1
|
Kerkar N, Hartjes K. Hepatitis C Virus-Pediatric and Adult Perspectives in the Current Decade. Pathogens 2024; 14:11. [PMID: 39860972 PMCID: PMC11769290 DOI: 10.3390/pathogens14010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/06/2024] [Accepted: 12/25/2024] [Indexed: 01/27/2025] Open
Abstract
Hepatitis C virus (HCV) infects both pediatric and adult populations and is an important cause of chronic liver disease worldwide. There are differences in the screening and management of HCV between pediatric and adult patients, which have been highlighted in this review. Direct-acting antiviral agents (DAA) have made the cure of HCV possible, and fortunately, these medications are approved down to three years of age. However, treatment in the pediatric population has its own set of challenges. The World Health Organization (WHO) has made a pledge to eliminate HCV as a public health threat by 2030. Despite this, HCV continues to remain a global health burden, leading to cirrhosis as well as hepatocellular carcinoma, and is a reason for liver transplantation in the adult population. Although rare, these complications can also affect the pediatric population. A variety of new technologies t have become available in the current era and can advance our understanding of HCV are discussed. Artificial intelligence, machine learning, liver organoids, and liver-on-chip are some examples of techniques that have the potential to contribute to our understanding of the disease and treatment process in HCV. Despite efforts over several decades, a successful vaccine against HCV has yet to be developed. This would be an important tool to help in worldwide efforts to eliminate the virus.
Collapse
Affiliation(s)
- Nanda Kerkar
- Massachusetts General Brigham for Children, 175 Cambridge Street, Boston, MA 02114, USA;
| | | |
Collapse
|
2
|
Mazouz S, Boisvert M, Abdel-Hakeem MS, Khedr O, Bruneau J, Shoukry NH. Expansion of Unique Hepatitis C Virus-Specific Public CD8 + T Cell Clonotypes during Acute Infection and Reinfection. THE JOURNAL OF IMMUNOLOGY 2021; 207:1180-1193. [PMID: 34341170 DOI: 10.4049/jimmunol.2001386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/09/2021] [Indexed: 11/19/2022]
Abstract
Hepatitis C virus (HCV) infection resolves spontaneously in ∼25% of acutely infected humans where viral clearance is mediated primarily by virus-specific CD8+ T cells. Previous cross-sectional analysis of the CD8+ TCR repertoire targeting two immunodominant HCV epitopes reported widespread use of public TCRs shared by different subjects, irrespective of infection outcome. However, little is known about the evolution of the public TCR repertoire during acute HCV and whether cross-reactivity to other Ags can influence infectious outcome. In this article, we analyzed the CD8+ TCR repertoire specific to the immunodominant and cross-reactive HLA-A2-restricted nonstructural 3-1073 epitope during acute HCV in humans progressing to either spontaneous resolution or chronic infection and at ∼1 y after viral clearance. TCR repertoire diversity was comparable among all groups with preferential usage of the TCR-β V04 and V06 gene families. We identified a set of 13 public clonotypes in HCV-infected humans independent of infection outcome. Six public clonotypes used the V04 gene family. Several public clonotypes were long-lived in resolvers and expanded on reinfection. By mining publicly available data, we identified several low-frequency CDR3 sequences in the HCV-specific repertoire matching human TCRs specific for other HLA-A2-restricted epitopes from melanoma, CMV, influenza A, EBV, and yellow fever viruses, but they were of low frequency and limited cross-reactivity. In conclusion, we identified 13 new public human CD8+ TCR clonotypes unique to HCV that expanded during acute infection and reinfection. The low frequency of cross-reactive TCRs suggests that they are not major determinants of infectious outcome.
Collapse
Affiliation(s)
- Sabrina Mazouz
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montreal, Montreal, Quebec, Canada
| | - Maude Boisvert
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Mohamed S Abdel-Hakeem
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montreal, Montreal, Quebec, Canada
| | - Omar Khedr
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Julie Bruneau
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.,Département de Médecine Familiale et de Médecine d'Urgence, Université de Montréal, Montreal, Quebec, Canada; and
| | - Naglaa H Shoukry
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada; .,Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Hastings KL, Green MD, Gao B, Ganey PE, Roth RA, Burleson GR. Beyond Metabolism: Role of the Immune System in Hepatic Toxicity. Int J Toxicol 2021; 39:151-164. [PMID: 32174281 DOI: 10.1177/1091581819898399] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The liver is primarily thought of as a metabolic organ; however, the liver is also an important mediator of immunological functions. Key perspectives on this emerging topic were presented in a symposium at the 2018 annual meeting of the American College of Toxicology entitled "Beyond metabolism: Role of the immune system in hepatic toxicity." Viral hepatitis is an important disease of the liver for which insufficient preventive vaccines exist. Host immune responses inadequately clear these viruses and often potentiate immunological inflammation that damages the liver. In addition, the liver is a key innate immune organ against bacterial infection. Hepatocytes and immune cells cooperatively control systemic and local bacterial infections. Conversely, bacterial infection can activate multiple types of immune cells and pathways to cause hepatocyte damage and liver injury. Finally, the immune system and specifically cytokines and drugs can interact in idiosyncratic drug-induced liver injury. This rare disease can result in a disease spectrum that ranges from mild to acute liver failure. The immune system plays a role in this disease spectrum.
Collapse
Affiliation(s)
| | | | - Bin Gao
- Laboratory of Liver Diseases, NIH, Bethesda, MD, USA
| | - Patricia E Ganey
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Robert A Roth
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Gary R Burleson
- BRT-Burleson Research Technologies, Inc, Morrisville, NC, USA
| |
Collapse
|
4
|
Chen YM, Tan CS, Wang TY, Hwong CL, Chen TY. Characterization of betanodavirus quasispecies influences on the subcellular localization and expression of tumor necrosis factor (TNF). FISH & SHELLFISH IMMUNOLOGY 2020; 103:332-341. [PMID: 32446969 DOI: 10.1016/j.fsi.2020.05.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
The aim of this study was to investigate the influence of variant coat proteins (CPs) from different quasispecies of betanodavirus on diverse aspects of nodavirus-induced pathogenesis. It is known that variant CPs can acquire either nuclear or cytoplasmic localization, depending on the nodavirus CP genotype, and this variation may arise during viral replication and influence the regulation of host and viral gene transcription. To investigate the role of these variant CPs in pathogenesis, six variant CP expression plasmids were constructed, each containing different quasispecies CP variants from nodavirus genotype red spotted grouper nervous necrosis virus (RGNNV). The CP expression plasmids were transiently transfected into grouper GF-1 cells. At different times, the cell cycle and cell proliferation were assayed using flow cytometry and methyl thiazolyl tetrazolium (MTT) assays, respectively. The proportion of G2/M-phase GF-1 cells transfected with CP expression plasmids was higher than that of cells transfected with the blank plasmid, especially in regards to quasispecies 2 (QS2). The proliferation ratio of cells transfected with the CP expression plasmids was significantly higher than that of cells transfected with the blank plasmid, with the exception of QS6. We also found that the different quasispecies CPs downregulated the promoter activity of the tumor necrosis factor (TNF) gene to different degrees. In addition, this is the first report showing the betanodavirus CP derived from different quasispecies of RGNNV provide evidence of a chronically nodavirus-infected grouper. Overall, this study represents the first comprehensive analysis of variant CPs from grouper with persistent nodavirus infections and their effects on different aspects of pathogenesis.
Collapse
Affiliation(s)
- Young-Mao Chen
- Laboratory of Molecular Genetics, Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan; Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan; Agriculture Biotechnology Research Center, National Cheng Kung University, Tainan, Taiwan; Bachelor Degree Program in Marine Biotechnology, College of Life Sciences, National Taiwan Ocean University, Keelung, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Chor Siong Tan
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Ting-Yu Wang
- Laboratory of Molecular Genetics, Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan; Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan; Agriculture Biotechnology Research Center, National Cheng Kung University, Tainan, Taiwan; Translational Center for Marine Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Long Hwong
- Department of Marine Biotechnology, National Kaohsiung University of Science and Technology, Kaohsung, Taiwan.
| | - Tzong-Yueh Chen
- Laboratory of Molecular Genetics, Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan; Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan; Agriculture Biotechnology Research Center, National Cheng Kung University, Tainan, Taiwan; Translational Center for Marine Biotechnology, National Cheng Kung University, Tainan, Taiwan; University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
5
|
Sheneef A, Esmat MM, Mohammad AN, Mahmoud AA, Moghazy HM, Noureldin AK. Interleukin-10 and Interferon Gamma Gene Polymorphisms and Hepatitis C Virus-Related Liver Cirrhosis Risk. J Interferon Cytokine Res 2018; 37:175-180. [PMID: 28387594 DOI: 10.1089/jir.2016.0106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The aim of the study was to evaluate the association between the gene polymorphisms in interleukin-10 (IL-10) and interferon gamma (IFN-γ) genes with susceptibility and severity of hepatitis C virus (HCV) infection among Egyptian patients. Interleukin-10 -592 A/C, -1082 G/A and IFN-γ +874 T/A genotypes were determined in 100 chronic HCV patients and 50 healthy controls using restriction fragment length polymorphism (RFLP) and the amplification refractory mutation system-polymerase chain reaction (ARMS-PCR) respectively. IL-10 -592 A/C polymorphism genotyping revealed that the frequency of CC genotype was significantly higher in chronic HCV patients than in controls (58% versus 30%, P < 0.05). Regarding IL-10 -1082 G/A polymorphism genotyping, a higher frequency of GG genotype was found in chronic HCV patients compared to controls (31% versus 10%, P < 0.05). IFN-γ +874 T/A genotyping showed that TT genotype was significantly higher in chronic HCV participants than controls (31% versus 18%, P < 0.05), while a higher frequency of T allele was found in cirrhotic patients compared to noncirrhotic patients (P < 0.05). Our observations suggested that IL-10 -592 A/C, -1082 G/A, and IFN-γ +874 T/A polymorphisms had a strong association with susceptibility to HCV infection. However, no significant association was observed between the cytokines (IL-10 and IFN-γ) genotypes profile and HCV-liver cirrhosis risk in the studied population, except for the high frequency of IFN-γ +874 T allele in cirrhotic patients.
