1
|
Binversie EE, Momen M, Rosa GJM, Davis BW, Muir P. Across-breed genetic investigation of canine hip dysplasia, elbow dysplasia, and anterior cruciate ligament rupture using whole-genome sequencing. Front Genet 2022; 13:913354. [PMID: 36531249 PMCID: PMC9755188 DOI: 10.3389/fgene.2022.913354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
Here, we report the use of genome-wide association study (GWAS) for the analysis of canine whole-genome sequencing (WGS) repository data using breed phenotypes. Single-nucleotide polymorphisms (SNPs) were called from WGS data from 648 dogs that included 119 breeds from the Dog10K Genomes Project. Next, we assigned breed phenotypes for hip dysplasia (Orthopedic Foundation for Animals (OFA) HD, n = 230 dogs from 27 breeds; hospital HD, n = 279 dogs from 38 breeds), elbow dysplasia (ED, n = 230 dogs from 27 breeds), and anterior cruciate ligament rupture (ACL rupture, n = 279 dogs from 38 breeds), the three most important canine spontaneous complex orthopedic diseases. Substantial morbidity is common with these diseases. Previous within- and between-breed GWAS for HD, ED, and ACL rupture using array SNPs have identified disease-associated loci. Individual disease phenotypes are lacking in repository data. There is a critical knowledge gap regarding the optimal approach to undertake categorical GWAS without individual phenotypes. We considered four GWAS approaches: a classical linear mixed model, a haplotype-based model, a binary case-control model, and a weighted least squares model using SNP average allelic frequency. We found that categorical GWAS was able to validate HD candidate loci. Additionally, we discovered novel candidate loci and genes for all three diseases, including FBX025, IL1A, IL1B, COL27A1, SPRED2 (HD), UGDH, FAF1 (ED), TGIF2 (ED & ACL rupture), and IL22, IL26, CSMD1, LDHA, and TNS1 (ACL rupture). Therefore, categorical GWAS of ancestral dog populations may contribute to the understanding of any disease for which breed epidemiological risk data are available, including diseases for which GWAS has not been performed and candidate loci remain elusive.
Collapse
Affiliation(s)
- Emily E. Binversie
- Comparative Orthopaedic and Genetics Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Mehdi Momen
- Comparative Orthopaedic and Genetics Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Guilherme J. M. Rosa
- Department of Animal and Dairy Sciences, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Brian W. Davis
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Peter Muir
- Comparative Orthopaedic and Genetics Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States,*Correspondence: Peter Muir,
| |
Collapse
|
2
|
The Potential Role of REG Family Proteins in Inflammatory and Inflammation-Associated Diseases of the Gastrointestinal Tract. Int J Mol Sci 2021; 22:ijms22137196. [PMID: 34281249 PMCID: PMC8268738 DOI: 10.3390/ijms22137196] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/22/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Regenerating gene (REG) family proteins serve as multifunctional secretory molecules with trophic, antiapoptotic, anti-inflammatory, antimicrobial and probably immuno-regulatory effects. Since their discovery, accumulating evidence has clarified the potential roles of the REG family in the occurrence, progression and development of a wide range of inflammatory and inflammation-associated diseases of the gastrointestinal (GI) tract. However, significant gaps still exist due to the undefined nature of certain receptors, regulatory signaling pathways and possible interactions among distinct Reg members. In this narrative review, we first describe the structural features, distribution pattern and purported regulatory mechanisms of REG family proteins. Furthermore, we summarize the established and proposed roles of REG proteins in the pathogenesis of various inflammation-associated pathologies of the GI tract and the body as a whole, focusing particularly on carcinogenesis in the ulcerative colitis—colitic cancer sequence and gastric cancer. Finally, the clinical relevance of REG products in the context of diagnosis, treatment and prognostication are also discussed in detail. The current evidence suggests a need to better understanding the versatile roles of Reg family proteins in the pathogenesis of inflammatory-associated diseases, and their broadened future usage as therapeutic targets and prognostic biomarkers is anticipated.
Collapse
|
3
|
Hepatocarcinoma-intestine-pancreas/pancreatitis-associated protein (HIP/PAP) confers protection against hepatic fibrosis through downregulation of transforming growth factor β receptor II. J Transl Med 2020; 100:466-482. [PMID: 31641222 DOI: 10.1038/s41374-019-0314-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/23/2019] [Accepted: 07/30/2019] [Indexed: 01/18/2023] Open
Abstract
Hepatocarcinoma-intestine-pancreas/pancreatitis-associated protein (HIP/PAP) has antimicrobial, antioxidant, anti-inflammatory, mitogenic, and antiapoptotic effects and thus exerts important functions in the maintenance of integrity and homeostasis of several organs, such as the gastrointestinal tract, pancreas, and liver. Although the potent hepatoprotective effect of HIP/PAP has been validated, its impact on liver fibrosis has not been reported. In this study, we evaluated the role of HIP/PAP on hepatic fibrosis and explored the possible underlying mechanisms. We found that the expression of HIP/PAP and its mouse counterpart, Reg3B, was markedly upregulated in fibrotic human or mouse livers. Intraperitoneal (i.p.) interleukin (IL)-10, IL-6, and TNF-α but not TGF-β1 significantly induced hepatic overexpression of Reg3B in mice. In both CCl4 and BDL liver fibrosis models, adenovirus-mediated ectopic expression of HIP/PAP markedly alleviated liver injury, inflammation, collagen deposition, hepatic stellate cell activation, and the overexpression of profibrotic cytokines, including transforming growth factor β1 (TGF-β1), platelet-derived growth factor (PDGF)-A, B, connective tissue growth factor (CTGF), and plasminogen activator inhibitor-1 (PAI-1), in mice. In vitro experiments demonstrated that, in addition to suppressing hepatic stellate cell proliferation and accelerating hepatocyte proliferation, HIP/PAP mitigated TGF-β1-induced hepatic stellate cell activation, hepatocyte epithelial-mesenchymal transition (EMT) and upregulated expression of profibrotic cytokines in both hepatic stellate cells and hepatocytes. Moreover, HIP/PAP attenuated the overexpression of TGF-β receptor II (TGF-βRII) in fibrotic mouse livers and decreased the basal expression of TGF-βRII in nonfibrotic mouse livers as well as in cultured hepatocytes and hepatic stellate cells, which is at least partly attributable to the TGF-β1-antagonizing function of HIP/PAP. This study indicates that increased expression of hepatic HIP/PAP serves as a countermeasure against liver injury and fibrosis. Exogenous supplementation of HIP/PAP might be a promising therapeutic agent for hepatic fibrosis as well as liver injury.
Collapse
|
4
|
Cho Y, Park MJ, Kim K, Park JY, Kim J, Kim W, Yoon JH. Tumor-Stroma Crosstalk Enhances REG3A Expressions that Drive the Progression of Hepatocellular Carcinoma. Int J Mol Sci 2020; 21:ijms21020472. [PMID: 31940813 PMCID: PMC7013972 DOI: 10.3390/ijms21020472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Crosstalk between tumors and their microenvironment plays a crucial role in the progression of hepatocellular carcinoma (HCC). However, there is little existing information about the key signaling molecule that modulates tumor-stroma crosstalk. METHODS Complementary DNA (cDNA) microarray analysis was performed to identify the key molecule in tumor-stroma crosstalk. Subcutaneous xenograft in vivo murine model, immunoblotting, immunofluorescence, and real-time polymerase chain reaction using HCC cells and tissues were performed. RESULTS The key molecule, regenerating gene protein-3A (REG3A), was most significantly enhanced when coculturing HCC cells and activated human hepatic stellate cells (HSCs) (+8.2 log) compared with monoculturing HCC cells using cDNA microarray analysis. Downregulation of REG3A using small interfering RNA significantly decreased the proliferation of HSC-cocultured HCC cells in vitro and in vivo, and enhanced deoxycholic acid-induced HCC cell apoptosis. Crosstalk-induced REG3A upregulation was modulated by platelet-derived growth factor ββ (PDGF-ββ) in p42/44-dependent manner. REG3A mRNA levels in human HCC tissues were upregulated 1.8-fold compared with non-tumor tissues and positively correlated with PDGF-ββ levels. CONCLUSIONS REG3A/p42/44 pathway/PDGF-ββ signaling plays a significant role in hepatocarcinogenesis via tumor-stroma crosstalk. Targeting REG3A is a potential novel therapeutic target for the management of HCCs by inhibiting crosstalk between HCC cells and HSCs.
Collapse
Affiliation(s)
- Yuri Cho
- Department of Internal Medicine, CHA Gangnam Medical Center, CHA University School of Medicine, Seoul 06135, Korea; (M.J.P.); (K.K.); (J.K.); (W.K.)
- Department of Internal Medicine and Liver Research Institute, College of Medicine, Seoul National University, Seoul 03080, Korea;
- Correspondence: ; Tel.: +82-2-3468-3281; Fax: +82-2-558-1119
| | - Min Ji Park
- Department of Internal Medicine, CHA Gangnam Medical Center, CHA University School of Medicine, Seoul 06135, Korea; (M.J.P.); (K.K.); (J.K.); (W.K.)
| | - Koeun Kim
- Department of Internal Medicine, CHA Gangnam Medical Center, CHA University School of Medicine, Seoul 06135, Korea; (M.J.P.); (K.K.); (J.K.); (W.K.)
| | - Jae-Young Park
- Department of Orthopaedic Surgery, KyungHee University Medical Center, Seoul 02447, Korea;
| | - Jihye Kim
- Department of Internal Medicine, CHA Gangnam Medical Center, CHA University School of Medicine, Seoul 06135, Korea; (M.J.P.); (K.K.); (J.K.); (W.K.)
| | - Wonjin Kim
- Department of Internal Medicine, CHA Gangnam Medical Center, CHA University School of Medicine, Seoul 06135, Korea; (M.J.P.); (K.K.); (J.K.); (W.K.)
| | - Jung-Hwan Yoon
- Department of Internal Medicine and Liver Research Institute, College of Medicine, Seoul National University, Seoul 03080, Korea;
| |
Collapse
|
5
|
Abstract
Acute pancreatitis (AP) is an inflammatory disorder of the exocrine pancreas frequently associated with metabolic causes, contributing factors, or consequences, including hypertriglyceridemia, obesity, and disorders of intermediary metabolism, respectively. To date, there is no specific therapy for this disease. Future optimal therapy should correct both inflammatory and metabolic components of the disease. Peroxisome proliferator-activated receptors (PPARs) are lipid-sensing nuclear receptors that control inflammatory and metabolic pathways via ligand-dependent and ligand-independent mechanisms. There are 3 known subtypes, PPAR-α, PPAR-β/δ, and PPAR-γ, which are differentially expressed in various tissues. The PPARs interact closely with other transcription factors such as nuclear factor κB and signal tranducers and activators of transcription that have pivotal roles in the pathobiology of AP. In this comprehensive review, we summarize the role of PPARs in AP, highlighting important in vitro and in vivo experimental findings. Finally, we propose future research directions as well as potential translational use of PPAR agonists in the treatment of AP.
