1
|
Bouchard É, Bonin M, Sharma R, Hernández-Ortiz A, Gouin GG, Simon A, Leighton P, Jenkins E. Use of stable isotopes to reveal trophic relationships and transmission of a food-borne pathogen. Sci Rep 2024; 14:2812. [PMID: 38307906 PMCID: PMC10837197 DOI: 10.1038/s41598-024-53369-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 01/31/2024] [Indexed: 02/04/2024] Open
Abstract
Predators in food webs are valuable sentinel species for zoonotic and multi-host pathogens such as Toxoplasma gondii. This protozoan parasite is ubiquitous in warm-blooded vertebrates, and can have serious adverse effects in immunocompromised hosts and foetuses. In northern ecosystems, T. gondii is disproportionately prevalent in Inuit people and wildlife, in part due to multiple routes of transmission. We combined data on T. gondii infection in foxes from Nunavik (northern Québec, Canada) with stable isotope data tracking trophic relationships between foxes and several of their main prey species. Red (Vulpes vulpes) and Arctic fox (Vulpes lagopus) carcasses were collected by local trappers from 2015 to 2019. We used magnetic capture PCR to detect DNA of T. gondii in heart and brain tissues, and enzyme-linked immunosorbent assay to detect antibodies in blood. By linking infection status with diet composition, we showed that infected foxes had a higher probability of consuming aquatic prey and migratory geese, suggesting that these may be important sources of T. gondii transmission in the Arctic. This use of stable isotopes to reveal parasite transmission pathways can be applied more broadly to other foodborne pathogens, and provides evidence to assess and mitigate potential human and animal health risks associated with T. gondii in northern ecosystems.
Collapse
Affiliation(s)
- Émilie Bouchard
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada.
- Research Group on Epidemiology of Zoonoses and Public Health (GREZOSP), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, J2S 2M2, Canada.
- Centre de recherche en santé publique de l'Université de Montréal et du CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montreal, QC, H2L 2W5, Canada.
| | - Michaël Bonin
- Département de Biologie, Centre d'études nordiques, Université Laval, Quebec, QC, G1V 0A6, Canada
| | - Rajnish Sharma
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| | - Adrián Hernández-Ortiz
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| | - Géraldine-G Gouin
- Nunavik Research Centre, Makivvik Corporation, Kuujjuaq, QC, J0M 1C0, Canada
| | - Audrey Simon
- Research Group on Epidemiology of Zoonoses and Public Health (GREZOSP), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Patrick Leighton
- Research Group on Epidemiology of Zoonoses and Public Health (GREZOSP), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, J2S 2M2, Canada
- Centre de recherche en santé publique de l'Université de Montréal et du CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montreal, QC, H2L 2W5, Canada
| | - Emily Jenkins
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| |
Collapse
|
2
|
Leutenegger CM, Lozoya CE, Tereski J, Andrews J, Mitchell KD, Meeks C, Willcox JL, Freeman G, Richmond HL, Savard C, Evason MD. Comparative study of a broad qPCR panel and centrifugal flotation for detection of gastrointestinal parasites in fecal samples from dogs and cats in the United States. Parasit Vectors 2023; 16:288. [PMID: 37587483 PMCID: PMC10433665 DOI: 10.1186/s13071-023-05904-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/27/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND For decades, zinc sulfate centrifugal fecal flotation microscopy (ZCF) has been the mainstay technique for gastrointestinal (GI) parasite screening at veterinary clinics and laboratories. Elsewhere, PCR has replaced microscopy because of generally increased sensitivity and detection capabilities; however, until recently it has been unavailable commercially. Therefore, the primary aim of this study was to compare the performance of real-time PCR (qPCR) and ZCF for fecal parasite screening. Secondary aims included further characterization of markers for hookworm treatment resistance and Giardia spp. assemblages with zoonotic potential and qPCR optimization. METHODS A convenience sampling of 931 canine/feline fecal samples submitted to a veterinary reference laboratory for routine ZCF from the Northeast US (11/2022) was subsequently evaluated by a broad qPCR panel following retention release. Detection frequency and agreement (kappa statistics) were evaluated between ZCF and qPCR for seven GI parasites [hookworm/(Ancylostoma spp.), roundworm/(Toxocara spp.), whipworm/(Trichuris spp.), Giardia duodenalis, Cystoisospora spp., Toxoplasma gondii, and Tritrichomonas blagburni] and detections per sample. Total detection frequencies were compared using a paired t-test; positive sample and co-infection frequencies were compared using Pearson's chi-squared test (p ≤ 0.05 significant) and qPCR frequency for hookworm benzimidazole (BZ) resistance (F167Y) and zoonotic Giardia spp. assemblage markers calculated. Confirmatory testing, characterization, and qPCR optimization were carried out with Sanger sequencing. RESULTS qPCR detected a significantly higher overall parasite frequency (n = 679) compared to ZCF (n = 437) [p = < 0.0001, t = 14.38, degrees-of-freedom (df) = 930] and 2.6 × the co-infections [qPCR (n = 172) vs. ZCF (n = 66)], which was also significant (p = < 0.0001, X2 = 279.49; df = 1). While overall agreement of parasite detection was substantial [kappa = 0.74; (0.69-0.78], ZCF-undetected parasites reduced agreement for individual and co-infected samples. qPCR detected markers for Ancylostoma caninum BZ resistance (n = 5, 16.1%) and Giardia with zoonotic potential (n = 22, 9.1%) as well as two parasites undetected by ZCF (T. gondii/T. blagburni). Sanger sequencing detected novel roundworm species, and qPCR optimization provided detection beyond ZCF. CONCLUSIONS These results demonstrate the statistically significant detection frequency advantage offered by qPCR compared to routine ZCF for both single and co-infections. While overall agreement was excellent, this rapid, commercially available qPCR panel offers benefits beyond ZCF with detection of markers for Giardia assemblages with zoonotic potential and hookworm (A. caninum) BZ resistance.
Collapse
Affiliation(s)
| | | | | | - Jan Andrews
- Antech Diagnostics, Inc, Fountain Valley, CA, USA
| | | | - Cathy Meeks
- Antech Diagnostics, Inc, Fountain Valley, CA, USA
| | | | | | | | | | | |
Collapse
|
3
|
Late Embryogenesis Abundant Proteins Contribute to the Resistance of Toxoplasma gondii Oocysts against Environmental Stresses. mBio 2023; 14:e0286822. [PMID: 36809045 PMCID: PMC10128015 DOI: 10.1128/mbio.02868-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Toxoplasma gondii oocysts, which are shed in large quantities in the feces from infected felines, are very stable in the environment, resistant to most inactivation procedures, and highly infectious. The oocyst wall provides an important physical barrier for sporozoites contained inside oocysts, protecting them from many chemical and physical stressors, including most inactivation procedures. Furthermore, sporozoites can withstand large temperature changes, even freeze-thawing, as well as desiccation, high salinity, and other environmental insults; however, the genetic basis for this environmental resistance is unknown. Here, we show that a cluster of four genes encoding Late Embryogenesis Abundant (LEA)-related proteins are required to provide Toxoplasma sporozoites resistance to environmental stresses. Toxoplasma LEA-like genes (TgLEAs) exhibit the characteristic features of intrinsically disordered proteins, explaining some of their properties. Our in vitro biochemical experiments using recombinant TgLEA proteins show that they have cryoprotective effects on the oocyst-resident lactate dehydrogenase enzyme and that induced expression in E. coli of two of them leads to better survival after cold stress. Oocysts from a strain in which the four LEA genes were knocked out en bloc were significantly more susceptible to high salinity, freezing, and desiccation compared to wild-type oocysts. We discuss the evolutionary acquisition of LEA-like genes in Toxoplasma and other oocyst-producing apicomplexan parasites of the Sarcocystidae family and discuss how this has likely contributed to the ability of sporozoites within oocysts to survive outside the host for extended periods. Collectively, our data provide a first molecular detailed view on a mechanism that contributes to the remarkable resilience of oocysts against environmental stresses. IMPORTANCE Toxoplasma gondii oocysts are highly infectious and may survive in the environment for years. Their resistance against disinfectants and irradiation has been attributed to the oocyst and sporocyst walls by acting as physical and permeability barriers. However, the genetic basis for their resistance against stressors like changes in temperature, salinity, or humidity, is unknown. We show that a cluster of four genes encoding Toxoplasma Late Embryogenesis Abundant (TgLEA)-related proteins are important for this resistance to environmental stresses. TgLEAs have features of intrinsically disordered proteins, explaining some of their properties. Recombinant TgLEA proteins show cryoprotective effects on the parasite's lactate dehydrogenase, an abundant enzyme in oocysts, and expression in E. coli of two TgLEAs has a beneficial effect on growth after cold stress. Moreover, oocysts from a strain lacking all four TgLEA genes were more susceptible to high salinity, freezing, and desiccation compared to wild-type oocysts, highlighting the importance of the four TgLEAs for oocyst resilience.
Collapse
|
4
|
TOXOPLASMA GONDII PREVALENCE, PARTIAL GENOTYPES, AND SPATIAL VARIATION IN NORTH AMERICAN RIVER OTTERS (LONTRA CANADENSIS) IN THE UPPER PENINSULA OF MICHIGAN, USA. J Wildl Dis 2022; 58:869-881. [PMID: 36321926 DOI: 10.7589/jwd-d-22-00021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/06/2022] [Indexed: 12/05/2022]
Abstract
Toxoplasma gondii is a ubiquitous parasitic protozoan that poses a health threat to wildlife and human health worldwide. Oocysts shed into the environment in felid host feces may persist for several years. Runoff from rainfall and snowmelt may carry the oocysts into waterways. Semiaquatic mammals such as the Northern American river otter (Lontra canadensis) are particularly at risk of exposure, as they may encounter infective stages in both terrestrial and aquatic environments. Despite this risk, only a small number of studies have examined the prevalence of T. gondii in US river otter populations. Tongue tissue was sampled from 124 otters from the Upper Peninsula of Michigan submitted by trappers to the Michigan Department of Natural Resources in the 2018-19 harvest season. Following DNA extraction, a portion of the B1 T. gondii gene was amplified with PCR. A subset of positive samples was genotyped for comparison with known T. gondii sequences. Of the 124 tongue samples, 35 (28%) were positive for T. gondii. Prevalence did not differ significantly between sexes or age classes across the entire study area. Most (53.8%) of the genotyped samples were type 4 (type 12), a genotype commonly found in North American wildlife. Genotypes 127 and 197 were also found. Three clusters of T. gondii prevalence were identified through SaTScan analysis, although they were not significant. When modeling prevalence of T. gondii with covariates at individual otter locations, the top three models included the presence of Sarcocystis, area of exotic plants, area of agriculture, and sex of the otter. Our results suggest that T. gondii is widespread in otter populations in the Upper Peninsula of Michigan.
Collapse
|
5
|
de Barros RAM, Torrecilhas AC, Marciano MAM, Mazuz ML, Pereira-Chioccola VL, Fux B. Toxoplasmosis in Human and Animals Around the World. Diagnosis and Perspectives in the One Health Approach. Acta Trop 2022; 231:106432. [PMID: 35390311 DOI: 10.1016/j.actatropica.2022.106432] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 12/12/2022]
Abstract
Toxoplasmosis is a unique health disease that significantly affects the health of humans, domestic animals, wildlife and is present in ecosystems, including water, soil and food. Toxoplasma gondii is one of the best-adapted parasites in the word. This parasite is able to persist for long periods in its hosts, in different geographic regions of the word. This review summarizes the current literature of these themes, focusing on: (1) toxoplasmosis, a zoonotic infection; (2) One health approach and toxoplasmosis; (3) human toxoplasmosis; (4) animal toxoplasmosis; (5) toxoplasmosis diagnosis, as immunological, parasitological and molecular diagnosis; (6) T. gondii outbreaks caused by infected meat, milk and dairy products, as well as, vegetables and water consume; (7) studies in experimental models; (8) genetic characterization of T. gondii strains; (9) extracellular vesicles and miRNA; and (10) future perspectives on T. gondii and toxoplasmosis. The vast prevalence of toxoplasmosis in both humans and animals and the dispersion and resistence of T. gondii parasites in environment highlight the importance of the one health approach in diagnostic and control of the disease. Here the different aspects of the one health approach are presented and discussed.
Collapse
Affiliation(s)
- Rosangela Aparecida Müller de Barros
- Unidade de Medicina Tropical, Departamento de Patologia, Universidade Federal do Espirito Santo, Vitoria, ES, Brazil.; Programa em Doenças Infecciosas, Centro de Doenças Infecciosas, Universidade Federal do Espirito Santo, Vitoria, ES, Brazil..
| | - Ana Claudia Torrecilhas
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), Campus Diadema, Sao Paulo, SP, Brazil..
| | | | - Monica Leszkowicz Mazuz
- Parasitology Division, Kimron Veterinary Institute, Israeli Veterinary Service and Animal Health, Ministry of Agriculture and Rural Development Beit Dagan, 5025000, Israel..
| | | | - Blima Fux
- Unidade de Medicina Tropical, Departamento de Patologia, Universidade Federal do Espirito Santo, Vitoria, ES, Brazil.; Programa em Doenças Infecciosas, Centro de Doenças Infecciosas, Universidade Federal do Espirito Santo, Vitoria, ES, Brazil..
| |
Collapse
|
6
|
Ahmadpour E, Rahimi MT, Ghojoghi A, Rezaei F, Hatam-Nahavandi K, Oliveira SMR, de Lourdes Pereira M, Majidiani H, Siyadatpanah A, Elhamirad S, Cong W, Pagheh AS. Toxoplasma gondii Infection in Marine Animal Species, as a Potential Source of Food Contamination: A Systematic Review and Meta-Analysis. Acta Parasitol 2022; 67:592-605. [PMID: 35038109 PMCID: PMC8761968 DOI: 10.1007/s11686-021-00507-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/09/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE Many marine animals are infected and susceptible to toxoplasmosis, which is considered as a potential transmission source of Toxoplasma gondii to other hosts, especially humans. The current systematic review and meta-analysis aimed to determine the prevalence of T. gondii infection among sea animal species worldwide and highlight the existing gaps. METHODS Data collection was systematically done through searching databases, including PubMed, Science Direct, Google Scholar, Scopus, and Web of Science from 1997 to July 2020. RESULTS Our search strategy resulted in the retrieval of 55 eligible studies reporting the prevalence of marine T. gondii infection. The highest prevalence belonged to mustelids (sea otter) with 54.8% (95% CI 34.21-74.57) and cetaceans (whale, dolphin, and porpoise) with 30.92% (95% CI 17.85-45.76). The microscopic agglutination test (MAT) with 41 records and indirect immunofluorescence assay (IFA) with 30 records were the most applied diagnostic techniques for T. gondii detection in marine species. CONCLUSIONS Our results indicated the geographic distribution and spectrum of infected marine species with T. gondii in different parts of the world. The spread of T. gondii among marine animals can affect the health of humans and other animals; in addition, it is possible that marine mammals act as sentinels of environmental contamination, especially the parasites by consuming water or prey species.
