-binding site-like sequences. These data indicate that HB-EGF gene expression can be regulated by Cdx2 and serves to mediate the control of Cdx2 of the proliferation and migration of IEC-6 cells.
Collapse
Affiliation(s)
- Toshihiro Uesaka
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan.
| | | | | | | |
Collapse
|
28
|
Heller RS, Stoffers DA, Bock T, Svenstrup K, Jensen J, Horn T, Miller CP, Habener JF, Madsen OD, Serup P. Improved glucose tolerance and acinar dysmorphogenesis by targeted expression of transcription factor PDX-1 to the exocrine pancreas. Diabetes 2001; 50:1553-61. [PMID: 11423476 DOI: 10.2337/diabetes.50.7.1553] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The homeodomain protein PDX-1 is critical for pancreas development and is a key regulator of insulin gene expression. PDX-1 nullizygosity and haploinsufficiency in mice and humans results in pancreatic agenesis and diabetes, respectively. At embryonic day (e) 10.5, PDX-1 is expressed in all pluripotential gut-derived epithelial cells destined to differentiate into the exocrine and endocrine pancreas. At e15, PDX-1 expression is downregulated in exocrine cells, but remains high in endocrine cells. The aim of this study was to determine whether targeted overexpression of PDX-1 to the exocrine compartment of the developing pancreas at e15 would allow for respecification of the exocrine cells. Transgenic (TG) mice were generated in which PDX-1 was expressed in the exocrine pancreas using the exocrine-specific elastase-1 promoter. These mice exhibited a marked dysmorphogenesis of the exocrine pancreas, manifested by increased rates of replication and apoptosis in acinar cells and a progressive fatty infiltration of the exocrine pancreas with age. Interestingly, the TG mice exhibited improved glucose tolerance, but absolute beta-cell mass was not increased. These findings indicate that downregulation of PDX-1 is required for the proper maintenance of the exocrine cell phenotype and that upregulation of PDX-1 in acinar cells affects beta-cell function. The mechanisms underlying these observations remain to be elucidated.
Collapse
Affiliation(s)
- R S Heller
- Department of Developmental Biology, Hagedorn Research Institute, DK 2820, Gentofte, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Yee NS, Yusuff S, Pack M. Zebrafish pdx1 morphant displays defects in pancreas development and digestive organ chirality, and potentially identifies a multipotent pancreas progenitor cell. Genesis 2001; 30:137-40. [PMID: 11477692 DOI: 10.1002/gene.1049] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- N S Yee
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
30
|
Dusing MR, Florence EA, Wiginton DA. Pdx-1 is required for activation in vivo from a duodenum-specific enhancer. J Biol Chem 2001; 276:14434-42. [PMID: 11278481 DOI: 10.1074/jbc.m009249200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The purine metabolic gene adenosine deaminase (ADA) is expressed along a defined spatiotemporal pattern in the developing mammalian small intestine, where high-level expression is limited to the villous epithelium of the duodenum. This activation is observed in rodents as the intestine completes the final maturation resulting in adult crypt-villus structures at 2-3 weeks postpartum. A regulatory module responsible for this pattern of expression has been identified in the second intron of the human ADA gene. Of the multiple duodenal proteins that can interact with this small duodenal enhancer region, the studies contained in this work describe the identification of five of these proteins as the dispersed homeobox protein PDX-1. This transcription factor exhibits a profile of expression in the small intestine similar to that observed for ADA, making it an ideal candidate factor for the duodenum-specific ADA enhancer. Loss of PDX-1 binding, via a PDX-1 mutated enhancer transgenic construction, resulted in complete loss of high-level activation in the duodenum, demonstrating the absolute requirement for this factor in vivo. However, co-transfection experiments suggest that other proteins that bind the enhancer are also required for enhancer function because PDX-1 alone was incapable of significant transactivation.
Collapse
Affiliation(s)
- M R Dusing
- Department of Pediatrics, Division of Developmental Biology, University of Cincinnati College of Medicine and Children's Hospital Research Foundation, Cincinnati, Ohio 45229, USA
| | | | | |
Collapse
|
31
|
Dusing MR, Brickner AG, Lowe SY, Cohen MB, Wiginton DA. A duodenum-specific enhancer regulates expression along three axes in the small intestine. Am J Physiol Gastrointest Liver Physiol 2000; 279:G1080-93. [PMID: 11053006 DOI: 10.1152/ajpgi.2000.279.5.g1080] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Adenosine deaminase (ADA) is expressed at high levels in the epithelium of proximal small intestine. Transgenic mice were used to characterize the regulatory region governing this activation. A duodenum-specific enhancer is located in intron 2 of the human ADA gene at the central site among a cluster of seven DNase I-hypersensitive sites present in duodenal DNA. Flanking DNA, including the remaining hypersensitive sites, is required for consistent high-level enhancer function. The enhancer activates expression in a pattern identical to endogenous ADA along both the anterior-posterior axis of the small intestine and the crypt-villus differentiation axis of the intestinal epithelium. Timing of activation by the central enhancer mimics endogenous mouse ADA activation, occurring at 2-3 wk of age. However, two upstream DNA segments, one proximal and one distal, collaborate to change enhancer activation to a perinatal time point. Studies with duodenal nuclear extracts identified five distinct DNase I footprints within the enhancer. Protected regions encompass six putative binding sites for the transcription factor PDX-1, as well as proposed CDX, hepatocyte nuclear factor-4, and GATA-type sites.