Collapse
Affiliation(s)
- Abeer Sheneef
- 1 Department of Medical Microbiology and Immunology, Faculty of Medicine, Sohag University , Sohag, Egypt
| | - Mamdouh M Esmat
- 1 Department of Medical Microbiology and Immunology, Faculty of Medicine, Sohag University , Sohag, Egypt
| | - Asmaa N Mohammad
- 2 Department of Tropical Medicine and Gastroenterology, Faculty of Medicine, Sohag University , Sohag, Egypt
| | - Aida A Mahmoud
- 3 Department of Medical Biochemistry, Faculty of Medicine, Sohag University , Sohag, Egypt
| | - Hoda M Moghazy
- 4 Department of Physiology, Faculty of Medicine, Sohag University , Sohag, Egypt
| | - Amal K Noureldin
- 5 Department of Internal Medicine, Faculty of Medicine, Sohag University , Sohag, Egypt
| |
Collapse
|
6
|
Chae HB. [New Therapeutic Agent for Chronic Hepatitis C: Direct Acting Agent]. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2016; 66:5-9. [PMID: 26194123 DOI: 10.4166/kjg.2015.66.1.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Peg-interferon and ribavirin has been the standard therapy of chronic hepatitis C for the past 15 years in Korea. However, the treatment paradigm is changing. Direct acting agents (DAAs) are oral pills that can be easily taken. In addition, DAAs are more effective and have less adverse reactions compared to the previously used drugs. Chronic hepatitis C is hard to treat because the virus is error-prone virus. Host immunity is helpless against the hepatitis C virus since it evades the host immunity through various complex mechanisms. There are 6 genotypes. Quasispecies can co-exist even in the same patients. The treatment strategy is based on the combination of the individual drug corresponding to each step of viral replication process. NS5B nucleosides are the most powerful and effective drug available until now. Other drugs with different mechanisms of action can be used to provide synergy. NS5A and NS5B inhibition drugs currently belong to the leading group amongst many DAAs. These drugs will soon be available in Korea. We have to know the merits and adverse drug reactions of the new drug.
Collapse
Affiliation(s)
- Hee Bok Chae
- Department of Internal Medicine, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Korea
| |
Collapse
|
7
|
Cho YK, Kim YN, Song BC. Predictors of spontaneous viral clearance and outcomes of acute hepatitis C infection. Clin Mol Hepatol 2014; 20:368-75. [PMID: 25548743 PMCID: PMC4278068 DOI: 10.3350/cmh.2014.20.4.368] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 11/26/2014] [Accepted: 12/01/2014] [Indexed: 12/18/2022] Open
Abstract
Background/Aims This study evaluated the predictors of spontaneous viral clearance (SVC), as defined by two consecutive undetectable hepatitis C virus (HCV) RNA tests performed ≥12 weeks apart, and the outcomes of acute hepatitis C (AHC) demonstrating SVC or treatment-induced viral clearance. Methods Thirty-two patients with AHC were followed for 12-16 weeks without administering antiviral therapy. Results HCV RNA was undetectable at least once in 14 of the 32 patients. SVC occurred in 12 patients (37.5%), among whom relapse occurred in 4. SVC was exhibited in 8 of the 11 patients exhibiting undetectable HCV RNA within 12 weeks. HCV RNA reappeared in three patients (including two patients with SVC) exhibiting undetectable HCV RNA after 12 weeks. SVC was more frequent in patients with low viremia than in those with high viremia (55.6% vs. 14.3%; P=0.02), and in patients with HCV genotype non-1b than in those with HCV genotype 1b (57.1% vs. 22.2%; P=0.04). SVC was more common in patients with a ≥2 log reduction of HCV RNA at 4 weeks than in those with a smaller reduction (90% vs. 9.1%, P<0.001). A sustained viral response was achieved in all patients (n=18) receiving antiviral therapy. Conclusions Baseline levels of HCV RNA and genotype non-1b were independent predictors for SVC. A ≥2 log reduction of HCV RNA at 4 weeks was a follow-up predictor for SVC. Undetectable HCV RNA occurring after 12 weeks was not sustained. All patients receiving antiviral therapy achieved a sustained viral response. Antiviral therapy should be initiated in patients with detectable HCV RNA at 12 weeks after the diagnosis.
Collapse
Affiliation(s)
- Yoo-Kyung Cho
- Department of Internal Medicine, Jeju National University School of Medicine, Jeju, Korea
| | - Young Nam Kim
- Department of Internal Medicine, Jeju National University School of Medicine, Jeju, Korea
| | - Byung-Cheol Song
- Department of Internal Medicine, Jeju National University School of Medicine, Jeju, Korea
| |
Collapse
|
8
|
Irshad M, Mankotia DS, Irshad K. An insight into the diagnosis and pathogenesis of hepatitis C virus infection. World J Gastroenterol 2013; 19:7896-7909. [PMID: 24307784 PMCID: PMC3848138 DOI: 10.3748/wjg.v19.i44.7896] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 09/11/2013] [Accepted: 10/13/2013] [Indexed: 02/06/2023] Open
Abstract
This review focuses on research findings in the area of diagnosis and pathogenesis of hepatitis C virus (HCV) infection over the last few decades. The information based on published literature provides an update on these two aspects of HCV. HCV infection, previously called blood transmitted non-A, non-B infection, is prevalent globally and poses a serious public health problem worldwide. The diagnosis of HCV infection has evolved from serodetection of non-specific and low avidity anti-HCV antibodies to detection of viral nucleic acid in serum using the polymerase chain reaction (PCR) technique. Current PCR assays detect viral nucleic acid with high accuracy and the exact copy number of viral particles. Moreover, multiplex assays using real-time PCR are available for identification of HCV-genotypes and their isotypes. In contrast to previous methods, the newly developed assays are not only fast and economic, but also resolve the problem of the window period as well as differentiate present from past infection. HCV is a non-cytopathic virus, thus, its pathogenesis is regulated by host immunity and metabolic changes including oxidative stress, insulin resistance and hepatic steatosis. Both innate and adaptive immunity play an important role in HCV pathogenesis. Cytotoxic lymphocytes demonstrate crucial activity during viral eradication or viral persistence and are influenced by viral proteins, HCV-quasispecies and several metabolic factors regulating liver metabolism. HCV pathogenesis is a very complex phenomenon and requires further study to determine the other factors involved.
Collapse
|
9
|
Russi S, Lauletta G, Serviddio G, Sansonno S, Conteduca V, Sansonno L, De Re V, Sansonno D. T cell receptor variable β gene repertoire in liver and peripheral blood lymphocytes of chronically hepatitis C virus-infected patients with and without mixed cryoglobulinaemia. Clin Exp Immunol 2013; 172:254-62. [PMID: 23574322 DOI: 10.1111/cei.12035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2012] [Indexed: 12/20/2022] Open
Abstract
To characterize the repertoire of T lymphocytes in chronically hepatitis C virus (HCV)-infected patients with and without mixed cryoglobulinaemia (MC). T cell receptor (TCR) variable (V) β clonalities in portal tracts isolated from liver biopsy sections with a laser capture microdissection technique in 30 HCV-positive MC patients were studied by size spectratyping. Complementarity-determining region 3 (CDR3) profiles of liver-infiltrating lymphocytes (LIL) were also compared with those circulating in the blood. The representative results of TCR Vβ by CDR3 were also obtained from liver tissues and peripheral blood lymphocytes (PBL) of 21 chronically HCV-infected patients without MC. LIL were highly restricted, with evidence of TCR Vβ clonotypic expansions in 23 of 30 (77%) and in 15 of 21 (71%) MC and non-MC patients, respectively. The blood compartment contained TCR Vβ expanded clones in 19 (63%) MC and 12 (57%) non-MC patients. The occurrence of LIL clonalities was detected irrespective of the degree of liver damage or circulating viral load, whereas it correlated positively with higher levels of intrahepatic HCV RNA. These results support the notion that TCR Vβ repertoire is clonally expanded in HCV-related MC with features comparable to those found in chronically HCV-infected patients without MC.
Collapse
Affiliation(s)
- S Russi
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari Medical School, Bari, Italy
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Brenndörfer ED, Sällberg M. Hepatitis C virus-mediated modulation of cellular immunity. Arch Immunol Ther Exp (Warsz) 2012; 60:315-29. [PMID: 22911132 DOI: 10.1007/s00005-012-0184-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 03/09/2012] [Indexed: 12/14/2022]
Abstract
The hepatitis C virus (HCV) is a major cause of chronic liver disease globally. A chronic infection can result in liver fibrosis, liver cirrhosis, hepatocellular carcinoma and liver failure in a significant ratio of the patients. About 170 million people are currently infected with HCV. Since 80 % of the infected patients develop a chronic infection, HCV has evolved sophisticated escape strategies to evade both the innate and the adaptive immune system. Thus, chronic hepatitis C is characterized by perturbations in the number, subset composition and/or functionality of natural killer cells, natural killer T cells, dendritic cells, macrophages and T cells. The balance between HCV-induced immune evasion and the antiviral immune response results in chronic liver inflammation and consequent immune-mediated liver injury. This review summarizes our current understanding of the HCV-mediated interference with cellular immunity and of the factors resulting in HCV persistence. A profound knowledge about the intrinsic properties of HCV and its effects on intrahepatic immunity is essential to be able to design effective immunotherapies against HCV such as therapeutic HCV vaccines.
Collapse
Affiliation(s)
- Erwin Daniel Brenndörfer
- Division of Clinical Microbiology F68, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden.
| | | |
Collapse
|
11
|
Roohvand F, Kossari N. Advances in hepatitis C virus vaccines, Part one: Advances in basic knowledge for hepatitis C virus vaccine design. Expert Opin Ther Pat 2011; 21:1811-30. [PMID: 22022980 DOI: 10.1517/13543776.2011.630662] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Around 3% of the world population is infected with HCV, with 3 - 4 million newly infected subjects added to this reservoir every year. At least 10% of these people will develop liver cirrhosis or cancer over time, while no approved vaccine against HCV infection is available to date. AREAS COVERED This paper includes a detailed and correlated patent (selected by HCAPLUS search database) and literature (searched by PubMed) review on the HCV genome, proteins and key epitopes (including underestimated HCV proteins, alternate reading frame proteins), HCV immunology, immunosuppressive mechanisms and protective correlations of immunity in acute and chronic states of infection (features for prophylactic and therapeutic HCV vaccine design), recent HCV cell culture systems (HCV/JFH1) and animal models. In part two of this review, advances in HCV vaccine formulations and modalities as well as a detailed list of the current trials for HCV vaccine and discussion of the pros and cones of different strategies will be provided. EXPERT OPINION By using the advanced basic knowledge and tools obtained about HCV vaccinology in recent years and the application of novel formulations and modalities, at least partially effective vaccines will become available in the near future to prevent (or treat) the chronic (if not the acute) state of HCV infection. A few of such vaccines are already in clinical trials.