Collapse
Affiliation(s)
- Ehsan Ahmadpour
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Altin Ghojoghi
- Department of Fisheries, Gorgan University of Agricultural Sciences and Natural Resources, Gorgān, Iran
| | | | | | - Sónia M R Oliveira
- CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
- Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
- Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Hamidreza Majidiani
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Samira Elhamirad
- Infectious Diseases Research Center, Birjand University of Medical Sciences, PO Box 9717853577, Birjand, Iran
| | - Wei Cong
- Marine College, Shandong University, Weihai, China
| | - Abdol Sattar Pagheh
- Infectious Diseases Research Center, Birjand University of Medical Sciences, PO Box 9717853577, Birjand, Iran.
| |
Collapse
|
7
|
Investigation of Toxoplasma gondii in wastewater and surface water in the Qinghai-Tibet Plateau, China using real-time PCR and multilocus genotyping. Sci Rep 2022; 12:5428. [PMID: 35361820 PMCID: PMC8971506 DOI: 10.1038/s41598-022-09166-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 12/30/2021] [Indexed: 01/08/2023] Open
Abstract
Toxoplasma gondii is a protozoan parasite, causing one of the most prevalent parasitic infections in the world. In the present study water sources of the Qinghai-Tibet Plateau (QTP), China, where the hygienic infrastructure is still developing, were investigated. A total of 214 water samples of 10 L volume, were collected from wastewater treatment plants (WWTPs), a slaughterhouse and rivers. The samples were filtered and then analysed using real-time PCR and multilocus genotyping. T. gondii DNA was found in four (1.9%) samples representing T. gondii type I; in one of them T. gondii-like oocysts were also confirmed microscopically. The approximate level of contamination of positive samples ranged between 30 and 2300 T. gondii sporozoites. The results of this study confirmed that T. gondii is present in wastewater in the greater metropolitan area of Xining and a neighbouring county. Contamination of wastewater at this level constitutes rather a moderate source of Toxoplasma infections in humans and animals. It suggests, however, a link between environmental exposure of animals, meat processing facilities and WWTPs. To our knowledge, this is the first investigation describing T. gondii detection in wastewater and environmental water samples collected from the territory of P.R. China using sensitive molecular tools.
Collapse
|
8
|
López Ureña NM, Chaudhry U, Calero Bernal R, Cano Alsua S, Messina D, Evangelista F, Betson M, Lalle M, Jokelainen P, Ortega Mora LM, Álvarez García G. Contamination of Soil, Water, Fresh Produce, and Bivalve Mollusks with Toxoplasma gondii Oocysts: A Systematic Review. Microorganisms 2022; 10:517. [PMID: 35336093 PMCID: PMC8954419 DOI: 10.3390/microorganisms10030517] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/13/2022] [Accepted: 02/25/2022] [Indexed: 02/06/2023] Open
Abstract
Toxoplasma gondii is a major foodborne pathogen capable of infecting all warm-blooded animals, including humans. Although oocyst-associated toxoplasmosis outbreaks have been documented, the relevance of the environmental transmission route remains poorly investigated. Thus, we carried out an extensive systematic review on T. gondii oocyst contamination of soil, water, fresh produce, and mollusk bivalves, following the PRISMA guidelines. Studies published up to the end of 2020 were searched for in public databases and screened. The reference sections of the selected articles were examined to identify additional studies. A total of 102 out of 3201 articles were selected: 34 articles focused on soil, 40 focused on water, 23 focused on fresh produce (vegetables/fruits), and 21 focused on bivalve mollusks. Toxoplasma gondii oocysts were found in all matrices worldwide, with detection rates ranging from 0.09% (1/1109) to 100% (8/8) using bioassay or PCR-based detection methods. There was a high heterogeneity (I2 = 98.9%), which was influenced by both the sampling strategy (e.g., sampling site and sample type, sample composition, sample origin, season, number of samples, cat presence) and methodology (recovery and detection methods). Harmonized approaches are needed for the detection of T. gondii in different environmental matrices in order to obtain robust and comparable results.
Collapse
Affiliation(s)
- Nadia María López Ureña
- SALUVET Research Group, Animal Health Department, Veterinary Faculty, Complutense University of Madrid, 28040 Madrid, Spain; (N.M.L.U.); (R.C.B.); (L.M.O.M.)
| | - Umer Chaudhry
- Veterinary Epidemiology and Public Health Department, School of Veterinary Medicine, University of Surrey, Guildford GU2 7XH, UK; (U.C.); or (D.M.); (F.E.); (M.B.)
| | - Rafael Calero Bernal
- SALUVET Research Group, Animal Health Department, Veterinary Faculty, Complutense University of Madrid, 28040 Madrid, Spain; (N.M.L.U.); (R.C.B.); (L.M.O.M.)
| | - Santiago Cano Alsua
- Computing Services, Research Support Center, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Davide Messina
- Veterinary Epidemiology and Public Health Department, School of Veterinary Medicine, University of Surrey, Guildford GU2 7XH, UK; (U.C.); or (D.M.); (F.E.); (M.B.)
- Division of Veterinary Clinical Science, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Loughborough LE12 5RD, UK
| | - Francisco Evangelista
- Veterinary Epidemiology and Public Health Department, School of Veterinary Medicine, University of Surrey, Guildford GU2 7XH, UK; (U.C.); or (D.M.); (F.E.); (M.B.)
| | - Martha Betson
- Veterinary Epidemiology and Public Health Department, School of Veterinary Medicine, University of Surrey, Guildford GU2 7XH, UK; (U.C.); or (D.M.); (F.E.); (M.B.)
| | - Marco Lalle
- Unit of Foodborne and Neglected Parasitic Diseases, Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Roma, Italy;
| | - Pikka Jokelainen
- Department of Bacteria, Parasites and Fungi, Infectious Disease Preparedness, Statens Serum Institute, University of Copenhagen, 2300 Copenhagen, Denmark;
| | - Luis Miguel Ortega Mora
- SALUVET Research Group, Animal Health Department, Veterinary Faculty, Complutense University of Madrid, 28040 Madrid, Spain; (N.M.L.U.); (R.C.B.); (L.M.O.M.)
| | - Gema Álvarez García
- SALUVET Research Group, Animal Health Department, Veterinary Faculty, Complutense University of Madrid, 28040 Madrid, Spain; (N.M.L.U.); (R.C.B.); (L.M.O.M.)
| |
Collapse
|
9
|
Disseminated Toxoplasma gondii Infection in an Adult Osprey ( Pandion haliaetus). Vet Sci 2021; 9:vetsci9010005. [PMID: 35051089 PMCID: PMC8780292 DOI: 10.3390/vetsci9010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022] Open
Abstract
An adult female osprey (Pandion haliaetus) was found weak and unable to fly in Auburn, Alabama in August 2019. The bird was captured and submitted to the Southeastern Raptor Center of the Auburn University College of Veterinary Medicine for evaluation. On presentation, the bird was thin with a body condition score of approximately 1.5 out of 5. The bird died during the examination and was submitted for necropsy. At the necropsy, there was a severe loss of muscle mass over the body, and the keel was prominent. The liver and spleen were moderately enlarged with pale tan to red foci randomly scattered throughout the parenchyma. A histopathologic observation revealed multifocal to coalescing areas of necrosis and hemorrhage with intralesional protozoans in the liver, spleen, lungs, kidney, sciatic nerve, esophagus, cerebrum, heart, and proventriculus. Immunohistochemistry using anti-Toxoplasma gondii-specific antibodies showed a strong positive labeling of the parasite. Semi-nested PCR, specific for the B1 gene of T. gondii, successfully identified T. gondii. This is the first confirmed case of T. gondii infection in an osprey.
Collapse
|
10
|
Evaluation of real-time qPCR-based methods to detect the DNA of the three protozoan parasites Cryptosporidium parvum, Giardia duodenalis and Toxoplasma gondii in the tissue and hemolymph of blue mussels (M. edulis). Food Microbiol 2021; 102:103870. [PMID: 34809958 DOI: 10.1016/j.fm.2021.103870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 06/07/2021] [Accepted: 07/15/2021] [Indexed: 11/24/2022]
Abstract
The protozoan parasites Cryptosporidium spp., Giardia duodenalis and Toxoplasma gondii can be transmitted to humans through shellfish consumption. No standardized methods are available for their detection in these foods, and the performance of the applied methods are rarely described in occurrence studies. Through spiking experiments, we characterized different performance criteria (e.g. sensitivity, estimated limit of detection (eLD95METH), parasite DNA recovery rates (DNA-RR)) of real-time qPCR based-methods for the detection of the three protozoa in mussel's tissues and hemolymph. Digestion of mussels tissues by trypsin instead of pepsin and the use of large buffer volumes was the most efficient for processing 50g-sample. Trypsin digestion followed by lipids removal and DNA extraction by thermal shocks and a BOOM-based technique performed poorly (e.g. eLD95METH from 30 to >3000 parasites/g). But trypsin digestion and direct DNA extraction by bead-beating and FastPrep homogenizer achieved higher performance (e.g. eLD95METH: 4-400 parasites/g, DNA-RR: 19-80%). Direct DNA recovery from concentrated hemolymph, by thermal shocks and cell lysis products removal was not efficient to sensitively detect the protozoa (e.g. eLD95METH: 10-1000 parasites/ml, DNA-RR ≤ 24%). The bead-beating DNA extraction based method is a rapid and simple approach to sensitively detect the three protozoa in mussels using tissues, that can be standardized to different food matrices. However, quantification in mussels remains an issue.
Collapse
|
11
|
Martins M, Urbani N, Flanagan C, Siebert U, Gross S, Dubey JP, Cardoso L, Lopes AP. Seroprevalence of Toxoplasma gondii in Pinnipeds under Human Care and in Wild Pinnipeds. Pathogens 2021; 10:pathogens10111415. [PMID: 34832571 PMCID: PMC8620079 DOI: 10.3390/pathogens10111415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022] Open
Abstract
Toxoplasma gondii infection has been reported in numerous species of marine mammals, some of them with fatal consequences. A serosurvey for T. gondii infection was conducted in pinnipeds from an oceanographic park in Portugal (n = 60); stranded pinnipeds on the Portuguese coast (n = 10); and pinnipeds captured in Lorenzensplate, Germany (n = 99). Sera from 169 pinnipeds were tested for the presence of antibodies to T. gondii by the modified agglutination test with a cut-off titre of 25. An overall seroprevalence of 8.9% (95% confidence interval: 5.1–14.2) was observed. Antibody titres of 25, 50, 100, 1600 and ≥3200 were found in five (33.3%), two (13.3%), five (33.3%), one (6.7%) and two (13.3%) animals, respectively. Pinnipeds under human care had a seroprevalence of 20.0% (12/60), in contrast to 2.8% (3/109) in wild pinnipeds (p < 0.001). General results suggest a low exposure of wild pinnipeds to T. gondii, while the seroprevalence found in pinnipeds under human care highlights the importance of carrying out further studies. This is the first serological survey of T. gondii in pinnipeds in Portugal and the first infection report in South African fur seal (Arctocephalus pusillus pusillus).
Collapse
Affiliation(s)
- Micaela Martins
- Zoomarine Portugal, 8201-864 Guia, Portugal; (M.M.); (N.U.); (C.F.)
| | - Nuno Urbani
- Zoomarine Portugal, 8201-864 Guia, Portugal; (M.M.); (N.U.); (C.F.)
| | - Carla Flanagan
- Zoomarine Portugal, 8201-864 Guia, Portugal; (M.M.); (N.U.); (C.F.)
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, 25761 Buesum, Germany; (U.S.); (S.G.)
| | - Stephanie Gross
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, 25761 Buesum, Germany; (U.S.); (S.G.)
| | - Jitender P. Dubey
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, MD 20705, USA;
| | - Luís Cardoso
- Department of Veterinary Sciences and Animal and Veterinary Research Centre (CECAV), School of Agrarian and Veterinary Sciences, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Correspondence:
| | - Ana Patrícia Lopes
- Department of Veterinary Sciences and Animal and Veterinary Research Centre (CECAV), School of Agrarian and Veterinary Sciences, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
| |
Collapse
|
12
|
Poulle ML, Le Corre M, Bastien M, Gedda E, Feare C, Jaeger A, Larose C, Shah N, Voogt N, Göpper B, Lagadec E, Rocamora G, Geers R, Aubert D, Villena I, Lebarbenchon C. Exposure of pelagic seabirds to Toxoplasma gondii in the Western Indian Ocean points to an open sea dispersal of this terrestrial parasite. PLoS One 2021; 16:e0255664. [PMID: 34407103 PMCID: PMC8372946 DOI: 10.1371/journal.pone.0255664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 06/25/2021] [Indexed: 11/18/2022] Open
Abstract
Toxoplasma gondii is a protozoan parasite that uses felids as definitive hosts and warm-blooded animals as intermediate hosts. While the dispersal of T. gondii infectious oocysts from land to coastal waters has been well documented, transmission routes to pelagic species remain puzzling. We used the modified agglutination test (MAT titre ≥ 10) to detect antibodies against T. gondii in sera collected from 1014 pelagic seabirds belonging to 10 species. Sampling was carried out on eight islands of the Western Indian Ocean: Reunion and Juan de Nova (colonized by cats), Cousin, Cousine, Aride, Bird, Europa and Tromelin islands (cat-free). Antibodies against T. gondii were found in all islands and all species but the great frigatebird. The overall seroprevalence was 16.8% [95% CI: 14.5%-19.1%] but significantly varied according to species, islands and age-classes. The low antibody levels (MAT titres = 10 or 25) detected in one shearwater and three red-footed booby chicks most likely resulted from maternal antibody transfer. In adults, exposure to soils contaminated by locally deposited oocysts may explain the detection of antibodies in both wedge-tailed shearwaters on Reunion Island and sooty terns on Juan de Nova. However, 144 adults breeding on cat-free islands also tested positive. In the Seychelles, there was a significant decrease in T. gondii prevalence associated with greater distances to cat populations for species that sometimes rest on the shore, i.e. terns and noddies. This suggests that oocysts carried by marine currents could be deposited on shore tens of kilometres from their initial deposition point and that the number of deposited oocysts decreases with distance from the nearest cat population. The consumption of fishes from the families Mullidae, Carangidae, Clupeidae and Engraulidae, previously described as T. gondii oocyst-carriers (i.e. paratenic hosts), could also explain the exposure of terns, noddies, boobies and tropicbirds to T. gondii. Our detection of antibodies against T. gondii in seabirds that fish in the high sea, have no contact with locally contaminated soils but frequent the shores and/or consume paratenic hosts supports the hypothesis of an open-sea dispersal of T. gondii oocysts by oceanic currents and/or fish.