Collapse
|
6
|
Mansfield C, Beths T. Management of acute pancreatitis in dogs: a critical appraisal with focus on feeding and analgesia. J Small Anim Pract 2015; 56:27-39. [PMID: 25586804 DOI: 10.1111/jsap.12296] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/22/2014] [Accepted: 05/26/2014] [Indexed: 12/31/2022]
Abstract
Knowledge about acute pancreatitis has increased recently in both the medical and veterinary fields. Despite this expansion of knowledge, there are very few studies on treatment interventions in naturally occurring disease in dogs. As a result, treatment recommendations are largely extrapolated from experimental rodent models or general critical care principles. General treatment principles involve replacing fluid losses, maintaining hydrostatic pressure, controlling nausea and providing pain relief. Specific interventions recently advocated in human medicine include the use of neurokinin-1 antagonists for analgesia and early interventional feeding. The premise for early feeding is to improve the health of the intestinal tract, as unhealthy enterocytes are thought to perpetuate systemic inflammation. The evidence for early interventional feeding is not supported by robust clinical trials to date, but in humans there is evidence that it reduces hospitalisation time and in dogs it is well tolerated. This article summarises the major areas of management of acute pancreatitis in dogs and examines the level of evidence for each recommendation.
Collapse
Affiliation(s)
- C Mansfield
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia
| | | |
Collapse
|
7
|
Dakshinamurti K, Bagchi RA, Abrenica B, Czubryt MP. Microarray analysis of pancreatic gene expression during biotin repletion in biotin-deficient rats. Can J Physiol Pharmacol 2015; 93:1103-10. [PMID: 26312779 DOI: 10.1139/cjpp-2014-0517] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Biotin is a B vitamin involved in multiple metabolic pathways. In humans, biotin deficiency is relatively rare but can cause dermatitis, alopecia, and perosis. Low biotin levels occur in individuals with type-2 diabetes, and supplementation with biotin plus chromium may improve blood sugar control. The acute effect on pancreatic gene expression of biotin repletion following chronic deficiency is unclear, therefore we induced biotin deficiency in adult male rats by feeding them a 20% raw egg white diet for 6 weeks. Animals were then randomized into 2 groups: one group received a single biotin supplement and returned to normal chow lacking egg white, while the second group remained on the depletion diet. After 1 week, pancreata were removed from biotin-deficient (BD) and biotin-repleted (BR) animals and RNA was isolated for microarray analysis. Biotin depletion altered gene expression in a manner indicative of inflammation, fibrosis, and defective pancreatic function. Conversely, biotin repletion activated numerous repair and anti-inflammatory pathways, reduced fibrotic gene expression, and induced multiple genes involved in pancreatic endocrine and exocrine function. A subset of the results was confirmed by quantitative real-time PCR analysis, as well as by treatment of pancreatic AR42J cells with biotin. The results indicate that biotin repletion, even after lengthy deficiency, results in the rapid induction of repair processes in the pancreas.
Collapse
Affiliation(s)
- Krishnamurti Dakshinamurti
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, 351 Tache Avenue, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada.,Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, 351 Tache Avenue, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Rushita A Bagchi
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, 351 Tache Avenue, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada.,Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, 351 Tache Avenue, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Bernard Abrenica
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, 351 Tache Avenue, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada.,Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, 351 Tache Avenue, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Michael P Czubryt
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, 351 Tache Avenue, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada.,Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, 351 Tache Avenue, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| |
Collapse
|
8
|
Sun C, Fukui H, Hara K, Kitayama Y, Eda H, Yang M, Yamagishi H, Tomita T, Oshima T, Watari J, Takasawa S, Chiba T, Miwa H. Expression of Reg family genes in the gastrointestinal tract of mice treated with indomethacin. Am J Physiol Gastrointest Liver Physiol 2015; 308:G736-44. [PMID: 25747353 DOI: 10.1152/ajpgi.00362.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 02/19/2015] [Indexed: 01/31/2023]
Abstract
Regenerating gene (Reg) family proteins, which are classified into four types, commonly act as trophic and/or antiapoptotic factors in gastrointestinal (GI) diseases. However, it remains unclear how these proteins coordinate their similar roles under such pathophysiological conditions. Here, we investigated the interrelationships of Reg family gene expression with mucosal cell proliferation and apoptosis in nonsteroidal anti-inflammatory drug (NSAID)-induced GI injury. GI injury was induced by subcutaneous injection of indomethacin into Reg I knockout (KO) and wild-type (WT) mice, and its severity was scored histopathologically. Temporal changes in the expression of Reg family genes, mucosal proliferation, and apoptosis were evaluated throughout the GI tract by real-time RT-PCR, Ki-67 immunoreactivity, and TUNEL assay, respectively. Reg I, Reg III family, and Reg IV were predominantly expressed in the upper, middle, and lower GI mucosa, respectively. Expression of Reg I and Reg III family genes was upregulated in specific portions of the GI tract after indomethacin treatment. Ki-67-positive epithelial cells were significantly decreased in the gastric and small-intestinal mucosa of Reg I KO mice under normal conditions. After treatment with indomethacin, the number of TUNEL-positive cells was significantly greater throughout the GI mucosa in Reg I KO mice than in WT mice. Expression of Reg I was independent of that of other Reg family genes in, not only normal GI tissues, but also indomethacin-induced GI lesions. Members of the Reg gene family show distinct profiles of expression in the GI tract, and Reg I independently plays a role in protecting the GI mucosa against NSAID-induced injury.
Collapse
Affiliation(s)
- Chao Sun
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan; Department of Digestive Diseases, Tianjin Medical University General Hospital, Tianjin, China
| | - Hirokazu Fukui
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan;
| | - Ken Hara
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Yoshitaka Kitayama
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hirotsugu Eda
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Mo Yang
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan; Department of Digestive Diseases, Tianjin Medical University General Hospital, Tianjin, China
| | - Hidetsugu Yamagishi
- Department of Surgical and Molecular Pathology, Dokkyo University School of Medicine, Tochigi, Japan
| | - Toshihiko Tomita
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Tadayuki Oshima
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Jiro Watari
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Shin Takasawa
- Department of Biochemistry, Nara Medical University, Kashihara, Japan
| | - Tsutomu Chiba
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroto Miwa
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| |
Collapse
|
9
|
Irrera N, Bitto A, Interdonato M, Squadrito F, Altavilla D. Evidence for a role of mitogen-activated protein kinases in the treatment of experimental acute pancreatitis. World J Gastroenterol 2014; 20:16535-16543. [PMID: 25469021 PMCID: PMC4248196 DOI: 10.3748/wjg.v20.i44.16535] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/23/2014] [Accepted: 07/22/2014] [Indexed: 02/06/2023] Open
Abstract
Acute pancreatitis (AP) is an inflammatory disease characterized by acute inflammation and necrosis of the pancreatic parenchyma. AP is often associated with organ failure, sepsis, and high mortality. The pathogenesis of AP is still not well understood. In recent years several papers have highlighted the cellular and molecular events of acute pancreatitis. Pancreatitis is initiated by activation of digestive enzymes within the acinar cells that are involved in autodigestion of the gland, followed by a massive infiltration of neutrophils and macrophages and release of inflammatory mediators, responsible for the local and systemic inflammatory response. The hallmark of AP is parenchymal cell necrosis that represents the cause of the high morbidity and mortality, so that new potential therapeutic approaches are indispensable for the treatment of patients at high risk of complications. However, not all factors that determine the onset and course of the disease have been explained. Aim of this article is to review the role of mitogen-activated protein kinases in pathogenesis of acute pancreatitis.
Collapse
|
10
|
Secq V, Mallmann C, Gironella M, Lopez B, Closa D, Garcia S, Christa L, Montalto G, Dusetti N, Iovanna JL. PAP/HIP protein is an obesogenic factor. J Cell Physiol 2013; 229:225-31. [PMID: 23881718 DOI: 10.1002/jcp.24438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/16/2013] [Indexed: 12/19/2022]
Abstract
In this article we report the obesogenic role of the acute phase protein PAP/HIP. We found that the transgenic TgPAP/HIP mice develop spontaneous obesity under standard nutritional conditions, with high levels of glucose, leptin, and LDL and low levels of triglycerides and HDL in blood. Accordingly, PAP/HIP-deficient mice are skinny under standard nutritional conditions. We also found that expression of PAP/HIP is induced in intestinal epithelial cells in response to gavage with olive oil and this induction is AG490 sensitive. We demonstrated that incubation of 3T3-L1 preadipocytes with a low concentration as 1 ng/ml of recombinant PAP/HIP results in accelerated BrdU incorporation in vitro. PAP/HIP-dependent adipocytes growth is sensitive to the MEK inhibitor U0126. Finally, patients with severe obesity present higher blood levels of PAP/HIP than non-obese control individuals. Altogether our data suggest that PAP/HIP could be a mediator of fat tissue development, released by the intestine and induced by the presence of food into the gut.
Collapse
Affiliation(s)
- Veronique Secq
- Centre de Recherche en Carcérologie de Marseille (CRCM), INSERM UMR 1068, CNRS UMR 7258, Aix-Marseille University and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
The regenerating gene (Reg) family is a group of small molecules that includes four members found in various species, although only three are found in human tissues. Their expression is stimulated by certain growth factors or cytokines. The Reg family plays different roles in proliferation, migration, and anti-apoptosis through activating different signaling pathways. Their dysexpression is closely associated with a number of human conditions and diseases such as inflammation and cancer, especially in the human digestive system. Clinically, upregulation of Reg proteins is usually demonstrated in histological sections and sera from cancer patients. Therefore, Reg proteins can predict the progression and prognosis of cancers, especially those of the digestive tract, and can also act as diagnostic markers and therapeutic targets.
Collapse
|
12
|
MASUI TAKASHI, OTA ICHIRO, ITAYA-HIRONAKA ASAKO, TAKEDA MAIKO, KASAI TAKAHIKO, YAMAUCHI AKIYO, SAKURAMOTO-TSUCHIDA SUMIYO, MIKAMI SHINJI, YANE KATSUNARI, TAKASAWA SHIN, HOSOI HIROSHI. Expression of REG III and prognosis in head and neck cancer. Oncol Rep 2013; 30:573-8. [DOI: 10.3892/or.2013.2521] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 05/21/2013] [Indexed: 11/06/2022] Open
|
13
|
Zhang L, Zhang J, Shea K, Xu L, Tobin G, Knapton A, Sharron S, Rouse R. Autophagy in pancreatic acinar cells in caerulein-treated mice: immunolocalization of related proteins and their potential as markers of pancreatitis. Toxicol Pathol 2013; 42:435-57. [PMID: 23640381 DOI: 10.1177/0192623313486967] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Drug-induced pancreatitis (DIP) is an underdiagnosed condition that lacks sensitive and specific biomarkers. To better understand the mechanisms of DIP and to identify potential tissue biomarkers, we studied experimental pancreatitis induced in male C57BL/6 mice by intraperitoneal injection of caerulein (10 or 50 μg/kg) at 1-hr intervals for a total of 7 injections. Pancreata from caerulein-treated mice exhibited consistent acinar cell autophagy and apoptosis with infrequent necrosis. Kinetic assays for serum amylase and lipase also showed a dose-dependent increase. Terminal deoxynucleotidyl transferase-mediated biotin-dNTP nick labeling (TUNEL) detected dose-dependent acinar cell apoptosis. By light microscopy, autophagy was characterized by the formation of autophagosomes and autolysosomes (ALs) within the cytoplasm of acinar cells. Immunohistochemical studies with specific antibodies for proteins related to autophagy and pancreatic stress were conducted to evaluate these proteins as potential biomarkers of pancreatitis. Western blots were used to confirm immunohistochemical results using pancreatic lysates from control and treated animals. Autophagy was identified as a contributing process in caerulein-induced pancreatitis and proteins previously associated with autophagy were upregulated following caerulein treatment. Autophagosomes and ALs were found to be a common pathway, in which cathepsins, lysosome-associated membrane protein 2, vacuole membrane protein 1, microtubule-associated protein 1 light chain 3 (LC3), autophagy-related protein 9, Beclin1, and pancreatitis-associated proteins were simultaneously involved in response to caerulein stimulus. Regenerating islet-derived 3 gamma (Reg3γ), a pancreatic acute response protein, was dose-dependently induced in caerulein-treated mice and colocalized with the autophagosomal marker, LC3. This finding supports Reg3γ as a candidate biomarker for pancreatic injury.
