1
|
Tóth AD, Gyombolai P, Szalai B, Várnai P, Turu G, Hunyady L. Angiotensin type 1A receptor regulates β-arrestin binding of the β 2-adrenergic receptor via heterodimerization. Mol Cell Endocrinol 2017; 442:113-124. [PMID: 27908837 DOI: 10.1016/j.mce.2016.11.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/26/2016] [Accepted: 11/26/2016] [Indexed: 02/06/2023]
Abstract
Heterodimerization between angiotensin type 1A receptor (AT1R) and β2-adrenergic receptor (β2AR) has been shown to modulate G protein-mediated effects of these receptors. Activation of G protein-coupled receptors (GPCRs) leads to β-arrestin binding, desensitization, internalization and G protein-independent signaling of GPCRs. Our aim was to study the effect of heterodimerization on β-arrestin coupling. We found that β-arrestin binding of β2AR is affected by activation of AT1Rs. Costimulation with angiotensin II and isoproterenol markedly enhanced the interaction between β2AR and β-arrestins, by prolonging the lifespan of β2AR-induced β-arrestin2 clusters at the plasma membrane. While candesartan, a conventional AT1R antagonist, had no effect on the β-arrestin2 binding to β2AR, TRV120023, a β-arrestin biased agonist, enhanced the interaction. These findings reveal a new crosstalk mechanism between AT1R and β2AR, and suggest that enhanced β-arrestin2 binding to β2AR can contribute to the pharmacological effects of biased AT1R agonists.
Collapse
Affiliation(s)
- András D Tóth
- Department of Physiology, Faculty of Medicine, Semmelweis University, P. O. Box 2, H-1428 Budapest, Hungary
| | - Pál Gyombolai
- Department of Physiology, Faculty of Medicine, Semmelweis University, P. O. Box 2, H-1428 Budapest, Hungary; MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Bence Szalai
- Department of Physiology, Faculty of Medicine, Semmelweis University, P. O. Box 2, H-1428 Budapest, Hungary; MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Péter Várnai
- Department of Physiology, Faculty of Medicine, Semmelweis University, P. O. Box 2, H-1428 Budapest, Hungary
| | - Gábor Turu
- Department of Physiology, Faculty of Medicine, Semmelweis University, P. O. Box 2, H-1428 Budapest, Hungary; MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - László Hunyady
- Department of Physiology, Faculty of Medicine, Semmelweis University, P. O. Box 2, H-1428 Budapest, Hungary; MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary.
| |
Collapse
|
2
|
Katona D, Rajki A, Di Benedetto G, Pozzan T, Spät A. Calcium-dependent mitochondrial cAMP production enhances aldosterone secretion. Mol Cell Endocrinol 2015; 412:196-204. [PMID: 25958040 DOI: 10.1016/j.mce.2015.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/27/2015] [Accepted: 05/03/2015] [Indexed: 10/23/2022]
Abstract
Glomerulosa cells secrete aldosterone in response to agonists coupled to Ca(2+) increases such as angiotensin II and corticotrophin, coupled to a cAMP dependent pathway. A recently recognized interaction between Ca(2+) and cAMP is the Ca(2+)-induced cAMP formation in the mitochondrial matrix. Here we describe that soluble adenylyl cyclase (sAC) is expressed in H295R adrenocortical cells. Mitochondrial cAMP formation, monitored with a mitochondria-targeted fluorescent sensor (4mtH30), is enhanced by HCO3(-) and the Ca(2+) mobilizing agonist angiotensin II. The effect of angiotensin II is inhibited by 2-OHE, an inhibitor of sAC, and by RNA interference of sAC, but enhanced by an inhibitor of phosphodiesterase PDE2A. Heterologous expression of the Ca(2+) binding protein S100G within the mitochondrial matrix attenuates angiotensin II-induced mitochondrial cAMP formation. Inhibition and knockdown of sAC significantly reduce angiotensin II-induced aldosterone production. These data provide the first evidence for a cell-specific functional role of mitochondrial cAMP.
Collapse
Affiliation(s)
- Dávid Katona
- Department of Physiology, Semmelweis University Medical School, Budapest, Hungary
| | - Anikó Rajki
- Laboratory of Molecular Physiology, Hungarian Academy of Sciences, Budapest, Hungary
| | - Giulietta Di Benedetto
- Institute of Neuroscience, Italian National Research Council, Padova, Italy; Venetian Institute of Molecular Medicine, Padova, Italy
| | - Tullio Pozzan
- Institute of Neuroscience, Italian National Research Council, Padova, Italy; Venetian Institute of Molecular Medicine, Padova, Italy
| | - András Spät
- Department of Physiology, Semmelweis University Medical School, Budapest, Hungary.