Collapse
Affiliation(s)
- Marie-Lazarine Poulle
- Epidémio-Surveillance et Circulation des Parasites dans les Environnements (ESCAPE), EA 7510, CAP SANTE, Université de Reims Champagne Ardenne, Reims, France
- CERFE, Université de Reims Champagne-Ardenne, Boult-aux-Bois, France
- * E-mail:
| | - Matthieu Le Corre
- UMR Ecologie marine tropicale des océans Pacifique et Indien (ENTROPIE), CNRS IRD, IFREMER, Université de Nouvelle-Calédonie, Université de la Réunion, Saint Denis, La Réunion, France
| | - Matthieu Bastien
- Epidémio-Surveillance et Circulation des Parasites dans les Environnements (ESCAPE), EA 7510, CAP SANTE, Université de Reims Champagne Ardenne, Reims, France
- UMR Ecologie marine tropicale des océans Pacifique et Indien (ENTROPIE), CNRS IRD, IFREMER, Université de Nouvelle-Calédonie, Université de la Réunion, Saint Denis, La Réunion, France
- Université de La Réunion, UMR Processus Infectieux en Milieu Insulaire Tropical (PIMIT), INSERM 1187, CNRS 9192, IRD 249, Saint Denis, La Réunion, France
| | - Elsa Gedda
- Epidémio-Surveillance et Circulation des Parasites dans les Environnements (ESCAPE), EA 7510, CAP SANTE, Université de Reims Champagne Ardenne, Reims, France
| | - Chris Feare
- WildWings Bird Management, Haslemere, Surrey, United Kingdom
| | - Audrey Jaeger
- UMR Ecologie marine tropicale des océans Pacifique et Indien (ENTROPIE), CNRS IRD, IFREMER, Université de Nouvelle-Calédonie, Université de la Réunion, Saint Denis, La Réunion, France
| | | | - Nirmal Shah
- Center for Environment and Education, Nature Seychelles, Roche Caïman, Mahé, Seychelles
| | | | | | - Erwan Lagadec
- Université de La Réunion, UMR Processus Infectieux en Milieu Insulaire Tropical (PIMIT), INSERM 1187, CNRS 9192, IRD 249, Saint Denis, La Réunion, France
| | - Gérard Rocamora
- Island Biodiversity and Conservation Centre, University of Seychelles, Anse Royale, Seychelles
- Island Conservation Society, Mahé, Seychelles
| | - Régine Geers
- Epidémio-Surveillance et Circulation des Parasites dans les Environnements (ESCAPE), EA 7510, CAP SANTE, Université de Reims Champagne Ardenne, Reims, France
- Laboratoire de Parasitologie-Mycologie, Centre National de Référence de la Toxoplasmose, Centre de Ressources Biologiques Toxoplasma, CHU Reims, Reims, France
| | - Dominique Aubert
- Epidémio-Surveillance et Circulation des Parasites dans les Environnements (ESCAPE), EA 7510, CAP SANTE, Université de Reims Champagne Ardenne, Reims, France
- Laboratoire de Parasitologie-Mycologie, Centre National de Référence de la Toxoplasmose, Centre de Ressources Biologiques Toxoplasma, CHU Reims, Reims, France
| | - Isabelle Villena
- Epidémio-Surveillance et Circulation des Parasites dans les Environnements (ESCAPE), EA 7510, CAP SANTE, Université de Reims Champagne Ardenne, Reims, France
- Laboratoire de Parasitologie-Mycologie, Centre National de Référence de la Toxoplasmose, Centre de Ressources Biologiques Toxoplasma, CHU Reims, Reims, France
| | - Camille Lebarbenchon
- Université de La Réunion, UMR Processus Infectieux en Milieu Insulaire Tropical (PIMIT), INSERM 1187, CNRS 9192, IRD 249, Saint Denis, La Réunion, France
| |
Collapse
|
13
|
Nayeri T, Sarvi S, Daryani A. Toxoplasma gondii in mollusks and cold-blooded animals: a systematic review. Parasitology 2021; 148:895-903. [PMID: 33691818 PMCID: PMC11010209 DOI: 10.1017/s0031182021000433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/31/2021] [Accepted: 02/09/2021] [Indexed: 12/22/2022]
Abstract
Toxoplasma gondii (T. gondii) is known for its ability to infect warm-blooded vertebrates. Although T. gondii does not appear to parasitize cold-blooded animals, the occurrence of T. gondii infection in marine mammals raises concerns that cold-blooded animals (frogs, toad, turtles, crocodiles, snakes, and fish) and shellfish are potential sources of T. gondii. Therefore, this systematic review aimed to determine the prevalence of T. gondii in mollusks and cold-blooded animals worldwide. We searched PubMed, ScienceDirect, ProQuest, Scopus, and Web of Science from inception to 1 August 2020 for eligible papers in the English language and identified 26 articles that reported the prevalence of T. gondii in mollusks and cold-blooded animals. These articles were subsequently reviewed and data extracted using a standard form. In total, 26 studies [involving 9 cross-sectional studies including 2988 samples of cold-blooded animals (129 positive cases for T. gondii) and 18 cross-sectional studies entailing 13 447 samples of shellfish (692 positive cases for T. gondii)] were included in this study. Although this study showed that shellfish and cold-blooded animals could be potential sources of T. gondii for humans and other hosts that feed on them, further investigations are recommended to determine the prevalence of T. gondii in shellfish and cold-blooded animals.
Collapse
Affiliation(s)
- Tooran Nayeri
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shahabeddin Sarvi
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Daryani
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
14
|
Bigot-Clivot A, La Carbona S, Cazeaux C, Durand L, Géba E, Le Foll F, Xuereb B, Chalghmi H, Dubey JP, Bastien F, Bonnard I, Palos Ladeiro M, Escotte-Binet S, Aubert D, Villena I, Geffard A. Blue mussel (Mytilus edulis)-A bioindicator of marine water contamination by protozoa: Laboratory and in situ approaches. J Appl Microbiol 2021; 132:736-746. [PMID: 34152060 DOI: 10.1111/jam.15185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 11/27/2022]
Abstract
AIMS The protozoan parasites Cryptosporidium spp., Giardia duodenalis and Toxoplasma gondii are identified as public health priorities and are present in a wide variety of environments including the marine ecosystem. The objective of this study was to demonstrate that the marine bivalve blue mussel (Mytilus edulis) can be used as a tool to monitor the contamination of marine waters by the three protozoa over time. METHODS AND RESULTS In order to achieve a proof of concept, mussels were exposed to three concentrations of G. duodenalis cysts and Cryptosporidium parvum/T. gondii oocysts for 21 days, followed by 21 days of depuration in clear water. Then, natural contamination by these protozoa was sought for in wild marine blue mussels along the northwest coast of France to validate their relevance as bioindicators in the field. Our results highlighted that: (a) blue mussels bioaccumulated the parasites for 21 days, according to the conditions of exposure, and parasites could still be detected during the depuration period (until 21 days); (b) the percentage of protozoa-positive M. edulis varied under the degree of protozoan contamination in water; (c) mussel samples from eight out of nine in situ sites were positive for at least one of the protozoa. CONCLUSIONS The blue mussel M. edulis can bioaccumulate protozoan parasites over long time periods, according to the degree of contamination of waters they are inhabiting, and can highlight recent but also past contaminations (at least 21 days). SIGNIFICANCE AND IMPACT OF THE STUDY Mytilus edulis is a relevant bioaccumulators of protozoan (oo)cysts in laboratory and field conditions, hence its potential use for monitoring parasite contamination in marine waters.
Collapse
Affiliation(s)
- Aurélie Bigot-Clivot
- UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), University of Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Reims, France
| | | | | | - Loïc Durand
- ACTALIA Food Safety Department, Saint-Lô, France.,EA7510, ESCAPE, Epidémiosurveillance et CirculAtion des Parasites dans les Environnements, Faculté de Médecine, University of Reims Champagne Ardenne, Reims, France
| | - Elodie Géba
- UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), University of Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Reims, France.,EA7510, ESCAPE, Epidémiosurveillance et CirculAtion des Parasites dans les Environnements, Faculté de Médecine, University of Reims Champagne Ardenne, Reims, France
| | - Frank Le Foll
- UMR-I 02 SEBIO, University of Le Havre Normandie, Le Havre Cedex, France
| | - Benoit Xuereb
- UMR-I 02 SEBIO, University of Le Havre Normandie, Le Havre Cedex, France
| | - Houssem Chalghmi
- UMR-I 02 SEBIO, University of Le Havre Normandie, Le Havre Cedex, France
| | - Jitender P Dubey
- United States Department Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, MD, USA
| | - Fanny Bastien
- UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), University of Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Reims, France
| | - Isabelle Bonnard
- UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), University of Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Reims, France
| | - Mélissa Palos Ladeiro
- UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), University of Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Reims, France
| | - Sandie Escotte-Binet
- EA7510, ESCAPE, Epidémiosurveillance et CirculAtion des Parasites dans les Environnements, Faculté de Médecine, University of Reims Champagne Ardenne, Reims, France
| | - Dominique Aubert
- EA7510, ESCAPE, Epidémiosurveillance et CirculAtion des Parasites dans les Environnements, Faculté de Médecine, University of Reims Champagne Ardenne, Reims, France
| | - Isabelle Villena
- EA7510, ESCAPE, Epidémiosurveillance et CirculAtion des Parasites dans les Environnements, Faculté de Médecine, University of Reims Champagne Ardenne, Reims, France
| | - Alain Geffard
- UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), University of Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Reims, France
| |
Collapse
|
15
|
Hatam-Nahavandi K, Calero-Bernal R, Rahimi MT, Pagheh AS, Zarean M, Dezhkam A, Ahmadpour E. Toxoplasma gondii infection in domestic and wild felids as public health concerns: a systematic review and meta-analysis. Sci Rep 2021; 11:9509. [PMID: 33947922 PMCID: PMC8097069 DOI: 10.1038/s41598-021-89031-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 04/13/2021] [Indexed: 02/02/2023] Open
Abstract
Felidae as definitive hosts for Toxoplasma gondii play a major role in transmission to all warm-blooded animals trough oocysts dissemination. Therefore the current comprehensive study was performed to determine the global status of T. gondii infection in domestic and wild felids aiming to provide comprehensive data of interest for further intervention approaching the One Health perspective. Different databases were searched by utilizing particular key words for publications related to T. gondii infecting domestic and wild feline host species, worldwide, from 1970 to 2020. The review of 337 reports showed that the seroprevalence of T. gondii in domestic cats and wild felids was estimated in 37.5% (95% CI 34.7-40.3) (I2 = 98.3%, P < 0.001) and 64% (95% CI 60-67.9) (I2 = 88%, P < 0.0001), respectively. The global pooled prevalence of oocysts in the fecal examined specimens from domestic cats was estimated in 2.6% (95% CI 1.9-3.3) (I2 = 96.1%, P < 0.0001), and that in fecal samples from wild felids was estimated in 2.4% (95% CI 1.1-4.2) (I2 = 86.4%, P < 0.0001). In addition, from 13,252 examined soil samples in 14 reviewed studies, the pooled occurrence of T. gondii oocysts was determined in 16.2% (95% CI 7.66-27.03%). The observed high rates of anti-T. gondii antibodies seroprevalence levels and oocyst excretion frequency in the felids, along with soil (environmental) contamination with oocysts may constitute a potential threat to animal and public health, and data will result of interest in further prophylaxis programs.
Collapse
Affiliation(s)
| | - Rafael Calero-Bernal
- grid.4795.f0000 0001 2157 7667SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | - Mohammad Taghi Rahimi
- grid.444858.10000 0004 0384 8816Center for Health Related Social and Behavioral Sciences Research, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Abdol Sattar Pagheh
- grid.411701.20000 0004 0417 4622Infectious Diseases Research Canter, Birjand University of Medical Sciences, Birjand, Iran
| | - Mehdi Zarean
- grid.411583.a0000 0001 2198 6209Department of Parasitology and Mycology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asiyeh Dezhkam
- School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Ehsan Ahmadpour
- grid.412888.f0000 0001 2174 8913Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran ,grid.412888.f0000 0001 2174 8913Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran ,grid.412888.f0000 0001 2174 8913Department of Parasitology and Mycology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Cong W, Li MY, Zou Y, Ma JY, Wang B, Jiang ZY, Elsheikha HM. Prevalence, genotypes and risk factors for Toxoplasma gondii contamination in marine bivalve shellfish in offshore waters in eastern China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 213:112048. [PMID: 33610941 DOI: 10.1016/j.ecoenv.2021.112048] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/18/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
We conducted a large-scale epidemiological investigation to detect the prevalence of Toxoplasma gondii in four marine bivalve shellfish species collected from six representative coastal regions of Weihai, eastern China. Between January 2018 and December 2018, 14,535 marine bivalve shellfish pooled into 2907 samples were randomly collected and examined for T. gondii DNA by a nested PCR assay targeting B1 gene. The results showed that 2.8% (82) of the 2907 pooled samples were tested positive for T. gondii DNA. Two T. gondii genotype (ToxoDB Genotype #9 and ToxoDB Genotype #1) were identified PCR-restriction fragment length polymorphism analysis. Factors that were found significantly associated with the presence of T. gondii DNA in marine bivalve shellfish included the source of samples (being wild) (odds ratio [OR], 3.34; 95% confidence interval [CI], 2.00-5.84; p < 0.01), surface runoff near the sampling site (OR, 2.64; 95% CI, 1.47-4.72; p < 0.01), and presence of cats near the sampling site (OR, 1.77; 95% CI, 1.02-3.07; p = 0.04). Moreover, the prevalence of T. gondii DNA in marine bivalve shellfish correlated with temperature (Pearson's correlation: R = 0.75, p = 0.0049) and precipitation (R = 0.87, p = 0.00021). These findings provide new insights into the presence of T. gondii DNA in marine bivalve shellfish and highlight the impact of human activity on marine pollution by such an important terrestrial pathogen pollutant.
