1
|
Hiraki-Kajiyama T, Miyasaka N, Ando R, Wakisaka N, Itoga H, Onami S, Yoshihara Y. An atlas and database of neuropeptide gene expression in the adult zebrafish forebrain. J Comp Neurol 2024; 532:e25619. [PMID: 38831653 DOI: 10.1002/cne.25619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 03/21/2024] [Accepted: 04/16/2024] [Indexed: 06/05/2024]
Abstract
Zebrafish is a useful model organism in neuroscience; however, its gene expression atlas in the adult brain is not well developed. In the present study, we examined the expression of 38 neuropeptides, comparing with GABAergic and glutamatergic neuron marker genes in the adult zebrafish brain by comprehensive in situ hybridization. The results are summarized as an expression atlas in 19 coronal planes of the forebrain. Furthermore, the scanned data of all brain sections were made publicly available in the Adult Zebrafish Brain Gene Expression Database (https://ssbd.riken.jp/azebex/). Based on these data, we performed detailed comparative neuroanatomical analyses of the hypothalamus and found that several regions previously described as one nucleus in the reference zebrafish brain atlas contain two or more subregions with significantly different neuropeptide/neurotransmitter expression profiles. Subsequently, we compared the expression data in zebrafish telencephalon and hypothalamus obtained in this study with those in mice, by performing a cluster analysis. As a result, several nuclei in zebrafish and mice were clustered in close vicinity. The present expression atlas, database, and anatomical findings will contribute to future neuroscience research using zebrafish.
Collapse
Affiliation(s)
- Towako Hiraki-Kajiyama
- Laboratory for Systems Molecular Ethology, RIKEN Center for Brain Science, Wako, Saitama, Japan
- Laboratory of Molecular Ethology, Graduate School of Life Science, Tohoku University, Sendai, Miyagi, Japan
| | - Nobuhiko Miyasaka
- Laboratory for Systems Molecular Ethology, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Reiko Ando
- Support Unit for Bio-Material Analysis, Research Resources Division, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Noriko Wakisaka
- Laboratory for Systems Molecular Ethology, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Hiroya Itoga
- Laboratory for Developmental Dynamics, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Shuichi Onami
- Laboratory for Developmental Dynamics, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
- Life Science Data Sharing Unit, RIKEN Information R&D and Strategy Headquarters, Kobe, Hyogo, Japan
| | - Yoshihiro Yoshihara
- Laboratory for Systems Molecular Ethology, RIKEN Center for Brain Science, Wako, Saitama, Japan
| |
Collapse
|
2
|
Guillante T, Zebral YD, Costa Silva DGD, Junior ASV, Corcini CD, Acosta IB, Costa PG, Bianchini A, da Rosa CE. Chlorothalonil as a potential endocrine disruptor in male zebrafish (Danio rerio): Impact on the hypothalamus-pituitary-gonad axis and sperm quality. CHEMOSPHERE 2024; 352:141423. [PMID: 38340991 DOI: 10.1016/j.chemosphere.2024.141423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/26/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Chlorothalonil is a broad-spectrum organochlorine fungicide widely employed in agriculture to control fungal foliar diseases. This fungicide enters aquatic environments through the leaching process, leading to toxicity in non-target organisms. Organic contaminants can impact organism reproduction as they have the potential to interact with the neuroendocrine system. Although there are reports of toxic effects of chlorothalonil, information regarding its impact on reproduction is limited. The aim of the present study was to evaluate the influence of chlorothalonil on male reproductive physiology using the zebrafish (Danio rerio) as ecotoxicological model. Zebrafish were exposed for 7 days to two concentrations of chlorothalonil (0.1 and 10 μg/L) along with a control group (with DMSO - 0.001%). Gene expression of hypothalamus-pituitary-gonad axis components (gnrh2, gnrh3, lhr, fshr, star, hsd17b1, hsd17b3, and cyp19a1), as well as hepatic vitellogenin concentration were assessed. In sperm cells, reactive oxygen species (ROS) content, lipid peroxidation (LPO), mitochondrial functionality, and membrane integrity and fluidity were evaluated. Results indicate that exposure to the higher concentration of chlorothalonil led to a reduction in brain gnr2 expression. In gonads, mRNA levels of lhr, star, and hsd17b1 were decreased at both chlorothalonil concentrations tested. Similarly, hepatic vitellogenin concentration was reduced. Regarding sperm cells, a decreased ROS level was observed, without significant difference in LPO level. Additionally, a higher mitochondrial potential and lower membrane fluidity were observed in zebrafish exposed to chlorothalonil. These findings demonstrate that chlorothalonil acts as an endocrine disruptor, influencing reproductive control mechanisms, as evidenced by changes in expression of genes HPG axis, as well as hepatic vitellogenin concentration. Furthermore, our findings reveal that exposure to this contaminant may compromise the reproductive success of the species, as it affected sperm quality parameters.
Collapse
Affiliation(s)
- Tainá Guillante
- Programa de Pós-Graduação Em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Yuri Dornelles Zebral
- Programa de Pós-Graduação Em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Dennis Guilherme da Costa Silva
- Programa de Pós-Graduação Em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | | | - Carine Dahl Corcini
- Programa de Pós-Graduação Em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Faculdade de Veterinária, Universidade Federal De Pelotas, Capão do Leão, Campus Universitário, Pelotas, RS, Brazil
| | - Izani Bonel Acosta
- Faculdade de Veterinária, Universidade Federal De Pelotas, Capão do Leão, Campus Universitário, Pelotas, RS, Brazil
| | - Patrícia Gomes Costa
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Adalto Bianchini
- Programa de Pós-Graduação Em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Carlos Eduardo da Rosa
- Programa de Pós-Graduação Em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil.
| |
Collapse
|
3
|
Cadena-Caballero CE, Munive-Argüelles N, Vera-Cala LM, Barrios-Hernandez C, Duarte-Bernal RO, Ayus-Ortiz VL, Pardo-Díaz LA, Agudelo-Rodríguez M, Bautista-Rozo LX, Jimenez-Gutierrez LR, Martinez-Perez F. APGW/AKH Precursor from Rotifer Brachionus plicatilis and the DNA Loss Model Explain Evolutionary Trends of the Neuropeptide LWamide, APGWamide, RPCH, AKH, ACP, CRZ, and GnRH Families. J Mol Evol 2023; 91:882-896. [PMID: 38102415 PMCID: PMC10730642 DOI: 10.1007/s00239-023-10146-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 11/11/2023] [Indexed: 12/17/2023]
Abstract
In the year 2002, DNA loss model (DNA-LM) postulated that neuropeptide genes to emerged through codons loss via the repair of damaged DNA from ancestral gene namely Neuropeptide Precursor Predictive (NPP), which organization correspond two or more neuropeptides precursors evolutive related. The DNA-LM was elaborated according to amino acids homology among LWamide, APGWamide, red pigment-concentrating hormone (RPCH), adipokinetic hormones (AKHs) and in silico APGW/RPCH NPPAPGW/AKH NPP were proposed. With the above principle, it was proposed the evolution of corazonin (CRZ), gonadotropin-releasing hormone (GnRH), AKH, and AKH/CRZ (ACP), but any NPP never was considered. However, the evolutive relation via DNA-LM among these neuropeptides precursors not has been established yet. Therefore, the transcriptomes from crabs Callinectes toxotes and Callinectes arcuatus were used to characterized ACP and partial CRZ precursors, respectively. BLAST alignment with APGW/RPCH NPP and APGW/AKH NPP allow identified similar NPP in the rotifer Brachionus plicatilis and other invertebrates. Moreover, three bioinformatics algorithms and manual verification were used to purify 13,778 sequences, generating a database with 719 neuropeptide precursors. Phylogenetic trees with the DNA-LM parameters showed that some ACP, CRZ, AKH2 and two NPP share nodes with GnRH from vertebrates and some of this neuropeptide had nodes in invertebrates. Whereas the phylogenetic tree with standard parameters do not showed previous node pattern. Robinson-Foulds metric corroborates the differences among phylogenetic trees. Homology relationship showed four putative orthogroups; AKH4, CRZ, and protostomes GnRH had individual group. This is the first demonstration of NPP in species and would explain the evolution neuropeptide families by the DNA-LM.
Collapse
Affiliation(s)
- Cristian E Cadena-Caballero
- Grupo de Investigación Computo Avanzado y a Gran Escala (CAGE), Escuela de Ingeniería de Sistemas e Informática, Universidad Industrial de Santander, 680002, Bucaramanga, Colombia
| | - Nestor Munive-Argüelles
- Grupo de Investigación Computo Avanzado y a Gran Escala (CAGE), Escuela de Ingeniería de Sistemas e Informática, Universidad Industrial de Santander, 680002, Bucaramanga, Colombia
| | - Lina M Vera-Cala
- Grupo de Investigación en Demografía, Salud Pública y Sistemas de Salud (GUINDESS), Departamento de Salud Pública, Universidad Industrial de Santander, 680002, Bucaramanga, Colombia
| | - Carlos Barrios-Hernandez
- Grupo de Investigación Computo Avanzado y a Gran Escala (CAGE), Escuela de Ingeniería de Sistemas e Informática, Universidad Industrial de Santander, 680002, Bucaramanga, Colombia
| | - Ruben O Duarte-Bernal
- Biomedical Imaging, Vision and Learning Laboratory (BIVL2ab), Escuela de Ingeniería de Sistemas e Informática, Universidad Industrial de Santander, 680002, Bucaramanga, Colombia
| | - Viviana L Ayus-Ortiz
- Grupo de Investigación Computo Avanzado y a Gran Escala (CAGE), Escuela de Ingeniería de Sistemas e Informática, Universidad Industrial de Santander, 680002, Bucaramanga, Colombia
| | - Luis A Pardo-Díaz
- Grupo de Investigación Computo Avanzado y a Gran Escala (CAGE), Escuela de Ingeniería de Sistemas e Informática, Universidad Industrial de Santander, 680002, Bucaramanga, Colombia
| | - Mayra Agudelo-Rodríguez
- Grupo de Investigación Computo Avanzado y a Gran Escala (CAGE), Escuela de Ingeniería de Sistemas e Informática, Universidad Industrial de Santander, 680002, Bucaramanga, Colombia
| | - Lola X Bautista-Rozo
- Biomedical Imaging, Vision and Learning Laboratory (BIVL2ab), Escuela de Ingeniería de Sistemas e Informática, Universidad Industrial de Santander, 680002, Bucaramanga, Colombia
| | - Laura R Jimenez-Gutierrez
- Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa, 82000, Mazatlán, México
- Cátedra-CONAHCyT, Consejo Nacional de Humanidades Ciencias y Tecnología, 03940, CDMX, México
| | - Francisco Martinez-Perez
- Grupo de Investigación Computo Avanzado y a Gran Escala (CAGE), Escuela de Ingeniería de Sistemas e Informática, Universidad Industrial de Santander, 680002, Bucaramanga, Colombia.
- Laboratorio de Genómica Celular Aplicada (LGCA), Grupo de Microbiología y Genética, Escuela de Biología, Universidad Industrial de Santander, 680002, Bucaramanga, Colombia.
| |
Collapse
|
4
|
Liu S, Chen Y, Li T, Qiao L, Yang Q, Rong W, Liu Q, Wang W, Song J, Wang X, Liu Y. Effects of 17α-Methyltestosterone on the Transcriptome and Sex Hormones in the Brain of Gobiocypris rarus. Int J Mol Sci 2023; 24:ijms24043571. [PMID: 36834982 PMCID: PMC9966397 DOI: 10.3390/ijms24043571] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
17α-Methyltestosterone (MT), a synthetic environmental endocrine disruptor with androgenic effects, has been shown to disrupt the reproductive system and inhibit germ cell maturation in Gobiocypris rarus. To further investigate the regulation of gonadal development by MT through the hypothalamic-pituitary-gonadal (HPG) axis, G. rarus were exposed to 0, 25, 50, and 100 ng/L of MT for 7, 14, and 21 days. We analyzed its biological indicators, gonadotropin-releasing hormone (GnRH), gonadotropins, reproduction-related gene expression, and brain tissue transcriptome profiles. We found a significant decrease in the gonadosomatic index (GSI) in G. rarus males exposed to MT for 21 days compared to the control group. GnRH, follicle-stimulating hormone (FSH), and luteinizing hormone (LH) levels, as well as the expressions of the gnrh3, gnrhr1, gnrhr3, fshβ, and cyp19a1b genes, were significantly reduced in the brains of both male and female fish when exposed to 100 ng/L MT for 14 days compared to the controls. Therefore, we further constructed four RNA-seq libraries from 100 ng/L MT-treated groups of male and female fish, obtaining 2412 and 2509 DEGs in male and female brain tissue, respectively. Three common pathways were observed to be affected in both sexes after exposure to MT, namely, nicotinate and nicotinamide metabolism, focal adhesion, and cell adhesion molecules. Furthermore, we found that MT affected the PI3K/Akt/FoxO3a signaling pathway through the upregulation of foxo3 and ccnd2, and the downregulation of pik3c3 and ccnd1. Therefore, we hypothesize that MT interferes with the levels of gonadotropin-releasing hormone (GnRH, FSH, and LH) in G. rarus brains through the PI3K/Akt/FoxO3a signaling pathway, and affects the expression of key genes in the hormone production pathway (gnrh3, gnrhr1 and cyp19a1b) to interfere with the stability of the HPG axis, thus leading to abnormal gonadal development. This study provides a multidimensional perspective on the damaging effects of MT on fish and confirms that G. rarus is a suitable model animal for aquatic toxicology.