| |
Collapse
|
3
|
Saulière A, Bellot M, Paris H, Denis C, Finana F, Hansen JT, Altié MF, Seguelas MH, Pathak A, Hansen JL, Sénard JM, Galés C. Deciphering biased-agonism complexity reveals a new active AT1 receptor entity. Nat Chem Biol 2012; 8:622-30. [PMID: 22634635 DOI: 10.1038/nchembio.961] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 02/28/2012] [Indexed: 02/06/2023]
Abstract
Functional selectivity of G protein-coupled receptor (GPCR) ligands toward different downstream signals has recently emerged as a general hallmark of this receptor class. However, pleiotropic and crosstalk signaling of GPCRs makes functional selectivity difficult to decode. To look from the initial active receptor point of view, we developed new, highly sensitive and direct bioluminescence resonance energy transfer-based G protein activation probes specific for all G protein isoforms, and we used them to evaluate the G protein-coupling activity of [(1)Sar(4)Ile(8)Ile]-angiotensin II (SII), previously described as an angiotensin II type 1 (AT(1)) receptor-biased agonist that is G protein independent but β-arrestin selective. By multiplexing assays sensing sequential signaling events, from receptor conformations to downstream signaling, we decoded SII as an agonist stabilizing a G protein-dependent AT(1A) receptor signaling module different from that of the physiological agonist angiotensin II, both in recombinant and primary cells. Thus, a biased agonist does not necessarily select effects from the physiological agonist but may instead stabilize and create a new distinct active pharmacological receptor entity.
Collapse
Affiliation(s)
- Aude Saulière
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale, Université Toulouse III Paul Sabatier, Toulouse, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Voss M, Fechner L, Walz B, Baumann O. Calcineurin activity augments cAMP/PKA-dependent activation of V-ATPase in blowfly salivary glands. Am J Physiol Cell Physiol 2010; 298:C1047-56. [PMID: 20164380 DOI: 10.1152/ajpcell.00328.2009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have examined the role of the Ca(2+)-dependent protein phosphatase 2B (calcineurin) in the regulation of the vacuolar H(+)-ATPase (V-ATPase) in blowfly salivary glands. In response to the neurohormone serotonin [5-hydroxytryptamine (5-HT)] and under the mediation of the cAMP/PKA signaling pathway, the secretory cells assemble and activate V-ATPase molecules at the apical membrane. We demonstrate that the inhibition of calcineurin activity by cyclosporin A, by FK-506, or by prevention of the elevation of Ca(2+) diminishes the 5-HT-induced assembly and activation of V-ATPase. The effect of calcineurin on V-ATPase is mediated by the cAMP/PKA signaling pathway, with calcineurin acting upstream of PKA, because 1) cyclosporin A does not influence the 8-(4-chlorophenylthio)adenosine-3',5'-cyclic monophosphate (8-CPT-cAMP)-induced activation of V-ATPase, and 2) the 5-HT-induced rise in cAMP is highly reduced in the presence of cyclosporin A. Moreover, a Ca(2+) rise evoked by the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) inhibitor cyclopiazonic acid leads to an increase in intracellular cAMP concentration and a calcineurin-mediated PKA-dependent activation of V-ATPase. We propose that calcineurin activity mediates cross talk between the inositol 1,4,5-trisphosphate/Ca(2+) and the cAMP/PKA signaling pathways, thereby augmenting the 5-HT-induced rise in cAMP and thus the cAMP/PKA-mediated activation of V-ATPase.
Collapse
Affiliation(s)
- Martin Voss
- Institut für Biochemie und Biologie, Universität Potsdam, Germany
| | | | | | | |
Collapse
|
5
|
Stewart LK, Wang Z, Ribnicky D, Soileau JL, Cefalu WT, Gettys TW. Failure of dietary quercetin to alter the temporal progression of insulin resistance among tissues of C57BL/6J mice during the development of diet-induced obesity. Diabetologia 2009; 52:514-23. [PMID: 19142628 PMCID: PMC2758024 DOI: 10.1007/s00125-008-1252-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 12/03/2008] [Indexed: 01/06/2023]
Abstract
AIMS/HYPOTHESES High-fat diets produce obesity and glucose intolerance by promoting the development of insulin resistance in peripheral tissues and liver. The present studies sought to identify the initial site(s) where insulin resistance develops using a moderately high-fat diet and to assess whether the bioflavonoid, quercetin, ameliorates progression of this sequence. METHODS Four cohorts of male C57BL/6J mice were placed on diets formulated to be low-fat (10% of energy from fat), high-fat (45% of energy from fat) or high-fat plus 1.2% quercetin (wt/wt). After 3 and 8 weeks, cohorts were evaluated using euglycaemic-hyperinsulinaemic clamps, metabolomic analysis of fatty acylcarnitines and acute in vitro assessments of insulin signalling among tissues. RESULTS After 3 and 8 weeks, the high-fat diet produced whole-body insulin resistance without altering insulin-dependent glucose uptake in peripheral tissues. The primary defect was impaired suppression of hepatic glucose production by insulin at both times. Quercetin initially exacerbated the effect of high-fat diet by further increasing hepatic insulin resistance, but by 8 weeks insulin resistance and hepatic responsiveness to insulin were similarly compromised in both high-fat groups. The high-fat diet, irrespective of quercetin, increased short-chain fatty acylcarnitines in liver but not in muscle, while reciprocally reducing hepatic long-chain fatty acylcarnitines and increasing them in muscle. CONCLUSIONS/INTERPRETATION Failure of insulin to suppress hepatic glucose output is the initial defect that accounts for the insulin resistance that develops after short-term consumption of a high-fat (45% of energy) diet. Hepatic insulin resistance is associated with accumulation of short- and medium-, but not long-chain fatty acylcarnitines. Dietary quercetin does not ameliorate the progression of this sequence.