Collapse
Affiliation(s)
- Wei Cong
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China
| | - Man-Yao Li
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China
| | - Yang Zou
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Street, Harbin 150030, PR China
| | - Jun-Yang Ma
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China
| | - Bo Wang
- School of Mathematics and Actuarial Science, University of Leicester, Leicester LE1 7RH, UK
| | - Zhao-Yang Jiang
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China.
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, UK.
| |
Collapse
|
17
|
Rouse NM, Counihan KL, Goertz CEC, Duddleston KN. Competency of common northern sea otter (Enhydra lutris kenyoni) prey items to harbor Streptococcus lutetiensis and S. phocae. DISEASES OF AQUATIC ORGANISMS 2021; 143:69-78. [PMID: 33570041 DOI: 10.3354/dao03562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Streptococcus lutetiensis and S. phocae have been associated with significant morbidity and mortality in northern sea otters Enhydra lutris kenyoni in Alaska, USA, but the route and mechanism(s) of transmission remain unknown. The goal of this study was to determine the competence of common northern sea otter prey to harbor 2 species of pathogenic Streptococcus bacteria. Prey items (bay mussels Mytilus trossulus, butter clams Saxidomus giganteus, Dungeness crab Metacarcinus magister and black turban snails Tegula funebralis) were exposed to known concentrations of exponential phase cultures of S. lutetiensis and S. phocae in seawater for 24 h. A quantitative PCR assay was developed targeting the sodA gene of both S. lutetiensis and S. phocae to quantify DNA in the prey samples. Results (mean ± SD) revealed that butter clams had the highest concentration of bacteria (4.32 × 107 ± 8.20 × 106 CFU ml-1 of S. lutetiensis, 1.20 × 108 ± 2.08 × 107 CFU ml-1 of S. phocae), followed by mussels (4.26 × 107 ± 1.66 × 107 CFU ml-1, 1.16 × 108 ± 5.39 × 107 CFU ml-1), snails (1.90 × 107 ± 5.26 × 106 CFU ml-1, 5.97 × 107 ± 2.07 × 107 CFU ml-1) and crab (1.46 × 107 ± 0 CFU ml-1, 1.64 × 107 ± 0 CFU ml-1). All prey species harbored higher concentrations of S. phocae than S. lutetiensis.
Collapse
|
18
|
Slana I, Bier N, Bartosova B, Marucci G, Possenti A, Mayer-Scholl A, Jokelainen P, Lalle M. Molecular Methods for the Detection of Toxoplasma gondii Oocysts in Fresh Produce: An Extensive Review. Microorganisms 2021; 9:microorganisms9010167. [PMID: 33451081 PMCID: PMC7828537 DOI: 10.3390/microorganisms9010167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 01/18/2023] Open
Abstract
Human infection with the important zoonotic foodborne pathogen Toxoplasma gondii has been associated with unwashed raw fresh produce consumption. The lack of a standardised detection method limits the estimation of fresh produce as an infection source. To support method development and standardisation, an extensive literature review and a multi-attribute assessment were performed to analyse the key aspects of published methods for the detection of T. gondii oocyst contamination in fresh produce. Seventy-seven published studies were included, with 14 focusing on fresh produce. Information gathered from expert laboratories via an online questionnaire were also included. Our findings show that procedures for oocyst recovery from fresh produce mostly involved sample washing and pelleting of the washing eluate by centrifugation, although washing procedures and buffers varied. DNA extraction procedures including mechanical or thermal shocks were identified as necessary steps to break the robust oocyst wall. The most suitable DNA detection protocols rely on qPCR, mostly targeting the B1 gene or the 529 bp repetitive element. When reported, validation data for the different detection methods were not comparable and none of the methods were supported by an interlaboratory comparative study. The results of this review will pave the way for an ongoing development of a widely applicable standard operating procedure.
Collapse
Affiliation(s)
- Iva Slana
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic; (I.S.); (B.B.)
| | - Nadja Bier
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (N.B.); (A.M.-S.)
| | - Barbora Bartosova
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic; (I.S.); (B.B.)
| | - Gianluca Marucci
- Unit of Foodborne and Neglected Parasitic Diseases, European Union Reference Laboratory for Parasites, Department of Infectious Diseases, Istituto Superiore di Sanità, viale Regina Elena 299, 00161 Rome, Italy; (G.M.); (A.P.)
| | - Alessia Possenti
- Unit of Foodborne and Neglected Parasitic Diseases, European Union Reference Laboratory for Parasites, Department of Infectious Diseases, Istituto Superiore di Sanità, viale Regina Elena 299, 00161 Rome, Italy; (G.M.); (A.P.)
| | - Anne Mayer-Scholl
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (N.B.); (A.M.-S.)
| | - Pikka Jokelainen
- Laboratory of Parasitology, Infectious Disease Preparedness, Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen S, Denmark;
| | - Marco Lalle
- Unit of Foodborne and Neglected Parasitic Diseases, European Union Reference Laboratory for Parasites, Department of Infectious Diseases, Istituto Superiore di Sanità, viale Regina Elena 299, 00161 Rome, Italy; (G.M.); (A.P.)
- Correspondence: ; Tel.: +39-0649902670
| |
Collapse
|
19
|
Moratal S, Dea-Ayuela MA, Cardells J, Marco-Hirs NM, Puigcercós S, Lizana V, López-Ramon J. Potential Risk of Three Zoonotic Protozoa ( Cryptosporidium spp., Giardia duodenalis, and Toxoplasma gondii) Transmission from Fish Consumption. Foods 2020; 9:E1913. [PMID: 33371396 PMCID: PMC7767443 DOI: 10.3390/foods9121913] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022] Open
Abstract
In recent decades, worldwide fish consumption has increased notably worldwide. Despite the health benefits of fish consumption, it also can suppose a risk because of fishborne diseases, including parasitic infections. Global changes are leading to the emergence of parasites in new locations and to the appearance of new sources of transmission. That is the case of the zoonotic protozoa Cryptosporidium spp., Giardia duodenalis, and Toxoplasma gondii; all of them reach aquatic environments and have been found in shellfish. Similarly, these protozoa can be present in other aquatic animals, such as fish. The present review gives an overview on these three zoonotic protozoa in order to understand their potential presence in fish and to comprehensively revise all the evidences of fish as a new potential source of Cryptosporidium spp., Giardia duodenalis, and Toxoplasma gondii transmission. All of them have been found in both marine and freshwater fishes. Until now, it has not been possible to demonstrate that fish are natural hosts for these protozoa; otherwise, they would merely act as mechanical transporters. Nevertheless, even if fish only accumulate and transport these protozoa, they could be a "new" source of infection for people.
Collapse
Affiliation(s)
- Samantha Moratal
- Servicio de Análisis, Investigación y Gestión de Animales Silvestres (SAIGAS), Veterinary Faculty, Universidad CEU-Cardenal Herrera, Tirant lo Blanc St 7, 46115 Alfara del Patriarca, Valencia, Spain; (S.M.); (J.C.); (N.M.M.-H.); (S.P.); (V.L.); (J.L.-R.)
| | - M. Auxiliadora Dea-Ayuela
- Farmacy Department, Universidad CEU-Cardenal Herrera, Santiago Ramón y Cajal St, 46115 Alfara del Patriarca, Valencia, Spain
| | - Jesús Cardells
- Servicio de Análisis, Investigación y Gestión de Animales Silvestres (SAIGAS), Veterinary Faculty, Universidad CEU-Cardenal Herrera, Tirant lo Blanc St 7, 46115 Alfara del Patriarca, Valencia, Spain; (S.M.); (J.C.); (N.M.M.-H.); (S.P.); (V.L.); (J.L.-R.)
- Wildlife Ecology & Health Group (WE&H), Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), Travessera dels Turons, 08193 Bellaterra, Barcelona, Spain
| | - Naima M. Marco-Hirs
- Servicio de Análisis, Investigación y Gestión de Animales Silvestres (SAIGAS), Veterinary Faculty, Universidad CEU-Cardenal Herrera, Tirant lo Blanc St 7, 46115 Alfara del Patriarca, Valencia, Spain; (S.M.); (J.C.); (N.M.M.-H.); (S.P.); (V.L.); (J.L.-R.)
| | - Silvia Puigcercós
- Servicio de Análisis, Investigación y Gestión de Animales Silvestres (SAIGAS), Veterinary Faculty, Universidad CEU-Cardenal Herrera, Tirant lo Blanc St 7, 46115 Alfara del Patriarca, Valencia, Spain; (S.M.); (J.C.); (N.M.M.-H.); (S.P.); (V.L.); (J.L.-R.)
| | - Víctor Lizana
- Servicio de Análisis, Investigación y Gestión de Animales Silvestres (SAIGAS), Veterinary Faculty, Universidad CEU-Cardenal Herrera, Tirant lo Blanc St 7, 46115 Alfara del Patriarca, Valencia, Spain; (S.M.); (J.C.); (N.M.M.-H.); (S.P.); (V.L.); (J.L.-R.)
- Wildlife Ecology & Health Group (WE&H), Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), Travessera dels Turons, 08193 Bellaterra, Barcelona, Spain
| | - Jordi López-Ramon
- Servicio de Análisis, Investigación y Gestión de Animales Silvestres (SAIGAS), Veterinary Faculty, Universidad CEU-Cardenal Herrera, Tirant lo Blanc St 7, 46115 Alfara del Patriarca, Valencia, Spain; (S.M.); (J.C.); (N.M.M.-H.); (S.P.); (V.L.); (J.L.-R.)
| |
Collapse
|
20
|
Géba E, Rousseau A, Le Guernic A, Escotte-Binet S, Favennec L, La Carbona S, Gargala G, Dubey JP, Villena I, Betoulle S, Aubert D, Bigot-Clivot A. Survival and infectivity of Toxoplasma gondii and Cryptosporidium parvum oocysts bioaccumulated by Dreissena polymorpha. J Appl Microbiol 2020; 130:504-515. [PMID: 32737913 DOI: 10.1111/jam.14802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 01/04/2023]
Abstract
AIMS The study was aimed to understand the depuration process of Cryptosporidium parvum and Toxoplasma gondii oocysts by zebra mussel (Dreissena polymorpha), to consider the use of the zebra mussel as a bioremediation tool. MATERIALS AND METHODS Two experiments were performed: (i) individual exposure of mussel to investigate oocyst transfers between bivalves and water and (ii) in vivo exposure to assess the ability of the zebra mussel to degrade oocysts. RESULTS (i) Our results highlighted a transfer of oocysts from the mussels to the water after 3 and 7 days of depuration; however, some oocysts were still bioaccumulated in mussel tissue. (ii) Between 7 days of exposure at 1000 or 10 000 oocysts/mussel/day and 7 days of depuration, the number of bioaccumulated oocysts did not vary but the number of infectious oocysts decreased. CONCLUSION Results show that D. polymorpha can release oocysts in water via (pseudo)faeces in depuration period. Oocysts remain bioaccumulated and infectious oocyst number decreases during the depuration period in zebra mussel tissues. Results suggest a degradation of bioaccumulated C. parvum and T. gondii oocysts. SIGNIFICANCE AND IMPACT OF THE STUDY This study highlighted the potential use of D. polymorpha as a bioremediation tool to mitigate of protozoan contamination in water resources.
Collapse
Affiliation(s)
- E Géba
- UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Reims Cedex 2, France.,EA7510, ESCAPE (EpidémioSurveillance et CirculAtion des Parasites dans les Environnements), Faculté de Médecine, Université de Reims Champagne Ardenne, Reims, France
| | - A Rousseau
- EA7510, ESCAPE (EpidémioSurveillance et CirculAtion des Parasites dans les Environnements), Faculté de Médecine, Université de Reims Champagne Ardenne, Reims, France.,ACTALIA Food Safety Department, Saint-Lô, France
| | - A Le Guernic
- UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Reims Cedex 2, France
| | - S Escotte-Binet
- EA7510, ESCAPE (EpidémioSurveillance et CirculAtion des Parasites dans les Environnements), Faculté de Médecine, Université de Reims Champagne Ardenne, Reims, France
| | - L Favennec
- EA7510, ESCAPE (EpidémioSurveillance et CirculAtion des Parasites dans les Environnements), Université de Rouen, Rouen Cedex, France
| | - S La Carbona
- ACTALIA Food Safety Department, Saint-Lô, France
| | - G Gargala
- EA7510, ESCAPE (EpidémioSurveillance et CirculAtion des Parasites dans les Environnements), Université de Rouen, Rouen Cedex, France
| | - J P Dubey
- United States Department Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, MD, USA
| | - I Villena
- EA7510, ESCAPE (EpidémioSurveillance et CirculAtion des Parasites dans les Environnements), Faculté de Médecine, Université de Reims Champagne Ardenne, Reims, France
| | - S Betoulle
- UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Reims Cedex 2, France
| | - D Aubert
- EA7510, ESCAPE (EpidémioSurveillance et CirculAtion des Parasites dans les Environnements), Faculté de Médecine, Université de Reims Champagne Ardenne, Reims, France
| | - A Bigot-Clivot
- UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Reims Cedex 2, France
| |
Collapse
|
21
|
Yang Y, Yu SM, Chen K, Hide G, Lun ZR, Lai DH. Temperature is a key factor influencing the invasion and proliferation of Toxoplasma gondii in fish cells. Exp Parasitol 2020; 217:107966. [PMID: 32781094 DOI: 10.1016/j.exppara.2020.107966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/15/2020] [Accepted: 08/05/2020] [Indexed: 10/23/2022]
Abstract
Toxoplasma gondii has long been considered a ubiquitous parasite possessing the capacity of infecting virtually all warm-blooded animals globally. Occasionally, this parasite can also infect cold-blooded animals such as fish if their body temperature reaches 37 °C. However, we are currently lacking an understanding of key details such as the minimum temperature required for T. gondii invasion and proliferation in these cold-blooded animals and their cells. Here, we performed in vitro T. gondii infection experiments with rat embryo fibroblasts (REF cells), grouper (Epinephelus coioides) splenocytes (GS cells) and zebra fish (Danio rerio) hepatocytes (ZFL cells), at 27 °C, 30 °C, 32 °C, 35 °C and 37 °C, respectively. We found that T. gondii tachyzoites could penetrate REF, GS nd ZFL cells at 27 °C but clear inhibition of multiplication was observed. Intriguingly, the intracellular tachyzoites retained the ability to infect mice after 12 days of incubation in GS cells cultured at 27 °C as demonstrated by bioassay. At 30 °C, 32 °C and 35 °C, we observed that the mammalian cells (REF cells) and fish cells (GS and ZFL cells) could support T. gondii invasion and replication, which showed a temperature-dependent relationship in infection and proliferation rates. Our data demonstrated that the minimum temperature for T. gondii invasion and replication was 27 °C and 30 °C respectively, which indicated that temperature should be a key factor for T. gondii invasion and proliferation in host cells. This suggests that temperature-dependent infection determines the differences in the capability of T. gondii to infect cold- and warm-blooded vertebrates.