Collapse
Affiliation(s)
- Leshuai Zhang
- 1Division of Drug Safety Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Shigekawa M, Hikita H, Kodama T, Shimizu S, Li W, Uemura A, Miyagi T, Hosui A, Kanto T, Hiramatsu N, Tatsumi T, Takeda K, Akira S, Takehara T. Pancreatic STAT3 protects mice against caerulein-induced pancreatitis via PAP1 induction. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:2105-13. [PMID: 23064197 DOI: 10.1016/j.ajpath.2012.08.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 08/13/2012] [Accepted: 08/28/2012] [Indexed: 02/07/2023]
Abstract
The signal transducer and activator of transcription 3 (STAT3) is a transcription factor that controls expressions of several genes involved in cell survival, proliferation and differentiation, and tissue inflammation. However, the significance of pancreatic STAT3 in acute pancreatitis remains unclear. We generated conditional STAT3 knockout (stat3(Δ/Δ)) mice by crossing stat3(flox/flox) mice with Pdx1-promoter Cre transgenic mice. Caerulein administration activated pancreatic STAT3 and induced acute pancreatitis as early as 3 hours in wild-type mice, and full recovery from the induced pancreatic injury was observed within 7 days. The levels of serum amylase and lipase and histologic scores of pancreatic necrosis and inflammatory cell infiltration were significantly higher at 3 hours in stat3(Δ/Δ) mice than in stat3(flox/flox) mice. Pancreatic recovery after pancreatitis was significantly delayed in stat3(Δ/Δ) mice compared with stat3(flox/flox) mice. Although stat3(flox/flox) mice had marked production in the pancreas of pancreatitis-associated protein 1 (PAP1), a serum acute phase protein, this induction was completely abrogated in stat3(Δ/Δ) mice. Enforced production of PAP1 by a hydrodynamic procedure in the liver significantly suppressed pancreatic necrosis and inflammation and also promoted pancreatic regeneration and recovery in stat3(Δ/Δ) mice to levels similar to those observed in stat3(flox/flox) mice. In conclusion, pancreatic STAT3 is indispensable for PAP1 production, and this STAT3/PAP1 pathway plays a protective role in caerulein-induced pancreatitis.
Collapse
Affiliation(s)
- Minoru Shigekawa
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Lv Y, Yang X, Huo Y, Tian H, Li S, Yin Y, Hao Z. Adenovirus-mediated hepatocarcinoma-intestine-pancreas/pancreatitis-associated protein suppresses dextran sulfate sodium-induced acute ulcerative colitis in rats. Inflamm Bowel Dis 2012; 18:1950-60. [PMID: 22419609 DOI: 10.1002/ibd.22887] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2011] [Accepted: 12/28/2011] [Indexed: 01/04/2023]
Abstract
BACKGROUND Although increased expression of hepatocarcinoma-intestine-pancreas/pancreatitis-associated protein (HIP/PAP) has been reported in ulcerative colitis (UC), its role in UC remains unclear. This study was designed to assess the function of HIP/PAP in experimental UC and further to explore its underlying mechanisms. METHODS Recombinant adenovirus was prepared to mediate ectopic expression of HIP/PAP in the colon of rats. The effect of HIP/PAP on dextran sodium sulfate (DSS)-induced colitis was assessed by disease activity index (DAI), macroscopic, and histological evaluations. Superoxide dismutase (SOD) and myeloperoxidase (MPO) activities, malondialdehyde (MDA) content, and tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6) production were determined in colonic mucosa. Proliferation cell nuclear antigen (PCNA) was immunostained to reflect the proliferation of colonic epithelia. The effects of HIP/PAP on proliferation and H(2)O(2) -induced apoptosis of SW480 and LoVo colonic adenocarcinoma cells were also determined. Gene expression profiles in SW480 after HIP/PAP overexpression were analyzed by microarray analysis. RESULTS The protective effect of HIP/PAP against DSS-induced colitis in rats was confirmed. Ectopic expression of HIP/PAP resulted in attenuation of oxidative damage, reduction of TNF-α and IL-6 expression, and elevation of epithelial proliferation in colonic mucosa and led to decreased apoptosis and increased proliferation in colonic adenocarcinoma cells. Microarray analysis revealed altered expression of inflammation-related molecules, growth factors, proliferation-related molecules, and antioxidant enzymes under overexpression of HIP/PAP. CONCLUSIONS HIP/PAP has a protective effect against DSS-induced colitis in rats via inhibiting inflammation, alleviating oxidative damage, and promoting colonic epithelium regeneration. HIP/PAP might represent a new promising therapeutic strategy in UC.
Collapse
Affiliation(s)
- Yifei Lv
- Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Escobar J, Pereda J, López-Rodas G, Sastre J. Redox signaling and histone acetylation in acute pancreatitis. Free Radic Biol Med 2012; 52:819-37. [PMID: 22178977 DOI: 10.1016/j.freeradbiomed.2011.11.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 11/08/2011] [Accepted: 11/09/2011] [Indexed: 12/22/2022]
Abstract
Histone acetylation via CBP/p300 coordinates the expression of proinflammatory cytokines in the activation phase of inflammation, particularly through mitogen-activated protein kinases (MAPKs), nuclear factor-κB (NF-κB), and signal transducers and activators of transcription (STAT) pathways. In contrast, histone deacetylases (HDACs) and protein phosphatases are mainly involved in the attenuation phase of inflammation. The role of reactive oxygen species (ROS) in the inflammatory cascade is much more important than expected. Mitochondrial ROS act as signal-transducing molecules that trigger proinflammatory cytokine production via inflammasome-independent and inflammasome-dependent pathways. The major source of ROS in acute inflammation seems to be NADPH oxidases, whereas NF-κB, protein phosphatases, and HDACs are the major targets of ROS and redox signaling in this process. There is a cross-talk between oxidative stress and proinflammatory cytokines through serine/threonine protein phosphatases, tyrosine protein phosphatases, and MAPKs that greatly contributes to amplification of the uncontrolled inflammatory cascade and tissue injury in acute pancreatitis. Chromatin remodeling during induction of proinflammatory genes would depend primarily on phosphorylation of transcription factors and their binding to gene promoters together with recruitment of histone acetyltransferases. PP2A should be considered a key modulator of the inflammatory cascade in acute pancreatitis through the ERK/NF-κB pathway and histone acetylation.
Collapse
Affiliation(s)
- Javier Escobar
- Department of Physiology, School of Pharmacy, University of Valencia, Burjasot, Valencia, Spain
| | | | | | | |
Collapse
|
17
|
Parikh A, Stephan AF, Tzanakakis ES. Regenerating proteins and their expression, regulation and signaling. Biomol Concepts 2011; 3:57-70. [PMID: 22582090 DOI: 10.1515/bmc.2011.055] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The regenerating (Reg) protein family comprises C-type lectin-like proteins discovered independently during pancreatitis and pancreatic islet regeneration. However, an increasing number of studies provide evidence of participation of Reg proteins in the proliferation and differentiation of diverse cell types. Moreover, Reg family members are associated with various pathologies, including diabetes and forms of gastrointestinal cancer. These findings have led to the emergence of key roles for Reg proteins as anti-inflammatory, antiapoptotic and mitogenic agents in multiple physiologic and disease contexts. Yet, there are significant gaps in our knowledge regarding the regulation of expression of different Reg genes. In addition, the pathways relaying Reg-triggered signals, their targets and potential cross-talk with other cascades are still largely unknown. In this review, the expression patterns of different Reg members in the pancreas and extrapancreatic tissues are described. Moreover, factors known to modulate Reg levels in different cell types are discussed. Several signaling pathways, which have been implicated in conferring the effects of Reg ligands to date, are also delineated. Further efforts are necessary for elucidating the biological processes underlying the action of Reg proteins and their involvement in various maladies. Better understanding of the function of Reg genes and proteins will be beneficial in the design and development of therapies utilizing or targeting this protein group.
Collapse
Affiliation(s)
- Abhirath Parikh
- Department of Chemical and Biological Engineering, State University of New York at Buffalo, Buffalo, NY 14260
| | | | | |
Collapse
|
18
|
Continuous stress-induced dopamine dysregulation augments PAP-I and PAP-II expression in melanotrophs of the pituitary gland. Biochem Biophys Res Commun 2011; 407:7-12. [DOI: 10.1016/j.bbrc.2011.02.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 02/10/2011] [Indexed: 11/20/2022]
|
19
|
Fang M, Huang JY, Wang J, Ling SC, Rudd JA, Hu ZY, Xu LH, Yuan ZG, Han S. Anti-neuroinflammatory and neurotrophic effects of combined therapy with annexin II and Reg-2 on injured spinal cord. Neurosignals 2011; 19:16-43. [PMID: 21430360 DOI: 10.1159/000324272] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 01/13/2011] [Indexed: 11/19/2022] Open
Abstract
The present study was designed to investigate the neuroprotective effects of Ca(2+)-dependent phospholipid-binding protein annexin II and a secreted protein Reg-2 (regeneration gene protein 2) in spinal cord injury (SCI) model produced by contusion SCI at T(9) using the weight drop method. The agents were delivered intrathecally with Alzet miniosmotic pumps. We found that annexin II and Reg-2 remarkably reduced neuronal death, attenuated tissue damage and alleviated detrimental inflammation in vivo; meanwhile, a significant increase in white matter sparing and myelination area was observed. The propriospinal axons and long-distance supraspinal pathways were protected by the treatments as revealed by retrograde tracing. Basso Beattie Bresnahan locomotor rating scores also revealed a measurable behavioral improvement. However, no evident behavioral improvements in locomotor performance were achieved by the combined treatment with annexin II and Reg-2, compared with the separate treatment with annexin II and Reg-2.