Collapse
Affiliation(s)
- Farzin Roohvand
- Pasteur Institute of Iran, Hepatitis & AIDS Department, Pasteur Ave., Tehran, Iran.
| | | |
Collapse
|
12
|
Koay LB, Feng IC, Sheu MJ, Kuo HT, Lin CY, Chen JJ, Wang SL, Tang LY, Tsai SL. Hepatitis B virus (HBV) core antigen-specific regulatory T cells confer sustained remission to anti-HBV therapy in chronic hepatitis B with acute exacerbation. Hum Immunol 2011; 72:687-98. [DOI: 10.1016/j.humimm.2010.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 11/04/2010] [Accepted: 11/08/2010] [Indexed: 01/12/2023]
|
13
|
Miles JJ, Thammanichanond D, Moneer S, Nivarthi UK, Kjer-Nielsen L, Tracy SL, Aitken CK, Brennan RM, Zeng W, Marquart L, Jackson D, Burrows SR, Bowden DS, Torresi J, Hellard M, Rossjohn J, McCluskey J, Bharadwaj M. Antigen-driven patterns of TCR bias are shared across diverse outcomes of human hepatitis C virus infection. THE JOURNAL OF IMMUNOLOGY 2010; 186:901-12. [PMID: 21160049 DOI: 10.4049/jimmunol.1003167] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) infection causes significant morbidity and mortality worldwide. T cells play a central role in HCV clearance; however, there is currently little understanding of whether the disease outcome in HCV infection is influenced by the choice of TCR repertoire. TCR repertoires used against two immunodominant HCV determinants--the highly polymorphic, HLA-B*0801 restricted (1395)HSKKKCDEL(1403) (HSK) and the comparatively conserved, HLA-A*0101-restricted, (1435)ATDALMTGY(1443) (ATD)--were analyzed in clearly defined cohorts of HLA-matched, HCV-infected individuals with persistent infection and HCV clearance. In comparison with ATD, TCR repertoire selected against HSK was more narrowly focused, supporting reports of mutational escape in this epitope, in persistent HCV infection. Notwithstanding the Ag-driven divergence, T cell repertoire selection against either Ag was comparable in subjects with diverse disease outcomes. Biased T cell repertoires were observed early in infection and were evident not only in persistently infected individuals but also in subjects with HCV clearance, suggesting that these are not exclusively characteristic of viral persistence. Comprehensive clonal analysis of Ag-specific T cells revealed widespread use of public TCRs displaying a high degree of predictability in TRBV/TRBJ gene usage, CDR3 length, and amino acid composition. These public TCRs were observed against both ATD and HSK and were shared across diverse disease outcomes. Collectively, these observations indicate that repertoire diversity rather than particular Vβ segments are better associated with HCV persistence/clearance in humans. Notably, many of the anti-HCV TCRs switched TRBV and TRBJ genes around a conserved, N nucleotide-encoded CDR3 core, revealing TCR sequence mosaicism as a potential host mechanism to combat this highly variant virus.
Collapse
Affiliation(s)
- John J Miles
- Queensland Institute of Medical Research, Queensland 4029, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Wang S, Buchli R, Schiller J, Gao J, VanGundy RS, Hildebrand WH, Eckels DD. Natural epitope variants of the hepatitis C virus impair cytotoxic T lymphocyte activity. World J Gastroenterol 2010; 16:1953-69. [PMID: 20419832 PMCID: PMC2860072 DOI: 10.3748/wjg.v16.i16.1953] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM: To understand how interactions between hepatitis C virus (HCV) and the host’s immune system might lead to viral persistence or effective elimination of HCV.
METHODS: Nucleotides 3519-3935 of the non-structural 3 (NS3) region were amplified by using reverse transcription polymerase chain reaction (PCR). PCR products of the HCV NS3 regions were integrated into a PCR® T7TOPO® TA vector and then sequenced in both directions using an automated DNA sequencer. Relative major histocompatibility complex binding levels of wild-type and variant peptides were performed by fluorescence polarization-based peptide competition assays. Peptides with wild type and variant sequences of NS3 were synthesized locally using F-moc chemistry and purified by high-performance liquid chromatography. Specific cytotoxic T lymphocytes (CTLs) clones toward HCV NS3 wild-type peptides were generated through limiting dilution cloning. The CTL clones specifically recognizing HCV NS3 wild-type peptides were tested by tetramer staining and flow cytometry. Cytolytic activity of CTL clones was measured using target cells labeled with the fluorescence enhancing ligand, DELFIA EuTDA.
RESULTS: The pattern of natural variants within three human leukocyte antigen (HLA)-A2-restricted NS3 epitopes has been examined in one patient with chronic HCV infection at 12, 28 and 63 mo post-infection. Results obtained may provide convincing evidence of immune selection pressure for all epitopes investigated. Statistical analysis of the extensive sequence variation found within these NS3 epitopes favors a Darwinian selection model of variant viruses. Mutations within the epitopes coincided with the decline of CTL responses, and peptide-binding studies suggested a significant impact of the mutation on T cell recognition rather than peptide presentation by HLA molecules. While most variants were either not recognized or elicited low responses, such could antagonize CTL responses to target cells pulsed with wild-type peptides.
CONCLUSION: Cross-recognition of CTL epitopes from wild-type and naturally-occurring HCV variants may lead to impaired immune responses and ultimately contribute to viral persistence.
Collapse
|
15
|
You J, Zhuang L, Zhang YF, Chen HY, Sriplung H, Geater A, Chongsuvivatwong V, Piratvisuth T, McNeil E, Yu L, Tang BZ, Huang JH. Peripheral T-lymphocyte subpopulations in different clinical stages of chronic HBV infection correlate with HBV load. World J Gastroenterol 2009; 15:3382-93. [PMID: 19610139 PMCID: PMC2712899 DOI: 10.3748/wjg.15.3382] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2008] [Revised: 05/24/2009] [Accepted: 05/31/2009] [Indexed: 02/06/2023] Open
Abstract
AIM To characterize the peripheral T-cell subpopulation profiles and their correlation with hepatitis B virus (HBV) replication in different clinical stages of chronic HBV infection. METHODS A total of 422 patients with chronic HBV infection were enrolled in this study. The patients were divided into three stages: immune-tolerant stage, immune active stage, and immune-inactive carrier stage. Composition of peripheral T-cell subpopulations was determined by flow cytometry. HBV markers were detected by enzyme-linked immunosorbent assay. Serum HBV DNA load was assessed by quantitative real-time polymerase chain reaction. RESULTS CD8(+) T-cells were significantly higher in patients at the immune-tolerant stage than in patients at the immune-active and -inactive carrier stages (36.87 +/- 7.58 vs 34.37 +/- 9.07, 36.87 +/- 7.58 vs 28.09 +/- 5.64, P < 0.001). The peripheral blood in patients at the immune-tolerant and immune active stages contained more CD8(+) T-cells than CD4(+) T-cells (36.87 +/- 7.58 vs 30.23 +/- 6.35, 34.37 +/- 9.07 vs 30.92 +/- 7.40, P < 0.01), whereas the peripheral blood in patients at the immune-inactive carrier stage and in normal controls contained less CD8(+) T-cells than CD4(+) T-cells (28.09 +/- 5.64 vs 36.85 +/- 6.06, 24.02 +/- 4.35 vs 38.94 +/- 3.39, P < 0.01). ANOVA linear trend test showed that CD8(+) T-cells were significantly increased in patients with a high viral load (39.41 +/- 7.36, 33.83 +/- 7.50, 31.81 +/- 5.95 and 26.89 +/- 5.71, P < 0.001), while CD4(+) T-cells were significantly increased in patients with a low HBV DNA load (37.45 +/- 6.14, 33.33 +/- 5.61, 31.58 +/- 6.99 and 27.56 +/- 5.49, P < 0.001). Multiple regression analysis displayed that log copies of HBV DNA still maintained its highly significant coefficients for T-cell subpopulations, and was the strongest predictors for variations in CD3(+), CD4(+) and CD8(+) cells and CD4(+)/CD8(+) ratio after adjustment for age at HBV-infection, maternal HBV-infection status, presence of hepatitis B e antigen and HBV mutation. CONCLUSION Differences in peripheral T-cell subpopulation profiles can be found in different clinical stages of chronic HBV infection. T-cell impairment is significantly associated with HBV load.
Collapse
|
16
|
Rehermann B. Hepatitis C virus versus innate and adaptive immune responses: a tale of coevolution and coexistence. J Clin Invest 2009; 119:1745-54. [PMID: 19587449 DOI: 10.1172/jci39133] [Citation(s) in RCA: 418] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Since the identification of the hepatitis C virus (HCV) 20 years ago, much progress has been made in our understanding of its life cycle and interaction with the host immune system. Much has been learned from HCV itself, which, via decades of coevolution, gained an intricate knowledge of host innate and adaptive immune responses and developed sophisticated ways to preempt, subvert, and antagonize them. This review discusses the clinical, virological, and immunological features of acute and chronic hepatitis C and the role of the immune response in spontaneous and treatment-induced HCV clearance.
Collapse
Affiliation(s)
- Barbara Rehermann
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH/DHHS, Bethesda, MD 20892, USA.
| |
Collapse
|
17
|
Uebelhoer L, Han JH, Callendret B, Mateu G, Shoukry NH, Hanson HL, Rice CM, Walker CM, Grakoui A. Stable cytotoxic T cell escape mutation in hepatitis C virus is linked to maintenance of viral fitness. PLoS Pathog 2008; 4:e1000143. [PMID: 18773115 PMCID: PMC2518852 DOI: 10.1371/journal.ppat.1000143] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 08/07/2008] [Indexed: 01/07/2023] Open
Abstract
Mechanisms by which hepatitis C virus (HCV) evades cellular immunity to establish persistence in chronically infected individuals are not clear. Mutations in human leukocyte antigen (HLA) class I-restricted epitopes targeted by CD8(+) T cells are associated with persistence, but the extent to which these mutations affect viral fitness is not fully understood. Previous work showed that the HCV quasispecies in a persistently infected chimpanzee accumulated multiple mutations in numerous class I epitopes over a period of 7 years. During the acute phase of infection, one representative epitope in the C-terminal region of the NS3/4A helicase, NS3(1629-1637), displayed multiple serial amino acid substitutions in major histocompatibility complex (MHC) anchor and T cell receptor (TCR) contact residues. Only one of these amino acid substitutions at position 9 (P9) of the epitope was stable in the quasispecies. We therefore assessed the effect of each mutation observed during in vivo infection on viral fitness and T cell responses using an HCV subgenomic replicon system and a recently developed in vitro infectious virus cell culture model. Mutation of a position 7 (P7) TCR-contact residue, I1635T, expectedly ablated the T cell response without affecting viral RNA replication or virion production. In contrast, two mutations at the P9 MHC-anchor residue abrogated antigen-specific T cell responses, but additionally decreased viral RNA replication and virion production. The first escape mutation, L1637P, detected in vivo only transiently at 3 mo after infection, decreased viral production, and reverted to the parental sequence in vitro. The second P9 variant, L1637S, which was stable in vivo through 7 years of follow-up, evaded the antigen-specific T cell response and did not revert in vitro despite being less optimal in virion production compared to the parental virus. These studies suggest that HCV escape mutants emerging early in infection are not necessarily stable, but are eventually replaced with variants that achieve a balance between immune evasion and fitness for replication.