Collapse
Affiliation(s)
- L. K. Stewart
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA, e-mail:
| | - Z. Wang
- Center for the Study of Botanicals and Metabolic Syndrome, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - D. Ribnicky
- Biotech Center-Rutgers University, New Brunswick, NJ, USA
| | - J. L. Soileau
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA, e-mail:
| | - W. T. Cefalu
- Center for the Study of Botanicals and Metabolic Syndrome, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - T. W. Gettys
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA, e-mail:
| |
Collapse
|
6
|
Hunyady L, Catt KJ. Pleiotropic AT1 receptor signaling pathways mediating physiological and pathogenic actions of angiotensin II. Mol Endocrinol 2005; 20:953-70. [PMID: 16141358 DOI: 10.1210/me.2004-0536] [Citation(s) in RCA: 402] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Angiotensin II (Ang II) activates a wide spectrum of signaling responses via the AT1 receptor (AT1R) that mediate its physiological control of blood pressure, thirst, and sodium balance and its diverse pathological actions in cardiovascular, renal, and other cell types. Ang II-induced AT1R activation via Gq/11 stimulates phospholipases A2, C, and D, and activates inositol trisphosphate/Ca2+ signaling, protein kinase C isoforms, and MAPKs, as well as several tyrosine kinases (Pyk2, Src, Tyk2, FAK), scaffold proteins (G protein-coupled receptor kinase-interacting protein 1, p130Cas, paxillin, vinculin), receptor tyrosine kinases, and the nuclear factor-kappaB pathway. The AT1R also signals via Gi/o and G11/12 and stimulates G protein-independent signaling pathways, such as beta-arrestin-mediated MAPK activation and the Jak/STAT. Alterations in homo- or heterodimerization of the AT1R may also contribute to its pathophysiological roles. Many of the deleterious actions of AT1R activation are initiated by locally generated, rather than circulating, Ang II and are concomitant with the harmful effects of aldosterone in the cardiovascular system. AT1R-mediated overproduction of reactive oxygen species has potent growth-promoting, proinflammatory, and profibrotic actions by exerting positive feedback effects that amplify its signaling in cardiovascular cells, leukocytes, and monocytes. In addition to its roles in cardiovascular and renal disease, agonist-induced activation of the AT1R also participates in the development of metabolic diseases and promotes tumor progression and metastasis through its growth-promoting and proangiogenic activities. The recognition of Ang II's pathogenic actions is leading to novel clinical applications of angiotensin-converting enzyme inhibitors and AT1R antagonists, in addition to their established therapeutic actions in essential hypertension.
Collapse
Affiliation(s)
- László Hunyady
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | | |
Collapse
|
7
|
Spät A, Hunyady L. Control of aldosterone secretion: a model for convergence in cellular signaling pathways. Physiol Rev 2004; 84:489-539. [PMID: 15044681 DOI: 10.1152/physrev.00030.2003] [Citation(s) in RCA: 333] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aldosterone secretion by glomerulosa cells is stimulated by angiotensin II (ANG II), extracellular K(+), corticotrophin, and several paracrine factors. Electrophysiological, fluorimetric, and molecular biological techniques have significantly clarified the molecular action of these stimuli. The steroidogenic effect of corticotrophin is mediated by adenylyl cyclase, whereas potassium activates voltage-operated Ca(2+) channels. ANG II, bound to AT(1) receptors, acts through the inositol 1,4,5-trisphosphate (IP(3))-Ca(2+)/calmodulin system. All three types of IP(3) receptors are coexpressed, rendering a complex control of Ca(2+) release possible. Ca(2+) release is followed by both capacitative and voltage-activated Ca(2+) influx. ANG II inhibits the background K(+) channel TASK and Na(+)-K(+)-ATPase, and the ensuing depolarization activates T-type (Ca(v)3.2) Ca(2+) channels. Activation of protein kinase C by diacylglycerol (DAG) inhibits aldosterone production, whereas the arachidonate released from DAG in ANG II-stimulated cells is converted by lipoxygenase to 12-hydroxyeicosatetraenoic acid, which may also induce Ca(2+) signaling. Feedback effects and cross-talk of signal-transducing pathways sensitize glomerulosa cells to low-intensity stimuli, such as physiological elevations of [K(+)] (< or =1 mM), ANG II, and ACTH. Ca(2+) signaling is also modified by cell swelling, as well as receptor desensitization, resensitization, and downregulation. Long-term regulation of glomerulosa cells involves cell growth and proliferation and induction of steroidogenic enzymes. Ca(2+), receptor, and nonreceptor tyrosine kinases and mitogen-activated kinases participate in these processes. Ca(2+)- and cAMP-dependent phosphorylation induce the transfer of the steroid precursor cholesterol from the cytoplasm to the inner mitochondrial membrane. Ca(2+) signaling, transferred into the mitochondria, stimulates the reduction of pyridine nucleotides.