Collapse
Affiliation(s)
- Marong Fang
- Institute of Anatomy and Cell Biology, Medical College, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Numata M, Oshima T, Yoshihara K, Watanabe T, Tsuchida K, Tamagawa H, Yamamoto N, Shiozawa M, Morinaga S, Akaike M, Kunisaki C, Rino Y, Tanaka K, Masuda M, Imada T. Relationship between RegIV gene expression to outcomes in colorectal cancer. J Surg Oncol 2011; 104:205-9. [PMID: 21381041 DOI: 10.1002/jso.21906] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 02/14/2011] [Indexed: 01/05/2023]
Abstract
BACKGROUND Regenerating islet-derived family members (Reg) are superfamily of calcium-dependant lectins that are expressed in the proximal gastrointestinal tract and ectopically at other sites in the setting of tissue injury. The regenerating islet-derived family member 4 (RegIV) gene has been reported in various cancers, associating with diverse functions. This study examined the relation of the relative expression of RegIV gene to clinicopathological factors and outcomes in patients with colorectal cancer (CRC). METHODS We studied surgical specimens of cancer tissue and adjacent normal mucosa obtained from 202 patients with untreated CRC. The relative expression levels of RegIV mRNA in cancer and in normal adjacent mucosa were measured by quantitative real-time reverse-transcriptase polymerase chain reaction. RESULTS RegIV gene expression was higher in cancer tissue than in adjacent normal mucosa. The multivariate analysis of clinicopathological factors for 5-year overall survival showed a higher level of RegIV gene expression was a significant independent predictor. Overall survival at 5 years differed significantly between patients with high RegIV gene expression and those with low expression. CONCLUSIONS Overexpression of the RegIV gene is considered a useful independent predictor of outcomes in patients with CRC.
Collapse
Affiliation(s)
- Masakatsu Numata
- Gastroenterological Center, Yokohama City University Medical Center, Minami-ku, Yokohama-shi, Kanagawa-ken, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Jing D, Kehoe DE, Tzanakakis ES. Expression of Reg family proteins in embryonic stem cells and its modulation by Wnt/beta-catenin signaling. Stem Cells Dev 2011; 19:1307-19. [PMID: 20050810 DOI: 10.1089/scd.2009.0398] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Regenerating islet (Reg) proteins are involved in the proliferation and differentiation of diverse cell types. However, whether embryonic stem cells (ESCs) express Reg genes and their corresponding proteins remains unknown. In this study, we probed the expression of Reg family members by mouse ESCs (mESCs). Mouse Reg1 and Reg3gamma were detected in undifferentiated stem cells. Furthermore, we tested if gastrin--an inducer of Reg1 expression in committed cells--up-regulates the Reg1 gene in mESCs. Gastrin did not affect the expression of Reg1 either in self-renewing mESCs or under conditions permitting their differentiation. Moreover, overexpression of Reg genes found in various forms of cancer has been linked to dysregulated activation of the canonical Wnt/beta-catenin cascade. Given the important roles of Wnt signaling in stem cells, we investigated if activation of Wnt alters the expression of Reg genes in mESCs. Wnt activation led to an increase in Reg1 gene expression with a concomitant increase in the amount of secreted Reg1 protein. Finally, the expression pattern of genes indicative of differentiation was examined in mESCs that were either exposed to soluble Reg1 or overexpressed the Reg1 gene. This is the first account of expression of Reg family members by ESCs. Our results show that the canonical Wnt cascade affects Reg expression and warrants further studies into the potential roles of Reg proteins in stem cell physiology.
Collapse
Affiliation(s)
- Donghui Jing
- Department of Chemical and Biological Engineering, State University of New York at Buffalo, Buffalo, New York 14260, USA
| | | | | |
Collapse
|
22
|
Fang M, Wang J, Huang JY, Ling SC, Rudd JA, Hu ZY, Yew DT, Han S. The neuroprotective effects of Reg-2 following spinal cord transection injury. Anat Rec (Hoboken) 2010; 294:24-45. [PMID: 21157914 DOI: 10.1002/ar.21281] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 08/28/2010] [Indexed: 11/07/2022]
Abstract
This study was designed to elucidate the potential neuroprotective effects of Reg-2 (regeneration gene protein 2) in a rodent model of spinal cord transection injury at the ninth thoracic level. Reg-2 at 100 and 500 μg, recombinant rat ciliary neurotrophic factor, or vehicle were delivered intrathecally using Alzet miniosmotic pumps. We found that Reg-2 treatment significantly reduced neuronal death in the spinal cord. There was also an attenuation of inflammation at the injury site and an increase in white matter sparing and retained myelination. Retrograde tracing revealed that Reg-2 protected axons of long descending pathways at 6 weeks post-SCI, and the number of FluoroGold-labeled neurons in spinal and supraspinal regions was also significantly increased. Immunofluorescent staining confirmed that the spared white matter contained neurofilament-positive axons. Moreover, behavioral improvements were revealed by Basso Beattie Bresnahan locomotor rating scores and grid-walk analysis. These results suggest that Reg-2 might promote functional recovery by increasing axonal growth, inhibiting neuronal apoptosis, and attenuating spinal cord secondary injury after SCI.
Collapse
Affiliation(s)
- Marong Fang
- Institute of Anatomy and Cell Biology, Medical College, Zhejiang University, Hangzhou, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Zhou Z, Sheng X, Zhang Z, Zhao K, Zhu L, Guo G, Friedenberg SG, Hunter LS, Vandenberg-Foels WS, Hornbuckle WE, Krotscheck U, Corey E, Moise NS, Dykes NL, Li J, Xu S, Du L, Wang Y, Sandler J, Acland GM, Lust G, Todhunter RJ. Differential genetic regulation of canine hip dysplasia and osteoarthritis. PLoS One 2010; 5:e13219. [PMID: 20949002 PMCID: PMC2952589 DOI: 10.1371/journal.pone.0013219] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 09/12/2010] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Canine hip dysplasia (HD) is a common polygenic trait characterized by hip malformation that results in osteoarthritis (OA). The condition in dogs is very similar to developmental dysplasia of the human hip which also leads to OA. METHODOLOGY/PRINCIPAL FINDINGS A total of 721 dogs, including both an association and linkage population, were genotyped. The association population included 8 pure breeds (Labrador retriever, Greyhounds, German Shepherd, Newfoundland, Golden retriever, Rottweiler, Border Collie and Bernese Mountain Dog). The linkage population included Labrador retrievers, Greyhounds, and their crosses. Of these, 366 dogs were genotyped at ∼22,000 single nucleotide polymorphism (SNP) loci and a targeted screen across 8 chromosomes with ∼3,300 SNPs was performed on 551 dogs (196 dogs were common to both sets). A mixed linear model approach was used to perform an association study on this combined association and linkage population. The study identified 4 susceptibility SNPs associated with HD and 2 SNPs associated with hip OA. CONCLUSION/SIGNIFICANCE The identified SNPs included those near known genes (PTPRD, PARD3B, and COL15A1) reported to be associated with, or expressed in, OA in humans. This suggested that the canine model could provide a unique opportunity to identify genes underlying natural HD and hip OA, which are common and debilitating conditions in both dogs and humans.
Collapse
Affiliation(s)
- Zhengkui Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Xihui Sheng
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- Department of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Zhiwu Zhang
- Institute for Genomic Diversity, Cornell University, Ithaca, New York, United States of America
| | - Keyan Zhao
- Department of Computational Biology and Statistics, Cornell University, Ithaca, New York, United States of America
| | - Lan Zhu
- Department of Statistics, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Gang Guo
- Department of Animal Science, China Agricultural University, Beijing, China
| | - Steve G. Friedenberg
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Linda S. Hunter
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Wendy S. Vandenberg-Foels
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - William E. Hornbuckle
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Ursula Krotscheck
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Elizabeth Corey
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Nancy S. Moise
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Nathan L. Dykes
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Junya Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shangzhong Xu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lixin Du
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yachun Wang
- Department of Animal Science, China Agricultural University, Beijing, China
| | - Jody Sandler
- Guiding Eyes for the Blind, Yorktown Heights, New York, United States of America
| | - Gregory M. Acland
- Baker Institute for Animal Health, Cornell University, Ithaca, New York, United States of America
| | - George Lust
- Baker Institute for Animal Health, Cornell University, Ithaca, New York, United States of America
| | - Rory J. Todhunter
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
24
|
Fang M, Huang JY, Ling SC, Rudd JA, Yew DT, Han S. Effects of Reg-2 on survival of spinal cord neurons in vitro. Anat Rec (Hoboken) 2010; 293:464-76. [PMID: 20091885 DOI: 10.1002/ar.21087] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Regeneration gene protein 2 (Reg-2) is a small secreted protein expressed in motor and sensory neurons of spinal cord during developmental stages and following injury of peripheral nerves. Reg-2 appears to act as a neurotrophic factor and protects injured neurons from death during regeneration. To illustrate these potential protective effects in vitro, we investigated the blocking effects of Reg-2 antibodies on the survival of primary cultured spinal cord neurons and astrocytes, as well as on neurite outgrowth. In addition, the effects of Reg-2 in neuron injury models induced by peroxide and mitochondrial poisoning were assessed. Our results showed that Reg-2 antibody markedly reduced survival and neurite outgrowth from neurons, whereas astrocyte survival was unaffected. Addition of Reg-2 into the culture medium had no effect on neuron survival or neurite outgrowth. However, the addition of the Reg-2 into culture media after peroxide treatment or cellular hypoxia insult induced by mitochondrial poisoning can reduce lactate dehydrogenase release levels and cell death. Thus, the data suggests that Reg-2 is essential for the survival and neurite outgrowth of developing spinal cord neurons but not the survival of glial cells, and that Reg-2 plays protective effects on spinal cord neurons against injury in vitro.
Collapse
Affiliation(s)
- Marong Fang
- Institute of Anatomy and Cell Biology, Zhejiang University, China
| | | | | | | | | | | |
Collapse
|
25
|
He SQ, Yao JR, Zhang FX, Wang Q, Bao L, Zhang X. Inflammation and nerve injury induce expression of pancreatitis-associated protein-II in primary sensory neurons. Mol Pain 2010; 6:23. [PMID: 20420691 PMCID: PMC2873504 DOI: 10.1186/1744-8069-6-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Accepted: 04/26/2010] [Indexed: 01/18/2023] Open
Abstract
Pancreatitis-associated protein (PAP)-I and -II, lectin-related secretory proteins, are members of the regenerating gene (Reg) family. Although expression of PAP-I was found in the dorsal root ganglion (DRG) neurons following peripheral nerve injury and cystitis, whether PAP-II could be expressed in DRG neurons in chronic pain models remains unclear. The present study shows an inflammation- and nerve injury-triggered expression of PAP-II in rat DRG neurons. In situ hybridization showed that only a few DRG neurons normally contained PAP-I and -II mRNAs. After peripheral inflammation, PAP-I and -II mRNAs were present in over half of small DRG neurons. Such an elevated expression of PAP-I and -II reached the peak level on the second day. Immunostaining showed that the expression of PAP-II was mostly increased in the isolectin B4-positive subset of small DRG neurons after inflammation. Furthermore, the expression of PAP-II was also induced in DRG neurons after peripheral nerve injury. Interestingly, PAP-II expression was shifted from small neurons on day 2 to large DRG neurons that expressed neuropeptide Y during the later post-injury days. These results suggest that PAP-II may play potential roles in the modulation of spinal sensory pathways in pathological pain states.