Collapse
Affiliation(s)
- Yun Yang
- Center for Parasitic Organisms and Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Shao-Meng Yu
- Center for Parasitic Organisms and Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Ke Chen
- Center for Parasitic Organisms and Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Geoff Hide
- Biomedical Research Centre and Ecosystems and Environment Research Centre, School of Science, Engineering and Environment, University of Salford, Salford, M5 4WT, UK
| | - Zhao-Rong Lun
- Center for Parasitic Organisms and Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China; Biomedical Research Centre and Ecosystems and Environment Research Centre, School of Science, Engineering and Environment, University of Salford, Salford, M5 4WT, UK.
| | - De-Hua Lai
- Center for Parasitic Organisms and Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
22
|
Rani S, Cerqueira-CÉzar CK, Murata FHA, Kwok OCH, Dubey JP, Pradhan AK. Distribution of Toxoplasma gondii Tissue Cysts in Shoulder Muscles of Naturally Infected Goats and Lambs. J Food Prot 2020; 83:1396-1401. [PMID: 32294177 DOI: 10.4315/jfp-20-024] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/10/2020] [Indexed: 01/04/2023]
Abstract
ABSTRACT Toxoplasmosis has been recognized as a major public health problem worldwide. The consumption of uncooked or undercooked meat infected with Toxoplasma gondii tissue cysts is one of the main means of transmission of this parasite. Although sheep, goats, and pigs are commonly infected with T. gondii, little information is available on the distribution of T. gondii tissue cysts in naturally infected meat. In this study, we investigated the distribution of viable T. gondii tissue cysts in shoulder muscles of naturally infected lambs and goats. Hearts and shoulders of 46 lambs and 39 goats from a local grocery store were tested for T. gondii infection. Animals were evaluated for the presence of anti-T. gondii antibodies in heart blood and clots by the modified agglutination test. Fourteen of the 85 animals (seven lambs and seven goats) were seropositive. Six to 12 samples weighing 5, 10, and 50 g were obtained from shoulder muscles of each seropositive animal and used for bioassay in mice. The distribution of viable T. gondii differed according to the size of the sample analyzed, but in general larger sample sizes resulted in higher isolation rates (P < 0.05). Results of the study revealed an uneven distribution of T. gondii in muscle samples of lambs and goats and that T. gondii can be transmitted by consumption of very small servings (5 and 10 g) of meat when it is consumed raw or is undercooked. HIGHLIGHTS
Collapse
Affiliation(s)
- Surabhi Rani
- Department of Nutrition and Food Science, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, Maryland 20705, USA
| | - Camila K Cerqueira-CÉzar
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, Maryland 20705, USA
| | - Fernando H A Murata
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, Maryland 20705, USA
| | - Oliver C H Kwok
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, Maryland 20705, USA
| | - Jitender P Dubey
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, Maryland 20705, USA
| | - Abani K Pradhan
- Department of Nutrition and Food Science, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, Maryland 20705, USA.,Center for Food Safety and Security Systems, University of Maryland, College Park, Maryland 20742 (ORCID: https://orcid.org/0000-0001-8461-9617 [A.K.P.])
| |
Collapse
|
23
|
Xin S, Su R, Jiang N, Zhang L, Yang Y. Low Prevalence of Antibodies Against Toxoplasma gondii in Chinese Populations. Front Cell Infect Microbiol 2020; 10:302. [PMID: 32656100 PMCID: PMC7324674 DOI: 10.3389/fcimb.2020.00302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/20/2020] [Indexed: 11/29/2022] Open
Abstract
Toxoplasma gondii has been found to infect almost all warm-blooded animals, including humans. In this study, a total of 3,275 human serum samples were collected from hospitals in five provinces of China. About 5.13% (168/3,275) (95% CI, 4.42–5.94) of the serum samples tested positive for T. gondii IgG antibody by a modified agglutination test (MAT) (cut-off: 1:20). Significant associations were detected between geographic location (OR = 1.763), age (OR = 3.072), infertility in women (OR = 2.4409) and T. gondii infection in humans (p < 0.05). To minimize infection, citizens need to be informed about the best practices for toxoplasmosis prevention, including eating well-cooked meat, drinking boiled water, washing vegetables and fruits, and being careful during contact with cats.
Collapse
Affiliation(s)
- Shilin Xin
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Ruijing Su
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Nan Jiang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Longxian Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yurong Yang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
24
|
Santoro M, Viscardi M, Boccia F, Borriello G, Lucibelli MG, Auriemma C, Anastasio A, Veneziano V, Galiero G, Baldi L, Fusco G. Parasite Load and STRs Genotyping of Toxoplasma gondii Isolates From Mediterranean Mussels ( Mytilus galloprovincialis) in Southern Italy. Front Microbiol 2020; 11:355. [PMID: 32210944 PMCID: PMC7066981 DOI: 10.3389/fmicb.2020.00355] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/18/2020] [Indexed: 12/19/2022] Open
Abstract
Toxoplasmosis is a zoonotic food-borne disease caused by Toxoplasma gondii, a land-derived protozoan parasite that infects a broad range of terrestrial and aquatic hosts. T. gondii may reach coastal waters via contaminated freshwater runoff and its oocysts may enter into the marine food web. Marine invertebrates as mussels being filter feeders are exposed and may concentrate T. gondii oocysts representing a potential source of infection for animals and humans. The present works investigated the prevalence, parasite burden and genotypes of T. gondii in the Mediterranean mussels (Mytilus galloprovincialis) from southern Italy. We sampled a total of 382 individual Mediterranean mussels from May to August 2018 from seven production sites in the Gulf of Naples (Campania region). An additional sample including 27 farmed Mediterranean mussels was obtained in February 2018 from a mollusk depuration plant in Corigliano Calabro (Calabria region). T. gondii DNA was detected in 43 out of 409 (10.5%) Mediterranean mussels from seven out of eight sampling sites. The number of T. gondii copies/g in the digestive gland ranged from 0.14 to 1.18. Fragment analysis of Short Tandem Repeats (STRs) at 5 microsatellite loci was performed from 10 T. gondii PCR positive samples revealing the presence of five distinct genotypes including one corresponding to type I and four atypical genotypes. These findings suggest potential implications of epidemiological importance for human and animal health because both type I and atypical genotypes could be highly pathogenic.
Collapse
Affiliation(s)
- Mario Santoro
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Maurizio Viscardi
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Italy
| | - Federica Boccia
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Italy
| | - Giorgia Borriello
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Italy
| | | | | | - Aniello Anastasio
- Department of Veterinary Medicine and Animal Productions, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Vincenzo Veneziano
- Department of Veterinary Medicine and Animal Productions, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Giorgio Galiero
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Italy
| | - Loredana Baldi
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Italy
| | - Giovanna Fusco
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Italy
| |
Collapse
|
25
|
Géba E, Aubert D, Durand L, Escotte S, La Carbona S, Cazeaux C, Bonnard I, Bastien F, Palos Ladeiro M, Dubey JP, Villena I, Geffard A, Bigot-Clivot A. Use of the bivalve Dreissena polymorpha as a biomonitoring tool to reflect the protozoan load in freshwater bodies. WATER RESEARCH 2020; 170:115297. [PMID: 31756612 DOI: 10.1016/j.watres.2019.115297] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 06/10/2023]
Abstract
Cryptosporidium parvum, Toxoplasma gondii and Giardia duodenalis are worldwide pathogenic protozoa recognized as major causal agents of waterborne disease outbreaks. To overcome the normative process (ISO 15553/2006) limitations of protozoa detection in aquatic systems, we propose to use the zebra mussel (Dreissena polymorpha), a freshwater bivalve mollusc, as a tool for biomonitoring protozoan contamination. Mussels were exposed to three concentrations of C. parvum oocysts, G. duodenalis cysts or T. gondii oocysts for 21 days followed by 21 days of depuration in clear water. D. polymorpha accumulated protozoa in its tissues and haemolymph. Concerning T. gondii and G. duodenalis, the percentage of protozoa positive mussels reflected the contamination level in water bodies. As for C. parvum detection, oocysts did accumulate in mussel tissues and haemolymph, but in small quantities, and the limit of detection was high (between 50 and 100 oocysts). Low levels of T. gondii (1-5 oocysts/mussel) and G. duodenalis (less than 1 cyst/mussel) were quantified in D. polymorpha tissues. The ability of zebra mussels to reflect contamination by the three protozoa for weeks after the contamination event makes them a good integrative matrix for the biomonitoring of aquatic ecosystems.
Collapse
Affiliation(s)
- Elodie Géba
- UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Campus Moulin de Housse, BP 1039, 51687, Reims cedex 2, France; EA7510, ESCAPE, EpidémioSurveillance et CirculAtion des Parasites dans les Environnements, Université de Reims Champagne Ardenne, Faculté de Médecine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096, Reims, France
| | - Dominique Aubert
- EA7510, ESCAPE, EpidémioSurveillance et CirculAtion des Parasites dans les Environnements, Université de Reims Champagne Ardenne, Faculté de Médecine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096, Reims, France
| | - Loïc Durand
- ACTALIA Food Safety Department, 310 Rue Popielujko, 50000, Saint-Lô, France
| | - Sandy Escotte
- EA7510, ESCAPE, EpidémioSurveillance et CirculAtion des Parasites dans les Environnements, Université de Reims Champagne Ardenne, Faculté de Médecine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096, Reims, France
| | | | - Catherine Cazeaux
- ACTALIA Food Safety Department, 310 Rue Popielujko, 50000, Saint-Lô, France
| | - Isabelle Bonnard
- UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Campus Moulin de Housse, BP 1039, 51687, Reims cedex 2, France
| | - Fanny Bastien
- UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Campus Moulin de Housse, BP 1039, 51687, Reims cedex 2, France
| | - Mélissa Palos Ladeiro
- UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Campus Moulin de Housse, BP 1039, 51687, Reims cedex 2, France
| | - Jitender P Dubey
- United States Department Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, building 1001, Beltsville, MD, 20705-2350, USA
| | - Isabelle Villena
- EA7510, ESCAPE, EpidémioSurveillance et CirculAtion des Parasites dans les Environnements, Université de Reims Champagne Ardenne, Faculté de Médecine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096, Reims, France
| | - Alain Geffard
- UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Campus Moulin de Housse, BP 1039, 51687, Reims cedex 2, France
| | - Aurélie Bigot-Clivot
- UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Campus Moulin de Housse, BP 1039, 51687, Reims cedex 2, France.
| |
Collapse
|
26
|
Burgess TL, Tinker MT, Miller MA, Smith WA, Bodkin JL, Murray MJ, Nichol LM, Saarinen JA, Larson S, Tomoleoni JA, Conrad PA, Johnson CK. Spatial epidemiological patterns suggest mechanisms of land-sea transmission for Sarcocystis neurona in a coastal marine mammal. Sci Rep 2020; 10:3683. [PMID: 32111856 PMCID: PMC7048795 DOI: 10.1038/s41598-020-60254-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 01/27/2020] [Indexed: 01/07/2023] Open
Abstract
Sarcocystis neurona was recognised as an important cause of mortality in southern sea otters (Enhydra lutris nereis) after an outbreak in April 2004 and has since been detected in many marine mammal species in the Northeast Pacific Ocean. Risk of S. neurona exposure in sea otters is associated with consumption of clams and soft-sediment prey and is temporally associated with runoff events. We examined the spatial distribution of S. neurona exposure risk based on serum antibody testing and assessed risk factors for exposure in animals from California, Washington, British Columbia and Alaska. Significant spatial clustering of seropositive animals was observed in California and Washington, compared with British Columbia and Alaska. Adult males were at greatest risk for exposure to S. neurona, and there were strong associations with terrestrial features (wetlands, cropland, high human housing-unit density). In California, habitats containing soft sediment exhibited greater risk than hard substrate or kelp beds. Consuming a diet rich in clams was also associated with increased exposure risk. These findings suggest a transmission pathway analogous to that described for Toxoplasma gondii, with infectious stages traveling in freshwater runoff and being concentrated in particular locations by marine habitat features, ocean physical processes, and invertebrate bioconcentration.