Collapse
Affiliation(s)
- M R Dusing
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Children's Hospital Research Foundation, Cincinnati, Ohio 45229, USA
| | | | | | | | | |
Collapse
|
32
|
Schwartz PT, Perez-Villamil B, Rivera A, Moratalla R, Vallejo M. Pancreatic homeodomain transcription factor IDX1/IPF1 expressed in developing brain regulates somatostatin gene transcription in embryonic neural cells. J Biol Chem 2000; 275:19106-14. [PMID: 10751390 DOI: 10.1074/jbc.m000655200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Hox-like homeodomain proteins play a critical role during embryonic development by regulating the transcription of genes that are important for the generation of specific organs or cell types. The homeodomain transcription factor IDX1/IPF1, the expression of which was thought until recently to be restricted to the pancreas and foregut, is required for pancreas development and for the expression of genes controlling glucose homeostasis. We report that IDX1/IPF1 is also expressed in embryonic rat brain at a time coincident with active neurogenesis. Electrophoretic mobility shift assays with nuclear extracts of embryonic brains indicated that IDX1/IPF1 binds to two somatostatin promoter elements, SMS-UE-B and the recently discovered SMS-TAAT3. The requirement of these elements for IDX1/IPF1 transactivation of the somatostatin gene in neural cells was confirmed in transfection studies using embryonic cerebral cortex-derived RC2.E10 cells. Immunohistochemical staining of rat embryos showed IDX1/IPF1-positive cells located near the ventricular surface in germinative areas of the developing central nervous system. Cellular colocalization of IDX1/IPF1 and somatostatin was found in several areas of the developing brain, including cortex, ganglionic eminence, hypothalamus, and inferior colliculus. These results support the notion that IDX1/IPF1 regulates gene expression during development of the central nervous system independent of its role on pancreas development and function.
Collapse
Affiliation(s)
- P T Schwartz
- Reproductive Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | |
Collapse
|
33
|
Ferber S, Halkin A, Cohen H, Ber I, Einav Y, Goldberg I, Barshack I, Seijffers R, Kopolovic J, Kaiser N, Karasik A. Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia. Nat Med 2000; 6:568-72. [PMID: 10802714 DOI: 10.1038/75050] [Citation(s) in RCA: 535] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Insulin gene expression is restricted to islet beta cells of the mammalian pancreas through specific control mechanisms mediated in part by specific transcription factors. The protein encoded by the pancreatic and duodenal homeobox gene 1 (PDX-1) is central in regulating pancreatic development and islet cell function. PDX-1 regulates insulin gene expression and is involved in islet cell-specific expression of various genes. Involvement of PDX-1 in islet-cell differentiation and function has been demonstrated mainly by 'loss-of-function' studies. We used a 'gain-of-function' approach to test whether PDX-1 could endow a non-islet tissue with pancreatic beta-cell characteristics in vivo. Recombinant-adenovirus-mediated gene transfer of PDX-1 to the livers of BALB/C and C57BL/6 mice activated expression of the endogenous, otherwise silent, genes for mouse insulin 1 and 2 and prohormone convertase 1/3 (PC 1/3). Expression of PDX-1 resulted in a substantial increase in hepatic immunoreactive insulin content and an increase of 300% in plasma immunoreactive insulin levels, compared with that in mice treated with control adenovirus. Hepatic immunoreactive insulin induced by PDX-1 was processed to mature mouse insulin 1 and 2 and was biologically active; it ameliorated hyperglycemia in diabetic mice treated with streptozotocin. These data indicate the capacity of PDX-1 to reprogram extrapancreatic tissue towards a beta-cell phenotype, may provide a valuable approach for generating 'self' surrogate beta cells, suitable for replacing impaired islet-cell function in diabetics.
Collapse
Affiliation(s)
- S Ferber
- Endocrine Institute, Sheba Medical Center, Tel-Hashomer 52621, Israel.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
The gut of vertebrates exhibits a common anteroposterior regional differentiation. The role of homeobox genes in establishing this pattern is inferred by their sites of expression. It is suggested that the primary source of positional information is in the endoderm, which subsequently establishes a 'dialogue' with the surrounding visceral layer of the lateral plate mesoderm. This results in the anatomical and physiological specialization of the adult gut.