Collapse
Affiliation(s)
- Luke Uebelhoer
- Department of Medicine, Division of Infectious Diseases, Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jin-Hwan Han
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, New York, United States of America
| | - Benoit Callendret
- The Center for Vaccines and Immunity, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, United States of America
- Deparment of Pediatrics, The Ohio State University, Columbus Ohio, United States of America
| | - Guaniri Mateu
- Department of Medicine, Division of Infectious Diseases, Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Naglaa H. Shoukry
- Department of Medicine, University of Montreal and Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CR-CHUM), Montréal, Québec, Canada
| | - Holly L. Hanson
- Department of Medicine, Division of Infectious Diseases, Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, New York, United States of America
| | - Christopher M. Walker
- The Center for Vaccines and Immunity, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, United States of America
- Deparment of Pediatrics, The Ohio State University, Columbus Ohio, United States of America
| | - Arash Grakoui
- Department of Medicine, Division of Infectious Diseases, Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
18
|
Gigi E, Raptopoulou-Gigi M, Kalogeridis A, Masiou S, Orphanou E, Vrettou E, Lalla TH, Sinakos E, Tsapas V. Cytokine mRNA expression in hepatitis C virus infection: TH1 predominance in patients with chronic hepatitis C and TH1-TH2 cytokine profile in subjects with self-limited disease. J Viral Hepat 2008; 15:145-154. [PMID: 18184198 DOI: 10.1111/j.1365-2893.2007.00908.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Many determinants of the immune response have been implied in the pathogenesis of chronic hepatitis C. TH1 and TH2 cytokines play a prominent role in viral infections and a dysregulation of these cytokines could account for viral persistence and evolution of chronic disease. To explore a possible TH1 and TH2 cytokine dysregulation resulting in the inability to terminate hepatitis C virus (HCV) infection, we studied TH1 [interferon (IFN)-gamma, interleukin (IL)-2] and TH2 (IL-4, IL-10) mRNA expression of peripheral blood mononuclear cells (PBMC) in response to NS3 HCV antigen stimulation, in 31 untreated patients with chronic hepatitis C and 29 subjects with self-limited disease. After a 48 h culture of PBMC, total RNA isolation was performed and complementary DNA was prepared by reverse transcription. mRNA levels were quantified by real-time polymerase chain reaction using a standard curve formed after cloning each cytokine gene and a reference gene using recombinant DNA technology in a specific plasmid vector. In the patients group, mRNA expression of IFN-gamma, IL-2 and IL-4 but not IL-10 was detected, IFN-gamma being the predominant cytokine expressed. All four cytokines were expressed in subjects with self limited disease, however levels of IFN-gamma were lower and a significant higher expression of IL-10 compared to patients was found. There was a significant correlation between IFN-gamma mRNA expression levels and stage of fibrosis. Our findings show that in chronic hepatitis C, TH1 cytokines predominate and correlate to liver immunopathology. Furthermore, subjects with self-limited disease, maintain the ability to respond to HCV antigens for a long time after disease resolution.
Collapse
Affiliation(s)
- E Gigi
- Second Medical Department, Aristotle University Medical School, Thessaloniki, Greece.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Scottà C, Garbuglia AR, Ruggeri L, Spada E, Laurenti L, Perrone MP, Girelli G, Mele A, Capobianchi MR, Folgori A, Nicosia A, Del Porto P, Piccolella E. Influence of specific CD4+ T cells and antibodies on evolution of hypervariable region 1 during acute HCV infection. J Hepatol 2008; 48:216-28. [PMID: 18180071 DOI: 10.1016/j.jhep.2007.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 09/24/2007] [Accepted: 09/25/2007] [Indexed: 01/29/2023]
Abstract
BACKGROUND/AIMS Several studies suggest that the evolutionary rate of HVR1 sequence in acute HCV hepatitis derives from the action of a continuous immune-driven positive selection. However, these studies have not been performed examining the relationship between HVR1 evolution and the development of specific immunity to autologous HVR1 sequences. METHODS We performed a longitudinal analysis of HVR1 sequences and specific antibodies and CD4+ T cells in ten HCV acutely infected patients with different clinical outcomes (recovery versus persistence). RESULTS We showed that although both recovered and chronically evolving individuals developed IFN-gamma+ T cells specific for Core and NS sequences, HVR1-specific CD4+ T cells were detected only in patients clearing the virus. On the contrary, all patients displayed anti-HVR1 antibodies that recognized sequences exclusively carried by autologous viruses. Measurements of genetic diversity and the number of non-synonymous per synonymous substitutions within HVR1 sequences before and after antibody appearance showed an increase of these parameters only in concomitance with the appearance of anti-HVR1 antibodies. CONCLUSIONS The evidence that anti-HVR1 antibodies favor HVR1 variant selection suggests that viral complexity in chronically infected patients could represent a virus adaptive strategy to escape the continuous selective process mediated by anti-HVR1 antibodies.
Collapse
Affiliation(s)
- Cristiano Scottà
- Department of Cellular and Developmental Biology,"La Sapienza" University of Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Quer J, Martell M, Rodriguez F, Bosch A, Jardi R, Buti M, Esteban J. The Impact of Rapid Evolution of Hepatitis Viruses. ORIGIN AND EVOLUTION OF VIRUSES 2008:303-349. [DOI: 10.1016/b978-0-12-374153-0.00015-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
21
|
Irshad M, Khushboo I, Singh S, Singh S. Hepatitis C virus (HCV): a review of immunological aspects. Int Rev Immunol 2008; 27:497-517. [PMID: 19065353 DOI: 10.1080/08830180802432178] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The present manuscript represents an updated review on different aspects of immunology involved during hepatitis C virus infection in human beings. This includes a brief mention of HCV structure, presentation of viral components to host immune system, and ensuing immune response and immunopathogenesis occurring during HCV infection. The present article also highlights immunodiagnosis of HCV infection and the current status of immunotherapy available for HCV eradication. Its envelope protein, E2, is the primary mediator of virus attachment and cell entry. CD81 molecule on cell surface acts as a major receptor for viral entry into the host cells. Mature dendritic cells play an important role in presenting viral antigen, activate T-cells, and initiate anti-viral immune response. Relative T-cell populations and release of different cytokines from activated T-cells ultimately determine the clearance or persistence of HCV viremia through cellular and humoral immune responses. Natural killer (NK) cells constitute the first line of host defense against invading viruses by recruiting virus-specific T-cells and inducing antiviral immunity in liver. Diagnosis of acute or chronic hepatitis C virus (HCV) infection is established by serological assays for presence of antibodies against different sets of viral proteins during varied periods post infection. An effective immunotherapy and vaccine against HCV is still awaited.
Collapse
MESH Headings
- Antibodies, Viral/blood
- Antigen Presentation
- Antigenic Variation/immunology
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Cytokines/metabolism
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Hepacivirus/chemistry
- Hepacivirus/immunology
- Hepacivirus/metabolism
- Hepatitis C, Chronic/diagnosis
- Hepatitis C, Chronic/immunology
- Hepatitis C, Chronic/physiopathology
- Hepatitis C, Chronic/therapy
- Hepatitis C, Chronic/virology
- Humans
- Immunity
- Immunotherapy
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/pathology
- Tetraspanin 28
- Viral Envelope Proteins/immunology
- Viral Envelope Proteins/metabolism
- Virus Attachment
Collapse
Affiliation(s)
- M Irshad
- Clinical Biochemistry Division, Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi, India.
| | | | | | | |
Collapse
|
22
|
Keck ZY, Machida K, Lai MMC, Ball JK, Patel AH, Foung SKH. Therapeutic control of hepatitis C virus: the role of neutralizing monoclonal antibodies. Curr Top Microbiol Immunol 2008; 317:1-38. [PMID: 17990788 DOI: 10.1007/978-3-540-72146-8_1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Liver failure associated with hepatitis C virus (HCV) accounts for a substantial portion of liver transplantation. Although current therapy helps some patients with chronic HCV infection, adverse side effects and a high relapse rate are major problems. These problems are compounded in liver transplant recipients as reinfection occurs shortly after transplantation. One approach to control reinfection is the combined use of specific antivirals together with HCV-specific antibodies. Indeed, a number of human and mouse monoclonal antibodies to conformational and linear epitopes on HCV envelope proteins are potential candidates, since they have high virus neutralization potency and are directed to epitopes conserved across diverse HCV genotypes. However, a greater understanding of the factors contributing to virus escape and the role of lipoproteins in masking virion surface domains involved in virus entry will be required to help define those protective determinants most likely to give broad protection. An approach to immune escape is potentially caused by viral infection of immune cells leading to the induction hypermutation of the immunoglobulin gene in B cells. These effects may contribute to HCV persistence and B cell lymphoproliferative diseases.
Collapse
Affiliation(s)
- Z Y Keck
- Department of Pathology, Stanford Medical School Blood Center, Palo Alto, CA 94304, USA
| | | | | | | | | | | |
Collapse
|
23
|
Guidotti LG, Chisari FV. Immunobiology and pathogenesis of viral hepatitis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2007; 1:23-61. [PMID: 18039107 DOI: 10.1146/annurev.pathol.1.110304.100230] [Citation(s) in RCA: 594] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Among the many viruses that are known to infect the human liver, hepatitis B virus (HBV) and hepatitis C virus (HCV) are unique because of their prodigious capacity to cause persistent infection, cirrhosis, and liver cancer. HBV and HCV are noncytopathic viruses and, thus, immunologically mediated events play an important role in the pathogenesis and outcome of these infections. The adaptive immune response mediates virtually all of the liver disease associated with viral hepatitis. However, it is becoming increasingly clear that antigen-nonspecific inflammatory cells exacerbate cytotoxic T lymphocyte (CTL)-induced immunopathology and that platelets enhance the accumulation of CTLs in the liver. Chronic hepatitis is characterized by an inefficient T cell response unable to completely clear HBV or HCV from the liver, which consequently sustains continuous cycles of low-level cell destruction. Over long periods of time, recurrent immune-mediated liver damage contributes to the development of cirrhosis and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Luca G Guidotti
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, California 92037, USA.
| | | |
Collapse
|
24
|
Rallón NI, Soriano V, Benito JM. [Adaptive cell immune response against the hepatitis C virus infection]. Med Clin (Barc) 2007; 129:469-76. [PMID: 17953913 DOI: 10.1157/13111005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Hepatitis C virus (HCV) infects around 175 million people worldwide and is one of the leading causes of chronic liver disease. Less than one third of patients infected with HCV are able to spontaneously clear the virus during acute infection, while most patients evolve to chronic infection. Control of viral replication has been associated to the cellular component of the host immune response. It is not fully understood what distinguish a successful cellular immune response. An integral interpretation of the numerous experimental findings may allow a better understanding of the immune mechanisms involved in the inability of the immune system to successfully control chronic HCV infection.