Collapse
Affiliation(s)
- András Spät
- Dept. of Physiology, Semmelweis University, Faculty of Medicine, PO Box 259, H-1444 Budapest, Hungary.
| | | |
Collapse
|
8
|
Abstract
In the adrenal glomerulosa cell, aldosterone is synthesized from cholesterol, which is supplied to the cell and stored under the form of cholesterol esters, then hydrolyzed to be transferred to the mitochondrial outer membrane and finally transported to the inner membrane where the P450 side-chain cleavage enzyme will convert it to pregnenolone. Angiotensin II (AngII), one of the major physiological regulators of mineralocorticoid synthesis, appears to affect most of the steps along this cascade and thus to exert a powerful control over the use of cholesterol for aldosterone production.
Collapse
Affiliation(s)
- Alessandro M Capponi
- Division of Endocrinology, Diabetology and Nutrition, Faculty of Medicine, University Hospital, 24 rue Micheli-du-Crest, CH-1211 Geneva 14, Switzerland.
| |
Collapse
|
9
|
Gilbert P, Thorin E. Endothelin-1 limits vascular smooth muscle beta-adrenergic receptor sensitivity by a PKC-dependent pathway. J Cardiovasc Pharmacol 2004; 42:534-8. [PMID: 14508240 DOI: 10.1097/00005344-200310000-00012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Endothelin-1 reduces the chronotropic and inotropic effects of the beta-adrenoceptor agonist isoproterenol in rabbit isolated atria. Vascular interactions between endothelin-1 and isoproterenol have not been reported. Rings of the rabbit aorta without endothelium were mounted on myographs to measure isometric tension. Vessels were precontracted to similar levels with phenylephrine (30 micromol/L) or endothelin-1 (30 nmol/L). Relaxation to isoproterenol and forskolin were obtained. Vascular sensitivity (pD2) to isoproterenol was not different in the presence of endothelin-1 (7.6 +/- 0.3; n = 13) and phenylephrine (7.5 +/- 0.3; n = 11). The maximal relaxation (Emax) however, was doubled (P < 0.05) by endothelin-1 (42 +/- 5%), as compared with phenylephrine (23 +/- 4%). In the presence of endothelin-1, chelerythrine (protein kinase C inhibitor; 10 micromol/L) increased (P < 0.05) vascular sensitivity to isoproterenol (8.6 +/- 0.4, n = 7), but had no influence on the Emax. In contrast, in the presence of phenylephrine, pD2 was unaffected by chelerythrine, whereas the Emax to isoproterenol was increased (P < 0.05; 50 +/- 4%, n = 8). Vascular sensitivity and Emax to forskolin were similar in the presence of endothelin-1 and phenylephrine. In conclusion, endothelin-1 reduces vascular sensitivity to isoproterenol in a PKC-dependent pathway. The permissive effect of endothelin-1 appears to directly target the beta-adrenoceptor/G protein complex upstream of adenylate cyclase.
Collapse
Affiliation(s)
- Patricia Gilbert
- Department of Surgery, Faculty of Medicine, University of Montreal, Québec, Canada
| | | |
Collapse
|
10
|
El Bekay R, Alvarez M, Monteseirín J, Alba G, Chacón P, Vega A, Martin-Nieto J, Jiménez J, Pintado E, Bedoya FJ, Sobrino F. Oxidative stress is a critical mediator of the angiotensin II signal in human neutrophils: involvement of mitogen-activated protein kinase, calcineurin, and the transcription factor NF-kappaB. Blood 2003; 102:662-71. [PMID: 12663441 DOI: 10.1182/blood-2002-09-2785] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neutrophils are mobilized to the vascular wall during vessel inflammation. Published data are conflicting on phagocytic nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase activation during the hypertensive state, and the capacity of angiotensin II (Ang II) to modulate the intracellular redox status has not been analyzed in neutrophils. We here describe that Ang II highly stimulates endogenous and extracellular O2- production in these cells, consistent with the translocation to the cell membrane of the cytosolic components of NADPH oxidase, p47phox, and p67phox. The Ang II-dependent O2- production was suppressed by specific inhibitors of AT1 receptors, of the p38MAPK and ERK1/2 pathways, and of flavin oxidases. Furthermore, Ang II induced a robust phosphorylation of p38MAPK, ERK1/2, and JNK1/2 (particularly JNK2), which was hindered by inhibitors of NADPH oxidase, tyrosine kinases, and ROS scavengers. Ang II increased cytosolic Ca2+ levels-released mainly from calcium stores-enhanced the synthesis de novo and activity of calcineurin, and stimulated the DNA-binding activity of the transcription factor NF-kappaB in cultured human neutrophils. Present data demonstrate for the first time a stimulatory role of Ang II in the activation of phagocytic cells, underscore the relevant role of ROS as mediators in this process, and uncover a variety of signaling pathways by which Ang II operates in human neutrophils.