Collapse
Affiliation(s)
- F Beck
- Department of Biochemistry, University of Leicester, United Kingdom.
| | | | | |
Collapse
|
35
|
Pitera JE, Smith VV, Thorogood P, Milla PJ. Coordinated expression of 3' hox genes during murine embryonal gut development: an enteric Hox code. Gastroenterology 1999; 117:1339-51. [PMID: 10579975 DOI: 10.1016/s0016-5085(99)70284-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Hox genes are highly conserved developmental control genes that may be organized and expressed in the form of a code required for correct morphogenesis. Little is known about their control of the embryonal gut. However, Hox paralogues 4 and 5, which are expressed at the sites of origin of vagal neural crest cells and splanchnic mesoderm, are likely to be important. We have studied the expression domains of these genes in the gut both spatially and temporally. METHODS CD1 mice embryos of embryonic days E8.5-E17.5 were studied. The spatial and temporal expression patterns of messenger RNA of Hoxa4, b4, c4, d4, a5, c5, and b5 homeoprotein were determined by in situ hybridization and immunohistochemistry in whole embryos, whole gastrointestinal tracts, and vibratome sections. RESULTS There were different spatial, temporal, and combinatorial expression patterns in different morphological regions: foregut, prececal gut, cecum, and postcecal gut. Two dynamic gradients, rostral and caudal, were coordinated with nested expression domains along the gut primordium. Region-specific domains were present in the stomach and cecum. CONCLUSIONS The expression patterns of genes in paralogous groups 4 and 5 suggest that they are organized to form a specific enteric Hox code required for correct enteric development.
Collapse
Affiliation(s)
- J E Pitera
- Gastroenterology Unit, Institute of Child Health, University College London, London, England.
| | | | | | | |
Collapse
|
36
|
Freund JN, Domon-Dell C, Kedinger M, Duluc I. The Cdx-1 and Cdx-2 homeobox genes in the intestine. Biochem Cell Biol 1999; 76:957-69. [PMID: 10392709 DOI: 10.1139/o99-001] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The past years have witnessed an increasing number of reports relative to homeobox genes in endoderm-derived tissues. In this review, we focus on the caudal-related Cdx-1 and Cdx-2 homeobox genes to give an overview of the in vivo, in vitro, and ex vivo approaches that emphasize their primary role in intestinal development and in the control of intestinal cell proliferation, differentiation, and identity. The participation of these genes in colon tumorigenesis and their identification as important actors of the oncogenic process are also discussed.
Collapse
Affiliation(s)
- J N Freund
- Institut National de la Santé et de la Recherche Médicale, Unité 381, Strasbourg, France.
| | | | | | | |
Collapse
|
37
|
Abstract
A combination of approaches has begun to elucidate the mechanisms of gastrointestinal development. This review describes progress over the last 20 years in understanding human gastrointestinal development, including data from both human and experimental animal studies that address molecular mechanisms. Rapid progress is being made in the identification of genes regulating gastrointestinal development. Genes directing initial formation of the endoderm as well as organ-specific patterning are beginning to be identified. Signaling pathways regulating the overall right-left asymmetry of the gastrointestinal tract and epithelial-mesenchymal interactions are being clarified. In searching for extrinsic developmental regulators, numerous candidate trophic factors have been proposed, but compelling evidence remains elusive. A critical gene that initiates pancreas development has been identified, as well as a number of genes regulating liver, stomach, and intestinal development. Mutations in genes affecting neural crest cell migration have been shown to give rise to Hirschsprung's disease. Considerable progress has been achieved in understanding specific phenomena, such as the transcription factors regulating expression of sucrase-isomaltase and fatty acid-binding protein. The challenge for the future is to integrate these data into a more complete understanding of the physiology of gastrointestinal development.
Collapse
Affiliation(s)
- R K Montgomery
- Division of Pediatric Gastroenterology and Nutrition, The Floating Hospital for Children at New England Medical Center, Boston, MA 02111-1533, USA
| | | | | |
Collapse
|
38
|
Ritz-Laser B, Estreicher A, Klages N, Saule S, Philippe J. Pax-6 and Cdx-2/3 interact to activate glucagon gene expression on the G1 control element. J Biol Chem 1999; 274:4124-32. [PMID: 9933606 DOI: 10.1074/jbc.274.7.4124] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The promoter element G1, critical for alpha-cell-specific expression of the glucagon gene, contains two AT-rich sequences important for transcriptional activity. Pax-6, a paired homeodomain protein previously shown to be required for normal alpha-cell development and to interact with the enhancer element G3 of the glucagon gene, binds as a monomer to the distal AT-rich site of G1. However, although the paired domain of Pax-6 is sufficient for interaction with the G3 element, the paired domain and the homeodomain are required for high affinity binding to G1. In addition to monomer formation, Pax-6 interacts with Cdx-2/3, a caudal-related homeodomain protein binding to the proximal AT-rich site, to form a heterodimer on G1. Both proteins are capable of directly interacting in the absence of DNA. In BHK-21 cells, Pax-6 activates glucagon gene transcription both through G3 and G1, and heterodimerization with Cdx-2/3 on G1 leads to more than additive transcriptional activation. In glucagon-producing cells, both G1 and G3 are critical for basal transcription, and the Pax-6 and Cdx-2/3 binding sites are required for activation. We conclude that Pax-6 is not only critical for alpha-cell development but also for glucagon gene transcription by its independent interaction with the two DNA control elements, G1 and G3.
Collapse
Affiliation(s)
- B Ritz-Laser
- Diabetes Unit, Centre Médical Universitaire, 1211 Genève 4, Switzerland.
| | | | | | | | | |
Collapse
|
39
|
|