Collapse
Affiliation(s)
- Norma Ibón Rallón
- Laboratorio de Biología Molecular, Servicio de Enfermedades Infecciosas, Hospital Carlos III, Madrid, España
| | | | | |
Collapse
|
25
|
Shi L, Liu S, Fan GX, Sheng L, Ren HX, Yuan YK. Effective Induction of Type 1 Cytotoxic T Cell Responses in Mice with DNA Vaccine Encoding Two Hepatitis C Virus Cytotoxic T Lymphocyte Epitopes. Viral Immunol 2006; 19:702-11. [PMID: 17201665 DOI: 10.1089/vim.2006.19.702] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The aims of this study were to explain whether a multiple cytotoxic T lymphocyte (CTL) epitope-based anti-hepatitis C virus (HCV) DNA vaccine can induce specific CTL responses to each HCV CTL epitope independently and long-term CD8(+) T cell memory responses, and to determine the cytokine secretion pattern and subtype of epitope-specific cytotoxic T cells. A multi-CTL epitope gene, which consists of two epitopes of HCV (H-2(d)-restricted HCV core(133142) and E1(315322)), was cloned into the eukaryotic expression vector pcDNA3.1. BALB/c mice (H-2(d) restricted) were vaccinated intramuscularly with this multi-CTL epitope-based DNA vaccine. The epitope-specific CTLs against target cells (P815,H-2(d) restricted) pulsed with various CTL epitope peptides were detected by lactate dehydrogenase release assay, and the precursor frequency of epitope-specific CTLs was determined by limiting dilution analysis. Cytokines (interleukin [IL]-2, IL-4, and interferon-) in culture supernatants were determined by enzyme-linked immunosorbent assay. The multi-CTL epitope-based DNA vaccine directed against two HCV CTL epitopes could induce specific CTL responses to each of the two CTL epitopes independently and long-term CD8(+) T cell memory responses. The epitope-specific cytotoxic T cells produced helper T cell type 1 cytokines. This work demonstrated that multiepitope DNA vaccination is a potential strategy to control HCV infection.
Collapse
Affiliation(s)
- Lin Shi
- Department of Immunology and Microbiology, Xi'an Jiaotong University School of Medicine, Xi'an, PR China
| | | | | | | | | | | |
Collapse
|
26
|
Feng IC, Koay LB, Sheu MJ, Kuo HT, Sun CS, Lee C, Chuang WL, Liao SK, Wang SL, Tang LY, Cheng CJ, Tsai SL. HBcAg-specific CD4+CD25+ regulatory T cells modulate immune tolerance and acute exacerbation on the natural history of chronic hepatitis B virus infection. J Biomed Sci 2006; 14:43-57. [PMID: 17109186 DOI: 10.1007/s11373-006-9129-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Accepted: 10/08/2006] [Indexed: 12/20/2022] Open
Abstract
Acute exacerbations (AEs) of chronic hepatitis B (CH-B) are accompanied by increased T cell responses to hepatitis B core and e antigens (HBcAg/HBeAg). Why patients are immunotolerant (IT) to the virus and why AEs occur spontaneously on the immunoactive phase remain unclear. The role of HBcAg-specific CD4(+)CD25(+) regulatory T (T(reg)) cells in AE and IT phases was investigated in this study. The SYFPEITHI scoring system was employed to predict MHC class II-restricted epitope peptides on HBcAg overlapping with HBeAg that were used for T(reg)-cell cloning and for the construction of MHC class II tetramers to measure T(reg) cell frequencies (T(reg) f). The results showed that HBcAg-specific T(reg) f declined during AE accompanied by increased HBcAg peptide-specific cytotoxic T lymphocyte frequencies. Predominant Foxp3-expressing T(reg) cell clones were generated from patients on the immune tolerance phase, while the majority of Th1 clones were obtained from patients on the immunoactive phase. T(reg) cells from liver and peripheral blood of CH-B patients express CD152 and PD1 antigens that exhibit suppression on PBMCs proliferation to HBcAg. These data suggest that HBcAg peptide-specific T(reg) cells modulate the IT phase, and that their decline may account for the spontaneous AEs on the natural history of chronic hepatitis B virus infection.
Collapse
Affiliation(s)
- I-Che Feng
- Hepatogastroenterology Section, Department of Internal Medicine, Chi Mei Medical Center, Yung-Kang City, Tainan, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Wang Y, Takao Y, Harada M, Komatsu N, Ono T, Sata M, Itoh K, Yamada A. Identification of hepatitis C virus (HCV) 2a-derived epitope peptides having the capacity to induce cytotoxic T lymphocytes in human leukocyte antigen-A24+ and HCV2a-infected patients. Cell Immunol 2006; 241:38-46. [PMID: 16963008 DOI: 10.1016/j.cellimm.2006.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Revised: 07/24/2006] [Accepted: 07/28/2006] [Indexed: 11/26/2022]
Abstract
Since virus-specific cytotoxic T lymphocytes (CTLs) play a critical role in preventing the spread of hepatitis C virus (HCV), vaccine-based HCV-specific CTL induction could be a promising strategy to treat HCV-infected patients. In this study, we tried to identify HCV2a-derived epitopes, which can induce human leukocyte antigen (HLA)-A24-restricted and peptide-specific CTLs. Peripheral blood mononuclear cells of HCV2a-infected patients or healthy donors were stimulated in vitro with HCV2a-derived peptides, which were prepared based on the HLA-A24 binding motif. As a result, three peptides (HCV2a 576-584, HCV2a 627-635, and HCV2a 1085-1094) efficiently induced peptide-specific CTLs from HLA-A24(+) HCV2a-infected patients as well as healthy donors. The cytotoxicity was exhibited by peptide-specific CD8(+) T cells in an HLA-A24-restricted manner. In addition, the HCV2a 627-635 peptide was frequently recognized by immunoglobulin G of HCV2a-infected patients. These results indicate that the identified three HCV2a peptides might be applicable to peptide-based immunotherapy for HLA-A24(+) HCV2a-infected patients.
Collapse
Affiliation(s)
- Yi Wang
- Cancer Vaccine Development Division, Kurume University Research Center for Innovative Cancer Therapy, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Komatsu H, Lauer G, Pybus OG, Ouchi K, Wong D, Ward S, Walker B, Klenerman P. Do antiviral CD8+ T cells select hepatitis C virus escape mutants? Analysis in diverse epitopes targeted by human intrahepatic CD8+ T lymphocytes. J Viral Hepat 2006; 13:121-30. [PMID: 16436130 DOI: 10.1111/j.1365-2893.2005.00676.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Hepatitis C virus (HCV) is a variable RNA virus that can readily establish persistent infection. Cellular immune responses are important in the early control of the virus. Evidence from animal models suggests that mutation in epitopes recognized by CD8+ T lymphocytes may play an important role in the establishment of persistence but in human persistent infection, equivalent evidence is lacking. We investigated this by analysing a unique resource: viruses from a set of chronically HCV-infected individuals in whom the CD8+ T-cell responses in liver had previously been accurately mapped. Virus was sequenced in seven individuals at 10 epitopes restricted by 10 human leucocyte antigen (HLA) molecules. Two main patterns emerged: in the majority of epitopes sequenced, no variation was seen. In three epitopes, mutations were identified which were compatible with immune escape as assessed using phylogenetic and/or functional studies. These data suggest that - even where specific intrahepatic T cells are detectable - many epitopes do not undergo mutation in chronic human infection. On the contrary, virus may escape from intrahepatic CD8+ T-cell responses in a 'patchy' manner in certain specific epitopes. Furthermore, longitudinal studies to identify the differences between 'selecting' and 'nonselecting' intrahepatic CD8+ T-cell responses are needed in HCV infection.
Collapse
Affiliation(s)
- H Komatsu
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Urbani S, Amadei B, Cariani E, Fisicaro P, Orlandini A, Missale G, Ferrari C. The Impairment of CD8 Responses Limits the Selection of Escape Mutations in Acute Hepatitis C Virus Infection. THE JOURNAL OF IMMUNOLOGY 2005; 175:7519-29. [PMID: 16301660 DOI: 10.4049/jimmunol.175.11.7519] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Evasion from protective CD8 responses by mutations within immunodominant epitopes represents a potential strategy of HCV persistence. To investigate the pathogenetic relevance of this mechanism, a careful search for immunodominant CD8 epitopes was conducted in six patients with chronic evolution of HCV infection by analyzing their global CD8 response with a panel of overlapping synthetic peptides covering the overall HCV sequence and by studying the CD8 frequency by tetramer staining. Immunodominant responses were followed longitudinally from the time of acute onset in relation to the evolution of the epitopic sequences. Although intensity of CD8 responses and frequency of HCV-specific CD8 cells declined over time in all patients, mutations emerged in only three of the six acute patients studied. Variant sequences were less efficiently recognized by CD8 cells than parental epitopes and were poorly efficient in inducing a CD8 response in vitro. CD8 epitopes undergoing mutations were targeted by high avidity CD8 cells more efficient in effector function. Our data support the view that immunodominant CD8 responses are affected by inhibitory mechanisms operating early after infection and that the emergence of escape mutations represents an additional mechanism of virus evasion from those CD8 responses that are functionally preserved.