Collapse
Affiliation(s)
- Tristan L Burgess
- EpiCenter for Disease Dynamics, Karen C Drayer Wildlife Health Center, One Health Institute, University of California Davis, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA.,Acadia Wildlife Services, P.O. Box 56, South Freeport, ME, 04078, USA
| | - M Tim Tinker
- U.S. Geological Survey, Western Ecological Research Center, Santa Cruz Field Station, 115 McAllister Way, Santa Cruz, CA, 95060, USA.,Nhydra Ecological Consulting, 11 Parklea Dr Head of St, Margarets Bay, NS, B3Z2G6, Canada
| | - Melissa A Miller
- Marine Wildlife Veterinary Care and Research Center, California Department of Fish and Wildlife, 151 McAllister Way, Santa Cruz, CA, 95060, USA
| | - Woutrina A Smith
- Department of Veterinary Medicine and Epidemiology, School of Veterinary Medicine, University of California Davis, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA
| | - James L Bodkin
- U.S. Geological Survey, Alaska Science Center, 4201 University Dr., Anchorage, AK, 99503, USA
| | - Michael J Murray
- Monterey Bay Aquarium, 886 Cannery Row, Monterey, CA, 93940, USA
| | - Linda M Nichol
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, BC, V9T 6N7, Canada
| | - Justin A Saarinen
- New College of Florida 5800 Bay Shore Road, Sarasota, FL, 34243, USA
| | - Shawn Larson
- The Seattle Aquarium, 1483 Alaskan Way, Pier 59, Seattle, WA, 98101, USA
| | - Joseph A Tomoleoni
- U.S. Geological Survey, Western Ecological Research Center, Santa Cruz Field Station, 115 McAllister Way, Santa Cruz, CA, 95060, USA
| | - Patricia A Conrad
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA
| | - Christine K Johnson
- EpiCenter for Disease Dynamics, Karen C Drayer Wildlife Health Center, One Health Institute, University of California Davis, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA.
| |
Collapse
|
27
|
First molecular detection of Toxoplasma gondii in vegetable samples in China using qualitative, quantitative real-time PCR and multilocus genotyping. Sci Rep 2019; 9:17581. [PMID: 31772319 PMCID: PMC6879479 DOI: 10.1038/s41598-019-54073-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/24/2019] [Indexed: 11/24/2022] Open
Abstract
Toxoplasma gondii infection is becoming increasing problem in China but there is no data concerning contamination of vegetables intended for consumption with this parasite. The aim of the present study was to investigate fresh vegetables originated from open markets located in the Xining City, the Qinghai-Tibet Plateau (QTP), P.R. China for their contamination with T. gondii. A total of 279 fresh vegetable samples were collected and analysed using real-time PCR assay targeting B1 gene and multilocus genotyping. T. gondii DNA was found in 10 (3.6%) samples tested; eight of them represented T. gondii type I and remaining two T. gondii type II. The approximate level of contamination of positive vegetables samples, estimated based on quantitative real-time PCR (qPCR), ranged between less than one and 27000 T. gondii oocysts per sample, with majority not exceeding several oocysts per sample. The results of the study confirmed that T. gondii is present in vegetables offered in open markets in the Qinghai province, P.R. China; eating them unwashed and raw may therefore pose a threat to consumers. This is the first investigation describing T. gondii detection in fresh vegetables intended for consumption collected from the territory of P.R. China using sensitive molecular tools.
Collapse
|
28
|
Toxoplasma gondii Oocyst Infectivity Assessed Using a Sporocyst-Based Cell Culture Assay Combined with Quantitative PCR for Environmental Applications. Appl Environ Microbiol 2019; 85:AEM.01189-19. [PMID: 31399406 DOI: 10.1128/aem.01189-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/01/2019] [Indexed: 01/06/2023] Open
Abstract
Toxoplasma gondii is a ubiquitous foodborne protozoan that can infect humans at low dose and displays different prevalences among countries in the world. Ingestion of food or water contaminated with small amounts of T. gondii oocysts may result in human infection. However, there are no regulations for monitoring oocysts in food, mainly because of a lack of standardized methods to detect them. The objectives of this study were (i) to develop a reliable method, applicable in biomonitoring, for the rapid detection of infectious oocysts by cell culture of their sporocysts combined with quantitative PCR (sporocyst-CC-qPCR) and (ii) to adapt this method to blue and zebra mussels experimentally contaminated by oocysts with the objective to use these organisms as sentinels of aquatic environments. Combining mechanical treatment and bead beating leads to the release of 84% ± 14% of free sporocysts. The sporocyst-CC-qPCR detected fewer than ten infectious oocysts in water within 4 days (1 day of contact and 3 days of cell culture) compared to detection after 4 weeks by mouse bioassay. For both mussel matrices, oocysts were prepurified using a 30% Percoll gradient and treated with sodium hypochlorite before cell culture of their sporocysts. This assay was able to detect as few as ten infective oocysts. This sporocyst-based CC-qPCR appears to be a good alternative to mouse bioassay for monitoring infectious T. gondii oocysts directly in water and also using biological sentinel mussel species. This method offers a new perspective to assess the environmental risk for human health associated with this parasite.IMPORTANCE The ubiquitous protozoan Toxoplasma gondii is the subject of renewed interest due to the spread of oocysts in water and food causing endemic and epidemic outbreaks of toxoplasmosis in humans and animals worldwide. Displaying a sensitivity close to animal models, cell culture represents a real alternative to assess the infectivity of oocysts in water and in biological sentinel mussels. This method opens interesting perspectives for evaluating human exposure to infectious T. gondii oocysts in the environment, where oocyst amounts are considered to be very small.
Collapse
|
29
|
Marquis ND, Bishop TJ, Record NR, Countway PD, Fernández Robledo JA. Molecular Epizootiology of Toxoplasma gondii and Cryptosporidium parvum in the Eastern Oyster ( Crassostrea virginica) from Maine (USA). Pathogens 2019; 8:E125. [PMID: 31412532 PMCID: PMC6789735 DOI: 10.3390/pathogens8030125] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/01/2019] [Accepted: 08/08/2019] [Indexed: 11/17/2022] Open
Abstract
Shellfish are known as a potential source of Toxoplasma gondii (responsible for toxoplasmosis), and Cryptosporidium parvum, which is one of the major causes of gastroenteritis in the world. Here we performed a comprehensive qPCR-based monthly survey for T. gondii and C. parvum during 2016 and 2017 in oysters (Crassostrea virginica) (n = 1440) from all six sites along the coast of Maine (USA). Pooled samples (mantle, gills, and rectum) from individual oysters were used for DNA extraction and qPCR. Our study resulted in detections of qPCR positives oysters for T. gondii and C. parvum at each of the six sites sampled (in 31% and 10% of total oysters, respectively). The prevalence of T. gondii was low in 2016, and in September 2017 several sites peaked in prevalence with 100% of the samples testing positive. The prevalence of C. parvum was very low except in one estuarine location (Jack's Point) in June 2016 (58%), and in October of 2016, when both prevalence and density of C. parvum at most of the sampling sites were among the highest values detected. Statistical analysis of environmental data did not identify clear drivers of retention, but there were some notable statistically significant patterns including current direction and nitrate along with the T. gondii prevalence. The major C. parvum retention event (in October 2016) corresponded with the month of highest dissolved oxygen measurements as well as a shift in the current direction revealed by nearby instrumentation. This study may guide future research to locate any contributing parasite reservoirs and evaluate the potential risk to human consumption.
Collapse
Affiliation(s)
| | - Theodore J Bishop
- Bigelow Laboratory for Ocean Sciences, Boothbay, ME 04544, USA
- Southern Maine Community College, South Portland, ME 04106, USA
| | | | | | | |
Collapse
|
30
|
Marino AMF, Giunta RP, Salvaggio A, Castello A, Alfonzetti T, Barbagallo A, Aparo A, Scalzo F, Reale S, Buffolano W, Percipalle M. Toxoplasma gondii in edible fishes captured in the Mediterranean basin. Zoonoses Public Health 2019; 66:826-834. [PMID: 31278858 PMCID: PMC6852154 DOI: 10.1111/zph.12630] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 06/06/2019] [Accepted: 06/16/2019] [Indexed: 01/08/2023]
Abstract
The issue of whether market fish can be involved in the transmission of Toxoplasma gondii in the marine environment is highly debated since toxoplasmosis has been diagnosed frequently in cetaceans stranded along the Mediterranean coastlines in recent times. To support the hypothesis that fishes can harbour and effectively transmit the parasite to top-of-the-food-chain marine organisms and to human consumers of fishery products, a total of 1,293 fishes from 17 species obtained from wholesale and local fish markets were examined for T. gondii DNA. Real-time PCR was performed in samples obtained by separately pooling intestines, gills and skin/muscles collected from each fish species. Thirty-two out of 147 pooled samples from 12 different fish species were found contaminated with T. gondii DNA that was detected in 16 samples of skin/muscle and in 11 samples of both intestine and gills. Quantitative analysis of amplified DNA performed by both real-time PCR and digital PCR (dPCR) confirmed that positive fish samples were contaminated with Toxoplasma genomic DNA to an extent of 6.10 × 10-2 to 2.77 × 104 copies/ml (quantitative PCR) and of 1 to 5.7 × 104 copies/ml (dPCR). Fishes are not considered competent biological hosts for T. gondii; nonetheless, they can be contaminated with T. gondii oocysts flowing via freshwater run-offs (untreated sewage discharges, soil flooding) into the marine environment, thus acting as mechanical carriers. Although the detection of viable and infective T. gondii oocysts was not the objective of this investigation, the results here reported suggest that fish species sold for human consumption can be accidentally involved in the transmission route of the parasite in the marine environment and that the risk of foodborne transmission of toxoplasmosis to fish consumers should be further investigated.
Collapse
Affiliation(s)
- Anna Maria Fausta Marino
- National Reference Centre for Toxoplasmosis, Istituto Zooprofilattico Sperimentale della Sicilia, Catania, Italy
| | - Renato Paolo Giunta
- National Reference Centre for Toxoplasmosis, Istituto Zooprofilattico Sperimentale della Sicilia, Catania, Italy
| | - Antonio Salvaggio
- National Reference Centre for Toxoplasmosis, Istituto Zooprofilattico Sperimentale della Sicilia, Catania, Italy
| | - Annamaria Castello
- National Reference Centre for Toxoplasmosis, Istituto Zooprofilattico Sperimentale della Sicilia, Catania, Italy
| | - Tiziana Alfonzetti
- National Reference Centre for Toxoplasmosis, Istituto Zooprofilattico Sperimentale della Sicilia, Catania, Italy
| | - Antonio Barbagallo
- National Reference Centre for Toxoplasmosis, Istituto Zooprofilattico Sperimentale della Sicilia, Catania, Italy
| | - Alessandra Aparo
- National Reference Centre for Toxoplasmosis, Istituto Zooprofilattico Sperimentale della Sicilia, Catania, Italy
| | - Fabrizio Scalzo
- National Reference Centre for Toxoplasmosis, Istituto Zooprofilattico Sperimentale della Sicilia, Catania, Italy
| | - Stefano Reale
- National Reference Centre for Toxoplasmosis, Istituto Zooprofilattico Sperimentale della Sicilia, Catania, Italy
| | | | - Maurizio Percipalle
- National Reference Centre for Toxoplasmosis, Istituto Zooprofilattico Sperimentale della Sicilia, Catania, Italy
| |
Collapse
|
31
|
Coupe A, Howe L, Shapiro K, Roe WD. Comparison of PCR assays to detect Toxoplasma gondii oocysts in green-lipped mussels (Perna canaliculus). Parasitol Res 2019; 118:2389-2398. [PMID: 31197544 DOI: 10.1007/s00436-019-06357-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/16/2019] [Indexed: 12/17/2022]
Abstract
Toxoplasma gondii is recognised as an important pathogen in the marine environment, with oocysts carried to coastal waters in overland runoff. Currently, there are no standardised methods to detect T. gondii directly in seawater to assess the extent of marine ecosystem contamination, but filter-feeding shellfish may serve as biosentinels. A variety of PCR-based methods have been used to confirm presence of T. gondii DNA in marine shellfish; however, systematic investigations comparing molecular methods are scarce. The primary objective of this study was to evaluate analytical sensitivity and specificity of two nested-PCR (nPCR) assays targeting dhps and B1 genes and two real-time (qPCR) assays targeting the B1 gene and a 529-bp repetitive element (rep529), for detection of T. gondii. These assays were subsequently validated for T. gondii detection in green-lipped mussel (Perna canaliculus) haemolymph using oocyst spiking experiments. All assays could reliably detect 50 oocysts spiked into mussel haemolymph. The lowest limit of detection was 5 oocysts using qPCR assays, with the rep529 primers performing best, with good correlation between oocyst concentrations and Cq values, and acceptable efficiency. Assay specificity was evaluated by testing DNA from closely related protozoans, Hammondia hammondi, Neospora caninum, and Sarcocystis spp. Both nPCR assays were specific to T. gondii. Both qPCR assays cross-reacted with Sarcocystis spp. DNA, and the rep529 primers also cross-reacted with N. caninum DNA. These studies suggest that the rep529 qPCR assay may be preferable for future mussel studies, but direct sequencing is required for definitive confirmation of T. gondii DNA detection.
Collapse
Affiliation(s)
- Alicia Coupe
- Institute of Veterinary, Animal and Biomedical Sciences, College of Sciences, Massey University, Private Bag 11 - 222, Palmerston North, 4442, New Zealand. .,EpiCentre, Wool Building, University Avenue, Massey University Manawatū Campus, Palmerston North, New Zealand.
| | - Laryssa Howe
- Institute of Veterinary, Animal and Biomedical Sciences, College of Sciences, Massey University, Private Bag 11 - 222, Palmerston North, 4442, New Zealand
| | - Karen Shapiro
- One Health Institute and School of Veterinary Medicine, University of California, Davis, CA, USA.,Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Wendi D Roe
- Institute of Veterinary, Animal and Biomedical Sciences, College of Sciences, Massey University, Private Bag 11 - 222, Palmerston North, 4442, New Zealand
| |
Collapse
|
32
|
Shapiro K, Bahia-Oliveira L, Dixon B, Dumètre A, de Wit LA, VanWormer E, Villena I. Environmental transmission of Toxoplasma gondii: Oocysts in water, soil and food. Food Waterborne Parasitol 2019; 15:e00049. [PMID: 32095620 PMCID: PMC7033973 DOI: 10.1016/j.fawpar.2019.e00049] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/19/2019] [Accepted: 03/19/2019] [Indexed: 12/11/2022] Open
Abstract
Toxoplasma gondii is a zoonotic protozoan parasite that can cause morbidity and mortality in humans, domestic animals, and terrestrial and aquatic wildlife. The environmentally robust oocyst stage of T. gondii is fundamentally critical to the parasite's success, both in terms of its worldwide distribution as well as the extensive range of infected intermediate hosts. Despite the limited definitive host species (domestic and wild felids), infections have been reported on every continent, and in terrestrial as well as aquatic environments. The remarkable resistance of the oocyst wall enables dissemination of T. gondii through watersheds and ecosystems, and long-term persistence in diverse foods such as shellfish and fresh produce. Here, we review the key attributes of oocyst biophysical properties that confer their ability to disseminate and survive in the environment, as well as the epidemiological dynamics of oocyst sources including domestic and wild felids. This manuscript further provides a comprehensive review of the pathways by which T. gondii oocysts can infect animals and people through the environment, including in contaminated foods, water or soil. We conclude by identifying critical control points for reducing risk of exposure to oocysts as well as opportunities for future synergies and new directions for research aimed at reducing the burden of oocyst-borne toxoplasmosis in humans, domestic animals, and wildlife.