Collapse
Affiliation(s)
- Shao-Qiu He
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | | | | | | | | | | |
Collapse
|
26
|
Lim JW, Song JY, Seo JY, Kim H, Kim KH. Role of Pancreatitis-Associated Protein 1 on Oxidative Stress-Induced Cell Death of Pancreatic Acinar Cells. Ann N Y Acad Sci 2009; 1171:545-8. [DOI: 10.1111/j.1749-6632.2009.04702.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Microarray analysis of somatostatin receptor 5-regulated gene expression profiles in murine pancreas. World J Surg 2009; 33:630-7. [PMID: 19137362 DOI: 10.1007/s00268-008-9893-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND We previously demonstrated that somatostatin receptor type 5 (SSTR5) gene ablation results in alterations in insulin secretion and glucose metabolism, accompanied by morphologic alterations in the islets of Langerhans. The underlying mechanism(s) by which SSTR5 exerts its cellular functions remain(s) unknown. We hypothesized that SSTR5 mediates the inhibitory effect of somatostatin (SST) on insulin secretion and islet proliferation by regulating a specific set of pancreatic genes. METHODS To identify SSTR5-regulated pancreatic genes, gene expression microarray analysis was performed on the whole pancreas of 1- and 3-month-old wild-type (WT) and SSTR5 knockout (SSTR5-/-) male mice. Real-time RT-PCR and immunofluorescence were performed to validate selected differentially expressed genes. RESULTS A set of 143 probes were identified to be differentially expressed in the pancreas of 1-month-old SSTR5-/- mice, 72 of which were downregulated and 71 upregulated. At 3 months of age, SSTR5 gene ablation resulted in downregulation of a set of 30 probes and upregulation of a set of 37 probes. Among these differentially expressed genes, there were 15 and 5 genes that were upregulated and downregulated, respectively, in mice at both 1 and 3 months of age. Three genes, PAP/INGAP, ANG, and TDE1, were selected to be validated by real-time RT-PCR and immunofluorescence. CONCLUSIONS A specific set of genes linked to a wide range of cellular functions such as islet proliferation, apoptosis, angiogenesis, and tumorigenesis were either upregulated or downregulated in SSTR5-deficient male mice compared with their expression in wild-type mice. Therefore, these genes are potential SSTR5-regulated genes during normal pancreatic development and functional maintenance.
Collapse
|
28
|
Ferrés-Masó M, Sacilotto N, López-Rodas G, Dagorn JC, Iovanna JL, Closa D, Folch-Puy E. PAP1 signaling involves MAPK signal transduction. Cell Mol Life Sci 2009; 66:2195-204. [PMID: 19434369 PMCID: PMC11115593 DOI: 10.1007/s00018-009-0040-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 03/26/2009] [Accepted: 04/21/2009] [Indexed: 12/21/2022]
Abstract
Pancreatitis-associated protein 1 (PAP1) belongs to the Reg family of secretory proteins. Several important biological roles have been attributed to PAP1 but the signaling pathways activated by this protein remain only partially understood. Here, we describe the intracellular pathways triggered by PAP1 in a pancreatic acinar cell line. Taking advantage of the fact that PAP1 induces its own transcription, we performed ChIP assays to analyze the recruitment of transcriptional factors on its promoter. Our results show that PAP1 increased the transactivation activity of pap1 and the binding on its promoter of the nuclear factors C/EBPbeta, P-CREB, P-ELK1, EGR1, STAT3, and ETS2, which are downstream targets of MAPK signaling. p44/42, p38, and JNK MAPKs activity increased after PAP1 treatment. In addition, pharmacological inhibition of these kinases markedly inhibited the induction of pap1 mRNA. Taken together, these results indicated that the mechanism of PAP1 action involves the activation of the MAPK superfamily.
Collapse
Affiliation(s)
- M. Ferrés-Masó
- Department of Experimental Pathology, Institut d’Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, c/Rosselló 161, 7º, 08036 Barcelona, Spain
| | - N. Sacilotto
- Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| | - G. López-Rodas
- Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| | - J. C. Dagorn
- Centre de Recherche INSERM U.624, Stress Cellulaire, Marseille, France
| | - J. L. Iovanna
- Centre de Recherche INSERM U.624, Stress Cellulaire, Marseille, France
| | - D. Closa
- Department of Experimental Pathology, Institut d’Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, c/Rosselló 161, 7º, 08036 Barcelona, Spain
| | - E. Folch-Puy
- Department of Experimental Pathology, Institut d’Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, c/Rosselló 161, 7º, 08036 Barcelona, Spain
| |
Collapse
|
29
|
Szasz T, Eddy S, Paulauskis J, Burnett R, Ellekilde M, Iovanna JL, Watts SW. Differential expression of pancreatitis-associated protein and thrombospondins in arterial versus venous tissues. J Vasc Res 2009; 46:551-60. [PMID: 19571575 DOI: 10.1159/000226223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 11/18/2008] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND/AIMS Arteries and veins modulate cardiovascular homeostasis and contribute to hypertension pathogenesis. Functional differences between arteries and veins are based upon differences in gene expression. To better characterize these expression patterns, and to identify candidate genes that could be manipulated selectively in the venous system, we performed whole genome expression profiling of arteries and veins. METHODS We used the CodeLink platform and the major artery (thoracic aorta) and vein (caudal vena cava) of the rat. RESULTS The most prominent difference was pancreatitis-associated protein (PAP1), expressed 64-fold higher in vena cava versus aorta. Expression of mRNA for thrombospondins (TSP-1, TSP-4) was greater than 5-fold higher in veins versus arteries. Higher mRNA expression of TSP-1, TSP-2, TSP-4 and PAP1 in vena cava versus aorta was confirmed by PCR. Immunohistochemical analysis of tissue sections qualitatively confirmed a higher expression of these proteins in vena cava versus aorta. CONCLUSION This is the first gene array study of adult rat arterial and venous tissues, and also the first study to report differences in inflammatory genes between arteries and veins. Data from these studies may provide novel insights into the genetic basis for functional differences between arteries and veins in health and disease.
Collapse
Affiliation(s)
- Theodora Szasz
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824-1317, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Reactive oxygen and reactive nitrogen species (ROS/RNS) have been implicated in the pathogenesis of acute and chronic pancreatitis. Clinical and basic science studies have indicated that ROS/RNS formation processes are intimately linked to the development of the inflammatory disorders. The detrimental effects of highly reactive ROS/RNS are mediated by their direct actions on biomolecules (lipids, proteins, and nucleic acids) and activation of proinflammatory signal cascades, which subsequently lead to activation of immune responses. The present article summarizes the possible sources of ROS/RNS formation and the detailed signaling cascades implicated in the pathogenesis of pancreatic inflammation, as observed in acute and chronic pancreatitis. A therapeutic ROS/RNS-scavenging strategy has been advocated for decades; however, clinical studies examining such approaches have been inconsistent in their results. Emerging evidence indicates that pancreatitis-inducing ROS/RNS generation may be attenuated by targeting ROS/RNS-generating enzymes and upstream mediators.
Collapse
Affiliation(s)
- Po Sing Leung
- Department of Physiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | | |
Collapse
|
31
|
Li L, Bachem MG, Zhou S, Sun Z, Chen J, Siech M, Bimmler D, Graf R. Pancreatitis-associated protein inhibits human pancreatic stellate cell MMP-1 and -2, TIMP-1 and -2 secretion and RECK expression. Pancreatology 2008; 9:99-110. [PMID: 19077460 DOI: 10.1159/000178880] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2007] [Accepted: 03/21/2008] [Indexed: 12/11/2022]
Abstract
BACKGROUND/AIMS Pancreatic stellate cells (PSCs) play a key role in fibrogenesis associated with acute and chronic pancreatitis. Pancreatitis-associated protein (PAP), an acute-phase protein, is dramatically upregulated during acute and chronic pancreatitis. Assuming a protective role of PAP, we investigated its effects on human PSCs. METHODS PSCs were obtained by outgrowth from fibrotic human pancreas tissue. PAP was expressed in the yeast Pichia pastoris. PAP was added at 10 ng/ml to cultured PSCs. Cell proliferation was determined by bromodeoxyuridine incorporation. PSC migration was assessed by a wound healing assay. Collagen types I and III, fibronectin, matrix metalloproteinases (MMPs), tissue inhibitors of MMPs (TIMPs) and reversion-inducing cysteine-rich protein with Kazal motifs (RECK) were demonstrated on protein and mRNA level. RESULTS PAP had no significant effect on PSC proliferation and migration. Cell-associated fibrillar collagen types I and III and fibronectin increased after addition of PAP to PSCs. PAP diminished the expression of MMP-1 and -2 and TIMP-1 and -2 and their concentrations in PSC supernatants. RECK was detected on the surface of PSCs and its expression was reduced after PAP application. CONCLUSIONS Our data offer new insights into the biological functions of PAP, which may play an important role in wound healing response and cell-matrix interactions.
Collapse
Affiliation(s)
- Ling Li
- Department of Clinical Chemistry, University Hospital Ulm, Ulm, Germany
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Lin YY, Viterbo D, Mueller CM, Stanek AE, Smith-Norowitz T, Drew H, Wadgaonkar R, Zenilman ME, Bluth MH. Small-interference RNA gene knockdown of pancreatitis-associated proteins in rat acute pancreatitis. Pancreas 2008; 36:402-10. [PMID: 18437087 PMCID: PMC3151650 DOI: 10.1097/mpa.0b013e31815f3933] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Pancreatitis-associated proteins (PAPs) are induced in acute pancreatitis and antisense-mediated gene knockdown of PAP decreased PAP gene expression and worsened pancreatitis. Here, we investigated the effect of a more stable inhibition of PAP using small-interference RNA gene knockdown in vitro and in an in vivo model of experimental pancreatitis. METHODS Pancreatitis-associated protein-specific siRNA was administered to AR42J cell cultures or rats induced with pancreatitis. Controls included administration of scrambled siRNA or vehicle alone. After 24 hours, cells and pancreata were harvested and assessed for PAP (PAP 1, PAP 2, PAP 3) gene expression and pancreatitis severity. RESULTS In vitro, PAP protein, and mRNA levels were reduced (PAP 1, 76%; PAP 2, 8%; PAP 3, 24%) in cells treated with PAP siRNA. In vivo, PAP 1, and PAP 3 expressions were reduced (PAP 1, 36%; PAP 3, 66%) in siRNA-treated rats; there was no difference in PAP 2 isoform mRNA expression and serum protein levels. Serum amylase and lipase levels decreased (> or =50%) after administration of siRNA; interleukin (IL) 1beta, IL-4, and IL-6 increased, whereas C-reactive protein and tumor necrosis factor-alpha decreased when compared with vehicle control. Administration of PAP siRNA correlated with worsening histopathology. CONCLUSIONS siRNA-mediated gene knockdown of PAP worsens pancreatitis. Differences in gene knockdown technology may provide different approaches to study gene function.