Collapse
Affiliation(s)
- Rajaa El Bekay
- Departamento Bioquímica Médica y Biología Molecular, Universidad de Sevilla, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Osman H, Murigande C, Nadakal A, Capponi AM. Repression of DAX-1 and induction of SF-1 expression. Two mechanisms contributing to the activation of aldosterone biosynthesis in adrenal glomerulosa cells. J Biol Chem 2002; 277:41259-67. [PMID: 12186872 DOI: 10.1074/jbc.m206595200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Angiotensin II (Ang II) and adrenocorticotropic hormone stimulate aldosterone biosynthesis in the zona glomerulosa of the adrenal cortex through induction of the expression of the steroidogenic acute regulatory (StAR) protein, which promotes intramitochondrial cholesterol transfer. To understand the mechanism of this induction of the StAR protein, we have examined the effect of Ang II and forskolin, a mimicker of adrenocorticotropic hormone action, on two transcription factors known to modulate StAR gene expression in opposite ways, DAX-1 and SF-1, in bovine adrenal glomerulosa cells in primary culture. Ang II markedly inhibited DAX-1 protein expression in a time- and concentration-dependent manner (to 38.7 +/- 12.9% of controls at 3 nm after 6 h, p < 0.01), an effect that required de novo protein synthesis and ERK2/1 activation. This effect was associated with a concomitant decrease in DAX-1 mRNA and an increase in mitochondrial StAR protein levels. Similarly, forskolin dramatically repressed DAX-1 protein and mRNA expression (to 19.6 +/- 1.8 and 50.3 +/- 4.7% of controls, respectively, p < 0.01). Neither Ang II nor forskolin affected DAX-1 protein and mRNA stability. The aldosterone response to Ang II was markedly reduced (to 59 +/- 4% of controls, p < 0.01) in transiently transfected cells overexpressing DAX-1. Whereas Ang II was without effect on SF-1 expression, forskolin significantly increased SF-1 protein and mRNA levels in a cycloheximide-sensitive manner (to 167.4 +/- 16.6 and 173.1 +/- 25.1% of controls after 6 h, respectively, p < 0.01). These results demonstrate that the balance between repressor and inducer function of DAX-1 and SF-1 are of critical importance in the regulation of adrenal aldosterone biosynthesis.
Collapse
Affiliation(s)
- Hanan Osman
- Division of Endocrinology and Diabetology, University Hospital, 24 rue Micheli-du-Crest, CH-111 Geneva 14, Switzerland
| | | | | | | |
Collapse
|
12
|
Lea JP, Jin SG, Roberts BR, Shuler MS, Marrero MB, Tumlin JA. Angiotensin II stimulates calcineurin activity in proximal tubule epithelia through AT-1 receptor-mediated tyrosine phosphorylation of the PLC-gamma1 isoform. J Am Soc Nephrol 2002; 13:1750-6. [PMID: 12089370 DOI: 10.1097/01.asn.0000022029.50356.2c] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Angiotensin II (AngII) contributes to the maintenance of extracellular fluid volume by regulating sodium transport in the nephron. In nonepithelial cells, activation of phospholipase C (PLC) by AT-1 receptors stimulates the generation of 1,4,5-trisphosphate (IP(3)) and the release of intracellular calcium. Calcineurin, a serine-threonine phosphatase, is activated by calcium and calmodulin, and both PLC and calcineurin have been linked to sodium transport in the proximal tubule. An examination of whether AngII activates calcineurin in a model of proximal tubule epithelia (LLC-PK1 cells) was performed; AngII increased calcineurin activity within 30 s. An examination of whether AngII activates PLC in proximal tubule epithelia was also performed after first showing that all three families of PLC isoforms are present in LLC-PK1 cells. Application of AngII increased IP(3) generation by 60% within 15 s, which coincided with AngII-induced tyrosine phosphorylation of the PLC-gamma1 isoform also observed at 15 s. AngII-induced tyrosine phosphorylation was blocked by the AT-1 receptor antagonist, Losartan. Subsequently, an inhibitor of tyrosine phosphorylation blocked the AngII-induced activation of calcineurin, as did coincubation with an inhibitor of PLC activity and with an antagonist of the AT-1 receptor. It is therefore concluded that AngII stimulates calcineurin phosphatase activity in proximal tubule epithelial cells through a mechanism involving AT-1 receptor-mediated tyrosine phosphorylation of the PLC isoform.
Collapse
Affiliation(s)
- Janice P Lea
- Renal Division, Emory University School of Medicine, 1639 Pierce Drive NE, Atlanta, GA 30322, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Itoh S, Otaka M, Odashima M, Zeniya A, Okuyama A, Jin M, Otani S, Iwabuchi A, Sasahara H, Masamune O, Watanabe S. Inhibition of CN (protein phosphatase-2B) suppresses Ca2+-mediated acid secretion in rats. Aliment Pharmacol Ther 2002; 16 Suppl 2:20-8. [PMID: 11966520 DOI: 10.1046/j.1365-2036.16.s2.7.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIM It has been suggested that CN (calcineurin, protein phosphatase-2B) regulates signal transduction, particularly in various secretory cells. In this study, we examined whether CN plays a role in stimulus-secretion coupling of gastric parietal cells. MATERIALS AND METHODS Localization of CN in gastric epithelial cells was examined immunohistochemically. The role of CN in the acid secretion pathway of gastric parietal cells was assessed by evaluating the effect of FK506, a specific inhibitor of CN, on gastric acid secretion in pylorus-ligated rats. In addition, the effect of FK506 on secretagogue (carbachol, tetragastrin and histamine)-stimulated acid secretion was investigated in lumen-perfused rats. RESULTS CN was specifically expressed in gastric parietal cells and chief cells of the gastric mucosal epithelium immunohistochemically. FK506 dose-dependently inhibited gastric acid secretion in pylorus-ligated rats. In lumen-perfused rats, FK506 completely inhibited acid secretion prestimulated by carbachol and tetragastrin, agonists known to increase cytosolic Ca2+, but did not affect acid secretion prestimulated by histamine. CONCLUSIONS Our findings demonstrate that FK506 has a potent antisecretory effect in parietal cells through inhibition of only Ca2+-mediated acid secretion pathways. As FK506 is known to specifically inhibit CN, which plays an important role in signal transduction in various secretory cells, protein dephosphorylation signalling might also be crucial for gastrin and M3 muscarine receptor-mediated stimulation of proton pump.