Collapse
|
5
|
Chen X, Zheng J, Zhang J, Duan M, Xu H, Zhao W, Yang Y, Wang C, Xu Y. Exposure to difenoconazole induces reproductive toxicity in zebrafish by interfering with gamete maturation and reproductive behavior. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155610. [PMID: 35504380 DOI: 10.1016/j.scitotenv.2022.155610] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/14/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Difenoconazole (DCZ) is a triazole fungicide that negatively affects aquatic organisms and humans. However, data regarding the reproductive toxicity of DCZ are insufficient. In this study, we used zebrafish (from 2 h post-fertilization [hpf] to adulthood) as a model to evaluate whether DCZ at environmentally relevant concentrations (0.1, 1.0, and 10.0 μg/L) induces reproductive toxicity. After exposure to DCZ, egg production and fertilization rates were reduced by 1.0 and 10.0 μg/L. A significant decrease in gamete frequency (late vitellogenic oocytes and spermatozoa) was observed at 10.0 μg/L. The concentrations of 17β-estradiol (E2), testosterone (T), and vitellogenin (VTG) were disrupted in females and males by 1.0 and 10.0 μg/L. Exposure to 10.0 μg/L DCZ significantly inhibited the contact time between female and male fish, which was mainly achieved by affecting male fish. The transcription of genes involved in the hypothalamus-pituitary-gonad (HPG) axis was significantly changed after treatment with DCZ. Overall, these data show that the endocrine-disrupting effect of DCZ on the zebrafish HPG axis inhibited gamete maturation and disrupted reproductive behavior, reducing fertility.
Collapse
Affiliation(s)
- Xiangguang Chen
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Junyue Zheng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Jie Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Manman Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Hao Xu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Wentian Zhao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Yang Yang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chengju Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China.
| | - Yong Xu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
6
|
Ogawa S, Yamamoto N, Hagio H, Oka Y, Parhar IS. Multiple gonadotropin-releasing hormone systems in non-mammalian vertebrates: Ontogeny, anatomy, and physiology. J Neuroendocrinol 2022; 34:e13068. [PMID: 34931380 DOI: 10.1111/jne.13068] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 01/08/2023]
Abstract
Three paralogous genes for gonadotropin-releasing hormone (GnRH; gnrh1, gnrh2, and gnrh3) and GnRH receptors exist in non-mammalian vertebrates. However, there are some vertebrate species in which one or two of these paralogous genes have become non-functional during evolution. The developmental migration of GnRH neurons in the brain is evolutionarily conserved in mammals, reptiles, birds, amphibians, and jawed teleost fish. The three GnRH paralogs have specific expression patterns in the brain and originate from multiple sites. In acanthopterygian teleosts (medaka, cichlid, etc.), the preoptic area (POA)-GnRH1 and terminal nerve (TN)-GnRH3 neuronal types originate from the olfactory regions. In other fish species (zebrafish, goldfish and salmon) with only two GnRH paralogs (GnRH2 and GnRH3), the TN- and POA-GnRH3 neuronal types share the same olfactory origin. However, the developmental origin of midbrain (MB)-GnRH2 neurons is debatable between mesencephalic or neural crest site. Each GnRH system has distinctive anatomical and physiological characteristics, and functions differently. The POA-GnRH1 neurons are hypophysiotropic in nature and function in the neuroendocrine control of reproduction. The non-hypophysiotropic GnRH2/GnRH3 neurons probably play neuromodulatory roles in metabolism (MB-GnRH2) and the control of motivational state for sexual behavior (TN-GnRH3).
Collapse
Affiliation(s)
- Satoshi Ogawa
- Jeffrey Cheah School of Medicine & Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Naoyuki Yamamoto
- Laboratory of Fish Biology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Hanako Hagio
- Laboratory of Fish Biology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | - Yoshitaka Oka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Ishwar S Parhar
- Jeffrey Cheah School of Medicine & Health Sciences, Monash University Malaysia, Selangor, Malaysia
| |
Collapse
|
7
|
Ren X, Huang Y, Li X, Li Z, Yang H, He R, Zhong H, Li G, Chen H. Identification and functional characterization of gonadotropin -releasing hormone in pompano (Trachinotus ovatus). Gen Comp Endocrinol 2022; 316:113958. [PMID: 34861278 DOI: 10.1016/j.ygcen.2021.113958] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/13/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is an important neuropeptide in the reproductive system. Although GnRH analogues have been used to artificially spawn pompano (Trachinotus sp.), the native forms of GnRH have not been described in this species. In this study three GnRH subtypes [sea bream GnRH (sbGnRH), chicken GnRH-Ⅱ (cGnRH-Ⅱ) and salmon GnRH (sGnRH)] were identified in pompano (Trachinotus ovatus). cgnrh-Ⅱ and sgnrh were mainly expressed in the brain of male and female fish, showing a tissue-specific expression pattern, while sbgnrh was expressed at different transcriptional levels in all tested tissues. In vivo injection experiment showed that sbGnRH significantly increased fsh and lh genes expression in a dose-dependent manner, but a high concentration of sbGnRH could desensitize the expression of lh. High concentrations of cGnRH-Ⅱ and sGnRH could induce the expression of fsh and lh. In addition, the results of in vitro incubation experiments showed that the high concentration of sbGnRH peptide could induce the expression of fsh and lh, while cGnRH-Ⅱ and sGnRH peptides could only induce the expression of fsh. 17β-estradiol (E2) and 17α-methyltestosterone (MT) significantly inhibited sbgnrh mRNA expression in a dose-dependent manner, but did not affect the expression of cgnrh-Ⅱ and sgnrh mRNA. sbGnRH is the main GnRH subtype in pompano. E2 and MT can play a negative role in the regulation of sbgnrh. This study provides a theoretical basis for the reproductive endocrinology of pompano.
Collapse
Affiliation(s)
- Xilin Ren
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524025, China
| | - Yanlin Huang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaomeng Li
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhiyuan Li
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hao Yang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ruiqi He
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Honggan Zhong
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources (Hainan Tropical Ocean University), Ministry of Education, Sanya 572022, China
| | - Guangli Li
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Huapu Chen
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524025, China; Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources (Hainan Tropical Ocean University), Ministry of Education, Sanya 572022, China.
| |
Collapse
|
8
|
Li W, Du R, Xia C, Zhang H, Xie Y, Gao X, Ouyang Y, Yin Z, Hu G. Novel pituitary actions of GnRH in teleost: The link between reproduction and feeding regulation. Front Endocrinol (Lausanne) 2022; 13:982297. [PMID: 36303873 PMCID: PMC9595134 DOI: 10.3389/fendo.2022.982297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/29/2022] [Indexed: 11/24/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH), as a vital hypothalamic neuropeptide, was a key regulator for pituitary luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in the vertebrate. However, little is known about the other pituitary actions of GnRH in teleost. In the present study, two GnRH variants (namely, GnRH2 and GnRH3) and four GnRH receptors (namely, GnRHR1, GnRHR2, GnRHR3, and GnRHR4) had been isolated from grass carp. Tissue distribution displayed that GnRHR4 was more highly detected in the pituitary than the other three GnRHRs. Interestingly, ligand-receptor selectivity showed that GnRHR4 displayed a similar and high binding affinity for grass carp GnRH2 and GnRH3. Using primary culture grass carp pituitary cells as model, we found that both GnRH2 and GnRH3 could not only significantly induce pituitary reproductive hormone gene (GtHα, LHβ, FSHβ, INHBa, secretogranin-2) mRNA expression mediated by AC/PKA, PLC/IP3/PKC, and Ca2+/CaM/CaMK-II pathways but also reduce dopamine receptor 2 (DRD2) mRNA expression via the Ca2+/CaM/CaMK-II pathway. Interestingly, GnRH2 and GnRH3 could also stimulate anorexigenic peptide (POMCb, CART2, UTS1, NMBa, and NMBb) mRNA expression via AC/PKA, PLC/IP3/PKC, and Ca2+/CaM/CaMK-II pathways in grass carp pituitary cells. In addition, food intake could significantly induce brain GnRH2 mRNA expression. These results indicated that GnRH should be the coupling factor to integrate the feeding metabolism and reproduction in teleost.
Collapse
Affiliation(s)
- Wei Li
- Hubei Province Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Ruixin Du
- Hubei Province Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Chuanhui Xia
- Hubei Province Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Huiying Zhang
- Hubei Province Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yunyi Xie
- Hubei Province Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Xiaowen Gao
- Hubei Province Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yu Ouyang
- Hubei Province Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zhan Yin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- *Correspondence: Zhan Yin, ; Guangfu Hu,
| | - Guangfu Hu
- Hubei Province Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Zhan Yin, ; Guangfu Hu,
| |
Collapse
|
9
|
Li Y, Zhao T, Liu Y, Lin H, Li S, Zhang Y. Knockout of tac3 genes in zebrafish shows no impairment of reproduction. Gen Comp Endocrinol 2021; 311:113839. [PMID: 34181932 DOI: 10.1016/j.ygcen.2021.113839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/07/2021] [Accepted: 06/16/2021] [Indexed: 01/28/2023]
Abstract
Neurokinin B (NKB) plays a pivotal role in the regulation of reproduction in vertebrates. However, whether this neuropeptide is dispensable for reproduction in teleosts remains unknown. In order to reveal its authentic functions in fish, in this study, two tachykinin 3 (tac3) genes encoding Nkbs were functional mutated in zebrafish using the Transcription Activator-like Effector Nucleases (TALEN) technology. We established tac3a-/-, tac3b-/- and tac3a-/-;tac3b-/- mutant lines, and investigated their reproductive performance and ontogeny. According to our study, spermatogenesis and folliculogenesis were not impaired in tac3a-/-, tac3b-/- and tac3a-/-;tac3b-/- mutant lines, but changes in the expression of genes related to reproductive axis were observed after loss of Tac3, suggesting that possible compensatory response was activated to maintained the reproductive function in zebrafish. In summary, our results indicate that mutation of tac3 genes do not disrupt the reproduction in zebrafish unlike in mammals, revealing the plasticity of reproductive neuroendocrine system in the brain of zebrafish.
Collapse
Affiliation(s)
- Yu Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - TingTing Zhao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yun Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266373, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
| | - Shuisheng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Yong Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266373, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China.
| |
Collapse
|
10
|
Marvel M, Levavi-Sivan B, Wong TT, Zmora N, Zohar Y. Gnrh2 maintains reproduction in fasting zebrafish through dynamic neuronal projection changes and regulation of gonadotropin synthesis, oogenesis, and reproductive behaviors. Sci Rep 2021; 11:6657. [PMID: 33758252 PMCID: PMC7987954 DOI: 10.1038/s41598-021-86018-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/29/2021] [Indexed: 01/31/2023] Open
Abstract
Restricted food intake, either from lack of food sources or endogenous fasting, during reproductive periods is a widespread phenomenon across the animal kingdom. Considering previous studies show the canonical upstream regulator of reproduction in vertebrates, the hypothalamic Gonadotropin-releasing hormone (Gnrh), is inhibited in some fasting animals, we sought to understand the neuroendocrine control of reproduction in fasted states. Here, we explore the roles of the midbrain neuropeptide, Gnrh2, in inducing reproduction via its pituitary prevalence, gonadotropin synthesis, gametogenesis, and reproductive outputs in the zebrafish model undergoing different feeding regimes. We discovered a fasting-induced four-fold increase in length and abundance of Gnrh2 neuronal projections to the pituitary and in close proximity to gonadotropes, whereas the hypothalamic Gnrh3 neurons are reduced by six-fold in length. Subsequently, we analyzed the functional roles of Gnrh2 by comparing reproductive parameters of a Gnrh2-depleted model, gnrh2-/-, to wild-type zebrafish undergoing different feeding conditions. We found that Gnrh2 depletion in fasted states compromises spawning success, with associated decreases in gonadotropin production, oogenesis, fecundity, and male courting behavior. Gnrh2 neurons do not compensate in other circumstances by which Gnrh3 is depleted, such as in gnrh3-/- zebrafish, implying that Gnrh2 acts to induce reproduction specifically in fasted zebrafish.
Collapse
Affiliation(s)
- Miranda Marvel
- grid.266673.00000 0001 2177 1144Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD 21202 USA
| | - Berta Levavi-Sivan
- grid.9619.70000 0004 1937 0538Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, 76100 Rehovot, Israel
| | - Ten-Tsao Wong
- grid.266673.00000 0001 2177 1144Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD 21202 USA
| | - Nilli Zmora
- grid.266673.00000 0001 2177 1144Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD 21202 USA
| | - Yonathan Zohar
- grid.266673.00000 0001 2177 1144Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD 21202 USA
| |
Collapse
|
11
|
Zohar Y. Fish reproductive biology - Reflecting on five decades of fundamental and translational research. Gen Comp Endocrinol 2021; 300:113544. [PMID: 32615136 PMCID: PMC7324349 DOI: 10.1016/j.ygcen.2020.113544] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022]
Abstract
Driven by the broad diversity of species and physiologies and by reproduction-related bottlenecks in aquaculture, the field of fish reproductive biology has rapidly grown over the last five decades. This review provides my perspective on the field during this period, integrating fundamental and applied developments and milestones. Our basic understanding of the brain-pituitary-gonadal axis led to overcoming the failure of farmed fish to ovulate and spawn in captivity, allowing us to close the fish life cycle and establish a predictable, year-round production of eggs. Dissecting the molecular and hormonal mechanisms associated with sex determination and differentiation drove technologies for producing better performing mono-sex and reproductively-sterile fish. The growing contingent of passionate fish biologists, together with the availability of innovative platforms such as transgenesis and gene editing, as well as new models such as the zebrafish and medaka, have generated many discoveries, also leading to new insights of reproductive biology in higher vertebrates including humans. Consequently, fish have now been widely accepted as vertebrate reproductive models. Perhaps the best testament of the progress in our discipline is demonstrated at the International Symposia on Reproductive Physiology of Fish (ISRPF), at which our scientific family has convened every four years since the grandfather of the field, the late Ronald Billard, organized the inaugural 1977 meeting in Paimpont, France. As the one person who has been fortunate enough to attend all of these meetings since their inception, I have witnessed first-hand the astounding evolution of our field as we capitalized on the molecular and biotechnological revolutions in the life sciences, which enabled us to provide a higher resolution of fish reproductive and endocrine processes, answer more questions, and dive into deeper comprehension. Undoubtedly, the next (five) decades will be similarly exciting as we continue to integrate physiology with genomics, basic and translational research, and the small fish models with the aquacultured species.