Collapse
Affiliation(s)
- Yin-Yao Lin
- SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Takahara Y, Suzuki A, Maeda M, Kawashima H, Nakatani T, Kiyama H. Expression of Pancreatitis Associated Proteins in Urothelium and Urinary Afferent Neurons Following Cyclophosphamide Induced Cystitis. J Urol 2008; 179:1603-9. [DOI: 10.1016/j.juro.2007.11.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2007] [Indexed: 10/22/2022]
Affiliation(s)
- Yuki Takahara
- Department of Anatomy and Neurobiology, Osaka City University, Graduate School of Medicine, Osaka, Japan
- Department of Urology, Osaka City University, Graduate School of Medicine, Osaka, Japan
| | - Akinobu Suzuki
- Department of Anatomy and Neurobiology, Osaka City University, Graduate School of Medicine, Osaka, Japan
| | - Mitsuyo Maeda
- Department of Anatomy and Neurobiology, Osaka City University, Graduate School of Medicine, Osaka, Japan
| | - Hidenori Kawashima
- Department of Anatomy and Neurobiology, Osaka City University, Graduate School of Medicine, Osaka, Japan
- Department of Urology, Osaka City University, Graduate School of Medicine, Osaka, Japan
| | - Tatsuya Nakatani
- Department of Anatomy and Neurobiology, Osaka City University, Graduate School of Medicine, Osaka, Japan
- Department of Urology, Osaka City University, Graduate School of Medicine, Osaka, Japan
| | - Hiroshi Kiyama
- Department of Anatomy and Neurobiology, Osaka City University, Graduate School of Medicine, Osaka, Japan
- Department of Urology, Osaka City University, Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
34
|
Algül H, Treiber M, Lesina M, Nakhai H, Saur D, Geisler F, Pfeifer A, Paxian S, Schmid RM. Pancreas-specific RelA/p65 truncation increases susceptibility of acini to inflammation-associated cell death following cerulein pancreatitis. J Clin Invest 2007; 117:1490-501. [PMID: 17525802 PMCID: PMC1868784 DOI: 10.1172/jci29882] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Accepted: 03/30/2007] [Indexed: 12/21/2022] Open
Abstract
Activation of the transcription factor NF-kappaB/Rel has been shown to be involved in inflammatory disease. Here we studied the role of RelA/p65, the main transactivating subunit, during acute pancreatitis using a Cre-loxP strategy. Selective truncation of the rela gene in pancreatic exocrine cells led to both severe injury of the acinar cells and systemic complications including lung and liver damage. Our data demonstrated that expression and induction of the protective pancreas-specific acute phase protein pancreatitis-associated protein 1 (PAP1) depended on RelA/p65. Lentiviral gene transfer of PAP1 cDNA reduced the extent of necrosis and infiltration in the pancreata of mice with selective truncation of RelA/p65. These results provide in vivo evidence for RelA/p65 protection of acinar cell death via upregulation of PAP1. Moreover, our data underscore the pancreas-specific role of NF-kappaB/Rel and suggest multidimensional roles of NF-kappaB/Rel in different cells and contexts during inflammation.
Collapse
Affiliation(s)
- Hana Algül
- Second Department of Internal Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
Institute of Pharmacology and Toxicology, University of Bonn, Bonn, Germany.
Department of Neurology, Molecular Neurology Unit, University of Muenster, Muenster, Germany
| | - Matthias Treiber
- Second Department of Internal Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
Institute of Pharmacology and Toxicology, University of Bonn, Bonn, Germany.
Department of Neurology, Molecular Neurology Unit, University of Muenster, Muenster, Germany
| | - Marina Lesina
- Second Department of Internal Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
Institute of Pharmacology and Toxicology, University of Bonn, Bonn, Germany.
Department of Neurology, Molecular Neurology Unit, University of Muenster, Muenster, Germany
| | - Hassan Nakhai
- Second Department of Internal Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
Institute of Pharmacology and Toxicology, University of Bonn, Bonn, Germany.
Department of Neurology, Molecular Neurology Unit, University of Muenster, Muenster, Germany
| | - Dieter Saur
- Second Department of Internal Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
Institute of Pharmacology and Toxicology, University of Bonn, Bonn, Germany.
Department of Neurology, Molecular Neurology Unit, University of Muenster, Muenster, Germany
| | - Fabian Geisler
- Second Department of Internal Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
Institute of Pharmacology and Toxicology, University of Bonn, Bonn, Germany.
Department of Neurology, Molecular Neurology Unit, University of Muenster, Muenster, Germany
| | - Alexander Pfeifer
- Second Department of Internal Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
Institute of Pharmacology and Toxicology, University of Bonn, Bonn, Germany.
Department of Neurology, Molecular Neurology Unit, University of Muenster, Muenster, Germany
| | - Stephan Paxian
- Second Department of Internal Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
Institute of Pharmacology and Toxicology, University of Bonn, Bonn, Germany.
Department of Neurology, Molecular Neurology Unit, University of Muenster, Muenster, Germany
| | - Roland M. Schmid
- Second Department of Internal Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
Institute of Pharmacology and Toxicology, University of Bonn, Bonn, Germany.
Department of Neurology, Molecular Neurology Unit, University of Muenster, Muenster, Germany
| |
Collapse
|
35
|
Denz C, Siegel L, Lehmann KJ, Dagorn JC, Fiedler F. Is hyperlipasemia in critically ill patients of clinical importance? An observational CT study. Intensive Care Med 2007; 33:1633-6. [PMID: 17497124 DOI: 10.1007/s00134-007-0668-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Accepted: 04/12/2007] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To assess morphological alterations of the pancreas by contrast-enhanced computed tomography (cCT) and subclinical cellular damage of the pancreas by measuring pancreatitis-associated protein (PAP) in critically ill patients without prior pancreatic disorder who presented with raised serum lipase levels. DESIGN Prospective, observational study SETTING Mixed surgical/neurosurgical intensive care unit of a German university hospital. PATIENTS One hundred and thirty consecutive critically ill patients without prior damage or disease of the pancreas and an expected length of stay of more than 5 days. INTERVENTIONS Daily serum lipase measurements and daily serum PAP measurements. Contrast-enhanced upper abdominal cCT study in patients with triple increase of serum lipase. MEASUREMENTS AND RESULTS Thirty-eight patients showed raised serum lipase levels and qualified for the cCT scan study. In 20 patients cCT scans were performed. Morphological alterations of the pancreas were found in 7 out these 20 patients while serum PAP levels were raised in all patients. CONCLUSION Hyperlipasemia is a common finding in critically ill patients without prior pancreatic disorder. While elevated serum PAP levels indicate pancreatic cellular stress morphological alterations of the pancreas are rare and of little clinical importance.
Collapse
Affiliation(s)
- Christof Denz
- University of Heidelberg, Clinic of Anesthesiology and Intensive Care Medicine, University Hospital Mannheim, Faculty of Clinical Medicine Mannheim, 68167 Mannheim, Germany.
| | | | | | | | | |
Collapse
|
36
|
Lipsett M, Hanley S, Castellarin M, Austin E, Suarez-Pinzon WL, Rabinovitch A, Rosenberg L. The role of Islet Neogenesis-Associated Protein (INGAP) in islet neogenesis. Cell Biochem Biophys 2007; 48:127-37. [PMID: 17709882 DOI: 10.1007/s12013-007-0028-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 01/09/2023]
Abstract
Islet Neogenesis-Associated Protein (INGAP) is a member of the Reg family of proteins implicated in various settings of endogenous pancreatic regeneration. The expression of INGAP and other RegIII proteins has also been linked temporally and spatially with the induction of islet neogenesis in animal models of disease and regeneration. Furthermore, administration of a peptide fragment of INGAP (INGAP peptide) has been demonstrated to reverse chemically induced diabetes as well as improve glycemic control and survival in an animal model of type 1 diabetes. Cultured human pancreatic tissue has also been shown to be responsive to INGAP peptide, producing islet-like structures with function, architecture and gene expression matching that of freshly isolated islets. Likewise, studies in normoglycemic animals show evidence of islet neogenesis. Finally, recent clinical studies suggest an effect of INGAP peptide to improve insulin production in type 1 diabetes and glycemic control in type 2 diabetes.
Collapse
Affiliation(s)
- Mark Lipsett
- Department of Surgery, McGill University, Montreal, Quebec, Canada H3G 1A4
| | | | | | | | | | | | | |
Collapse
|
37
|
Weber H, Hühns S, Jonas L, Sparmann G, Bastian M, Schuff-Werner P. Hydrogen peroxide-induced activation of defense mechanisms against oxidative stress in rat pancreatic acinar AR42J cells. Free Radic Biol Med 2007; 42:830-41. [PMID: 17320765 DOI: 10.1016/j.freeradbiomed.2006.12.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 12/08/2006] [Accepted: 12/15/2006] [Indexed: 01/04/2023]
Abstract
Oxidative stress has been implicated in the pathogenesis of acute pancreatitis. Generally, cells respond to oxidative stress with adaptive changes in gene expression aimed at preventing cellular damage and increasing their survival. However, the overall extent of these genetic changes remains poorly defined. This issue was, therefore, examined in the current study. Following exposure of rat pancreatic AR42J cells to 0.08 mM hydrogen peroxide (H(2)O(2)), a concentration failing to induce necrotic cell death, the expression of 96 stress-related genes was monitored by cDNA microarray analysis. H(2)O(2) provoked a time-dependent reorientation of 54 genes. In particular, at 6 and 24 h, 27 and 11 genes were induced, whereas 10 and 6 genes were suppressed, respectively, showing that the degree of change was stronger at the early time point, and that the number of up-regulated genes was obviously larger than the number of down-regulated genes. Reverse transcription-PCR for selected genes confirmed the gene expression pattern. Many of the differentially up-regulated genes can be related to the antioxidant enzymatic defense system, to cell cycle arrest, to repair and/or replacement of damaged DNA, to repair of damaged protein, and to activation of the NF-kappaB pathway. The results suggest that AR42J cells respond to sublethal oxidative stress with transient transcriptional activation of multiple defense mechanisms that may be an indication for a complex adaptation process. An understanding of the cellular stress responses may lead to new insights into the pathogenesis of oxidative stress-related diseases including acute pancreatitis.
Collapse
Affiliation(s)
- Heike Weber
- Institute of Clinical Chemistry and Laboratory Medicine, University of Rostock, Ernst-Heydemann-Strasse 6, 18057 Rostock, Germany.
| | | | | | | | | | | |
Collapse
|
38
|
Savković V, Gantzer H, Reiser U, Selig L, Gaiser S, Sack U, Klöppel G, Mössner J, Keim V, Horn F, Bödeker H. Clusterin is protective in pancreatitis through anti-apoptotic and anti-inflammatory properties. Biochem Biophys Res Commun 2007; 356:431-7. [PMID: 17359935 DOI: 10.1016/j.bbrc.2007.02.148] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2007] [Accepted: 02/27/2007] [Indexed: 11/26/2022]
Abstract
Clusterin is overexpressed in pancreas during the acute phase of pancreatitis. We intended to clarify the role of clusterin expression in stressed exocrine pancreas. We performed in vitro experiments in transfected AR4-2J cells with modified expression levels of clusterin and in vivo studies in clusterin-deficient mice. AR4-2J cells were exposed to agents mimicking cell-stress during pancreatitis (cerulein, hydrogen peroxide, staurosporine or lysophosphatidylcholine). Clusterin-overexpressing AR4-2J cells showed higher viability after cell stress and accordingly reduced rates of apoptosis and lessened caspase-3 activation. Blockage of endogenous clusterin expression reduced viability and enhanced apoptosis. Presence of clusterin reduced NF-kappaB activation and expression of the NF-kappaB target genes TNF-alpha and MOB-1 under cell stress. Clusterin-deficient mice showed a more severe course of acute experimental pancreatitis with enhanced rates of apoptosis and inflammatory cell infiltration. We concluded that clusterin was protective during inflammation of exocrine pancreas because of its anti-apoptotic and anti-inflammatory functions.