Collapse
Affiliation(s)
- S Itoh
- Department of Internal Medicine, Akita University School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Zou Y, Yao A, Zhu W, Kudoh S, Hiroi Y, Shimoyama M, Uozumi H, Kohmoto O, Takahashi T, Shibasaki F, Nagai R, Yazaki Y, Komuro I. Isoproterenol activates extracellular signal-regulated protein kinases in cardiomyocytes through calcineurin. Circulation 2001; 104:102-8. [PMID: 11435346 DOI: 10.1161/hc2601.090987] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Extracellular signal-regulated kinases (ERKs) and calcineurin have been reported to play important roles in the development of cardiac hypertrophy. We examined here the relation between calcineurin and ERKs in cardiomyocytes. METHODS AND RESULTS Isoproterenol activated ERKs in cultured cardiomyocytes of neonatal rats, and the activation was abolished by chelation of extracellular Ca(2+) with EGTA, blockade of L-type Ca(2+) channels with nifedipine, or depletion of intracellular Ca(2+) stores with thapsigargin. Isoproterenol-induced activation of ERKs was also significantly suppressed by calcineurin inhibitors in cultured cardiomyocytes as well as in the hearts of mice. Isoproterenol failed to activate ERKs in either the cultured cardiomyocytes or the hearts of mice that overexpress the dominant negative mutant of calcineurin. Isoproterenol elevated intracellular Ca(2+) levels at both systolic and diastolic phases and dose-dependently activated calcineurin. Inhibition of calcineurin also attenuated isoproterenol-stimulated phosphorylation of Src, Shc, and Raf-1 kinase. The immunocytochemistry revealed that calcineurin was localized in the Z band, and isoproterenol induced translocation of calcineurin and ERKs into the nucleus. CONCLUSIONS Calcineurin, which is activated by marked elevation of intracellular Ca(2+) levels by the Ca(2+)-induced Ca(2+) release mechanism, regulates isoproterenol-induced activation of ERKs in cardiomyocytes.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adaptor Proteins, Vesicular Transport
- Adrenergic beta-Agonists/pharmacology
- Animals
- Calcineurin/genetics
- Calcineurin/metabolism
- Calcineurin Inhibitors
- Calcium/antagonists & inhibitors
- Calcium/metabolism
- Calcium Channel Blockers/pharmacology
- Calcium Channels, L-Type/metabolism
- Calcium-Calmodulin-Dependent Protein Kinase Type 2
- Calcium-Calmodulin-Dependent Protein Kinases/biosynthesis
- Calcium-Calmodulin-Dependent Protein Kinases/genetics
- Cardiomegaly/enzymology
- Cells, Cultured
- Chelating Agents/pharmacology
- Dose-Response Relationship, Drug
- Enzyme Activation/drug effects
- Enzyme Inhibitors/pharmacology
- Heart Ventricles/cytology
- Heart Ventricles/drug effects
- Heart Ventricles/enzymology
- Isoproterenol/pharmacology
- Mice
- Mice, Inbred ICR
- Mice, Transgenic
- Mitogen-Activated Protein Kinase 1/genetics
- Mitogen-Activated Protein Kinase 1/metabolism
- Mutagenesis, Site-Directed
- Myocardium/cytology
- Myocardium/enzymology
- Phosphorylation/drug effects
- Proteins/metabolism
- Proto-Oncogene Proteins c-raf/metabolism
- Rats
- Rats, Wistar
- Shc Signaling Adaptor Proteins
- Src Homology 2 Domain-Containing, Transforming Protein 1
- Transfection
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- Y Zou
- Department of Cardiovascular Science and Medicine, Chiba University Graduate School of Medicine, Chiba
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kawamura M, Niitsu A, Nishi H, Masaki E. Extracellular ATP potentiates steroidogenic effect of adrenocorticotropic hormone in bovine adrenocortical fasciculata cells. JAPANESE JOURNAL OF PHARMACOLOGY 2001; 85:376-81. [PMID: 11388641 DOI: 10.1254/jjp.85.376] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We examined the effect of extracellular adenosine 5'-triphosphate (ATP) on adrenocorticotropic hormone (ACTH)- and angiotensin II-induced steroidogenesis in bovine adrenocortical fasciculata cells. The low concentration of ATP (5 microM) potentiated ACTH-induced steroidogenesis synergistically. However, the purine derivative did not affect angiotensin II-induced steroidogenesis. Although adenosine (100 microM) (a metabolite of ATP) showed a weak steroidogenic effect, it did not potentiate ACTH-induced steroidogenesis. ATP also enhanced the steroidogenesis by NaF synergistically in bovine adrenocortical cells, but did not potentiate forskolin- and dibutyryl cyclic AMP-induced steroidogenesis. The stimulating effect of ACTH on cyclic AMP production was synergistically accelerated by ATP (5 microM), which has no effect by itself on cyclic AMP formation. These results suggest that extracellular ATP affected the ACTH receptor-adenylyl cyclase coupling processes, and potentiation of steroidogenesis by ACTH ensued in bovine adrenocortical fasciculata cells.