Collapse
Affiliation(s)
- Yonathan Zohar
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland, Baltimore County, Baltimore, MD 21202, United States
| |
Collapse
|
12
|
Luo Y, Chen H, Li D, Zhan M, Hou L, Dong W, Luo Y, Xie L. The effects of norethindrone on the ontogeny of gene expression along the hypothalamic-pituitary-adrenal and hypothalamic-pituitary-gonadal axes in zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 747:141554. [PMID: 32795812 DOI: 10.1016/j.scitotenv.2020.141554] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 06/11/2023]
Abstract
Little is known about the molecular effects of progestins on the hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonadal (HPG) axes in fish prior to sexual differentiation. In this study, the effects of norethindrone (NET) on the ontogeny of HPG- and HPA-related genes in zebrafish embryo/early larvae prior to sexual differentiation were evaluated. Embryo/larvae were exposed to different concentrations (5, 50, 500 ng/L) of NET for 6 days. The levels of the transcripts of the genes closely related to the HPG and HPA axes were determined daily during 3 stages (embryo, embryo/larvae transition, and early larvae). The results showed that most genes were up-regulated and the ontogeny of genes in the HPA axis was earlier than that of HPG axis, especially for the upstream genes of both the HPG (gnrh2, gnrh3, fshb, lhb) and the HPA (crh, pomc, star) axes. In contrast, the transcriptional expressions of genes of the cortisol/stress pathway (cyp11b, mr) were inhibited and those of the progesterone pathway were not affected. More importantly, NET exposure induced the expressions of the genes (esr1, vtg1, hsd17b3, hsd11b2, ar) that are closely related to the steroid hormone pathways in the embryos/larvae stages, implying a precocious effects of NET in zebrafish. This study demonstrates that NET alters the expression of HPA- and HPG-axes related genes in zebrafish at early stages, pointing to the need for the same type of analysis during the zebrafish gonadal differentiation window.
Collapse
Affiliation(s)
- Yixuan Luo
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Hongxing Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Dan Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Manjun Zhan
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Liping Hou
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Wu Dong
- College of Animal Science and Technology, Inner Mongolia University for Nationalities/Inner Mongolia Key Laboratory of Toxicant Monitoring and toxicology, Tongliao 028043, China
| | - Yongju Luo
- Guangxi Academy of Fishery Sciences, Nanning, Guangxi 530021, China
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
13
|
Fallah HP, Habibi HR. Role of GnRH and GnIH in paracrine/autocrine control of final oocyte maturation. Gen Comp Endocrinol 2020; 299:113619. [PMID: 32956700 DOI: 10.1016/j.ygcen.2020.113619] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 09/13/2020] [Indexed: 12/28/2022]
Abstract
The control of oocyte growth and its final maturation is multifactorial and involves a number of hypothalamic, hypophyseal, and peripheral hormones. In this study, we investigated the direct actions of the gonadotropin-releasing hormone (GnRH) and the gonadotropin-inhibitory hormone (GnIH), which are expressed in the ovarian follicles, on final oocyte maturation in zebrafish, in vitro. Our study demonstrates the expression of GnRH and GnIH in the ovarian follicles of zebrafish (Danio rerio) at different stages of development and provides information on the direct action of these hormones on final oocyte maturation. Treatment with both GnRH and GnIH peptides stimulated the germinal vesicle breakdown (GVBD) of the late-vitellogenic oocyte. Both the GnRH and GnIH treatments showed no significant change in the caspase-3 activity of pre-vitellogenic and mid-vitellogenic oocytes, while they displayed different responses in the late-vitellogenic follicles. The GnRH treatment increased caspase-3 activity, whereas the GnIH reduced caspase-3 activity in the late-vitellogenic follicles. We also investigated the effects of GnRH and GnIH on the hCG-induced resumption of meiosis and caspase activity in vitro. GnRH and GnIH were found to have a similar effect on the hCG-induced resumption of meiosis, while they showed the opposite effect on caspase-3 activity. Furthermore, we investigated the effects of concomitant treatment of GnRH and GnIH peptides with hCG. The results demonstrated that the presence of both GnRH3 and GnIH are necessary for the normal induction of final oocyte maturation by gonadotropins. The findings support the hypothesis that GnIH and GnRH peptides produced in the ovary are part of a complex multifactorial regulatory system that controls zebrafish final oocyte maturation in paracrine/autocrine manner working in concert with gonadotropin hormones.
Collapse
Affiliation(s)
- Hamideh P Fallah
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Hamid R Habibi
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
14
|
Smedlund KB, Hill JW. The role of non-neuronal cells in hypogonadotropic hypogonadism. Mol Cell Endocrinol 2020; 518:110996. [PMID: 32860862 DOI: 10.1016/j.mce.2020.110996] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/01/2020] [Accepted: 08/16/2020] [Indexed: 12/18/2022]
Abstract
The hypothalamic-pituitary-gonadal axis is controlled by gonadotropin-releasing hormone (GnRH) released by the hypothalamus. Disruption of this system leads to impaired reproductive maturation and function, a condition known as hypogonadotropic hypogonadism (HH). Most studies to date have focused on genetic causes of HH that impact neuronal development and function. However, variants may also impact the functioning of non-neuronal cells known as glia. Glial cells make up 50% of brain cells of humans, primates, and rodents. They include radial glial cells, microglia, astrocytes, tanycytes, oligodendrocytes, and oligodendrocyte precursor cells. Many of these cells influence the hypothalamic neuroendocrine system controlling fertility. Indeed, glia regulate GnRH neuronal activity and secretion, acting both at their cell bodies and their nerve endings. Recent work has also made clear that these interactions are an essential aspect of how the HPG axis integrates endocrine, metabolic, and environmental signals to control fertility. Recognition of the clinical importance of interactions between glia and the GnRH network may pave the way for the development of new treatment strategies for dysfunctions of puberty and adult fertility.
Collapse
Affiliation(s)
- Kathryn B Smedlund
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA; Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Jennifer W Hill
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA; Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA.
| |
Collapse
|
15
|
Chen HP, Cui XF, Wang YR, Li ZY, Tian CX, Jiang DN, Zhu CH, Zhang Y, Li SS, Li GL. Identification, functional characterization, and estrogen regulation on gonadotropin-releasing hormone in the spotted scat, Scatophagus argus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1743-1757. [PMID: 32514853 DOI: 10.1007/s10695-020-00825-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Gonadotropin-releasing hormone (GnRH) is a key neuropeptide of the reproductive system. However, little is known about the role of GnRH in the spotted scat (Scatophagus argus). Here, three GnRH subtypes (cGnRH-II, sGnRH, and sbGnRH) were identified in the spotted scat. cGnRH-II and sGnRH were only expressed in the brains and gonads of both male and female fish, exhibiting a tissue-specific expression pattern, while sbGnRH was expressed at different transcription levels in all examined tissues. During ovarian maturation, hypothalamus-associated sbGnRH was upregulated, while the expression of sGnRH was variable and cGnRH-II first increased and then decreased. In vivo experiments showed that sbGnRH significantly promoted the expression of fsh and lh genes in a dose-dependent manner and exhibited a desensitization effect on lh expression at high concentrations. For sGnRH and cGnRH-II, only high concentrations could induce fsh and lh expression. Furthermore, treatment with highly concentrated sbGnRH peptide also induced fsh and lh expression, whereas the sGnRH and cGnRH-II peptides only induced fsh expression in vitro. 17β-Estradiol (E2) significantly inhibited the expression of sbGnRH mRNA in a dose-dependent manner and did not impact sGnRH and cGnRH-II mRNA levels in vivo or in vitro. The inhibitory effect of E2 on sbGnRH expression was attenuated by the estrogen receptor (ER) broad-spectrum antagonist (fulvestrant) and the ERα-specific antagonist (methyl-piperidinopyrazole), respectively, implying that the feedback regulation on sbGnRH is mediated via ERα. This study provides a theoretical basis for the reproductive endocrinology of the spotted scat by studying GnRH.
Collapse
Affiliation(s)
- Hua-Pu Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Xue-Fan Cui
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Yao-Rong Wang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Zhi-Yuan Li
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Chang-Xu Tian
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Dong-Neng Jiang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Chun-Hua Zhu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Yong Zhang
- State Key Laboratory of Biocontrol, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
| | - Shui-Sheng Li
- State Key Laboratory of Biocontrol, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China.
| | - Guang-Li Li
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang, China.
| |
Collapse
|
16
|
Lan XR, Li YW, Chen QL, Shen YJ, Liu ZH. Tributyltin impaired spermatogenesis and reproductive behavior in male zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 224:105503. [PMID: 32438217 DOI: 10.1016/j.aquatox.2020.105503] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/22/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Tributyltin (TBT) was reported to affect sexual behavior and gametogenesis in fish. However, the modes of action involved are largely unclear. In order to elucidate the toxicological mechanisms of TBT in reproduction, zebrafish (Danio rerio) males were exposed to TBT at concentrations of 100 and 500 ng/L for 28 days. After exposure, the sperm count of the treated fish was sharply decreased though the testis weight and gonadosomatic index remained unchanged. Moreover, reduced number of spermatogonia and spermatozoa and increased spermatocytes were observed in TBT-treated fish by histological observation and PCNA-immunostaining. Increased number of apoptotic-positive spermatocytes was also present in TBT-treated fish, indicating an enhanced apoptosis in these cells. Consistent to decreased number of spermatogonia, down-regulated expressions of genes responsible for germ cell proliferation (cyclind1 and pcna) were observed in TBT-treated fish. In contrast, TBT elevated the expressions of genes involved in meiotic entry and maintenance (aldhla2, sycp3 and dmc1) while suppressed the mRNA level of gene responsible for terminus of meiotic entry (cyp26a1), in agreement with arrested meiosis and reduced sperm count. Furthermore, TBT significantly elevated the ratios of bax/bcl-2 and tnfrsf1a/tnfrsf1b in testis, which are markers for intrinsic- and extrinsic-apoptotic pathways, consistent with the enhanced TUNEL positive signals in spermatocytes. Moreover, TBT also significantly affected the parameter of reproductive behaviors in treated fish (reflected by decreased frequency of meeting, visits and time spent in spawning area). Consistently, the expressions of genes responsible for the modulation of reproductive behaviors in brain (such as cyp19a1b, kiss2, gnrh3 and ompb) were significantly down-regulated in treated-fish. Interestingly, disrupted reproductive behaviors of untreated female fish were also observed in the present study. The present study indicated that TBT might affect the reproduction of zebrafish male by disrupting the spermatogenesis and reproductive behavior of the fish.
Collapse
Affiliation(s)
- Xue-Rong Lan
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Ying-Wen Li
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Qi-Liang Chen
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Yan-Jun Shen
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Zhi-Hao Liu
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
17
|
Duan C, Allard J. Gonadotropin-releasing hormone neuron development in vertebrates. Gen Comp Endocrinol 2020; 292:113465. [PMID: 32184073 DOI: 10.1016/j.ygcen.2020.113465] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/26/2020] [Accepted: 03/12/2020] [Indexed: 11/21/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) neurons are master regulators of the reproductive axis in vertebrates. During early mammalian embryogenesis, GnRH1 neurons emerge in the nasal/olfactory placode. These neurons undertake a long-distance migration, moving from the nose to the preoptic area and hypothalamus. While significant advances have been made in understanding the functional importance of the GnRH1 neurons in reproduction, where GnRH1 neurons come from and how are they specified during early development is still under debate. In addition to the GnRH1 gene, most vertebrate species including humans have one or two additional GnRH genes. Compared to the GnRH1 neurons, much less is known about the development and regulation of GnRH2 neuron and GnRH3 neurons. The objective of this article is to review what is currently known about GnRH neuron development. We will survey various cell autonomous and non-autonomous factors implicated in the regulation of GnRH neuron development. Finally, we will discuss emerging tools and new approaches to resolve open questions pertaining to GnRH neuron development.
Collapse
Affiliation(s)
- Cunming Duan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States.
| | - John Allard
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| |
Collapse
|
18
|
Parker CG, Cheung E. Metabolic control of teleost reproduction by leptin and its complements: Understanding current insights from mammals. Gen Comp Endocrinol 2020; 292:113467. [PMID: 32201232 DOI: 10.1016/j.ygcen.2020.113467] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/05/2020] [Accepted: 03/18/2020] [Indexed: 12/15/2022]
Abstract
Reproduction is expensive. Hence, reproductive physiology is sensitive to an array of endogenous signals that provide information on metabolic and nutritional sufficiency. Although metabolic gating of reproductive function in mammals, as evidenced by studies demonstrating delayed puberty and perturbed fertility, has long been understood to be a function of energy sufficiency, an understanding of the endocrine regulators of this relationship have emerged only within recent decades. Peripheral signals including leptin and cortisol have long been implicated in the physiological integration of metabolism and reproduction. Recent studies have begun to explore possible roles for these two hormones in the regulation of reproduction in teleost fishes, as well as a role for leptin as a catabolic stress hormone. In this review, we briefly explore the reproductive actions of leptin and cortisol in mammals and teleost fishes and possible role of both hormones as putative modulators of the reproductive axis during stress events.
Collapse
Affiliation(s)
- Coltan G Parker
- Neuroscience Program, Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Ave, Urbana, IL, USA
| | - Eugene Cheung
- Department of Biological Sciences, David Clark Labs, 100 Brooks Avenue, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
19
|
Chehade C, Amaral FG, Branco GS, Cassel M, De Jesus LWO, Costa FG, Bordin SA, Moreira RG, Borella MI. Molecular characterization of different preproGnRHs in Astyanax altiparanae (Characiformes): Effects of GnRH on female reproduction. Mol Reprod Dev 2020; 87:720-734. [PMID: 32418283 DOI: 10.1002/mrd.23351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 05/03/2020] [Indexed: 12/13/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is a key molecule in the initiation of the hypothalamic-pituitary-gonadal axis. Thus, knowledge about GnRH may contribute to the effectiveness of species reproduction. Using a Neotropical tetra Astyanax altiparanae as a fish model species, the GnRH forms were characterized at the molecular level and the role of injected GnRHs in vivo was evaluated. The full-length complementary DNA (cDNA) sequences of preproGnRH2 (612 bp) and preproGnRH3 (407 bp) of A. altiparanae were obtained, and the GnRH1 form was not detected. The cDNA sequences of preproGnRH2 and preproGnRH3 were found to be conserved, but a change in the amino acid at position 8 of the GnRH3 decapeptide of A. altiparanae was observed. All the injected GnRHs stimulated lhβ messenger RNA (mRNA) expression but not fshβ mRNA expression, and only GnRH2 was able to increase maturation-inducing steroid (MIS) levels and possibly stimulate oocyte release. Furthermore, only GnRH2 was able to start the entire reproductive hormonal cascade and induce spawning.