Collapse
Affiliation(s)
- Vuk Savković
- Medizinische Klinik und Poliklinik 2, Universitätsklinikum Leipzig AöR, Ph.-Rosenthal-Str. 27, 04103 Leipzig, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Fleming A, Rosenberg L. Prospects and challenges for islet regeneration as a treatment for diabetes: a review of islet neogenesis associated protein. J Diabetes Sci Technol 2007; 1:231-44. [PMID: 19888412 PMCID: PMC2771469 DOI: 10.1177/193229680700100214] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Diabetes mellitus results from inadequate insulin action, which can be viewed as a consequence of the limited ability to restore beta cells after they are lost as the result of metabolic exhaustion, autoimmune destruction, or surgical insult. Arguably, a uniformly effective therapeutic pathway to address all forms of diabetes would be to reverse the restrictions on beta-cell and islet regeneration. The development from progenitor cells of islets with normal endocrine function does occur in adult humans; it is referred to as islet neogenesis. The induction of islet neogenesis is an important, if not essential, therapeutic approach for curing type 1 diabetes mellitus (T1DM) and could be valuable in the treatment of type 2 diabetes mellitus (T2DM) as well. Islet neogenesis associated protein (INGAP) is the first therapeutic candidate to be identified as the result of a purposeful search for an endogenous molecule with islet neogenic activity. It was found that partial obstruction of the pancreatic duct in hamsters induced islet neogenesis; under this condition, a neogenesis-promoting activity was identified and partially purified from a soluble tissue fraction. A 168-kDa protein product of the cloned gene was found to be responsible for the neogenesis activity. This molecule named INGAP contains an active core sequence of amino acids called INGAP peptide. Results from in vitro, animal, and human studies suggest that INGAP and INGAP peptide are neogenic in at least several vertebrate species, including humans. INGAP has since been found to be a member of the family of Reg proteins, which are found across and in multiple versions within species and are closely associated with embryonic and regenerative processes. Clinical results suggest that INGAP peptide can be a suitable neogenesis therapy, but optimization of the therapy and more data are required to fully access this potential. Understanding of the signaling pathways of INGAP and other related Reg proteins is a promising means of advancing therapeutic development for people with T1DM and T2DM. The quest for the fundamental restorative approach to lost insulin secretion is an enticing target for drug development.
Collapse
Affiliation(s)
- Alexander Fleming
- Kinexum Metabolics, Inc., Harpers Ferry, West Virginia, and formerly Supervisory Medical Officer, Division of Metabolic and Endocrine Drug Products, Food and Drug Administration, Montréal, Québec, Canada
| | - Lawrence Rosenberg
- Department of Surgery, McGill University, and Centre for Pancreatic Diseases, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| |
Collapse
|
40
|
Abstract
Pancreatitis-associated protein (PAP) was discovered in the pancreatic juice of rats with acute pancreatitis. PAP is a 16 kDa secretory protein structurally related to the C-type lectins although classical lectin-related function has not been reported yet. Then, it was demonstrated that PAP expression may be activated in some tissues in a constitutive or injury- and inflammation-induced manner. More recently, it has been found that PAP acts as an anti-inflammatory factor in vitro and in vivo. PAP expression can be induced by several pro- and anti-inflammatory cytokines and by itself through a JAK/STAT3-dependent pathway. PAP is able to activate the expression of the anti-inflammatory factor SOCS3 through the JAK/STAT3-dependent pathway. The JAK/STAT3/SOCS3 pathway seems to be a common point between PAP and several cytokines. Therefore, it is reasonable to propose that PAP is a new anti-inflammatory cytokine.
Collapse
|
41
|
Lieu HT, Simon MT, Nguyen-Khoa T, Kebede M, Cortes A, Tebar L, Smith AJH, Bayne R, Hunt SP, Bréchot C, Christa L. Reg2 inactivation increases sensitivity to Fas hepatotoxicity and delays liver regeneration post-hepatectomy in mice. Hepatology 2006; 44:1452-64. [PMID: 17133485 DOI: 10.1002/hep.21434] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Reg2/RegIIIbeta is the murine homologue of the human secreted HIP/PAP C-type lectin. HIP/PAP transgenic mice were protected against acetaminophen-induced acute liver failure and were stimulated to regenerate post-hepatectomy. To assess the role of Reg2, we used Reg2-/- mice in a model of fulminant hepatitis induced by Fas and in the post-hepatectomy regeneration. Within 4 hours of J0-2 treatment (0.5 microg/g), only 50% of the Reg2-/- mice were alive but with an increased sensitivity to Fas-induced oxidative stress and a decreased level of Bcl-xL. In contrast, HIP/PAP transgenic mice were resistant to Fas, with HIP/PAP serving as a sulfhydryl buffer to slow down decreases in glutathione and Bcl-xL. In Reg2-/- mice, liver regeneration was markedly impaired, with 29% mortality and delay of the S-phase and the activation of ERK1/2 and AKT. Activation of STAT3 began on time at 3 hours but persisted strongly up to 72 hours despite significant accumulation of SOCS3. Thus, Reg2 deficiency induced exaggerated IL-6/STAT-3 activation and mito-inhibition. Because the Reg2 gene was activated between 6 and 24 hours after hepatectomy in wild-type mice, Reg2 could mediate the TNF-alpha/IL-6 priming signaling by exerting a negative feed-back on STAT3/IL-6 activation to allow the hepatocytes to progress through the cell cycle. In conclusion, Reg2 deficiency enhanced liver sensitivity to Fas-induced oxidative stress and delayed liver regeneration with persistent TNF-alpha/IL6/STAT3 signaling. In contrast, overexpression of human HIP/PAP promoted liver resistance to Fas and accelerated liver regeneration with early activation/deactivation of STAT3. Reg2/HIP/PAP is therefore a critical mitogenic and antiapoptotic factor for the liver.
Collapse
Affiliation(s)
- Hanh-Tu Lieu
- Institut National de la Santé et de la Recherche Médicale, U785, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Sun Y, Liu FL, Song GQ, Qian W, Hou XH. Effects of acute and chronic restraint stress on visceral sensitivity and neuroendocrine hormones in rats. ACTA ACUST UNITED AC 2006; 7:149-55. [PMID: 16808795 DOI: 10.1111/j.1443-9573.2006.00260.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE To investigate the effects of acute and chronic partial restraint stress (PRS) on visceral sensitivity to colorectal distention and the neuroendocrine response in rats. METHODS Male Sprague-Dawley rats were used in this study. The abdominal withdrawal reflex score was assessed before stress, immediately after acute or chronic PRS, and 7 days after the first stress. The plasma levels of corticosterone (CORT) and adrenocorticotropic hormone (ACTH) were detected by radioimmunoassay at different time points. RESULTS The abdominal withdrawal reflex scores of the rats with acute or chronic PRS were significantly higher immediately after stress than those before and 7 days after the stress (P < 0.05). The levels of CORT (25.35 +/- 6.03 ng/mL) and ACTH (312.47 +/- 50.76 pg/mL) in rats with acute PRS showed a significant elevation immediately after stress compared to rats without PRS (7.24 +/- 2.97 ng/mL, 97.00 +/- 23.33 pg/mL, P < 0.05). However, these hormones returned to the baseline value 7 days after acute PRS. The levels of CORT (20.84 +/- 2.19 ng/mL) and ACTH (200.41 +/- 78.10 pg/mL) in rats with chronic PRS were significantly higher after stress than in rats without PRS (P < 0.05), and these hormones remained elevated 7 days after chronic PRS. CONCLUSIONS Both acute and chronic PRS induce reversible visceral hypersensitivity. Acute PRS transiently elevates the plasma levels of CORT and ACTH, whereas chronic PRS has a longer term effect.
Collapse
Affiliation(s)
- Yan Sun
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | | | | | | | | |
Collapse
|
43
|
Kandil E, Lin YY, Bluth MH, Zhang H, Levi G, Zenilman ME. Dexamethasone mediates protection against acute pancreatitis via upregulation of pancreatitis-associated proteins. World J Gastroenterol 2006; 12:6806-11. [PMID: 17106929 PMCID: PMC2700294 DOI: 10.3748/wjg.v12.i42.6806] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 09/15/2006] [Accepted: 09/22/2006] [Indexed: 02/06/2023] Open
Abstract
AIM To examine the influence of dexamethasone on pancreatitis-associated protein (PAP) gene expression using both in vitro and in vivo models of acute pancreatitis and to study how PAP gene expression correlates with severity of pancreatitis. METHODS In vitro, IL-6 stimulated pancreas acinar AR42J cells were cultured with increasing concentrations of dexamethasone and assayed for PAP expression (RT-PCR). In vivo, pancreatitis was induced in rats by retrograde injection of 40 g/L taurocholate into the pancreatic duct. Animals were pretreated with dexamethasone (2 mg/kg) daily or saline for 4 d. Pancreata and serum were harvested after 24 h and gene expression levels of PAP I, II and III were measured by RT-PCR. Severity of pancreatitis was based on serum amylase, pancreatic wet weight, and histopathological score. RESULTS In vitro, dexamethasone and IL-6 induced a marked transcription of PAP I, II and III genes in AR42J cells at 24 h (P < 0.05 for all comparisons). In vivo, pancreas mRNA levels of PAP I, II or III increased by 2.6-fold, 1.9-fold, and 1.3-fold respectively after dexamethasone treatment, compared with saline treated animals. Serum amylase levels and edema were significantly lower in the dexamethasone group compared with the saline group. Histopathologic evaluation revealed less inflammation and necrosis in pancreata obtained from dexamethasone treated animals (P < 0.05). CONCLUSION Dexamethasone significantly decreases the severity of pancreatitis. The protective mechanism of dexamethasone may be via upregulating PAP gene expression during injury.
Collapse
Affiliation(s)
- Emad Kandil
- Department of Surgery, SUNY Downstate Medical Center, Box 40, 450 Clarkson Avenue, Brooklyn, NY 11203, USA
| | | | | | | | | | | |
Collapse
|
44
|
Skretting G, Austbø L, Olsaker I, Espenes A. Cloning and expression analysis of an ovine PAP-like protein cDNA, a gene differentially expressed in scrapie. Gene 2006; 376:116-22. [PMID: 16635555 DOI: 10.1016/j.gene.2006.02.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 02/06/2006] [Accepted: 02/09/2006] [Indexed: 12/01/2022]
Abstract
In a previous study, the mRNA level of a pancreatitis-associated protein (PAP)-like protein was found to be elevated in the ileal Peyer's patch of lambs during the early phase of scrapie infection. Here, we report the isolation of the ovine PAP-like protein cDNA which encodes a putative 178 amino acid protein with a signal peptide and a C-lectin binding domain. Comparisons of REG/PAP proteins between various species showed that the deduced amino acid sequences were conserved. The overall amino acid identity between the ovine PAP-like protein and bovine, human and rat REG/PAP proteins varied from 23% to 85%. In Northern blot analysis the expression of the ovine PAP-like protein mRNA was restricted to the ileal and jejunal Peyer's patches. The cellular expression of the PAP-like protein mRNA in the ovine intestine was further characterized by in situ hybridization. PAP-like protein mRNA was detected in cells of the epithelial lining in most crypts and in some intestinal villi in the ileum and jejunum while in the colon and rectum, the PAP-like protein mRNA expression was only detected in the deep portion of a few crypts. The data provided will offer the possibility to search for a link between this PAP-like protein and early events in the development of scrapie.