Collapse
Affiliation(s)
- Karen Shapiro
- Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, One Shields Ave, 4206 VM3A, University of California, Davis, CA 95616-5270, USA
| | - Lillian Bahia-Oliveira
- Laboratory of Immunoparasitology, Federal University of Rio de Janeiro, Macaé, RJ, Brazil
| | - Brent Dixon
- Bureau of Microbial Hazards, Food Directorate, Health Canada, 251 Sir Frederick Banting Driveway, A.L. 2204E, Ottawa, ON K1A 0K9, Canada
| | - Aurélien Dumètre
- Aix Marseille Univ, IRD 257, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France
| | - Luz A. de Wit
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 130 McAllister Way, Santa Cruz, CA 95050, USA
| | - Elizabeth VanWormer
- School of Veterinary Medicine and Biomedical Sciences, School of Natural Resources, University of Nebraska-Lincoln, VBS 111, Lincoln, NE 68583, USA
| | - Isabelle Villena
- EA 7510, UFR Medicine, University Reims Champagne-Ardenne, National Reference Center on Toxoplasmosis, Hospital Maison Blanche, Reims, France
| |
Collapse
|
33
|
Le Guernic A, Geffard A, Rioult D, Bonnard I, Le Foll F, Palos Ladeiro M. First evidence of cytotoxic effects of human protozoan parasites on zebra mussel (Dreissena polymorpha) haemocytes. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:414-418. [PMID: 30451380 DOI: 10.1111/1758-2229.12720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/05/2018] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
The interaction between human protozoan parasites and the immune cells of bivalves, that can accumulate them, is poorly described. The purpose of this study is to consider the mechanisms of action of some of these protozoa on zebra mussel haemocytes, by evaluating their cytotoxic potential. Haemocytes were exposed to Toxoplasma gondii, Giardia duodenalis or Cryptosporidium parvum (oo)cysts. The results showed a cytotoxic potency of the two largest protozoa on haemocytes and suggested the formation of haemocyte aggregates. Thus, this study reveals the first signs of a haemocyte:protozoan interaction.
Collapse
Affiliation(s)
- Antoine Le Guernic
- UMR-I02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), Reims Champagne-Ardenne University (URCA), Campus Moulin de la Housse, 51687, Reims, France
| | - Alain Geffard
- UMR-I02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), Reims Champagne-Ardenne University (URCA), Campus Moulin de la Housse, 51687, Reims, France
| | - Damien Rioult
- UMR-I02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), Reims Champagne-Ardenne University (URCA), Campus Moulin de la Housse, 51687, Reims, France
- Plateau technique mobile de cytométrie environnementale MOBICYTE, URCA/INERIS, Reims Champagne-Ardenne University (URCA), Campus Moulin de la Housse, 51687, Reims, France
| | - Isabelle Bonnard
- UMR-I02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), Reims Champagne-Ardenne University (URCA), Campus Moulin de la Housse, 51687, Reims, France
| | - Frank Le Foll
- UMR-I02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), Le Havre Normandie University, 76063, Le Havre, France
| | - Mélissa Palos Ladeiro
- UMR-I02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), Reims Champagne-Ardenne University (URCA), Campus Moulin de la Housse, 51687, Reims, France
| |
Collapse
|
34
|
Zhu GL, Tang YY, Limpanont Y, Wu ZD, Li J, Lv ZY. Zoonotic parasites carried by invasive alien species in China. Infect Dis Poverty 2019; 8:2. [PMID: 30621776 PMCID: PMC6325848 DOI: 10.1186/s40249-018-0512-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/18/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The invasive alien species may lead to great environmental and economic crisis due to its strong capability of occupying the biological niche of native species and altering the ecosystem of the invaded area. However, its potential to serve as the vectors of some specific zoonotic pathogens, especially parasites, has been neglected. Thus, the damage that it may cause has been hugely underestimated in this aspect, which is actually an important public health problem. This paper aims to discuss the current status of zoonotic parasites carried by invasive alien species in China. MAIN BODY This review summarizes the reported zoonotic parasites carried by invasive alien species in China based on the Database of Invasive Alien Species in China. We summarize their prevalence, threat to human health, related reported cases, and the roles of invasive alien species in the life cycle of these parasites, and the invasion history of some invasive alien species. Furthermore, we sum up the current state of prevention and control of invasive alien species in China, and discuss about the urgency and several feasible strategies for the prevention and control of these zoonoses under the background of booming international communications and inevitable globalization. CONCLUSIONS Information of the zoonotic parasites carried by invasive alien species neither in China or worldwide, especially related case reports, is limited due to a long-time neglection and lack of monitoring. The underestimation of their damage requires more attention to the monitoring and control and compulsory measures should be taken to control the invasive alien species carrying zoonotic parasites.
Collapse
Affiliation(s)
- Guang-Li Zhu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080 China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080 China
| | - Yi-Yang Tang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080 China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080 China
| | - Yanin Limpanont
- Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| | - Zhong-Dao Wu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080 China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080 China
| | - Jian Li
- Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000 Guangdong China
| | - Zhi-Yue Lv
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
- Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000 Guangdong China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080 China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080 China
| |
Collapse
|
35
|
Scotter SE, Tryland M, Nymo IH, Hanssen L, Harju M, Lydersen C, Kovacs KM, Klein J, Fisk AT, Routti H. Contaminants in Atlantic walruses in Svalbard part 1: Relationships between exposure, diet and pathogen prevalence. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 244:9-18. [PMID: 30317087 DOI: 10.1016/j.envpol.2018.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/26/2018] [Accepted: 10/01/2018] [Indexed: 06/08/2023]
Abstract
This study investigated relationships between organohalogen compound (OHC) exposure, feeding habits, and pathogen exposure in a recovering population of Atlantic walruses (Odobenus rosmarus rosmarus) from the Svalbard Archipelago, Norway. Various samples were collected from 39 free-living, apparently healthy, adult male walruses immobilised at three sampling locations during the summers of 2014 and 2015. Concentrations of lipophilic compounds (polychlorinated biphenyls, organochlorine pesticides and polybrominated diphenyl ethers) were analysed in blubber samples, and concentrations of perfluoroalkylated substances (PFASs) were determined in plasma samples. Stable isotopes of carbon and nitrogen were measured in seven tissue types and surveys for three infectious pathogens were conducted. Despite an overall decline in lipophilic compound concentrations since this population was last studied (2006), the contaminant pattern was similar, including extremely large inter-individual variation. Stable isotope ratios of carbon and nitrogen showed that the variation in OHC concentrations could not be explained by some walruses consuming higher trophic level diets, since all animals were found to feed at a similar trophic level. Antibodies against the bacteria Brucella spp. and the parasite Toxoplasma gondii were detected in 26% and 15% of the walruses, respectively. Given the absence of seal-predation, T. gondii exposure likely took place via the consumption of contaminated bivalves. The source of exposure to Brucella spp. in walruses is still unknown. Parapoxvirus DNA was detected in a single individual, representing the first documented evidence of parapoxvirus in wild walruses. Antibody prevalence was not related to contaminant exposure. Despite this, dynamic relationships between diet composition, contaminant bioaccumulation and pathogen exposure warrant continuing attention given the likelihood of climate change induced habitat and food web changes, and consequently OHC exposure, for Svalbard walruses in the coming decades.
Collapse
Affiliation(s)
- Sophie E Scotter
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, N-9019, Tromsø, Norway
| | - Morten Tryland
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, N-9019, Tromsø, Norway
| | - Ingebjørg H Nymo
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, N-9019, Tromsø, Norway; Norwegian Veterinary Institute, Stakkevollveien 23, N-9010, Tromsø, Norway
| | - Linda Hanssen
- Norwegian Institute for Air Research (NILU), Fram Centre, N-9296, Tromsø, Norway
| | - Mikael Harju
- Norwegian Institute for Air Research (NILU), Fram Centre, N-9296, Tromsø, Norway
| | | | - Kit M Kovacs
- Norwegian Polar Institute, FRAM Centre, N-9296, Tromsø, Norway
| | - Jörn Klein
- University College of Southeast Norway (USN), Post Box 235, N-3603, Kongsberg, Norway
| | - Aaron T Fisk
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, N9B 3P4, Canada
| | - Heli Routti
- Norwegian Polar Institute, FRAM Centre, N-9296, Tromsø, Norway.
| |
Collapse
|
36
|
Koutsoumanis K, Allende A, Alvarez-Ordóñez A, Bolton D, Bover-Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Cacciò S, Chalmers R, Deplazes P, Devleesschauwer B, Innes E, Romig T, van der Giessen J, Hempen M, Van der Stede Y, Robertson L. Public health risks associated with food-borne parasites. EFSA J 2018; 16:e05495. [PMID: 32625781 PMCID: PMC7009631 DOI: 10.2903/j.efsa.2018.5495] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Parasites are important food‐borne pathogens. Their complex lifecycles, varied transmission routes, and prolonged periods between infection and symptoms mean that the public health burden and relative importance of different transmission routes are often difficult to assess. Furthermore, there are challenges in detection and diagnostics, and variations in reporting. A Europe‐focused ranking exercise, using multicriteria decision analysis, identified potentially food‐borne parasites of importance, and that are currently not routinely controlled in food. These are Cryptosporidium spp., Toxoplasma gondii and Echinococcus spp. Infection with these parasites in humans and animals, or their occurrence in food, is not notifiable in all Member States. This Opinion reviews current methods for detection, identification and tracing of these parasites in relevant foods, reviews literature on food‐borne pathways, examines information on their occurrence and persistence in foods, and investigates possible control measures along the food chain. The differences between these three parasites are substantial, but for all there is a paucity of well‐established, standardised, validated methods that can be applied across the range of relevant foods. Furthermore, the prolonged period between infection and clinical symptoms (from several days for Cryptosporidium to years for Echinococcus spp.) means that source attribution studies are very difficult. Nevertheless, our knowledge of the domestic animal lifecycle (involving dogs and livestock) for Echinoccocus granulosus means that this parasite is controllable. For Echinococcus multilocularis, for which the lifecycle involves wildlife (foxes and rodents), control would be expensive and complicated, but could be achieved in targeted areas with sufficient commitment and resources. Quantitative risk assessments have been described for Toxoplasma in meat. However, for T. gondii and Cryptosporidium as faecal contaminants, development of validated detection methods, including survival/infectivity assays and consensus molecular typing protocols, are required for the development of quantitative risk assessments and efficient control measures.
Collapse
|
37
|
First report of Toxoplasma gondii sporulated oocysts and Giardia duodenalis in commercial green-lipped mussels (Perna canaliculus) in New Zealand. Parasitol Res 2018; 117:1453-1463. [DOI: 10.1007/s00436-018-5832-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/06/2018] [Indexed: 12/29/2022]
|
38
|
|
39
|
The first detection of Toxoplasma gondii DNA in environmental air samples using gelatine filters, real-time PCR and loop-mediated isothermal (LAMP) assays: qualitative and quantitative analysis. Parasitology 2017; 144:1791-1801. [PMID: 28697821 DOI: 10.1017/s0031182017001172] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Toxoplasma gondii infections are acquired through the ingestion of oocysts present in the environment. However, there is no data about their occurrence in the air or about airborne transmission of these infections. In the present paper, we report on the identification of T. gondii using rapid molecular detection methods, supported by microscopic analysis, in environmental air samples. A total of 71 samples were collected, using gelatine filters, from kitchen gardens, recreational areas and sandpits located in northern and north-eastern Poland. Material recovered from the filters was analysed using real-time PCR and loop-mediated isothermal assays targeting the T. gondii B1 gene. Toxoplasma gondii DNA was found in two samples, as confirmed by both molecular assays. Genotyping at the SAG2 locus showed Toxoplasma SAG2 type I. Moreover, the presence of T. gondii oocysts was confirmed in one of the positive samples with the use of microscopy. The results showed that T. gondii may be present in environmental air samples and that respiratory tract infections may play a role in the high prevalence of toxoplasmosis in humans and animals. To the best of our knowledge, this is the first epidemiological evidence that oro-fecal and foodborne toxoplasmosis may be traceable to an airborne respiratory origin and that this may represent a new, previously unknown transmission route for this disease.
Collapse
|
40
|
van de Velde N, Devleesschauwer B, Leopold M, Begeman L, IJsseldijk L, Hiemstra S, IJzer J, Brownlow A, Davison N, Haelters J, Jauniaux T, Siebert U, Dorny P, De Craeye S. Toxoplasma gondii in stranded marine mammals from the North Sea and Eastern Atlantic Ocean: Findings and diagnostic difficulties. Vet Parasitol 2016; 230:25-32. [PMID: 27884438 DOI: 10.1016/j.vetpar.2016.10.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/19/2016] [Accepted: 10/22/2016] [Indexed: 10/20/2022]
Abstract
The occurrence of the zoonotic protozoan parasite Toxoplasma gondii in marine mammals remains a poorly understood phenomenon. In this study, samples from 589 marine mammal species and 34 European otters (Lutra lutra), stranded on the coasts of Scotland, Belgium, France, The Netherlands and Germany, were tested for the presence of T. gondii. Brain samples were analysed by polymerase chain reaction (PCR) for detection of parasite DNA. Blood and muscle fluid samples were tested for specific antibodies using a modified agglutination test (MAT), a commercial multi-species enzyme-linked immunosorbent assay (ELISA) and an immunofluorescence assay (IFA). Out of 193 animals tested by PCR, only two harbour porpoise (Phocoena phocoena) cerebrum samples, obtained from animals stranded on the Dutch coast, tested positive. The serological results showed a wide variation depending on the test used. Using a cut-off value of 1/40 dilution in MAT, 141 out of 292 animals (41%) were positive. Using IFA, 30 out of 244 tested samples (12%) were positive at a 1/50 dilution. The commercial ELISA yielded 7% positives with a cut-off of the sample-to-positive (S/P) ratio≥50; and 12% when the cut-off was set at S/P ratio≥20. The high number of positives in MAT may be an overestimation due to the high degree of haemolysis of the samples and/or the presence of lipids. The ELISA results could be an underestimation due to the use of a multispecies conjugate. Our results confirm the presence of T. gondii in marine mammals in The Netherlands and show exposure to the parasite in both the North Sea and the Eastern Atlantic Ocean. We also highlight the limitations of the tests used to diagnose T. gondii in stranded marine mammals.