Collapse
Affiliation(s)
- Chayrra Chehade
- Fish Endocrinology Laboratory, Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo (USP), São Paulo, Brazil
| | - Fernanda G Amaral
- Department of Physiology and Biophysics, Biomedical Sciences Institute, University of São Paulo (USP), São Paulo, São Paulo, Brazil.,Department of Physiology, Federal University of São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Giovana S Branco
- Fish Endocrinology Laboratory, Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo (USP), São Paulo, Brazil
| | - Mônica Cassel
- Department of Education - Bachelor of Science in Animal Science, Mato Grosso Federal Institute of Education, Science, and Technology (IFMT)-Alta Floresta Campus, Alta Floresta, Mato Grosso, Brazil
| | - Lázaro W O De Jesus
- Laboratory of Applied Animal Morphophysiology, Department of Histology and Embryology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceio, Alagoas, Brazil
| | - Fabiano G Costa
- Department of Biological Sciences, State University of Northern Paraná (UENP), Jacarezinho, Paraná, Brazil
| | - Silvana A Bordin
- Department of Physiology and Biophysics, Biomedical Sciences Institute, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Renata G Moreira
- Laboratory of Metabolism and Reproduction of Aquatic Organisms, Department of Physiology, Institute of Biosciences, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Maria I Borella
- Fish Endocrinology Laboratory, Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
20
|
Muñoz-Cueto JA, Zmora N, Paullada-Salmerón JA, Marvel M, Mañanos E, Zohar Y. The gonadotropin-releasing hormones: Lessons from fish. Gen Comp Endocrinol 2020; 291:113422. [PMID: 32032603 DOI: 10.1016/j.ygcen.2020.113422] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/02/2020] [Accepted: 02/03/2020] [Indexed: 12/26/2022]
Abstract
Fish have been of paramount importance to our understanding of vertebrate comparative neuroendocrinology and the mechanisms underlying the physiology and evolution of gonadotropin-releasing hormones (GnRH) and their genes. This review integrates past and recent knowledge on the Gnrh system in the fish model. Multiple Gnrh isoforms (two or three forms) are present in all teleosts, as well as multiple Gnrh receptors (up to five types), which differ in neuroanatomical localization, pattern of projections, ontogeny and functions. The role of the different Gnrh forms in reproduction seems to also differ in teleost models possessing two versus three Gnrh forms, Gnrh3 being the main hypophysiotropic hormone in the former and Gnrh1 in the latter. Functions of the non-hypothalamic Gnrh isoforms are still unclear, although under suboptimal physiological conditions (e.g. fasting), Gnrh2 may increase in the pituitary to ensure the integrity of reproduction under these conditions. Recent developments in transgenesis and mutagenesis in fish models have permitted the generation of fish lines expressing fluorophores in Gnrh neurons and to elucidate the dynamics of the elaborate innervations of the different neuronal populations, thus enabling a more accurate delineation of their reproductive roles and regulations. Moreover, in combination with neuronal electrophysiology, these lines have clarified the Gnrh mode of actions in modulating Lh and Fsh activities. While loss of function and genome editing studies had the premise to elucidate the exact roles of the multiple Gnrhs in reproduction and other processes, they have instead evoked an ongoing debate about these roles and opened new avenues of research that will no doubt lead to new discoveries regarding the not-yet-fully-understood Gnrh system.
Collapse
Affiliation(s)
- José A Muñoz-Cueto
- Department of Biology, Faculty of Marine and Environmental Sciences and INMAR, University of Cádiz, CEIMAR, The European University of the Seas (SEA-EU), Puerto Real (Cádiz), Spain.
| | - Nilli Zmora
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, USA
| | - José A Paullada-Salmerón
- Department of Biology, Faculty of Marine and Environmental Sciences and INMAR, University of Cádiz, CEIMAR, The European University of the Seas (SEA-EU), Puerto Real (Cádiz), Spain
| | - Miranda Marvel
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Evaristo Mañanos
- Institute of Aquaculture of Torre de la Sal, CSIC, Castellón, Spain
| | - Yonathan Zohar
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, USA.
| |
Collapse
|
21
|
Li J, Ge W. Zebrafish as a model for studying ovarian development: Recent advances from targeted gene knockout studies. Mol Cell Endocrinol 2020; 507:110778. [PMID: 32142861 DOI: 10.1016/j.mce.2020.110778] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 12/11/2022]
Abstract
Ovarian development is a complex process controlled by precise coordination of multiple factors. The targeted gene knockout technique is a powerful tool to study the functions of these factors. The successful application of this technique in mice in the past three decades has significantly enhanced our understanding on the molecular mechanism of ovarian development. Recently, with the advent of genome editing techniques, targeted gene knockout research can be carried out in many species. Zebrafish has emerged as an excellent model system to study the control of ovarian development. Dozens of genes related to ovarian development have been knocked out in zebrafish in recent years. Much new information and perspectives on the molecular mechanism of ovarian development have been obtained from these mutant zebrafish. Some findings have challenged conventional views. Several genes have been identified for the first time in vertebrates to control ovarian development. Focusing on ovarian development, the purpose of this review is to briefly summarize recent findings using these gene knockout zebrafish models, and compare these findings with mammalian models. These established mutants and rapid development of gene knockout techniques have prompted zebrafish as an ideal animal model for studying ovarian development.
Collapse
Affiliation(s)
- Jianzhen Li
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, China, 730070.
| | - Wei Ge
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
| |
Collapse
|
22
|
Phoenixin-20 Stimulates mRNAs Encoding Hypothalamo-Pituitary-Gonadal Hormones, is Pro-Vitellogenic, and Promotes Oocyte Maturation in Zebrafish. Sci Rep 2020; 10:6264. [PMID: 32286445 PMCID: PMC7156445 DOI: 10.1038/s41598-020-63226-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/21/2020] [Indexed: 12/12/2022] Open
Abstract
Phoenixin-20 (PNX-20) is a bioactive peptide with hormone-like actions in vertebrates. In mammals, PNX stimulates hypothalamo-pituitary-gonadal hormones and regulate reproductive processes. Our immunohisto/cytochemical studies show PNX-like and the putative PNX receptor, SREB3-like immunoreactivity in the gonads of zebrafish, and in zebrafish liver (ZFL) cells. Intraperitoneal injection of zebrafish PNX-20 upregulates mRNAs encoding both salmon gonadotropin-releasing hormone (GnRH), and chicken GnRH-II and kisspeptin and its receptor in zebrafish hypothalamus. Similarly, luteinizing hormone receptor mRNA expression in the testis, follicle-stimulating hormone receptor in the ovary, and the kisspeptin system were upregulated in the gonads of PNX-20 injected fish. We also observed the upregulation of genes involved in the sex steroidogenic pathway (cyp11a1, cyp17a1, 17βhsd, cyp19a1a) in the gonads of PNX-20 administered fish. PNX-20 upregulates the expression of vitellogenin isoforms and estrogen receptor (esr2a and 2b) mRNAs in ZFL cells in vitro. Meanwhile, siRNA-mediated knockdown of PNX-20 resulted in the downregulation of all vitellogenin transcripts, further suggesting its possible role in vitellogenesis. PNX-20 treatment resulted in a significant increase in germinal vesicle breakdown in zebrafish follicles in vitro. Collectively, these results provide strong evidence for PNX-20 effects on the HPG axis and liver to promote reproduction in zebrafish.
Collapse
|
23
|
Fallah HP, Rodrigues MS, Corchuelo S, Nóbrega RH, Habibi HR. Role of GnRH Isoforms in Paracrine/Autocrine Control of Zebrafish (Danio rerio) Spermatogenesis. Endocrinology 2020; 161:5701481. [PMID: 31930304 DOI: 10.1210/endocr/bqaa004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/10/2020] [Indexed: 12/25/2022]
Abstract
Abstract
It is well established that hypothalamic GnRH (gonadotropin-releasing hormone) is one of the key peptides involved in the neuroendocrine control of testicular development and spermatogenesis. However, the role of GnRH as a paracrine regulator of testicular function has not been fully investigated. The present study demonstrates the presence of GnRH and its receptors in the zebrafish (Danio rerio) testis, and provides information on direct action of native GnRH isoforms (GnRH2 and GnRH3) on different stages of spermatogenesis in this model. Both GnRH2 and GnRH3 stimulated basal spermatogenesis by increasing numbers of type Aund spermatogonia, spermatozoa, and testosterone release, and in this study GnRH2 exerted higher relative activity than GnRH3. Next, we evaluated the effects of GnRH isoforms on human chorionic gonadotropin (hCG)- and follicle-stimulating hormone (Fsh)-induced spermatogenesis. The 2 GnRH isoforms were found to have different effects on Fsh- and hCG-induced response depending on the stage of spermatogenesis and concentration of the peptides. The results provide strong support for the hypothesis that locally produced GnRH2 and GnRH3 are important components of the complex multifactorial system that regulates testicular germinal cell development and function in adult zebrafish.
Collapse
Affiliation(s)
- Hamideh P Fallah
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Maira S Rodrigues
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Department of Morphology, Reproductive and Molecular Biology Group, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Sheryll Corchuelo
- Department of Morphology, Reproductive and Molecular Biology Group, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Rafael H Nóbrega
- Department of Morphology, Reproductive and Molecular Biology Group, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Hamid R Habibi
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
24
|
Blanco AM. Hypothalamic- and pituitary-derived growth and reproductive hormones and the control of energy balance in fish. Gen Comp Endocrinol 2020; 287:113322. [PMID: 31738909 DOI: 10.1016/j.ygcen.2019.113322] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/20/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023]
Abstract
Most endocrine systems in the body are influenced by the hypothalamic-pituitary axis. Within this axis, the hypothalamus delivers precise signals to the pituitary gland, which in turn releases hormones that directly affect target tissues including the liver, thyroid gland, adrenal glands and gonads. This action modulates the release of additional hormones from the sites of action, regulating key physiological processes, including growth, metabolism, stress and reproduction. Pituitary hormones are released by five distinct hormone-producing cell types: somatotropes (which produce growth hormone), thyrotropes (thyrotropin), corticotropes (adrenocorticotropin), lactotropes (prolactin) and gonadotropes (follicle stimulating hormone and luteinizing hormone), each modulated by specific hypothalamic signals. This careful and distinct organization of the hypothalamo-pituitary axis has been classically associated with the existence of many lineal axes (e.g., the hypothalamic-pituitary-gonadal axis) in charge of the control of the different physiological processes. While this traditional concept is valid, it is becoming apparent that hormones produced by the hypothalamo-pituitary axis have diverse effects. For instance, gonadotropin-releasing hormone II has been associated with a suppressive effect on food intake in fish. Likewise, growth hormone has been shown to influence appetite, swimming activity and aggressive behavior in fish. This review will focus on the hypothalamic and pituitary hormones classically involved in regulating growth and reproduction, and will attempt to provide a general overview of the current knowledge on their actions on energy balance and appetite in fish. It will also give a brief perspective of the role of some of these peptides in integrating feeding, metabolism, growth and reproduction.
Collapse
Affiliation(s)
- Ayelén M Blanco
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Pontevedra, Spain; Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
25
|
Lee SLJ, Horsfield JA, Black MA, Rutherford K, Gemmell NJ. Identification of sex differences in zebrafish (Danio rerio) brains during early sexual differentiation and masculinization using 17α-methyltestoterone. Biol Reprod 2019; 99:446-460. [PMID: 29272338 DOI: 10.1093/biolre/iox175] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 12/18/2017] [Indexed: 12/26/2022] Open
Abstract
Sexual behavior in teleost fish is highly plastic. It can be attributed to the relatively few sex differences found in adult brain transcriptomes. Environmental and hormonal factors can influence sex-specific behavior. Androgen treatment stimulates behavioral masculinization. Sex dimorphic gene expression in developing teleost brains and the molecular basis for androgen-induced behavioral masculinization are poorly understood. In this study, juvenile zebrafish (Danio rerio) were treated with 100 ng/L of 17 alpha-methyltestosterone (MT) during sexual development from 20 days post fertilization to 40 days and 60 days post fertilization. We compared brain gene expression patterns in MT-treated zebrafish with control males and females using RNA-Seq to shed light on the dynamic changes in brain gene expression during sexual development and how androgens affect brain gene expression leading to behavior masculinization. We found modest differences in gene expression between juvenile male and female zebrafish brains. Brain aromatase (cyp19a1b), prostaglandin 3a synthase (ptges3a), and prostaglandin reductase 1 (ptgr1) were among the genes with sexually dimorphic expression patterns. MT treatment significantly altered gene expression relative to both male and female brains. Fewer differences were found among MT-treated brains and male brains compared to female brains, particularly at 60 dpf. MT treatment upregulated the expression of hydroxysteroid 11-beta dehydrogenase 2 (hsd11b2), deiodinase, iodothyronine, type II (dio2), and gonadotrophin releasing hormones (GnRH) 2 and 3 (gnrh2 and gnrh3) suggesting local synthesis of 11-ketotestosterone, triiodothyronine, and GnRHs in zebrafish brains which are influenced by androgens. Androgen, estrogen, prostaglandin, thyroid hormone, and GnRH signaling pathways likely interact to modulate teleost sexual behavior.