Collapse
Affiliation(s)
- M Kawamura
- Department of Pharmacology (I), Jikei University School of Medicine, Tokyo, Japan.
| | | | | | | |
Collapse
|
16
|
Abstract
Sixty years after its initial discovery, the octapeptide hormone angiotensin II (AngII) has proved to play numerous physiological roles that reach far beyond its initial description as a hypertensive factor. In spite of the host of target tissues that have been identified, only two major receptor subtypes, AT1 and AT2, are currently fully identified. The specificity of the effects of AngII relies upon numerous and complex intracellular signaling pathways that often mobilize calcium ions from intracellular stores or from the extracellular medium. Various types of calcium channels (store- or voltage-operated channels) endowed with distinct functional properties play a crucial role in these processes. The activity of these channels can be modulated by AngII in a positive and/or negative fashion, depending on the cell type under observation. This chapter reviews the main characteristics of AngII receptor subtypes and of the various calcium channels as well as the involvement of the multiple signal transduction mechanisms triggered by the hormone in the cell-specific modulation of the activity of these channels.
Collapse
Affiliation(s)
- M F Rossier
- Department of Internal Medicine, University Hospital, Geneva, Switzerland
| | | |
Collapse
|
17
|
Schutzer WE, Xue H, Reed JF, Roullet JB, Anderson S, Mader SL. Angiotensin II enhances beta-adrenergic receptor-mediated vasorelaxation in aortas from young but not old rats. Am J Physiol Heart Circ Physiol 2000; 279:H2807-14. [PMID: 11087235 DOI: 10.1152/ajpheart.2000.279.6.h2807] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
beta-Adrenergic receptor (beta-AR)-mediated (cAMP-dependent) vasorelaxation declines with advancing age. It has been shown that angiotensin II (ANG II), a potent vasoconstrictor, enhances cAMP-mediated vasorelaxation. Therefore, we questioned whether ANG II could reverse age-related, impaired beta-AR-mediated vasorelaxation and cAMP production. Pretreatment of aortic rings from 6-wk-old or 6-mo-old male Fischer 344 rats with ANG II significantly enhanced vasorelaxation induced by isoproterenol (Iso), a beta-AR agonist, and forskolin, a direct activator of adenylyl cyclase, but not dibutyryl-cAMP or isobutylmethylxanthine. The ANG II effect was blocked by losartan but not PD-123319 and was not observed in the aortas from 12- and 24-mo-old animals. Iso-stimulated cAMP production in the aorta was enhanced in the presence of ANG II in the 6-wk-old and 6-mo-old age groups only. Results suggest ANG II cannot reverse the age-related impairment in beta-AR-dependent vasorelaxation. We conclude aging may affect a factor common to both ANG II-receptors and beta-AR signaling pathways or aging may impair cross-talk between these two receptor pathways.
Collapse
Affiliation(s)
- W E Schutzer
- Research Service, Portland Veterans Affairs Medical Center, Portland, Oregon 97201, USA
| | | | | | | | | | | |
Collapse
|
18
|
Maturana AD, Casal AJ, Demaurex N, Vallotton MB, Capponi AM, Rossier MF. Angiotensin II negatively modulates L-type calcium channels through a pertussis toxin-sensitive G protein in adrenal glomerulosa cells. J Biol Chem 1999; 274:19943-8. [PMID: 10391942 DOI: 10.1074/jbc.274.28.19943] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In bovine adrenal glomerulosa cells, angiotensin II and extracellular K+ stimulate aldosterone secretion in a calcium-dependent manner. In these cells, physiological concentrations of extracellular potassium activate both T-type (low threshold) and L-type (high threshold) voltage-operated calcium channels. Paradoxically, the cytosolic calcium response to 9 mM K+ is inhibited by angiotensin II. Because K+-induced calcium changes observed in the cytosol are almost exclusively due to L-type channel activity, we therefore studied the mechanisms of L-type channel regulation by angiotensin II. Using the patch-clamp method in its perforated patch configuration, we observed a marked inhibition (by 63%) of L-type barium currents in response to angiotensin II. This effect of the hormone was completely prevented by losartan, a specific antagonist of the AT1 receptor subtype. Moreover, this inhibition was strongly reduced when the cells were previously treated for 1 night with pertussis toxin. An effect of pertussis toxin was also observed on the modulation by angiotensin II of the K+ (9 mM)-induced cytosolic calcium response in fura-2-loaded cells, as well as on the angiotensin II-induced aldosterone secretion, at both low (3 mM) and high (9 mM) K+ concentrations. Finally, the expression of both Go and Gi proteins in bovine glomerulosa cells was detected by immunoblotting. Altogether, these results strongly suggest that in bovine glomerulosa cells, a pertussis toxin-sensitive G protein is involved in the inhibition of L-type channel activity induced by angiotensin II.