Collapse
Affiliation(s)
- Grethe Skretting
- Department of Basic Sciences and Aquatic Medicine, Norwegian School of Veterinary Science, P.O. Box 8146 Dep., N-0033, Oslo, Norway.
| | | | | | | |
Collapse
|
45
|
Graf R, Schiesser M, Reding T, Appenzeller P, Sun LK, Fortunato F, Perren A, Bimmler D. Exocrine Meets Endocrine: Pancreatic Stone Protein and Regenerating Protein—Two Sides of the Same Coin. J Surg Res 2006; 133:113-20. [PMID: 16360171 DOI: 10.1016/j.jss.2005.09.030] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Revised: 07/12/2005] [Accepted: 09/20/2005] [Indexed: 02/07/2023]
Abstract
BACKGROUND Regenerating protein (reg) and pancreatic stone protein (PSP) have been discovered independently in the fields of diabetes and pancreatitis. MATERIALS AND METHODS These proteins are identical; however, because of the gap between the endocrine and exocrine field, there was never a consensus and the nomenclature has not been rectified. Since the time of the initial discovery, more isoforms have been unified. Historically, PSP was discovered long before reg, yet, in many areas outside of the pancreatitis research field, reg is being used. RESULTS For PSP/reg, a role in proliferation and regeneration of islet cells has been postulated. A hitherto insufficiently understood phenomenon is the massive up-regulation of PSP/reg in pancreatic tissue and juice under conditions of stress. Similarly, PAP (pancreatitis-associated protein)/reg III has been attributed various functional roles. Structurally, the ability to form fibrils after tryptic cleavage is a striking common features of both proteins. However, this biochemical transformation is in itself not enough to gain functional insight. Thus, physiological and genetic approaches are required to further characterize the role of these proteins in the pancreas. Recently, more evidence has been presented in support of the theory that PSP/reg plays a key role in islet neogenesis/regeneration. CONCLUSIONS In this review we discuss the debate on the localization and functional roles of PSP/reg and PAP/regIII. Therefore, we have summarized hypotheses and experimental results supporting such hypotheses.
Collapse
Affiliation(s)
- Rolf Graf
- Pancreatitis Research Laboratory, Department of Visceral and Transplantation Surgery, University Hospital Zurich, Zurich, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Folch-Puy E, Granell S, Dagorn JC, Iovanna JL, Closa D. Pancreatitis-associated protein I suppresses NF-kappa B activation through a JAK/STAT-mediated mechanism in epithelial cells. THE JOURNAL OF IMMUNOLOGY 2006; 176:3774-9. [PMID: 16517747 DOI: 10.4049/jimmunol.176.6.3774] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Pancreatitis-associated protein I (PAP I), also known as HIP, p23, or Reg2 protein, has recently been implicated in the endogenous regulation of inflammation. Although it was initially characterized as a protein that is overexpressed in acute pancreatitis, PAP I has also been associated with a number of inflammatory diseases, such as Crohn's disease. Knowing that PAP I and IL-10 responses share several features, we have used a pancreatic acinar cell line (AR42J) to assess the extent to which their expression is reciprocally regulated, and whether the JAK/STAT and NF-kappaB signaling pathways are involved in the suppression of inflammation mediated by PAP I. We observed that PAP I is induced in epithelial cells by IL-10 and by PAP I itself. In contrast, we found phosphorylation and nuclear translocation of STAT3 and induction of suppressor of cytokine signaling 3 in response to PAP I exposure. Finally, a JAK-specific inhibitor, tyrphostin AG490, markedly prevented PAP I-induced NF-kappaB inhibition, pointing to a cross-talk between JAK/STAT3 and NF-kappaB signaling pathways. Together, these findings indicate that PAP I inhibits the inflammatory response by blocking NF-kappaB activation through a STAT3-dependent mechanism. Important functional similarities to the anti-inflammatory cytokine IL-10 suggest that PAP I could play a role similar to that of IL-10 in epithelial cells.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Animals
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- Antigens, Neoplasm/pharmacology
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/pharmacology
- Cell Line
- Epithelial Cells/metabolism
- Gene Expression Regulation
- Interleukin-10/genetics
- Interleukin-10/metabolism
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- NF-kappa B/antagonists & inhibitors
- NF-kappa B/metabolism
- Pancreatitis-Associated Proteins
- Phosphotyrosine/metabolism
- Protein Biosynthesis
- Protein Kinase Inhibitors/pharmacology
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/metabolism
- RNA, Messenger/genetics
- Rats
- STAT3 Transcription Factor/metabolism
- Signal Transduction/drug effects
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/pharmacology
- Tyrphostins/pharmacology
Collapse
Affiliation(s)
- Emma Folch-Puy
- Department of Experimental Pathology, Institut d'Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Cientificas, c/Rosselló 161 7o, 08036 Barcelona, Spain
| | | | | | | | | |
Collapse
|
47
|
Cavard C, Terris B, Grimber G, Christa L, Audard V, Radenen-Bussiere B, Simon MT, Renard CA, Buendia MA, Perret C. Overexpression of regenerating islet-derived 1 alpha and 3 alpha genes in human primary liver tumors with β-catenin mutations. Oncogene 2005; 25:599-608. [PMID: 16314847 DOI: 10.1038/sj.onc.1208860] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The Wnt/beta-catenin signaling pathway is activated in many human hepatocellular carcinomas (HCC). We tried to identify the genes involved in carcinogenesis and progression of HCC with beta-catenin mutations. We used PCR-based subtractive hybridization to compare gene expression between malignant and benign components of a human HCC occurring in pre-existing adenoma activated for beta-catenin. Two of the genes identified belong to the Regenerating gene (REG) family. They encode the Regenerating islet-derived 3 alpha (REG3A/HIP/PAP/REG-III) and 1 alpha (REG1A) proteins, both involved in liver and pancreatic regeneration and proliferation. Using siRNA directed against beta-catenin, we demonstrated that REG3A is a target of beta-catenin signaling in Huh7 hepatoma cells. The upregulation of REG3A and REG1A expression is significantly correlated to the beta-catenin status in 42 HCC and 28 hepatoblastomas characterized for their beta-catenin status. Thus, we report strong evidence that both genes are downstream targets of the Wnt pathway during liver tumorigenesis.
Collapse
Affiliation(s)
- C Cavard
- Département GDPM, INSERM U-567, CNRS UMR 8104, Institut Cochin, Université Paris 5, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Weber H, Hühns S, Lüthen F, Jonas L, Schuff-Werner P. Calpain activation contributes to oxidative stress-induced pancreatic acinar cell injury. Biochem Pharmacol 2005; 70:1241-52. [PMID: 16154113 DOI: 10.1016/j.bcp.2005.06.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Revised: 06/17/2005] [Accepted: 06/20/2005] [Indexed: 01/25/2023]
Abstract
Oxygen radicals have been implicated as mediators in the pathogenesis of pancreatic acinar cell necrosis. However, the sequence of events between the oxidative insult and cell damage remains unclear. In the current study, we investigated whether the Ca(2+)-regulated cytosolic cysteine protease calpain is activated by oxidative stress and contributes to oxidant-induced acinar cell damage. Isolated rat pancreatic acinar cells were exposed to hydrogen peroxide (H(2)O(2))-generated oxidative stress in the presence or absence of the Ca(2+) chelator 1,2-bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid tetraacetoxymethyl ester (BAPTA-AM) and different calpain inhibitors including benzyloxycarbonyl-valyl-phenylalanine methyl ester. Calpain activation was studied by fluorescence spectrophotometry and immunoblotting. Cell injury was assessed by lactate dehydrogenase (LDH) release and characterization of the cellular ultrastructure including fluorescence-labeled actin filaments. Exposure of acinar cells to H(2)O(2) provoked a time- and dose-dependent increase in calpain proteolytic activity involving the ubiquitous isoforms mu- and m-calpain. The activation of calpain reflected the time course of developing cytotoxicity as demonstrated by increased LDH release. Inhibition of oxidant-induced calpain activity by BAPTA-AM and various calpain inhibitors provoked a decline in oxidant-induced cell injury. In particular, changes in the actin filament organization characterized by an increase in the basolateral actin and by a detachment of actin from the cell membrane in the region of membrane blebs were clearly reduced. In summary, our findings suggest that acinar cell damage through oxidative stress requires activation of calpain and that the actin cytoskeleton belongs to the cellular targets of the protease. The results support the hypothesis that calpain activation may play a role in the development of acute pancreatitis.
Collapse
Affiliation(s)
- H Weber
- Institute of Clinical Chemistry and Laboratory Medicine, University of Rostock, Germany.
| | | | | | | | | |
Collapse
|
49
|
Chen CY, Lin XZ, Wu HC, Shiesh SC. The value of biliary amylase and Hepatocarcinoma-Intestine-Pancreas/Pancreatitis-associated Protein I (HIP/PAP-I) in diagnosing biliary malignancies. Clin Biochem 2005; 38:520-5. [PMID: 15885230 DOI: 10.1016/j.clinbiochem.2005.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2004] [Revised: 01/19/2005] [Accepted: 01/21/2005] [Indexed: 12/11/2022]
Abstract
BACKGROUND/OBJECTIVES Elevated concentrations of Hepatocarcinoma-Intestine-Pancreas/Pancreatitis-associated Protein I (HIP/PAP-I) in pancreatic juice have been reported in patients with pancreatic adenocarcinoma and have been considered as a promising tumor marker. This study was conducted to investigate whether biliary HIP/PAP-I can be used in the differential diagnosis of the cause of biliary obstruction. METHODS Bile was obtained from patients with bile duct obstruction on the day of biliary drainage. The etiology of biliary obstruction included gallstones (n = 131), pancreatic cancer (n = 32), cholangiocarcinoma (n = 47), papilla Vater cancer (n = 13), hepatocellular carcinoma (n = 4) and metastatic cancer (n = 16). In addition to HIP/PAP-I, the samples were analyzed for amylase to check for the presence of pancreaticobiliary reflux. RESULTS The biliary concentration of HIP/PAP-I was not statistically different between patients with gallstones (median, 9.70 ng/mL; interquartile range [IQR] 1.80-45.75) and cancers (median, 12.70 ng/mL; IQR, 3.85-36.75), P > 0.05. However, the amylase activity in the bile was markedly elevated in patients with gallstones (median, 228 U/L; IQR, 40-1965), compared to those with cancer (median, 32 U/L; IQR; 30-176), P < 0.001. The area under the ROC curve of amylase was 0.751 (95% CI: 0.69 to 0.81). At a cut-off value of 46 U/L, the biliary amylase distinguished patients with malignant obstruction from those with benign obstruction with a sensitivity of 66% and a specificity of 74%. CONCLUSIONS Our data suggest that the biliary HIP/PAP-I measurement is not useful for differentiating causes of biliary obstruction. The divergent extent and duration of biliary obstruction caused by neoplasm and gallstones may contribute to the significant difference in the amylase activity in bile. Thus, amylase in bile represents a candidate marker in the differential diagnosis of the cause of biliary obstruction.
Collapse
Affiliation(s)
- Chiung-Yu Chen
- Department of Internal Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | |
Collapse
|
50
|
N/A, 刘 达, 田 华. N/A. Shijie Huaren Xiaohua Zazhi 2005; 13:1340-1343. [DOI: 10.11569/wcjd.v13.i11.1340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
|