Collapse
Affiliation(s)
- Stephanie L J Lee
- Department of Anatomy, University of Otago, Dunedin, Otago, New Zealand
| | - Julia A Horsfield
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, Otago, New Zealand
| | - Michael A Black
- Department of Biochemistry, University of Otago, Dunedin, Otago, New Zealand
| | - Kim Rutherford
- Department of Anatomy, University of Otago, Dunedin, Otago, New Zealand
| | - Neil J Gemmell
- Department of Anatomy, University of Otago, Dunedin, Otago, New Zealand
| |
Collapse
|
26
|
Marvel M, Spicer OS, Wong TT, Zmora N, Zohar Y. Knockout of the Gnrh genes in zebrafish: effects on reproduction and potential compensation by reproductive and feeding-related neuropeptides. Biol Reprod 2019; 99:565-577. [PMID: 29635430 DOI: 10.1093/biolre/ioy078] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/03/2018] [Indexed: 11/13/2022] Open
Abstract
Gonadotropin-releasing hormone (GNRH) is known as a pivotal upstream regulator of reproduction in vertebrates. However, reproduction is not compromised in the hypophysiotropic Gnrh3 knockout line in zebrafish (gnrh3-/-). In order to determine if Gnrh2, the only other Gnrh isoform in zebrafish brains, is compensating for the loss of Gnrh3, we generated a double Gnrh knockout zebrafish line. Surprisingly, the loss of both Gnrh isoforms resulted in no major impact on reproduction, indicating that a compensatory response, outside of the Gnrh system, was evoked. A plethora of factors acting along the reproductive hypothalamus-pituitary axis were evaluated as possible compensators based on neuroanatomical and differential gene expression studies. In addition, we also examined the involvement of feeding factors in the brain as potential compensators for Gnrh2, which has known anorexigenic effects. We found that the double knockout fish exhibited upregulation of several genes in the brain, specifically gonadotropin-inhibitory hormone (gnih), secretogranin 2 (scg2), tachykinin 3a (tac3a), and pituitary adenylate cyclase-activating peptide 1 (pacap1), and downregulation of agouti-related peptide 1 (agrp1), indicating the compensation occurs outside of Gnrh cells and therefore is a noncell autonomous response to the loss of Gnrh. While the differential expression of gnih and agrp1 in the double knockout line was confined to the periventricular nucleus and hypothalamus, respectively, the upregulation of scg2 corresponded with a broader neuronal redistribution in the lateral hypothalamus and hindbrain. In conclusion, our results demonstrate the existence of a redundant reproductive regulatory system that comes into play when Gnrh2 and Gnrh3 are lost.
Collapse
Affiliation(s)
- Miranda Marvel
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Olivia Smith Spicer
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Ten-Tsao Wong
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Nilli Zmora
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Yonathan Zohar
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, Maryland, USA
| |
Collapse
|
27
|
Marvel MM, Spicer OS, Wong TT, Zmora N, Zohar Y. Knockout of Gnrh2 in zebrafish (Danio rerio) reveals its roles in regulating feeding behavior and oocyte quality. Gen Comp Endocrinol 2019; 280:15-23. [PMID: 30951724 DOI: 10.1016/j.ygcen.2019.04.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/26/2019] [Accepted: 04/01/2019] [Indexed: 12/21/2022]
Abstract
Many studies on Gnrh1, and the teleost Gnrh3, have elucidated the roles of these peptides in reproductive regulation. However, the role of the midbrain population of Gnrh, Gnrh2, has long been a mystery, despite its ubiquitous conservation in all jawed vertebrates except rodents. Previous behavioral studies in sparrows, musk shrews, mice, zebrafish, and goldfish show that Gnrh2 administrations both increase spawning behaviors and decrease feeding behaviors, suggesting a role of this peptide in metabolism regulation along with the canonical role in regulating reproduction. In order to more deeply explore the roles of Gnrh2, we used a cyprinid teleost, zebrafish, which has 2 forms of Gnrh, Gnrh2 and Gnrh3, to generate a knockout zebrafish line which contains a frameshift mutation and subsequent disruption of the coding for the functional Gnrh2 peptide. We examined differences in reproduction, feeding, growth, and mobility in this line, and discovered major differences in feeding and growth parameters, suggesting that Gnrh2 is a potent anorexigen in zebrafish. Additionally, there were no differences in mobility except for increased distances swam during feeding periods. There were no major differences in reproductive success, however, female gnrh2-/- zebrafish exhibited smaller oocytes and increased embryo mortality, indicating slightly decreased oocyte quality. Additionally, there were changes in the expression levels of many feeding, growth, and reproductive neuropeptides in gnrh2-/- zebrafish. Taken together, these findings suggest a role for Gnrh2 in controlling satiation in zebrafish along with a minor role in maintaining optimal oocyte quality in females.
Collapse
Affiliation(s)
- M M Marvel
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, USA
| | - O S Spicer
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, USA
| | - T-T Wong
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, USA
| | - N Zmora
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Y Zohar
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, USA.
| |
Collapse
|
28
|
Chaube R, Rawat A, Sharma S, Senthilkumaran B, Bhat SG, Joy KP. Molecular cloning and characterization of a gonadotropin-releasing hormone 2 precursor cDNA in the catfish Heteropneustes fossilis: Expression profile and regulation by ovarian steroids. Gen Comp Endocrinol 2019; 280:134-146. [PMID: 31015009 DOI: 10.1016/j.ygcen.2019.04.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/10/2019] [Accepted: 04/16/2019] [Indexed: 01/26/2023]
Abstract
Gonadotropin-releasing hormone 2 (Gnrh2) is one of the three classes of Gnrh distributed in vertebrates and is highly conserved. In the present study, the cDNA encoding Gnrh2 was isolated and characterized in the ostariophysan catfish Heteropneustes fossilis (hf). The cDNA is 611 bp long with an open reading frame (ORF) of 261 bp that encodes a highly conserved protein of 86 amino acids. The deduced Gnrh2 precursor protein clustered with the vertebrate Gnrh2 type. The sequence identity of hfgnrh2 is 94% with African catfish (Clarias gariepinus) gnrh2 mRNA (accession no. X78047). The hfgnrh2 transcripts were expressed only in the brain and gonads with a higher expression in the female brain and ovary in both resting and prespawning phases. The expression was higher in the prespawning phase than the resting phase. The gnrh2 expression in the brain and ovary showed significant seasonal variations but with opposite patterns. In the brain, the expression was the highest in the preparatory phase, decreased progressively to low levels in the postspawning and resting phases. In the ovary, the transcript level was low in the resting and preparatory phases, increased sharply in the prespawning phase reaching the peak level in the spawning phase and declined sharply in the postspawning phase. The gnrh2 mRNA showed the highest expression in the hind brain-medulla oblongata and moderate to low expression in forebrain regions and pituitary. Ovariectomy resulted in a duration-dependent inhibition of hfgnrh2 mRNA levels in the resting and prespawning phases. Steroid (E2, testosterone and progesterone) replacement treatments (0.5 μg/g body weight) in the 3- week ovariectomized fish restored the inhibition due to ovariectomy, elevated the expression over and above the sham level in the resting phase (E2 group), and raised the levels almost to that of the sham group (testosterone and progesterone groups) in the prespawning phase. In the sham control groups, the steroid replacement resulted in a significant reduction in the mRNA levels. The expression of the gnrh2 mRNA in the brain-pituitary-gonadal axis and its regulation by gonadal steroids suggest that Gnrh2 may have a reproductive role in the catfish.
Collapse
Affiliation(s)
- R Chaube
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - A Rawat
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - S Sharma
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - B Senthilkumaran
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Telangana, Hyderabad 500046, India
| | - S G Bhat
- Department of Biotechnology, Cochin University of Science and Technology, Kochi 682022, India
| | - K P Joy
- Department of Biotechnology, Cochin University of Science and Technology, Kochi 682022, India.
| |
Collapse
|
29
|
Distribution of Kiss2 receptor in the brain and its localization in neuroendocrine cells in the zebrafish. Cell Tissue Res 2019; 379:349-372. [PMID: 31471710 DOI: 10.1007/s00441-019-03089-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 08/05/2019] [Indexed: 12/14/2022]
Abstract
Kisspeptin is a hypothalamic neuropeptide, which acts directly on gonadotropin-releasing hormone (GnRH)-secreting neurons via its cognate receptor (GPR54 or Kiss-R) to stimulate GnRH secretion in mammals. In non-mammalian vertebrates, there are multiple kisspeptins (Kiss1 and Kiss2) and Kiss-R types. Recent gene knockout studies have demonstrated that fish kisspeptin systems are not essential in the regulation of reproduction. Studying the detailed distribution of kisspeptin receptor in the brain and pituitary is important for understanding the multiple action sites and potential functions of the kisspeptin system. In the present study, we generated a specific antibody against zebrafish Kiss2-R (=Kiss1Ra/GPR54-1/Kiss-R2/KissR3) and examined its distribution in the brain and pituitary. Kiss2-R-immunoreactive cell bodies are widely distributed in the brain including in the dorsal telencephalon, preoptic area, hypothalamus, optic tectum, and in the hindbrain regions. Double-labeling showed that not all but a subset of preoptic GnRH3 neurons expresses Kiss2-R, while Kiss2-R is expressed in most of the olfactory GnRH3 neurons. In the posterior preoptic region, Kiss2-R immunoreactivity was seen in vasotocin cells. In the pituitary, Kiss2-R immunoreactivity was seen in corticotropes, but not in gonadotropes. The results in this study suggest that Kiss2 and Kiss2-R signaling directly serve non-reproductive functions and indirectly subserve reproductive functions in teleosts.
Collapse
|
30
|
Whitlock KE, Postlethwait J, Ewer J. Neuroendocrinology of reproduction: Is gonadotropin-releasing hormone (GnRH) dispensable? Front Neuroendocrinol 2019; 53:100738. [PMID: 30797802 PMCID: PMC7216701 DOI: 10.1016/j.yfrne.2019.02.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 02/06/2023]
Abstract
Gonadotropin releasing hormone (GnRH) is a highly conserved neuroendocrine decapeptide that is essential for the onset of puberty and the maintenance of the reproductive state. First identified in mammals, the GnRH signaling pathway is found in all classes of vertebrates; homologues of GnRH have also been identified in invertebrates. In addition to its role as a hypothalamic releasing hormone, GnRH has multiple functions including modulating neural activity within specific regions of the brain. These various functions are mediated by multiple isoforms, which are expressed at diverse locations within the central nervous system. Here we discuss the GnRH signaling pathways in light of new reports that reveal that some vertebrate genomes lack GnRH1. Not only do other isoforms of GnRH not compensate for this gene loss, but elements upstream of GnRH1, including kisspeptins, appear to also be dispensable. We discuss routes that may compensate for the loss of the GnRH1 pathway.
Collapse
Affiliation(s)
- Kathleen E Whitlock
- Centro Interdisciplinario de Neurociencia de Valparaiso (CINV), Instituto de Neurociencia, Universidad de Valparaiso, Avenida Gran Bretaña 1111, Valparaiso, Chile.
| | - John Postlethwait
- Institute of Neuroscience, 324 Huestis Hall, 1254 University of Oregon, Eugene, OR 97403-1254, USA
| | - John Ewer
- Centro Interdisciplinario de Neurociencia de Valparaiso (CINV), Instituto de Neurociencia, Universidad de Valparaiso, Avenida Gran Bretaña 1111, Valparaiso, Chile
| |
Collapse
|
31
|
Loganathan K, Moriya S, Parhar IS. High Melatonin Conditions by Constant Darkness and High Temperature Differently Affect Melatonin Receptormt1and TREK Channeltrek2ain the Brain of Zebrafish. Zebrafish 2018; 15:473-483. [DOI: 10.1089/zeb.2018.1594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Kavinash Loganathan
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Shogo Moriya
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Ishwar S. Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
32
|
Xiao WY, Li YW, Chen QL, Liu ZH. Tributyltin impaired reproductive success in female zebrafish through disrupting oogenesis, reproductive behaviors and serotonin synthesis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 200:206-216. [PMID: 29775928 DOI: 10.1016/j.aquatox.2018.05.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 06/08/2023]
Abstract
Tributyltin (TBT), an organotin acting as aromatase (Cyp19a1) inhibitor, has been found to disrupt gametogenesis and reproductive behaviors in several fish species. However, few studies addressing the mechanisms underlying the impaired gametogenesis and reproduction have been reported. In this study, female adults of zebrafish (Danio rerio) were continuously exposed to two nominal concentrations of TBT (100 and 500 ng/L, actual concentrations: 90.8 ± 1.3 ng/L and 470.3 ± 2.7 ng/L, respectively) for 28 days. After exposures, TBT decreased the total egg number, reduced the hatchability and elevated the mortality of the larvae. Decreased gonadosomatic index (GSI) and altered percentages of follicles in different developmental stages (increased early-stage follicles and reduced mid/late-stage follicles) were also observed in the ovary of TBT-treated fish. TBT also lowered the plasma level of 17β-estradiol and suppressed the expressions of cyp19a1a in the ovary. In treated fish, up-regulated expressions of aldhla2, sycp3 and dmc1 were present in the ovary, indicating an enhanced level of meiosis. The mRNA level of vtg1 was dramatically suppressed in the liver of TBT-treated fish, suggesting an insufficient synthesis of Vtg protein, consistent with the decreased percentage of mid/late-stage follicles in the ovaries. Moreover, TBT significantly suppressed the reproductive behaviors of the female fish (duration of both sexes simultaneously in spawning area, the frequency of meeting and the visit in spawning area) and down-regulated the mRNA levels of genes involved in the regulation of reproductive behaviors (cyp19a1b, gnrh-3 and kiss 2) in the brain. In addition, TBT significantly suppressed the expressions of serotonin-related genes, such as tph2 (encoding serotonin synthase), pet1 (marker of serotonin neuron) and kiss 1 (the modulator of serotonin synthesis), suggesting that TBT might disrupt the non-reproductive behaviors of zebrafish. The present study demonstrated that TBT may impair the reproductive success of zebrafish females probably through disrupting oogenesis, disturbing reproductive behaviors and altering serotonin synthesis. The present study greatly extends our understanding on the reproductive toxicity of TBT on fish.