Collapse
Affiliation(s)
- Norbert van de Velde
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Brecht Devleesschauwer
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium; Department of Public Health and Surveillance, Scientific Institute of Public Health (WIV-ISP), Brussels, Belgium.
| | - Mardik Leopold
- Wageningen IMARES - Institute for Marine Resources and Ecosystem Studies, Den Helder, The Netherlands
| | - Lineke Begeman
- Viroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Lonneke IJsseldijk
- Utrecht University, Faculty of Veterinary Medicine, Dept. Pathobiology, The Netherlands
| | - Sjoukje Hiemstra
- Utrecht University, Faculty of Veterinary Medicine, Dept. Pathobiology, The Netherlands
| | - Jooske IJzer
- Utrecht University, Faculty of Veterinary Medicine, Dept. Pathobiology, The Netherlands
| | - Andrew Brownlow
- Scottish Marine Animal Stranding Scheme, SAC Consulting. Veterinary Services, Drummondhill, Inverness, IV2 4JZ Scotland, UK
| | - Nicholas Davison
- Scottish Marine Animal Stranding Scheme, SAC Consulting. Veterinary Services, Drummondhill, Inverness, IV2 4JZ Scotland, UK
| | - Jan Haelters
- Royal Belgian Institute of Natural Sciences (RBINS), Ostend, Belgium
| | - Thierry Jauniaux
- Department of Morphology and Pathology, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Büsum, Germany
| | - Pierre Dorny
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium; Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Stéphane De Craeye
- National Reference Laboratory for Toxoplasmosis, Department of Communicable and Infectious Diseases, Scientific Institute of Public Health (WIV-ISP), Brussels, Belgium
| |
Collapse
|
41
|
Roe WD, Michael S, Fyfe J, Burrows E, Hunter SA, Howe L. First report of systemic toxoplasmosis in a New Zealand sea lion (Phocarctos hookeri). N Z Vet J 2016; 65:46-50. [DOI: 10.1080/00480169.2016.1230526] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- WD Roe
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - S Michael
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - J Fyfe
- Department of Conservation, PO Box 5244, Moray Place, Dunedin 9058, New Zealand
| | - E Burrows
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - SA Hunter
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - L Howe
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| |
Collapse
|
42
|
Concentration and retention of Toxoplasma gondii surrogates from seawater by red abalone (Haliotis rufescens). Parasitology 2016; 143:1703-1712. [PMID: 27573192 DOI: 10.1017/s0031182016001359] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Small marine snails and abalone have been identified as high- and low-risk prey items, respectively, for exposure of threatened southern sea otters to Toxoplasma gondii, a zoonotic parasite that can cause fatal encephalitis in animals and humans. While recent work has characterized snails as paratenic hosts for T. gondii, the ability of abalone to vector the parasite has not been evaluated. To further elucidate why abalone predation may be protective against T. gondii exposure, this study aimed to determine whether: (1) abalone are physiologically capable of acquiring T. gondii; and (2) abalone and snails differ in their ability to concentrate and retain the parasite. Abalone were exposed to T. gondii surrogate microspheres for 24 h, and fecal samples were examined for 2 weeks following exposure. Concentration of surrogates was 2-3 orders of magnitude greater in abalone feces than in the spiked seawater, and excretion of surrogates continued for 14 days post-exposure. These results indicate that, physiologically, abalone and snails can equally vector T. gondii as paratenic hosts. Reduced risk of T. gondii infection in abalone-specializing otters may therefore result from abalone's high nutritional value, which implies otters must consume fewer animals to meet their caloric needs.
Collapse
|
43
|
Burge CA, Closek CJ, Friedman CS, Groner ML, Jenkins CM, Shore-Maggio A, Welsh JE. The Use of Filter-feeders to Manage Disease in a Changing World. Integr Comp Biol 2016; 56:573-87. [DOI: 10.1093/icb/icw048] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
44
|
California mussels (Mytilus californianus) as sentinels for marine contamination with Sarcocystis neurona. Parasitology 2016; 143:762-9. [PMID: 27003262 DOI: 10.1017/s0031182016000354] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Sarcocystis neurona is a terrestrial parasite that can cause fatal encephalitis in the endangered Southern sea otter (Enhydra lutris nereis). To date, neither risk factors associated with marine contamination nor the route of S. neurona infection to marine mammals has been described. This study evaluated coastal S. neurona contamination using California mussels (Mytilus californianus) as sentinels for pathogen pollution. A field investigation was designed to test the hypotheses that (1) mussels can serve as sentinels for S. neurona contamination, and (2) S. neurona contamination in mussels would be highest during the rainy season and in mussels collected near freshwater. Initial validation of molecular assays through sporocyst spiking experiments revealed the ITS-1500 assay to be most sensitive for detection of S. neurona, consistently yielding parasite amplification at concentrations ⩾5 sporocysts/1 mL mussel haemolymph. Assays were then applied on 959 wild-caught mussels, with detection of S. neurona confirmed using sequence analysis in three mussels. Validated molecular assays for S. neurona detection in mussels provide a novel toolset for investigating marine contamination with this parasite, while confirmation of S. neurona in wild mussels suggests that uptake by invertebrates may serve as a route of transmission to susceptible marine animals.
Collapse
|
45
|
Kerambrun E, Palos Ladeiro M, Bigot-Clivot A, Dedourge-Geffard O, Dupuis E, Villena I, Aubert D, Geffard A. Zebra mussel as a new tool to show evidence of freshwater contamination by waterborne Toxoplasma gondii. J Appl Microbiol 2016; 120:498-508. [DOI: 10.1111/jam.12999] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 10/01/2015] [Accepted: 10/23/2015] [Indexed: 01/01/2023]
Affiliation(s)
- E. Kerambrun
- Unité Stress Environnementaux et Biosurveillance des milieux aquatiques; UMR-I 02 (SEBIO); Université de Reims Champagne Ardenne; Reims France
| | - M. Palos Ladeiro
- Unité Stress Environnementaux et Biosurveillance des milieux aquatiques; UMR-I 02 (SEBIO); Université de Reims Champagne Ardenne; Reims France
- Laboratoire de Parasitologie-Mycologie; EA 3800 SFR CAP-Santé FED 4231; Hôpital Maison Blanche; Reims France
| | - A. Bigot-Clivot
- Unité Stress Environnementaux et Biosurveillance des milieux aquatiques; UMR-I 02 (SEBIO); Université de Reims Champagne Ardenne; Reims France
| | - O. Dedourge-Geffard
- Unité Stress Environnementaux et Biosurveillance des milieux aquatiques; UMR-I 02 (SEBIO); Université de Reims Champagne Ardenne; Reims France
| | - E. Dupuis
- Laboratoire de Parasitologie-Mycologie; EA 3800 SFR CAP-Santé FED 4231; Hôpital Maison Blanche; Reims France
| | - I. Villena
- Laboratoire de Parasitologie-Mycologie; EA 3800 SFR CAP-Santé FED 4231; Hôpital Maison Blanche; Reims France
| | - D. Aubert
- Laboratoire de Parasitologie-Mycologie; EA 3800 SFR CAP-Santé FED 4231; Hôpital Maison Blanche; Reims France
| | - A. Geffard
- Unité Stress Environnementaux et Biosurveillance des milieux aquatiques; UMR-I 02 (SEBIO); Université de Reims Champagne Ardenne; Reims France
| |
Collapse
|
46
|
The development and implementation of a method using blue mussels (Mytilus spp.) as biosentinels of Cryptosporidium spp. and Toxoplasma gondii contamination in marine aquatic environments. Parasitol Res 2015; 114:4655-67. [DOI: 10.1007/s00436-015-4711-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/27/2015] [Indexed: 10/23/2022]
|
47
|
Palos Ladeiro M, Bigot-Clivot A, Aubert D, Villena I, Geffard A. Assessment of Toxoplasma gondii levels in zebra mussel (Dreissena polymorpha) by real-time PCR: an organotropism study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:13693-13701. [PMID: 25772876 DOI: 10.1007/s11356-015-4296-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 03/02/2015] [Indexed: 06/04/2023]
Abstract
Water quality is a public health concern that calls for relevant biomonitoring programs. Molecular tools such as polymerase chain reaction (PCR) are progressively becoming more sensitive and more specific than conventional techniques to detect pathogens in environmental samples such as water and organisms. The zebra mussel (Dreissena polymorpha) has already been demonstrated to accumulate and concentrate various human waterborne pathogens. In this study, first, a spiking experiment to evaluate detection levels of Toxoplasma gondii DNA in zebra mussel organs using real-time PCR was conducted. Overall, lower DNA levels in the hemolymph, digestive gland, and remaining tissues (gonad and foot) were detected compared to mantle, muscle, and gills. Second, an in vivo experiment with 1000 T. gondii oocysts per mussel and per day for 21 consecutive days, followed by 14 days of depuration time in protozoa-free water was performed. T. gondii DNA was detected in all organs, but greatest concentrations were observed in hemolymph and mantle tissues compared to the others organs at the end of the depuration period. These results suggest that (i) the zebra mussel is a potential new tool for measuring T. gondii concentrations and (ii) real-time PCR is a suitable method for pathogen detection in complex matrices such as tissues.
Collapse
Affiliation(s)
- M Palos Ladeiro
- Unité Stress Environnementaux et BIOsurveillance des milieux aquatiques, UMR-I 02 (SEBIO), Université de Reims Champagne-Ardenne, Reims, France
| | | | | | | | | |
Collapse
|
48
|
SURVEY FOR INFECTIOUS DISEASE IN THE SOUTH AMERICAN FUR SEAL (ARCTOCEPHALUS AUSTRALIS) POPULATION AT PUNTA SAN JUAN, PERU. J Zoo Wildl Med 2015; 46:246-54. [PMID: 26056875 DOI: 10.1638/2014-0120.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Peruvian population of the South American fur seal ( Arctocephalus australis ) is a distinct evolutionarily significant unit that is endangered. One of the largest rookeries for this species in Peru is located within the Punta San Juan marine protected area (15°22'S, 75°12'W). To better understand the current health status of this population, exposure to 10 pinniped pathogens was evaluated in adult female fur seals (n=29) via serology and polymerase chain reaction (PCR) techniques in November 2010. The results suggest this population is naïve to canine and phocine distemper viruses (serum neutralization test), five Leptospira interrogans serovars (microscopic agglutination test), and Brucella canis (card test). Indirect fluorescent antibody testing for Toxoplasma gondii , Neospora caninum , and Sarcocystis neurona was also uniformly negative. PCR testing of nasal swabs using previously described Mycoplasma spp. primers was positive in 37.9% (11/29) of samples. One animal was positive via card test for Brucella abortus , whereas 53.7% (15/28) were positive or suspect using a marine Brucella competitive enzyme-linked immunosorbent assay. Antibody to phocine herpesvirus-1 (PHV-1) was identified in 85.7% (24/28) of the sampled population by serum neutralization testing. Overall, exposure to Mycoplasma spp., Brucella spp., and PHV-1 was observed, but results demonstrated low to no exposure to many key pinniped pathogens. The expansion of human populations, agriculture, and industry along the Peruvian coast may lead to increased pathogen exposure from human, domestic, and wild animal sources. The naïve nature of this key population of South American fur seals raises concerns about potential risk for disease outbreaks.
Collapse
|
49
|
Krusor C, Smith WA, Tinker MT, Silver M, Conrad PA, Shapiro K. Concentration and retention ofToxoplasma gondiioocysts by marine snails demonstrate a novel mechanism for transmission of terrestrial zoonotic pathogens in coastal ecosystems. Environ Microbiol 2015; 17:4527-37. [DOI: 10.1111/1462-2920.12927] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/05/2015] [Accepted: 05/26/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Colin Krusor
- Pathology, Microbiology, and Immunology; School of Veterinary Medicine; University of California; Davis CA USA
| | | | - M. Tim Tinker
- Western Ecological Research Center; United States Geological Survey; Santa Cruz CA USA
- Ecology and Evolutionary Biology; University of California; Santa Cruz CA USA
| | - Mary Silver
- Ocean Sciences; University of California; Santa Cruz CA USA
| | - Patricia A. Conrad
- Pathology, Microbiology, and Immunology; School of Veterinary Medicine; University of California; Davis CA USA
- One Health Institute; University of California; Davis CA USA
| | - Karen Shapiro
- Pathology, Microbiology, and Immunology; School of Veterinary Medicine; University of California; Davis CA USA
- One Health Institute; University of California; Davis CA USA
| |
Collapse
|
50
|
Sanders JL, Moulton H, Moulton Z, McLeod R, Dubey JP, Weiss LM, Zhou Y, Kent ML. The zebrafish, Danio rerio, as a model for Toxoplasma gondii: an initial description of infection in fish. JOURNAL OF FISH DISEASES 2015; 38:675-9. [PMID: 25951508 PMCID: PMC4548885 DOI: 10.1111/jfd.12393] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/23/2015] [Accepted: 04/23/2015] [Indexed: 05/04/2023]
Abstract
Toxoplasma gondii infects a very wide range of mammals and birds, and about one-third of humans are infected with this protozoan parasite. Chronic T. gondii infection has historically been believed to be asymptomatic; however there is now evidence that links chronic infection with several psychiatric disorders. While there are drugs to treat acute toxoplasmosis, there are currently no treatments for the latent form of the parasite. Currently, T. gondii in vivo research is performed using murine models, which are limited by cost and the inability to perform high throughput assays. To develop an improved in vivo model, we adapted zebrafish to 37°C and injected them intraperitoneally with two strains of T. gondii at a concentration of 10 tissue cysts per fish, and observed them for 7 days post injection. Fish were examined by histology for the presence of T. gondii development. Intracellular parasites were observed in fish at 5 to 7 days post injection. The pattern of infection observed was similar to that found in mammalian infection, with parasites developing in the somatic muscle, heart, liver, spleen, kidney, and brain.
Collapse
Affiliation(s)
- Justin L. Sanders
- Department of Microbiology, Oregon State University, Corvallis, OR
- Author for correspondence ()
| | - Hong Moulton
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR
| | | | - Rima McLeod
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL
| | - J. P. Dubey
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD
| | - Louis M. Weiss
- Departments of Pathology and Medicine, Albert Einstein College of Medicine, Bronx, NY
| | - Ying Zhou
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL
| | - Michael L. Kent
- Department of Microbiology, Oregon State University, Corvallis, OR
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR
| |
Collapse
|