Collapse
Affiliation(s)
- Simona Urbani
- Laboratory of Viral Immunopathology, Department of Infectious Diseases and Hepatology, Azienda Ospedaliera di Parma, Parma, Italy
| | | | | | | | | | | | | |
Collapse
|
30
|
Guglietta S, Garbuglia AR, Pacciani V, Scottà C, Perrone MP, Laurenti L, Spada E, Mele A, Capobianchi MR, Taliani G, Folgori A, Vitelli A, Ruggeri L, Nicosia A, Piccolella E, Del Porto P. Positive selection of cytotoxic T lymphocyte escape variants during acute hepatitis C virus infection. Eur J Immunol 2005; 35:2627-37. [PMID: 16114108 DOI: 10.1002/eji.200526067] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Cellular immune responses are induced during hepatitis C virus (HCV) infection and acute-phase CD8+ T cells are supposed to play an important role in controlling viral replication. In chimpanzees, failure of CD8+ T cells to control HCV replication has been associated with acquisition of mutations in MHC class I-restricted epitopes. In humans, although selection of escape mutations in an immunodominant CTL epitope has been recently described, the overall impact of immune escape during acute HCV infection is unclear. Here, by performing an in depth analysis of the relationship between early cellular immune responses and viral evolution in a chronically evolving HCV acutely infected individual, we demonstrate: (i) the presence of a potent and focused CD8(+ T cell response against a novel epitope in the NS3 protein, (ii) the elimination of the quasi-species harboring the original amino acid sequence within this epitope, and (iii) the selection for a virus population bearing amino acid changes at a single residue within the cytotoxic T cell epitope that strongly diminished T cell recognition. These results support the view that acute-phase CD8+ T cell responses exert a biologically relevant pressure on HCV replication and that viruses escaping this host response could have a significant survival advantage.
Collapse
Affiliation(s)
- Silvia Guglietta
- Department of Cellular and Developmental Biology University of Rome La Sapienza, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Bowen DG, Walker CM. Mutational escape from CD8+ T cell immunity: HCV evolution, from chimpanzees to man. ACTA ACUST UNITED AC 2005; 201:1709-14. [PMID: 15939787 PMCID: PMC2213256 DOI: 10.1084/jem.20050808] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The mechanisms by which the hepatitis C virus (HCV) establishes persistence are not yet fully understood. Previous chimpanzee and now human studies suggest that mutations within MHC class I–restricted HCV epitopes might contribute to viral escape from cytotoxic T lymphocyte (CTL) responses. However, there are several outstanding questions regarding the role of escape mutations in viral persistence and their fate in the absence of immune selection pressure.
Collapse
Affiliation(s)
- David G Bowen
- Center for Vaccines and Immunity, Columbus Children's Research Institute, Columbus, OH 43205, USA
| | | |
Collapse
|
32
|
Tester I, Smyk-Pearson S, Wang P, Wertheimer A, Yao E, Lewinsohn DM, Tavis JE, Rosen HR. Immune evasion versus recovery after acute hepatitis C virus infection from a shared source. ACTA ACUST UNITED AC 2005; 201:1725-31. [PMID: 15939788 PMCID: PMC2213272 DOI: 10.1084/jem.20042284] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Acute infection with hepatitis C virus (HCV) rarely is identified, and hence, the determinants of spontaneous resolution versus chronicity remain incompletely understood. In particular, because of the retrospective nature and unknown source of infection in most human studies, direct evidence for emergence of escape mutations in immunodominant major histocompatibility complex class I-restricted epitopes leading to immune evasion is extremely limited. In two patients infected accidentally with an identical HCV strain but who developed divergent outcomes, the total lack of HCV-specific CD4+ T cells in conjunction with vigorous CD8+ T cells that targeted a single epitope in one patient was associated with mutational escape and viral persistence. Statistical evidence for positive Darwinian selective pressure against an immunodominant epitope is presented. Wild-type cytotoxic T lymphocytes persisted even after the cognate antigen was no longer present.
Collapse
Affiliation(s)
- Ian Tester
- Department of Medicine, Portland Veterans Administration Medical Center, Oregon Health Science University, Portland, OR 97239, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Affiliation(s)
- Stefan F Wieland
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
34
|
Brown RJP, Juttla VS, Tarr AW, Finnis R, Irving WL, Hemsley S, Flower DR, Borrow P, Ball JK. Evolutionary dynamics of hepatitis C virus envelope genes during chronic infection. J Gen Virol 2005; 86:1931-1942. [PMID: 15958671 DOI: 10.1099/vir.0.80957-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hepatitis C virus (HCV) envelope glycoproteins E1 and E2 are important targets for the host immune response. The genes encoding these proteins exhibit a high degree of variability that gives rise to differing phenotypic traits, including alterations in receptor-binding affinity and immune recognition and escape. In order to elucidate patterns of adaptive evolution during chronic infection, a panel of full-length E1E2 clones was generated from sequential serum samples obtained from four chronically infected individuals. By using likelihood-based methods for phylogenetic inference, the evolutionary dynamics of circulating HCV quasispecies populations were assessed and a site-by-site analysis of the d(N)/d(S) ratio was performed, to identify specific codons undergoing diversifying positive selection. HCV phylogenies, coupled with the number and distribution of selected sites, differed markedly between patients, highlighting that HCV evolution during chronic infection is a patient-specific phenomenon. This analysis shows that purifying selection is the major force acting on HCV populations in chronic infection. Whilst no significant evidence for positive selection was observed in E1, a number of sites under positive selection were identified within the ectodomain of the E2 protein. All of these sites were located in regions hypothesized to be exposed to the selective environment of the host, including a number of functionally defined domains that have been reported to be involved in immune evasion and receptor binding. Dated-tip methods for estimation of underlying HCV mutation rates were also applied to the data, enabling prediction of the most recent common ancestor for each patient's quasispecies.
Collapse
Affiliation(s)
- Richard J P Brown
- Microbiology and Infectious Diseases, Institute of Infection, Immunity and Inflammation, The University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Vicky S Juttla
- Microbiology and Infectious Diseases, Institute of Infection, Immunity and Inflammation, The University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Alexander W Tarr
- Microbiology and Infectious Diseases, Institute of Infection, Immunity and Inflammation, The University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Rebecca Finnis
- Microbiology and Infectious Diseases, Institute of Infection, Immunity and Inflammation, The University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - William L Irving
- Microbiology and Infectious Diseases, Institute of Infection, Immunity and Inflammation, The University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Shelley Hemsley
- The Edward Jenner Institute for Vaccine Research, Compton, Newbury, Berkshire RG20 7NN, UK
| | - Darren R Flower
- The Edward Jenner Institute for Vaccine Research, Compton, Newbury, Berkshire RG20 7NN, UK
| | - Persephone Borrow
- The Edward Jenner Institute for Vaccine Research, Compton, Newbury, Berkshire RG20 7NN, UK
| | - Jonathan K Ball
- Microbiology and Infectious Diseases, Institute of Infection, Immunity and Inflammation, The University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| |
Collapse
|
35
|
Cox AL, Mosbruger T, Mao Q, Liu Z, Wang XH, Yang HC, Sidney J, Sette A, Pardoll D, Thomas DL, Ray SC. Cellular immune selection with hepatitis C virus persistence in humans. J Exp Med 2005; 201:1741-52. [PMID: 15939790 PMCID: PMC2213263 DOI: 10.1084/jem.20050121] [Citation(s) in RCA: 232] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2005] [Accepted: 04/12/2005] [Indexed: 12/14/2022] Open
Abstract
Hepatitis C virus (HCV) infection frequently persists despite substantial virus-specific cellular immune responses. To determine if immunologically driven sequence variation occurs with HCV persistence, we coordinately analyzed sequence evolution and CD8+ T cell responses to epitopes covering the entire HCV polyprotein in subjects who were followed prospectively from before infection to beyond the first year. There were no substitutions in T cell epitopes for a year after infection in a subject who cleared viremia. In contrast, in subjects with persistent viremia and detectable T cell responses, we observed substitutions in 69% of T cell epitopes, and every subject had a substitution in at least one epitope. In addition, amino acid substitutions occurred 13-fold more often within than outside T cell epitopes (P < 0.001, range 5-38). T lymphocyte recognition of 8 of 10 mutant peptides was markedly reduced compared with the initial sequence, indicating viral escape. Of 16 nonenvelope substitutions that occurred outside of known T cell epitopes, 8 represented conversion to consensus (P = 0.015). These findings reveal two distinct mechanisms of sequence evolution involved in HCV persistence: viral escape from CD8+ T cell responses and optimization of replicative capacity.
Collapse
Affiliation(s)
- Andrea L Cox
- Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kimura Y, Gushima T, Rawale S, Kaumaya P, Walker CM. Escape mutations alter proteasome processing of major histocompatibility complex class I-restricted epitopes in persistent hepatitis C virus infection. J Virol 2005; 79:4870-6. [PMID: 15795272 PMCID: PMC1069526 DOI: 10.1128/jvi.79.8.4870-4876.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutations in hepatitis C virus (HCV) genomes facilitate escape from virus-specific CD8+ T lymphocytes in persistently infected chimpanzees. Our previous studies demonstrated that many of the amino acid substitutions in HCV epitopes prevented T-cell receptor recognition or binding to class I major histocompatibility complex molecules. Here we report that mutations within HCV epitopes also cause their destruction by changing the pattern of proteasome digestion. This mechanism of immune evasion provides further evidence of the potency of CD8+ T-cell selection pressure against HCV and should be considered when evaluating the significance of mutations in viral genomes from persistently infected chimpanzees and humans.
Collapse
Affiliation(s)
- Yoichi Kimura
- Center for Vaccines and Immunity, Children's Hospital, WA4011, 700 Children's Dr., Columbus, OH 43205, USA
| | | | | | | | | |
Collapse
|
37
|
Rehermann B, Nascimbeni M. Immunology of hepatitis B virus and hepatitis C virus infection. Nat Rev Immunol 2005; 5:215-29. [PMID: 15738952 DOI: 10.1038/nri1573] [Citation(s) in RCA: 1212] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
More than 500 million people worldwide are persistently infected with the hepatitis B virus (HBV) and/or hepatitis C virus (HCV) and are at risk of developing chronic liver disease, cirrhosis and hepatocellular carcinoma. Despite many common features in the pathogenesis of HBV- and HCV-related liver disease, these viruses markedly differ in their virological properties and in their immune escape and survival strategies. This review assesses recent advances in our understanding of viral hepatitis, contrasts mechanisms of virus-host interaction in acute hepatitis B and hepatitis C, and outlines areas for future studies.