Collapse
Affiliation(s)
- Wei-Yang Xiao
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Ying-Wen Li
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Qi-Liang Chen
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Zhi-Hao Liu
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
33
|
Spicer OS, Zmora N, Wong TT, Golan M, Levavi-Sivan B, Gothilf Y, Zohar Y. The gonadotropin-inhibitory hormone (Lpxrfa) system's regulation of reproduction in the brain-pituitary axis of the zebrafish (Danio rerio). Biol Reprod 2018; 96:1031-1042. [PMID: 28430864 DOI: 10.1093/biolre/iox032] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/17/2017] [Indexed: 11/14/2022] Open
Abstract
Gonadotropin-inhibitory hormone (GNIH) was discovered in quail with the ability to reduce gonadotropin expression/secretion in the pituitary. There have been few studies on GNIH orthologs in teleosts (LPXRFamide (Lpxrfa) peptides), which have provided inconsistent results. Therefore, the goal of this study was to determine the roles and modes of action by which Lpxrfa exerts its functions in the brain-pituitary axis of zebrafish (Danio rerio). We localized Lpxrfa soma to the ventral hypothalamus, with fibers extending throughout the brain and to the pituitary. In the preoptic area, Lpxrfa fibers interact with gonadotropin-releasing hormone 3 (Gnrh3) soma. In pituitary explants, zebrafish peptide Lpxrfa-3 downregulated luteinizing hormone beta subunit and common alpha subunit expression. In addition, Lpxrfa-3 reduced gnrh3 expression in brain slices, offering another pathway for Lpxrfa to exert its effects on reproduction. Receptor activation studies, in a heterologous cell-based system, revealed that all three zebrafish Lpxrfa peptides activate Lpxrf-R2 and Lpxrf-R3 via the PKA/cAMP pathway. Receptor activation studies demonstrated that, in addition to activating Lpxrf receptors, zebrafish Lpxrfa-2 and Lpxrfa-3 antagonize Kisspeptin-2 (Kiss2) activation of Kisspeptin receptor-1a (Kiss1ra). The fact that kiss1ra-expressing neurons in the preoptic area are innervated by Lpxrfa-ir fibers suggests an additional pathway for Lpxrfa action. Therefore, our results suggest that Lpxrfa may act as a reproductive inhibitory neuropeptide in the zebrafish that interacts with Gnrh3 neurons in the brain and with gonadotropes in the pituitary, while also potentially utilizing the Kiss2/Kiss1ra pathway.
Collapse
Affiliation(s)
- Olivia Smith Spicer
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Nilli Zmora
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Ten-Tsao Wong
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Matan Golan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Berta Levavi-Sivan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yoav Gothilf
- Department of Neurobiology, George S. Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Yonathan Zohar
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, Maryland, USA
| |
Collapse
|
34
|
Choi D. Evolutionary Viewpoint on GnRH (gonadotropin-releasing hormone) in Chordata - Amino Acid and Nucleic Acid Sequences. Dev Reprod 2018; 22:119-132. [PMID: 30023462 PMCID: PMC6048306 DOI: 10.12717/dr.2018.22.2.119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 04/30/2018] [Accepted: 05/25/2018] [Indexed: 01/18/2023]
Abstract
GnRH (gonadotropin-releasing hormone) is a supreme hormone regulating reproductive activity in most animals. The sequences of amino acid and nucleic acid of GnRH reported up to now are examined from the evolutionary framework of Chordata. All identified GnRH are classified into GnRH1, GnRH2, or GnRH3. In all three forms of GnRH both N-terminal and C-terminal are conserved, which allows for effective binding to their receptors. The three amino acids in the middle of GnRH1 sequence have altered diversely from the primitive Chordata, which is indicative of the adaptation process to the ambient environment. GnRH2 and GnRH3 sequences are well conserved. There are more diverse modifications in the nucleic acids than in amino acid sequence of GnRH1. These variations can result from meiosis, mutation, or epigenetics and indicate that GnRH is the product of natural selection.
Collapse
Affiliation(s)
- Donchan Choi
- Dept. of Life Science, College of
Environmental Sciences, Yong-In University, Yongin
17092, Korea
| |
Collapse
|
35
|
Trudeau VL. Facing the Challenges of Neuropeptide Gene Knockouts: Why Do They Not Inhibit Reproduction in Adult Teleost Fish? Front Neurosci 2018; 12:302. [PMID: 29773976 PMCID: PMC5943551 DOI: 10.3389/fnins.2018.00302] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/18/2018] [Indexed: 12/05/2022] Open
Abstract
Genetic manipulation of teleost endocrine systems started with transgenic overexpression of pituitary growth hormone. Such strategies enhance growth and reduce fertility, but the fish still breed. Genome editing using transcription activator-like effector nuclease in zebrafish and medaka has established the role of follicle stimulating hormone for gonadal development and luteinizing hormone for ovulation. Attempts to genetically manipulate the hypophysiotropic neuropeptidergic systems have been less successful. Overexpression of a gonadotropin-releasing hormone (gnrh) antisense in common carp delays puberty but does not block reproduction. Knockout of Gnrh in zebrafish does not impact either sex, while in medaka this blocks ovulation in females without affecting males. Spawning success is not reduced by knockout of the kisspeptins and receptors, agouti-related protein, agouti signaling peptide or spexin. Hypotheses for the lack of effect of these genome edits are presented. Over evolutionary time, teleosts have lost the median eminence typical of mammals. There is consequently direct innervation of gonadotrophs, with the possibility of independent regulation by >20 neurohormones. Removal of a few may have minimal impact. Neuropeptide knockout could leave co-expressed stimulators of gonadotropins functionally intact. Genetic compensation in response to loss of protein function may maintain sufficient reproduction. The species differences in hypothalamo-hypophysial anatomy could be an example of compensation over the evolutionary timescale as teleosts diversified and adapted to new ecological niches. The key neuropeptidergic systems controlling teleost reproduction remain to be uncovered. Classical neurotransmitters are also regulators of luteinizing hormone release, but have yet to be targeted by genome editing. Their essentiality for reproduction should also be explored.
Collapse
Affiliation(s)
- Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
36
|
Loganathan K, Moriya S, Sivalingam M, Ng KW, Parhar IS. Sequence and localization of kcnk10a in the brain of adult zebrafish (Danio rerio). J Chem Neuroanat 2017; 86:92-99. [DOI: 10.1016/j.jchemneu.2017.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/23/2017] [Accepted: 10/21/2017] [Indexed: 01/16/2023]
|
37
|
Yu M, Feng Y, Zhang X, Wang J, Tian H, Wang W, Ru S. Semicarbazide disturbs the reproductive system of male zebrafish (Danio rerio) through the GABAergic system. Reprod Toxicol 2017; 73:149-157. [PMID: 28834696 DOI: 10.1016/j.reprotox.2017.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/13/2017] [Accepted: 08/09/2017] [Indexed: 12/16/2022]
Abstract
Semicarbazide (SMC), an emerging water contaminant, exerts anti-estrogenic effects in female zebrafish. However, the exact influence of SMC on male reproduction remains unclear. In this study, adult male zebrafish were exposed to 1-1000μg/L SMC in a semi-static system for 28 d prior to examining the testicular somatic index (TSI), testis histology, plasma sex hormone levels, and the transcription of genes involved in reproduction. The results showed that testicular morphology was altered and TSI was down-regulated by high concentrations of SMC (≥100μg/L and 1000μg/L, respectively). Plasma testosterone and 17β-estradiol concentrations were significantly decreased by all of the SMC treatments, along with down-regulation of the corresponding steroidogenic gene transcripts. These changes were associated with the inhibition of gamma-aminobutyric acid synthesis and function, in addition to the decreased expression of reproductive regulators. Our results contribute to elucidating the mechanisms underlying the adverse reproductive effects of SMC in male zebrafish.
Collapse
Affiliation(s)
- Miao Yu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yongliang Feng
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Hua Tian
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Wei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
38
|
Bpifcl modulates kiss2 expression under the influence of 11-ketotestosterone in female zebrafish. Sci Rep 2017; 7:7926. [PMID: 28801581 PMCID: PMC5554142 DOI: 10.1038/s41598-017-08248-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 07/10/2017] [Indexed: 11/21/2022] Open
Abstract
The bactericidal/permeability-increasing (BPI) fold-containing (BPIF) superfamily of genes expressed in the brain are purportedly involved in modulating brain function in response to stress, such as inflammation. Kisspeptin, encoded by kiss, is affected by inflammation in the brain; therefore, BPIF family genes might be involved in the modulation of kisspeptin in the brain. In this study, we investigated the expression of BPIF family C, like (bpifcl) in zebrafish brain and its involvement in kiss2 regulation. The identified, full-length sequence of a bpifcl isoform expressed in the zebrafish brain contained the BPI fold shared by BPIF family members. bpifcl mRNA expression in female zebrafish brains was significantly higher than that in males. Exposure of female zebrafish to 11-ketotestosterone decreased bpifcl and kiss2 mRNA expression. bpifcl knockdown by bpifcl-specific small interfering RNA administration to female zebrafish brain decreased kiss2 mRNA expression. bpifcl expression was widely distributed in the brain, including in the dorsal zone of the periventricular hypothalamus (Hd). Furthermore, bpifcl was also expressed in KISS2 neurons in the Hd. These results suggest that the Bpifcl modulates kiss2 mRNA expression under the influence of testosterone in the Hd of female zebrafish.
Collapse
|
39
|
Li L, Wojtowicz JL, Malin JH, Huang T, Lee EB, Chen Z. GnRH-mediated olfactory and visual inputs promote mating-like behaviors in male zebrafish. PLoS One 2017; 12:e0174143. [PMID: 28329004 PMCID: PMC5362193 DOI: 10.1371/journal.pone.0174143] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 03/03/2017] [Indexed: 01/13/2023] Open
Abstract
The engagement of sexual behaviors is regulated by a number of factors which include gene expression, hormone circulation, and multi-sensory information integration. In zebrafish, when a male and a female are placed in the same container, they show mating-like behaviors regardless of whether they are kept together or separated by a net. No mating-like behaviors are observed when same-sex animals are put together. Through the olfacto-visual centrifugal pathway, activation of the terminalis nerve in the olfactory bulb increases GnRH signaling in the brain and triggers mating-like behaviors between males. In zebrafish mutants or wild-type fish in which the olfacto-visual centrifugal pathway is impaired or chemically ablated, in response to odor stimulation the mating-like behaviors between males are no longer evident. Together, the data suggest that the combination of olfactory and visual signals alter male zebrafish's mating-like behaviors via GnRH signaling.
Collapse
Affiliation(s)
- Lei Li
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
- * E-mail:
| | - Jennifer L. Wojtowicz
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
| | - John H. Malin
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
| | - Tao Huang
- Center for Reproductive Medicine, Shandong University, Jinan,China
| | - Eric B. Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
| | - Zijiang Chen
- Center for Reproductive Medicine, Shandong University, Jinan,China
| |
Collapse
|
40
|
Shaw ND, Brand H, Kupchinsky ZA, Bengani H, Plummer L, Jones TI, Erdin S, Williamson KA, Rainger J, Stortchevoi A, Samocha K, Currall BB, Dunican DS, Collins RL, Willer JR, Lek A, Lek M, Nassan M, Pereira S, Kammin T, Lucente D, Silva A, Seabra CM, Chiang C, An Y, Ansari M, Rainger JK, Joss S, Smith JC, Lippincott MF, Singh SS, Patel N, Jing JW, Law JR, Ferraro N, Verloes A, Rauch A, Steindl K, Zweier M, Scheer I, Sato D, Okamoto N, Jacobsen C, Tryggestad J, Chernausek S, Schimmenti LA, Brasseur B, Cesaretti C, García-Ortiz JE, Buitrago TP, Silva OP, Hoffman JD, Mühlbauer W, Ruprecht KW, Loeys BL, Shino M, Kaindl AM, Cho CH, Morton CC, Meehan RR, van Heyningen V, Liao EC, Balasubramanian R, Hall JE, Seminara SB, Macarthur D, Moore SA, Yoshiura KI, Gusella JF, Marsh JA, Graham JM, Lin AE, Katsanis N, Jones PL, Crowley WF, Davis EE, FitzPatrick DR, Talkowski ME. SMCHD1 mutations associated with a rare muscular dystrophy can also cause isolated arhinia and Bosma arhinia microphthalmia syndrome. Nat Genet 2017; 49:238-248. [PMID: 28067909 PMCID: PMC5473428 DOI: 10.1038/ng.3743] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/16/2016] [Indexed: 12/14/2022]
Abstract
Arhinia, or absence of the nose, is a rare malformation of unknown etiology that is often accompanied by ocular and reproductive defects. Sequencing of 40 people with arhinia revealed that 84% of probands harbor a missense mutation localized to a constrained region of SMCHD1 encompassing the ATPase domain. SMCHD1 mutations cause facioscapulohumeral muscular dystrophy type 2 (FSHD2) via a trans-acting loss-of-function epigenetic mechanism. We discovered shared mutations and comparable DNA hypomethylation patterning between these distinct disorders. CRISPR/Cas9-mediated alteration of smchd1 in zebrafish yielded arhinia-relevant phenotypes. Transcriptome and protein analyses in arhinia probands and controls showed no differences in SMCHD1 mRNA or protein abundance but revealed regulatory changes in genes and pathways associated with craniofacial patterning. Mutations in SMCHD1 thus contribute to distinct phenotypic spectra, from craniofacial malformation and reproductive disorders to muscular dystrophy, which we speculate to be consistent with oligogenic mechanisms resulting in pleiotropic outcomes.