Collapse
Affiliation(s)
- Barbara Rehermann
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 10, Room 9B16, 10 Center Drive, Bethesda, MD 20892, USA.
| | | |
Collapse
|
38
|
Affiliation(s)
- David G Bowen
- Center for Vaccines and Immunity, Columbus Children's Research Institute, 700 Childrens Dr, Columbus, OH 43205, USA
| | | |
Collapse
|
39
|
Neumann-Haefelin C, Blum HE, Chisari FV, Thimme R. T cell response in hepatitis C virus infection. J Clin Virol 2005; 32:75-85. [PMID: 15653409 DOI: 10.1016/j.jcv.2004.05.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Accepted: 05/24/2004] [Indexed: 12/25/2022]
Abstract
Hepatitis C virus (HCV) is a hepatotropic RNA virus that causes acute and chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. It is widely accepted that cellular immune responses play an important role in viral clearance and disease pathogenesis. However, HCV often evades effective immune recognition and has a propensity to persist in the majority of acutely infected individuals (ca. 80%). The immunological and virological basis for the inefficiency of the cellular immune response to clear or control the virus is not known. Recent studies, however, have provided new insights into the mechanisms of viral clearance and persistence that will be discussed in detail.
Collapse
Affiliation(s)
- C Neumann-Haefelin
- Department of Medicine II, University Hospital Freiburg, Hugstetter Strasse 55, D-79106 Freiburg, Germany
| | | | | | | |
Collapse
|
40
|
Mas A, Ulloa E, Bruguera M, Furčić I, Garriga D, Fábregas S, Andreu D, Saiz JC, Díez J. Hepatitis C virus population analysis of a single-source nosocomial outbreak reveals an inverse correlation between viral load and quasispecies complexity. J Gen Virol 2004; 85:3619-3626. [PMID: 15557234 DOI: 10.1099/vir.0.80500-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The features of Hepatitis C virus (HCV) quasispecies within an envelope segment including the hypervariable region 1 were analysed at an early time point post-infection in seven patients that acquired HCV from a single common donor during a nosocomial outbreak. The grouping of patients according to viral load was reflected in the structure of the quasispecies. A higher viral load correlated with the presence of a predominant HCV genome and a corresponding lower quasispecies complexity. The quasispecies complexity itself was not correlated with HCV clearance or persistence. Thus, the relationship between an intrapatient HCV quasispecies and the clinical outcome of an HCV infection is more complex than previously anticipated.
Collapse
Affiliation(s)
- Antonio Mas
- Departamento de Ciencias Experimentales y de la Salud, Universitat Pompeu Fabra, Dr. Aiguader 80, 08003 Barcelona, Spain
| | - Encarna Ulloa
- Departamento de Ciencias Experimentales y de la Salud, Universitat Pompeu Fabra, Dr. Aiguader 80, 08003 Barcelona, Spain
| | - Miguel Bruguera
- Hepatología, Instituto de Enfermedades Digestivas, Hospital Clinic, 08036 Barcelona, Spain
| | - Ivana Furčić
- Hepatología, Instituto de Enfermedades Digestivas, Hospital Clinic, 08036 Barcelona, Spain
| | - Damià Garriga
- Departamento de Ciencias Experimentales y de la Salud, Universitat Pompeu Fabra, Dr. Aiguader 80, 08003 Barcelona, Spain
| | | | - David Andreu
- Departamento de Ciencias Experimentales y de la Salud, Universitat Pompeu Fabra, Dr. Aiguader 80, 08003 Barcelona, Spain
| | - Juan Carlos Saiz
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28040 Madrid, Spain
| | - Juana Díez
- Departamento de Ciencias Experimentales y de la Salud, Universitat Pompeu Fabra, Dr. Aiguader 80, 08003 Barcelona, Spain
| |
Collapse
|
41
|
Abstract
The hepatitis C virus (HCV) infects approximately three percent of the world's population. Some individuals resolve the infection spontaneously, but the majority develop persistent viremia that often causes progressive liver disease. There is an emerging consensus that cellular immune responses are essential for spontaneous resolution of acute hepatitis C and long-term protection from persistent infection. This review focuses on the recent advances in understanding mechanisms of protective immunity and why they fail in most infected individuals. The distinct yet complementary role of CD4+ and CD8+ T lymphocytes in this process is highlighted.
Collapse
Affiliation(s)
- Naglaa H Shoukry
- Center for Vaccines and Immunity, Columbus Children's Research Institute, Columbus, Ohio 43205, USA.
| | | | | |
Collapse
|
42
|
Seifert U, Liermann H, Racanelli V, Halenius A, Wiese M, Wedemeyer H, Ruppert T, Rispeter K, Henklein P, Sijts A, Hengel H, Kloetzel PM, Rehermann B. Hepatitis C virus mutation affects proteasomal epitope processing. J Clin Invest 2004; 114:250-9. [PMID: 15254592 PMCID: PMC449747 DOI: 10.1172/jci20985] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2004] [Accepted: 05/18/2004] [Indexed: 12/11/2022] Open
Abstract
The high incidence of hepatitis C virus (HCV) persistence raises the question of how HCV interferes with host immune responses. Studying a single-source HCV outbreak, we identified an HCV mutation that impaired correct carboxyterminal cleavage of an immunodominant HLA-A2-restricted CD8 cell epitope that is frequently recognized by recovered patients. The mutation, a conservative HCV nonstructural protein 3 (NS3) tyrosine to phenylalanine substitution, was absent in 54 clones of the infectious source, but present in 15/21 (71%) HLA-A2-positive and in 11/24 (46%) HLA-A2-negative patients with chronic hepatitis C. In order to analyze whether the mutation affected the processing of the HLA-A2-restricted CD8 cell epitope, mutant and wild-type NS3 polypeptides were digested in vitro with 20S constitutive proteasomes and with immunoproteasomes. The presence of the mutation resulted in impaired carboxyterminal cleavage of the epitope. In order to analyze whether impaired epitope processing affected T cell priming in vivo, HLA-A2-transgenic mice were infected with vaccinia viruses encoding either wild-type or mutant HCV NS3. The mutant induced fewer epitope-specific, IFN-gamma;-producing and fewer tetramer(+) cells than the wild type. These data demonstrate how a conservative mutation in the flanking region of an HCV epitope impairs the induction of epitope-specific CD8(+) T cells and reveal a mechanism that may contribute to viral sequence evolution in infected patients.
Collapse
Affiliation(s)
- Ulrike Seifert
- Institute of Biochemistry, Charité, Humboldt University, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Seifert U, Liermann H, Racanelli V, Halenius A, Wiese M, Wedemeyer H, Ruppert T, Rispeter K, Henklein P, Sijts A, Hengel H, Kloetzel PM, Rehermann B. Hepatitis C virus mutation affects proteasomal epitope processing. J Clin Invest 2004. [PMID: 15254592 DOI: 10.1172/jci200420985] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The high incidence of hepatitis C virus (HCV) persistence raises the question of how HCV interferes with host immune responses. Studying a single-source HCV outbreak, we identified an HCV mutation that impaired correct carboxyterminal cleavage of an immunodominant HLA-A2-restricted CD8 cell epitope that is frequently recognized by recovered patients. The mutation, a conservative HCV nonstructural protein 3 (NS3) tyrosine to phenylalanine substitution, was absent in 54 clones of the infectious source, but present in 15/21 (71%) HLA-A2-positive and in 11/24 (46%) HLA-A2-negative patients with chronic hepatitis C. In order to analyze whether the mutation affected the processing of the HLA-A2-restricted CD8 cell epitope, mutant and wild-type NS3 polypeptides were digested in vitro with 20S constitutive proteasomes and with immunoproteasomes. The presence of the mutation resulted in impaired carboxyterminal cleavage of the epitope. In order to analyze whether impaired epitope processing affected T cell priming in vivo, HLA-A2-transgenic mice were infected with vaccinia viruses encoding either wild-type or mutant HCV NS3. The mutant induced fewer epitope-specific, IFN-gamma;-producing and fewer tetramer(+) cells than the wild type. These data demonstrate how a conservative mutation in the flanking region of an HCV epitope impairs the induction of epitope-specific CD8(+) T cells and reveal a mechanism that may contribute to viral sequence evolution in infected patients.
Collapse
Affiliation(s)
- Ulrike Seifert
- Institute of Biochemistry, Charité, Humboldt University, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Meyer-Olson D, Shoukry NH, Brady KW, Kim H, Olson DP, Hartman K, Shintani AK, Walker CM, Kalams SA. Limited T cell receptor diversity of HCV-specific T cell responses is associated with CTL escape. ACTA ACUST UNITED AC 2004; 200:307-19. [PMID: 15289502 PMCID: PMC2211982 DOI: 10.1084/jem.20040638] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Escape mutations are believed to be important contributors to immune evasion by rapidly evolving viruses such as hepatitis C virus (HCV). We show that the majority of HCV-specific cytotoxic T lymphocyte (CTL) responses directed against viral epitopes that escaped immune recognition in HCV-infected chimpanzees displayed a reduced CDR3 amino acid diversity when compared with responses in which no CTL epitope variation was detected during chronic infection or with those associated with protective immunity. Decreased T cell receptor (TCR) CDR3 amino acid diversity in chronic infection could be detected long before the appearance of viral escape mutations in the plasma. In both chronic and resolved infection, identical T cell receptor clonotypes were present in liver and peripheral blood. These findings provide a deeper understanding of the evolution of CTL epitope variations in chronic viral infections and highlight the importance of the generation and maintenance of a diverse TCR repertoire directed against individual epitopes.