Collapse
Affiliation(s)
- Natalie D Shaw
- Harvard Reproductive Endocrine Sciences Center and NICHD Center of Excellence in Translational Research in Fertility and Infertility, Reproductive Endocrine Unit of the Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Harrison Brand
- Harvard Reproductive Endocrine Sciences Center and NICHD Center of Excellence in Translational Research in Fertility and Infertility, Reproductive Endocrine Unit of the Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Molecular Neurogenetics Unit and Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Zachary A Kupchinsky
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA
| | - Hemant Bengani
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh Western General Hospital, Edinburgh, UK
| | - Lacey Plummer
- Harvard Reproductive Endocrine Sciences Center and NICHD Center of Excellence in Translational Research in Fertility and Infertility, Reproductive Endocrine Unit of the Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Takako I Jones
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Serkan Erdin
- Molecular Neurogenetics Unit and Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Kathleen A Williamson
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh Western General Hospital, Edinburgh, UK
| | - Joe Rainger
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh Western General Hospital, Edinburgh, UK
| | - Alexei Stortchevoi
- Molecular Neurogenetics Unit and Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kaitlin Samocha
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Benjamin B Currall
- Molecular Neurogenetics Unit and Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Donncha S Dunican
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh Western General Hospital, Edinburgh, UK
| | - Ryan L Collins
- Molecular Neurogenetics Unit and Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, USA
- Program in Bioinformatics and Integrative Genomics, Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts, USA
| | - Jason R Willer
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA
| | - Angela Lek
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Monkol Lek
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Malik Nassan
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | - Shahrin Pereira
- Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Tammy Kammin
- Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Diane Lucente
- Molecular Neurogenetics Unit and Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Alexandra Silva
- Molecular Neurogenetics Unit and Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Catarina M Seabra
- Molecular Neurogenetics Unit and Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, USA
- GABBA Program, University of Porto, Porto, Portugal
| | - Colby Chiang
- Molecular Neurogenetics Unit and Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Yu An
- Molecular Neurogenetics Unit and Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Morad Ansari
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh Western General Hospital, Edinburgh, UK
| | - Jacqueline K Rainger
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh Western General Hospital, Edinburgh, UK
| | - Shelagh Joss
- West of Scotland Genetics Service, South Glasgow University Hospitals, Glasgow, UK
| | - Jill Clayton Smith
- Faculty of Medical and Human Sciences, Institute of Human Development, Manchester Centre for Genomic Medicine, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester, UK
| | - Margaret F Lippincott
- Harvard Reproductive Endocrine Sciences Center and NICHD Center of Excellence in Translational Research in Fertility and Infertility, Reproductive Endocrine Unit of the Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sylvia S Singh
- Harvard Reproductive Endocrine Sciences Center and NICHD Center of Excellence in Translational Research in Fertility and Infertility, Reproductive Endocrine Unit of the Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Nirav Patel
- Harvard Reproductive Endocrine Sciences Center and NICHD Center of Excellence in Translational Research in Fertility and Infertility, Reproductive Endocrine Unit of the Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jenny W Jing
- Harvard Reproductive Endocrine Sciences Center and NICHD Center of Excellence in Translational Research in Fertility and Infertility, Reproductive Endocrine Unit of the Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jennifer R Law
- Division of Pediatric Endocrinology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nalton Ferraro
- Department of Oral and Maxillofacial Surgery, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Alain Verloes
- Department of Genetics, Robert Debré Hospital, Paris, France
| | - Anita Rauch
- Institute of Medical Genetics and Radiz-Rare Disease Initiative Zurich, Clinical Research Priority Program for Rare Diseases, University of Zurich, Schlieren-Zurich, Switzerland
| | - Katharina Steindl
- Institute of Medical Genetics and Radiz-Rare Disease Initiative Zurich, Clinical Research Priority Program for Rare Diseases, University of Zurich, Schlieren-Zurich, Switzerland
| | - Markus Zweier
- Institute of Medical Genetics and Radiz-Rare Disease Initiative Zurich, Clinical Research Priority Program for Rare Diseases, University of Zurich, Schlieren-Zurich, Switzerland
| | - Ianina Scheer
- Department of Diagnostic Imaging, Children's Hospital, Zurich, Switzerland
| | - Daisuke Sato
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - Christina Jacobsen
- Division of Endocrinology and Genetics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jeanie Tryggestad
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Steven Chernausek
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Lisa A Schimmenti
- Departments of Otorhinolaryngology and Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
| | - Benjamin Brasseur
- DeWitt Daughtry Family Department of Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA
| | - Claudia Cesaretti
- Medical Genetics Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Jose E García-Ortiz
- División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Mexico
| | | | | | - Jodi D Hoffman
- Divisions of Genetics and Maternal Fetal Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | - Wolfgang Mühlbauer
- Department of Plastic and Aesthetic Surgery, ATOS Klinik, Munich, Germany
| | - Klaus W Ruprecht
- Department of Ophthalmology, University Hospital of the Saarland, Homburg, Germany
| | - Bart L Loeys
- Center for Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Masato Shino
- Department of Otolaryngology and Head and Neck Surgery, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Angela M Kaindl
- Biology and Neurobiology, Charité-University Medicine Berlin and Berlin Institute of Health, Berlin, Germany
| | - Chie-Hee Cho
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, University Hospital of Bern, Bern, Switzerland
| | - Cynthia C Morton
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Richard R Meehan
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh Western General Hospital, Edinburgh, UK
| | - Veronica van Heyningen
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh Western General Hospital, Edinburgh, UK
| | - Eric C Liao
- Center for Regenerative Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Ravikumar Balasubramanian
- Harvard Reproductive Endocrine Sciences Center and NICHD Center of Excellence in Translational Research in Fertility and Infertility, Reproductive Endocrine Unit of the Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Janet E Hall
- Harvard Reproductive Endocrine Sciences Center and NICHD Center of Excellence in Translational Research in Fertility and Infertility, Reproductive Endocrine Unit of the Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Stephanie B Seminara
- Harvard Reproductive Endocrine Sciences Center and NICHD Center of Excellence in Translational Research in Fertility and Infertility, Reproductive Endocrine Unit of the Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Daniel Macarthur
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Steven A Moore
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Koh-Ichiro Yoshiura
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - James F Gusella
- Molecular Neurogenetics Unit and Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh Western General Hospital, Edinburgh, UK
| | - John M Graham
- Department of Pediatrics, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Angela E Lin
- Medical Genetics, MassGeneral Hospital for Children and Harvard Medical School, Boston, Massachusetts, USA
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA
| | - Peter L Jones
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - William F Crowley
- Harvard Reproductive Endocrine Sciences Center and NICHD Center of Excellence in Translational Research in Fertility and Infertility, Reproductive Endocrine Unit of the Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Erica E Davis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA
| | - David R FitzPatrick
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh Western General Hospital, Edinburgh, UK
| | - Michael E Talkowski
- Molecular Neurogenetics Unit and Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
41
|
Miccoli A, Olivotto I, De Felice A, Leonori I, Carnevali O. Characterization and transcriptional profiles of Engraulis encrasicolus' GnRH forms. Reproduction 2016; 152:727-739. [PMID: 27651520 DOI: 10.1530/rep-16-0405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/19/2016] [Indexed: 12/12/2022]
Abstract
The European anchovy Engraulis encrasicolus, a member of the Clupeiformes order, holds a great biological and economical importance. In the past, this species was mostly investigated with the aim of assessing its reproductive biology, trophic ecology, population dynamics and the relations existing with the physical environment. At present days, though, an almost complete lack of information afflicts its neuroendocrinology and reproductive physiology. The hypothalamic-pituitary-gonadal (HPG) axis at its highest levels was herein investigated. In this study, the gonadotropin-releasing hormone (GnRH), a neuropeptide underlying many reproduction-related processes, the most critical of which is the stimulation of gonadotropin synthesis and secretion from the pituitary gland, was cloned. Three forms (salmon GnRH, chicken-II GnRH and the species-specific type) were characterized in their full-length open-reading frames and, in accordance with other Clupeiformes species, the distinctive one was found to be the herring-type GnRH. We qualitatively and semiquantitatively evaluated the localizations of expressions and the temporal transcription patterns of the three GnRH forms in male and female specimens throughout their reproductive cycle as well as described their phylogeny with regard to teleost GnRH lineages, and, specifically, to other Clupeiformes species.
Collapse
Affiliation(s)
- Andrea Miccoli
- Department of Life and Environmental SciencesUniversità Politecnica delle Marche, Ancona, Italy.,CNR-National Research Council of ItalyISMAR-Marine Sciences Institute, Ancona, Italy
| | - Ike Olivotto
- Department of Life and Environmental SciencesUniversità Politecnica delle Marche, Ancona, Italy
| | - Andrea De Felice
- CNR-National Research Council of ItalyISMAR-Marine Sciences Institute, Ancona, Italy
| | - Iole Leonori
- CNR-National Research Council of ItalyISMAR-Marine Sciences Institute, Ancona, Italy
| | - Oliana Carnevali
- Department of Life and Environmental SciencesUniversità Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
42
|
Spicer OS, Wong TT, Zmora N, Zohar Y. Targeted Mutagenesis of the Hypophysiotropic Gnrh3 in Zebrafish (Danio rerio) Reveals No Effects on Reproductive Performance. PLoS One 2016; 11:e0158141. [PMID: 27355207 PMCID: PMC4927163 DOI: 10.1371/journal.pone.0158141] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/11/2016] [Indexed: 11/25/2022] Open
Abstract
Gnrh is the major neuropeptide regulator of vertebrate reproduction, triggering a cascade of events in the pituitary-gonadal axis that result in reproductive competence. Previous research in mice and humans has demonstrated that Gnrh/GNRH null mutations result in hypogonadotropic hypogonadism and infertility. The goal of this study was to eliminate gnrh3 (the hypophysiotropic Gnrh form) function in zebrafish (Danio rerio) to determine how ontogeny and reproductive performance are affected, as well as factors downstream of Gnrh3 along the reproductive axis. Using the TALEN technology, we developed a gnrh3-/- zebrafish line that harbors a 62 bp deletion in the gnrh3 gene. Our gnrh3-/- zebrafish line represents the first targeted and heritable mutation of a Gnrh isoform in any organism. Using immunohistochemistry, we verified that gnrh3-/- fish do not possess Gnrh3 peptide in any regions of the brain. However, other than changes in mRNA levels of pituitary gonadotropin genes (fshb, lhb, and cga) during early development, which are corrected by adulthood, there were no changes in ontogeny and reproduction in gnrh3-/- fish. The gnrh3-/- zebrafish are fertile, displaying normal gametogenesis and reproductive performance in males and females. Together with our previous results that Gnrh3 cell ablation causes infertility, these results indicate that a compensatory mechanism is being activated, which is probably primed early on upon Gnrh3 neuron differentiation and possibly confined to Gnrh3 neurons. Potential compensation factors and sensitive windows of time for compensation during development and puberty should be explored.
Collapse
Affiliation(s)
- Olivia Smith Spicer
- Department of Marine Biotechnology and Institute of Marine and Environmental Technology, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
| | - Ten-Tsao Wong
- Department of Marine Biotechnology and Institute of Marine and Environmental Technology, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
| | - Nilli Zmora
- Department of Marine Biotechnology and Institute of Marine and Environmental Technology, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
| | - Yonathan Zohar
- Department of Marine Biotechnology and Institute of Marine and Environmental Technology, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
43
|
Molecular identification of Kiss/GPR54 and function analysis with mRNA expression profiles exposure to 17α-ethinylestradiol in rare minnow Gobiocypris rarus. Mol Biol Rep 2016; 43:737-49. [DOI: 10.1007/s11033-016-4014-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 05/13/2016] [Indexed: 02/06/2023]
|
44
|
Qiu W, Zhao Y, Yang M, Farajzadeh M, Pan C, Wayne NL. Actions of Bisphenol A and Bisphenol S on the Reproductive Neuroendocrine System During Early Development in Zebrafish. Endocrinology 2016; 157:636-47. [PMID: 26653335 DOI: 10.1210/en.2015-1785] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Bisphenol A (BPA) is a well-known environmental, endocrine-disrupting chemical, and bisphenol S (BPS) has been considered a safer alternative for BPA-free products. The present study aims to evaluate the impact of BPA and BPS on the reproductive neuroendocrine system during zebrafish embryonic and larval development and to explore potential mechanisms of action associated with estrogen receptor (ER), thyroid hormone receptor (THR), and enzyme aromatase (AROM) pathways. Environmentally relevant, low levels of BPA exposure during development led to advanced hatching time, increased numbers of GnRH3 neurons in both terminal nerve and hypothalamus, increased expression of reproduction-related genes (kiss1, kiss1r, gnrh3, lhβ, fshβ, and erα), and a marker for synaptic transmission (sv2). Low levels of BPS exposure led to similar effects: increased numbers of hypothalamic GnRH3 neurons and increased expression of kiss1, gnrh3, and erα. Antagonists of ER, THRs, and AROM blocked many of the effects of BPA and BPS on reproduction-related gene expression, providing evidence that those three pathways mediate the actions of BPA and BPS on the reproductive neuroendocrine system. This study demonstrates that alternatives to BPA used in the manufacture of BPA-free products are not necessarily safer. Furthermore, this is the first study to describe the impact of low-level BPA and BPS exposure on the Kiss/Kiss receptor system during development. It is also the first report of multiple cellular pathways (ERα, THRs, and AROM) mediating the effects of BPA and BPS during embryonic development in any species.