Collapse
Affiliation(s)
- Dirk Meyer-Olson
- Partners AIDS Research Center, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02129, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Lu J, Basu A, Melenhorst JJ, Young NS, Brown KE. Analysis of T-cell repertoire in hepatitis-associated aplastic anemia. Blood 2004; 103:4588-93. [PMID: 14988156 DOI: 10.1182/blood-2003-11-3959] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Hepatitis-associated aplastic anemia (HAA) is a syndrome of bone marrow failure following an acute attack of seronegative hepatitis. Clinical features and liver histology suggest a central role for an immune-mediated mechanism. To characterize the immune response, we investigated the T-cell repertoire (T-cell receptor [TCR] Vβ chain subfamily) of intrahepatic lymphocytes in HAA patients by TCR spectratyping. In 6 of 7 HAA liver samples, a broad skewing pattern in the 21 Vβ subfamilies tested was observed. In total, 62% ± 18% of HAA spectratypes showed a skewed pattern, similar to 68% ± 18% skewed spectratype patterns in 3 of 4 patients with confirmed viral hepatitis. Additionally, the T-cell repertoire had similarly low levels of complexity. In the peripheral blood lymphocytes (PBLs) of a separate group of HAA patients prior to treatment, 60% ± 15% skewed spectratypes were detected, compared with only 18% ± 8% skewed spectratypes in healthy controls. After successful immunosuppressive treatment, an apparent reversion to a normal T-cell repertoire with a corresponding significant increase in T-cell repertoire complexity was observed in the HAA samples. In conclusion, our data suggest an antigen-driven T-cell expansion in HAA and achievement of a normal T-cell repertoire during recovery from HAA. (Blood. 2004;103:4588-4593)
Collapse
Affiliation(s)
- Jun Lu
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bldg 10, 9000 Rockville Pike, Bethesda, MD 20892-1652, USA
| | | | | | | | | |
Collapse
|
46
|
Basu A, Beyene A, Meyer K, Ray R. The hypervariable region 1 of the E2 glycoprotein of hepatitis C virus binds to glycosaminoglycans, but this binding does not lead to infection in a pseudotype system. J Virol 2004; 78:4478-86. [PMID: 15078928 PMCID: PMC387685 DOI: 10.1128/jvi.78.9.4478-4486.2004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2003] [Accepted: 01/09/2004] [Indexed: 12/17/2022] Open
Abstract
The hypervariable region 1 (HVR1) of hepatitis C virus (HCV) E2 envelope glycoprotein is a 27-amino-acid sequence located at its N terminus. In this study, we investigated the functional role of HVR1 for interaction with the mammalian cell surface. The C-terminal truncated E2 glycoprotein was appended to a transmembrane domain and cytoplasmic tail of vesicular stomatitis virus (VSV) G protein for generation of the chimeric E2-G gene construct. A deletion of the HVR1 sequence from E2 was created for the construction of E2DeltaHVR1-G. Pseudotype virus, generated separately by infection of a stable cell line expressing E2-G or E2DeltaHVR1-G with a temperature-sensitive mutant of VSV (VSVts045), displayed unique functional properties compared to VSVts045 as a negative control. Virus generated from E2DeltaHVR1-G had a reduced plaquing efficiency ( approximately 50%) in HepG2 cells compared to that for the E2-G virus. Cells prior treated with pronase (0.5 U/ml) displayed a complete inhibition of infectivity of the E2DeltaHVR1-G or E2-G pseudotypes, whereas heparinase I treatment (8 U/ml) of cells reduced 40% E2-G pseudotype virus titer only. E2DeltaHVR1-G pseudotypes were not sensitive to heparin (6 to 50 micro g/ml) as an inhibitor of plaque formation compared to the E2-G pseudotype virus. Although the HVR1 sequence itself does not match with the known heparin-binding domain, a synthetic peptide representing 27 amino acids of the E2 HVR1 displayed a strong affinity for heparin in an enzyme-linked immunosorbent assay. This binding was competitively inhibited by a peptide from the V3 loop of a human immunodeficiency virus glycoprotein subunit (gp120) known to bind with cell surface heparin. Taken together, our results suggest that the HVR1 of E2 glycoprotein binds to the cell surface proteoglycans and may facilitate virus-host interaction for replication cycle of HCV.
Collapse
Affiliation(s)
- Arnab Basu
- Department of Internal Medicine, Saint Louis University, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
47
|
Tsai SL, Lee TH, Chien RN, Liao SK, Lin CL, Kuo GC, Liaw YF. A method to increase tetramer staining efficiency of CD8+ T cells with MHC-peptide complexes: therapeutic applications in monitoring cytotoxic T lymphocyte activity during hepatitis B and C treatment. J Immunol Methods 2004; 285:71-87. [PMID: 14871536 DOI: 10.1016/j.jim.2003.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2003] [Revised: 11/03/2003] [Accepted: 11/13/2003] [Indexed: 01/12/2023]
Abstract
The development of peptide-MHC tetrameric complexes heralds a new era in the study of antigen-specific T cells and their role in viral infections. However, the frequencies of tetramer-staining CD8+ T cells in fresh peripheral blood mononuclear cells (PBMCs) are usually below 1% in patients with chronic hepatitis B and C viruses (HBV and HCV) as well as human immunodeficiency virus (HIV) infections, which makes difficult the comparison and sequential evaluation of different individuals. Thus, the development of a method to enumerate efficiently antigen-specific CD8+ T cells will be clinically beneficial in monitoring the antiviral cellular immunity during therapy. We report here a modified CRI-p culture method (cytotoxic T lymphocyte response index of the epitope-peptide method), using a panel of peptides to stimulate PBMCs in bulk culture. The modified CRI-p cultured cells were, in turn, subjected to fluorescence-activated cell sorter (FACS) analysis, tetramer staining or T-cell functional assays to quantify the antiviral immunity of HLA-A2 (+) HBV and HCV patients receiving antiviral therapies. The results obtained showed that patients with a sustained response had a significantly higher increase in the frequencies of tetramer staining of virus-specific CD8+ T cells than did nonresponders. This method permits semi-quantitative determination of the relative strength of CTL activity against a panel of peptides and provides a large number of cells for FACS analysis from a single blood sampling. Significantly, it achieves high frequencies of tetramer staining of CD8+ T cells allowing the data of different individuals to be easily compared and sequentially evaluated. The mechanisms involved in this method are discussed.
Collapse
Affiliation(s)
- Sun-Lung Tsai
- Department of Medical Research, Liver Research Unit, Chi-Mei Foundation Medical Center, Tainan, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
48
|
von Wagner M, Lee JH, Rüster B, Kronenberger B, Sarrazin C, Roth WK, Zeuzem S. Dynamics of hepatitis C virus quasispecies turnover during interferon-alpha treatment. J Viral Hepat 2003; 10:413-22. [PMID: 14633173 DOI: 10.1046/j.1365-2893.2003.00457.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Interferon-alpha (IFN) has been shown to accelerate the evolution of hepatitis C virus (HCV) variants (quasispecies) in nonresponder patients. Different sensitivities of HCV variants to IFN are discussed as a possible mechanism. In the present study, quasispecies were investigated in detail by a newly established and validated direct solid-phase sequencing of the hypervariable region 1 (HVR1), during the initial 3 months of IFN therapy. According to single strand conformation polymorphism (SSCP) analysis, 14 of 26 (54%) virologic nonresponders with quasispecies evolution were identified. Six representative patients with SSCP changes were selected for frequent HVR1 sequencing. Pre-existing variants were identified by cloning and sequencing of the pretreatment serum HCV sample. In one patient the major type was substituted by a minor variant within 3 days of treatment while in the majority of patients the pretreatment major type did not decline before days 26-57 of treatment. Total serum HCV RNA levels remained constant in all patients. In conclusion, although quasispecies evolution during IFN therapy is common, it occurs after a wide range of time intervals after initiation of therapy. Thus, nonresponse to IFN cannot exclusively be explained by changes in the quasispecies.
Collapse
Affiliation(s)
- M von Wagner
- Innere Medizin II, Universitätskliniken des Saarlandes, Homburg/Saar, Germany
| | | | | | | | | | | | | |
Collapse
|
49
|
Frasca L, Scottà C, Del Porto P, Nicosia A, Pasquazzi C, Versace I, Masci AM, Racioppi L, Piccolella E. Antibody-selected mimics of hepatitis C virus hypervariable region 1 activate both primary and memory Th lymphocytes. Hepatology 2003; 38:653-63. [PMID: 12939592 DOI: 10.1053/jhep.2003.50387] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An ideal strategy that leads to a vaccine aimed at controlling viral escape may be that of preventing the replication of escape mutants by eliciting a T- and B-cell repertoire directed against many viral variants. The hypervariable region 1 (HVR1) of the putative envelope 2 protein that presents B and T epitopes shown to induce protective immunity against hepatitis C virus (HCV), might be suitable for this purpose if its immunogenicity can be improved by generating mimics that induce broad, highly cross-reactive, anti-HVR1 responses. Recently we described a successful approach to select HVR1 mimics (mimotopes) incorporating the variability found in a great number of viral variants. In this report we explore whether these mimotopes, designed to mimic B-cell epitopes, also mimic helper T-cell epitopes. The first interesting observation is that mimotopes selected for their reactivity to HVR1-specific antibodies of infected patients also do express HVR1 T-cell epitopes, suggesting that similar constraints govern HVR1-specific humoral and cellular immune responses. Moreover, some HVR1 mimotopes stimulate a multispecific CD4(+) T-cell repertoire that effectively cross-reacts with HVR1 native sequences. This may significantly limit effects as a T-cell receptor (TCR) antagonist frequently exerted by natural HVR1-variants on HVR1-specific T-cell responses. In conclusion, these data lend strong support to using HVR1 mimotopes in vaccines designed to prevent replication of escape mutants.
Collapse
Affiliation(s)
- Loredana Frasca
- Department of Cellular and Developmental Biology, La Sapienza University, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Gerlach JT, Diepolder HM, Zachoval R, Gruener NH, Jung MC, Ulsenheimer A, Schraut WW, Schirren CA, Waechtler M, Backmund M, Pape GR. Acute hepatitis C: high rate of both spontaneous and treatment-induced viral clearance. Gastroenterology 2003; 125:80-8. [PMID: 12851873 DOI: 10.1016/s0016-5085(03)00668-1] [Citation(s) in RCA: 350] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Acute hepatitis C virus infection accounts for approximately 20% of cases of acute hepatitis today. The aim of this study was to define the natural course of the disease and to contribute to the development of treatment strategies for acute hepatitis C virus. METHODS The diagnosis of acute hepatitis C virus in 60 patients was based on seroconversion to anti-hepatitis C virus antibodies or clinical and biochemical criteria and on the presence of hepatitis C virus RNA in the first serum sample. RESULTS Fifty-one of 60 (85%) patients presented with symptomatic acute hepatitis C virus. In the natural (untreated) course of acute symptomatic hepatitis C (n = 46), spontaneous clearance was observed in 24 patients (52%), usually within 12 weeks after the onset of symptoms, whereas all asymptomatic patients (n = 9) developed chronic hepatitis C. The start of antiviral therapy (interferon-alpha with or without ribavirin) beyond 3 months after the onset of acute hepatitis induced sustained viral clearance in 80% of treated patients. CONCLUSIONS The management of acute hepatitis C has to take into account the high rate of spontaneous viral clearance within 12 weeks after the onset of symptomatic disease. Treatment of only those patients who remain hepatitis C virus RNA positive for more than 3 months after the onset of disease led to an overall viral clearance (self-limited and treatment induced) in 91% of patients, and unnecessary treatment was avoided in those with spontaneous viral clearance. Patients with asymptomatic acute hepatitis C virus infection are unlikely to clear the infection spontaneously and should be treated as early as possible.
Collapse
Affiliation(s)
- J Tilman Gerlach
- Medical Department II, Klinikum Grosshadern and Institute for Immunology, Schwabing, Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|