Collapse
Affiliation(s)
- Wenhui Qiu
- School of Environmental and Chemical Engineering (W.Q., M.Y., C.P.), Shanghai University, Shanghai 200444, China; and Department of Physiology (W.Q., Y.Z., M.F., N.L.W.), David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, California 90095
| | - Yali Zhao
- School of Environmental and Chemical Engineering (W.Q., M.Y., C.P.), Shanghai University, Shanghai 200444, China; and Department of Physiology (W.Q., Y.Z., M.F., N.L.W.), David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, California 90095
| | - Ming Yang
- School of Environmental and Chemical Engineering (W.Q., M.Y., C.P.), Shanghai University, Shanghai 200444, China; and Department of Physiology (W.Q., Y.Z., M.F., N.L.W.), David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, California 90095
| | - Matthew Farajzadeh
- School of Environmental and Chemical Engineering (W.Q., M.Y., C.P.), Shanghai University, Shanghai 200444, China; and Department of Physiology (W.Q., Y.Z., M.F., N.L.W.), David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, California 90095
| | - Chenyuan Pan
- School of Environmental and Chemical Engineering (W.Q., M.Y., C.P.), Shanghai University, Shanghai 200444, China; and Department of Physiology (W.Q., Y.Z., M.F., N.L.W.), David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, California 90095
| | - Nancy L Wayne
- School of Environmental and Chemical Engineering (W.Q., M.Y., C.P.), Shanghai University, Shanghai 200444, China; and Department of Physiology (W.Q., Y.Z., M.F., N.L.W.), David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, California 90095
| |
Collapse
|
45
|
Yu M, Zhang X, Guo L, Tian H, Wang W, Ru S. Anti-estrogenic effect of semicarbazide in female zebrafish (Danio rerio) and its potential mechanisms. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 170:262-270. [PMID: 26688189 DOI: 10.1016/j.aquatox.2015.11.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/25/2015] [Accepted: 11/26/2015] [Indexed: 06/05/2023]
Abstract
Semicarbazide (SMC), a member of the hydrazine family, has various toxic effects and has been detected in organisms, aquatic environments, and food. SMC exposure inhibited the transcription of hepatic vitellogenin and estrogen receptors in female zebrafish (Danio rerio), suggesting that it had anti-estrogenic properties. In order to elucidate the mechanisms underlying these, we exposed female zebrafish to SMC and used enzyme-linked immunosorbent assays to examine plasma 17β-estradiol (E2) and testosterone (T) levels. Gonad histology was analyzed and the mRNA expression of genes involved in the reproductive axis, the gamma-aminobutyric acid (GABA) shunt, and leptin was quantified by real-time PCR. Zebrafish were exposed to 1, 10, 100, or 1000μg/L SMC in a semi-static system for 96hours or 28 days. Plasma E2 levels were significantly decreased and ovarian maturation was inhibited by SMC, suggesting that its anti-estrogenic effect was exerted by reducing endogenous E2 levels. This was likely due to the SMC-mediated inhibition of cytochrome P450 (CYP) 19A mRNA levels, because this enzyme catalyzes the conversion of T to E2 in the gonads. In addition, down-regulation of the mRNA expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase, steroidogenic acute regulatory protein, CYP17, and 17beta-hydroxysteroid dehydrogenase was observed; this was predicted to reduce T concentrations and further contribute to the reduced E2 levels. SMC-induced changes in the expression of these steroidogenic genes correlated with decreased transcription of gonadotropic hormones (follicle-stimulating hormone and luteinizing hormone) and significantly elevated leptin expression. Furthermore, SMC also altered expression of the key enzyme in gamma-aminobutyric acid (GABA) synthesis, GABA receptors, and salmon gonadotropin-releasing hormone, thus affecting gonadotropin expression. Overall, SMC acted at multiple sites related to reproduction to reduce plasma E2 levels, consequently exerting an anti-estrogenic effect in female zebrafish. These effects were observed at environmentally relevant concentrations and highlight the importance of controlling SMC contamination.
Collapse
Affiliation(s)
- Miao Yu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Linlin Guo
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Hua Tian
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Wei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
46
|
Huang W, Zhang J, Liao Z, Lv Z, Wu H, Zhu A, Wu C. Genomic structure and promoter functional analysis of GnRH3 gene in large yellow croaker (Larimichthys crocea). Gene 2015; 576:458-65. [PMID: 26519998 DOI: 10.1016/j.gene.2015.10.063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 10/09/2015] [Accepted: 10/24/2015] [Indexed: 01/30/2023]
Abstract
Gonadotropin-releasing hormone III (GnRH3) is considered to be a key neurohormone in fish reproduction control. In the present study, the cDNA and genomic sequences of GnRH3 were cloned and characterized from large yellow croaker Larimichthys crocea. The cDNA encoded a protein of 99 amino acids with four functional motifs. The full-length genome sequence was composed of 3797 nucleotides, including four exons and three introns. Higher identities of amino acid sequences and conserved exon-intron organizations were found between LcGnRH3 and other GnRH3 genes. In addition, some special features of the sequences were detected in partial species. For example, two specific residues (V and A) were found in the family Sciaenidae, and the unique 75-72 bp type of the open reading frame 2 and 3 existed in the family Cyprinidae. Analysis of the 2576 bp promoter fragment of LcGnRH3 showed a number of transcription factor binding sites, such as AP1, CREB, GATA-1, HSF, FOXA2, and FOXL1. Promoter functional analysis using an EGFP reporter fusion in zebrafish larvae presented positive signals in the brain, including the olfactory region, the terminal nerve ganglion, the telencephalon, and the hypothalamus. The expression pattern was generally consistent with the endogenous GnRH3 GFP-expressing transgenic zebrafish lines, but the details were different. These results indicate that the structure and function of LcGnRH3 are generally similar to the other teleost GnRH3 genes, but there exist some distinctions among them.
Collapse
Affiliation(s)
- Wei Huang
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, PR China
| | - Jianshe Zhang
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, PR China
| | - Zhi Liao
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, PR China
| | - Zhenming Lv
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, PR China
| | - Huifei Wu
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, PR China
| | - Aiyi Zhu
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, PR China
| | - Changwen Wu
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, PR China
| |
Collapse
|
47
|
Palstra AP, Fukaya K, Chiba H, Dirks RP, Planas JV, Ueda H. The Olfactory Transcriptome and Progression of Sexual Maturation in Homing Chum Salmon Oncorhynchus keta. PLoS One 2015; 10:e0137404. [PMID: 26397372 PMCID: PMC4580453 DOI: 10.1371/journal.pone.0137404] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 08/17/2015] [Indexed: 11/19/2022] Open
Abstract
Reproductive homing migration of salmonids requires accurate interaction between the reception of external olfactory cues for navigation to the spawning grounds and the regulation of sexual maturation processes. This study aimed at providing insights into the hypothesized functional link between olfactory sensing of the spawning ground and final sexual maturation. We have therefore assessed the presence and expression levels of olfactory genes by RNA sequencing (RNAseq) of the olfactory rosettes in homing chum salmon Oncorhynchus keta Walbaum from the coastal sea to 75 km upstream the rivers at the pre-spawning ground. The progression of sexual maturation along the brain-pituitary-gonadal axis was assessed through determination of plasma steroid levels by time-resolved fluoroimmunoassays (TR-FIA), pituitary gonadotropin subunit expression and salmon gonadotropin-releasing hormone (sgnrh) expression in the brain by quantitative real-time PCR. RNAseq revealed the expression of 75 known and 27 unknown salmonid olfactory genes of which 13 genes were differentially expressed between fish from the pre-spawning area and from the coastal area, suggesting an important role of these genes in homing. A clear progression towards final maturation was characterised by higher plasma 17α,20β-dihydroxy-4-pregnen-3-one (DHP) levels, increased pituitary luteinizing hormone β subunit (lhβ) expression and sgnrh expression in the post brain, and lower plasma testosterone (T) and 17β-estradiol (E2) levels. Olfactomedins and ependymin are candidates among the differentially expressed genes that may connect olfactory reception to the expression of sgnrh to regulate final maturation.
Collapse
Affiliation(s)
- Arjan P. Palstra
- Institute for Marine Resources and Ecosystem Studies (IMARES), Wageningen University and Research Centre, Korringaweg 5, 4401 NT Yerseke, The Netherlands
- Animal Breeding and Genomics Centre, Wageningen UR Livestock Research, PO Box 338, 6700 AH Wageningen, The Netherlands
- * E-mail:
| | - Kosuke Fukaya
- Laboratory of Aquatic Bioresources and Ecosystem, Section of Ecosystem Conservation, Field Science Center for Northern Biosphere, Hokkaido University, Sapporo, 060-0809 Hokkaido, Japan
| | - Hiroaki Chiba
- School of Marine Biosciences, Kitasato University, Kitasato 1-15-1, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Ron P. Dirks
- ZF-screens BV, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands
| | - Josep V. Planas
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Hiroshi Ueda
- Laboratory of Aquatic Bioresources and Ecosystem, Section of Ecosystem Conservation, Field Science Center for Northern Biosphere, Hokkaido University, Sapporo, 060-0809 Hokkaido, Japan
| |
Collapse
|
48
|
Cortés-Campos C, Letelier J, Ceriani R, Whitlock KE. Zebrafish adult-derived hypothalamic neurospheres generate gonadotropin-releasing hormone (GnRH) neurons. Biol Open 2015. [PMID: 26209533 PMCID: PMC4582115 DOI: 10.1242/bio.010447] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) is a hypothalamic decapeptide essential for fertility in vertebrates. Human male patients lacking GnRH and treated with hormone therapy can remain fertile after cessation of treatment suggesting that new GnRH neurons can be generated during adult life. We used zebrafish to investigate the neurogenic potential of the adult hypothalamus. Previously we have characterized the development of GnRH cells in the zebrafish linking genetic pathways to the differentiation of neuromodulatory and endocrine GnRH cells in specific regions of the brain. Here, we developed a new method to obtain neural progenitors from the adult hypothalamus in vitro. Using this system, we show that neurospheres derived from the adult hypothalamus can be maintained in culture and subsequently differentiate glia and neurons. Importantly, the adult derived progenitors differentiate into neurons containing GnRH and the number of cells is increased through exposure to either testosterone or GnRH, hormones used in therapeutic treatment in humans. Finally, we show in vivo that a neurogenic niche in the hypothalamus contains GnRH positive neurons. Thus, we demonstrated for the first time that neurospheres can be derived from the hypothalamus of the adult zebrafish and that these neural progenitors are capable of producing GnRH containing neurons.
Collapse
Affiliation(s)
- Christian Cortés-Campos
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Pasaje Harrington 269, Valparaíso 2340000, Chile Whitehead Institute for Biomedical Research (WIBR), 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Joaquín Letelier
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Pasaje Harrington 269, Valparaíso 2340000, Chile Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Carretera de Utera km 1, Sevilla 41013, España
| | - Ricardo Ceriani
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Pasaje Harrington 269, Valparaíso 2340000, Chile
| | - Kathleen E Whitlock
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Pasaje Harrington 269, Valparaíso 2340000, Chile
| |
Collapse
|
49
|
Prasad P, Ogawa S, Parhar IS. Serotonin reuptake inhibitor citalopram inhibits GnRH synthesis and spermatogenesis in the male zebrafish. Biol Reprod 2015; 93:102. [PMID: 26157069 DOI: 10.1095/biolreprod.115.129965] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/29/2015] [Indexed: 01/10/2023] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are widely used antidepressants for the treatment of depression. However, SSRIs cause sexual side effects such as anorgasmia, erectile dysfunction, and diminished libido that are thought to be mediated through the serotonin (5-hydroxytryptamine, 5-HT) system. In vertebrates, gonadotropin-releasing hormone (GnRH) neurons play an important role in the control of reproduction. To elucidate the neuroendocrine mechanisms of SSRI-induced reproductive failure, we examined the neuronal association between 5-HT and GnRH (GnRH2 and GnRH3) systems in the male zebrafish. Double-label immunofluorescence and confocal laser microscopy followed by three-dimensional construction analysis showed close associations between 5-HT fibers with GnRH3 fibers and preoptic-GnRH3 cell bodies, but there was no association with GnRH2 cell bodies and fibers. Quantitative real-time PCR showed that short-term treatment (2 wk) with low to medium doses (4 and 40 μg/L, respectively) of citalopram significantly decreased mRNA levels of gnrh3, gonadotropins (lhb and fshb) and 5-HT-related genes (tph2 and sert) in the male zebrafish. In addition, short-term citalopram treatment significantly decreased the fluorescence density of 5-HT and GnRH3 fibers compared with controls. Short-term treatment with low, medium, and high (100 μg/L) citalopram doses had no effects on the profiles of different stages of spermatogenesis, while long-term (1 mo) citalopram treatment with medium and high doses significantly inhibited the different stages of spermatogenesis. These results show morphological and functional associations between the 5-HT and the hypophysiotropic GnHR3 system, which involve SSRI-induced reproductive failures.
Collapse
Affiliation(s)
- Parvathy Prasad
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Satoshi Ogawa
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Ishwar S Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| |
Collapse
|
50
|
Song Y, Duan X, Chen J, Huang W, Zhu Z, Hu W. The distribution of kisspeptin (Kiss)1- and Kiss2-positive neurones and their connections with gonadotrophin-releasing hormone-3 neurones in the zebrafish brain. J Neuroendocrinol 2015; 27:198-211. [PMID: 25529211 DOI: 10.1111/jne.12251] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 11/30/2014] [Accepted: 12/16/2014] [Indexed: 12/01/2022]
Abstract
Kisspeptin is a neuroendocrine hormone with a critical role in the activation of gonadotrophin-releasing hormone (GnRH) neurones, which is vital for the onset of puberty in mammals. However, the functions of kisspeptin neurones in non-mammalian vertebrates are not well understood. We have used transgenics to labell kisspeptin neurones (Kiss1 and Kiss2) with mCherry in zebrafish (Danio rerio). In kiss1:mCherry transgenic zebrafish, Kiss1 cells were located in the dorsomedial and ventromedial habenula, with their nerve fibres contributing to the fasciculus retroflexus and projecting to the ventral parts of the interpeduncular and raphe nuclei. In kiss2:mCherry zebrafish, Kiss2 cells were primarily located in the dorsal zone of the periventricular hypothalamus and, to a lesser extent, in the periventricular nucleus of the posterior tuberculum and the preoptic area. Kiss2 fibres formed a wide network projecting into the telencephalon, the mesencephalon, the hypothalamus and the pituitary. To study the relationship of kisspeptin neurones and GnRH3 neurones, these fish were crossed with gnrh3:EGFP zebrafish to obtain kiss1:mCherry/gnrh3:EGFP and kiss2:mCherry/gnrh3:EGFP double transgenic zebrafish. The GnRH3 fibres ascending to the habenula were closely associated with Kiss1 fibres projecting from the ventral habenula. On the other hand, GnRH3 fibres and Kiss2 fibres were adjacent but scarcely in contact with each other in the telencephalon and the hypothalamus. The Kiss2 and GnRH3 fibres in the ventral hypothalamus projected into the pituitary via the pituitary stalk. In the pituitary, Kiss2 fibres were directly in contact with GnRH3 fibres in the pars distalis. These results reveal the pattern of kisspeptin neurones and their connections with GnRH3 neurones in the brain, suggesting distinct mechanisms for Kiss1 and Kiss2 in regulating reproductive events in zebrafish.
Collapse
Affiliation(s)
- Y Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|