Collapse
Affiliation(s)
- A D Maturana
- Division of Endocrinology and Diabetology, Department of Internal Medicine, University Hospital, 24 rue Micheli-du-Crest,CH-1211 Geneva 14, Switzerland
| | | | | | | | | | | |
Collapse
|
19
|
Liang H, Venema VJ, Wang X, Ju H, Venema RC, Marrero MB. Regulation of angiotensin II-induced phosphorylation of STAT3 in vascular smooth muscle cells. J Biol Chem 1999; 274:19846-51. [PMID: 10391929 DOI: 10.1074/jbc.274.28.19846] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ligand binding to the angiotensin II (Ang II) AT1 receptor on vascular smooth muscle cells (VSMCs) activates the Janus-activated kinase (JAK)/signal transducers and activators of transcription (STAT) pathway. We have shown previously that the JAK2 tyrosine kinase and the Src family p59 Fyn tyrosine kinase are required for Ang II-induced STAT1 tyrosine phosphorylation in VSMCs. The mitogen-activated protein kinase phosphatase, MKP-1, is required for STAT1 tyrosine dephosphorylation. In the present study, using specific enzyme inhibitors and antisense oligonucleotides, we show that Ang II-induced tyrosine phosphorylation and nuclear translocation of STAT3 in VSMCs is mediated by p60 c-Src, whereas tyrosine dephosphorylation is mediated by calcineurin. Calcineurin is activated in response to Ang II stimulation of VSMCs and is translocated to the nucleus. In addition, we show that Ang II-induced serine phosphorylation of STAT3 in VSMCs is mediated by mitogen-activated protein kinase and that dephosphorylation is mediated by protein phosphatase 2A (PP2A). PP2A translocates to the nucleus in response to Ang II stimulation of VSMCs and forms a complex with STAT3 in an Ang II-dependent manner.
Collapse
Affiliation(s)
- H Liang
- Vascular Biology Center, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | | | | | | | |
Collapse
|
20
|
Carraway RE, Mitra SP. Neurotensin enhances agonist-induced cAMP accumulation in PC3 cells via Ca2+ -dependent adenylyl cyclase(s). Mol Cell Endocrinol 1998; 144:47-57. [PMID: 9863626 DOI: 10.1016/s0303-7207(98)00154-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A human prostate cancer cell line (PC3) with abundant neurotensin (NT) receptors was used to demonstrate that NT potentiated 3',5'-cyclic adenosine monophate (cAMP) accumulation in response to a variety of stimuli, including both direct forskolin (F) and indirect (prostaglandin, (PGE2), isoproterenol (ISO) and cholera toxin (CTx)) activators of adenylyl cyclase. Several mechanisms were investigated and our results indicated an effect on the rate of cAMP formation and not on degradation or extrusion. For each stimulus, NT enhanced efficacy without altering EC50. The effect of NT did not involve stimulatory G-protein (Gs)-activation or interference with a tonic inhibitory G-protein (Gi)-mediated inhibition. A similar response was obtained when NT was added with the stimulus or given as a two minute pulse which was removed prior to addition of stimulus. The potentiating activity disappeared with a t1,2 of approximately 15 min. NT transiently elevated cellular [Ca2+]i and its effects on cAMP could be mimicked by [Ca2+]i-elevating agents (uridine triphosphate (UTP), thapsigargin and ionomycin). Buffering cellular [Ca2+]i with 1,2-bis (2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester (BAPTA-AM) inhibited cAMP responses to ISO and F in presence and absence of NT. These data support the idea that NT potentiated cAMP formation in response to a variety of stimuli by facilitating the activation of Ca2+ -dependent adenylyl cyclases.
Collapse
Affiliation(s)
- R E Carraway
- Department of Physiology, University of Massachusetts Medical Center, Worcester 01655-0127, USA
| | | |
Collapse
|
21
|
Kurtz TW, Gardner DG. Transcription-modulating drugs: a new frontier in the treatment of essential hypertension. Hypertension 1998; 32:380-6. [PMID: 9740599 DOI: 10.1161/01.hyp.32.3.380] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
While the promises of gene therapy may be years away from realization, the therapeutic use of drugs that act by modifying gene transcription is a well-established practice in clinical medicine. Although transcription-modulating drugs are frequently used in many different specialties, the deliberate development and use of these agents in cardiovascular medicine has been comparatively limited. However, research advances in the area of gene transcription and in the molecular genetic regulation of blood pressure, insulin resistance, lipid metabolism, and cell growth are providing new opportunities for controlling the expression of genes that are relevant to the pathogenesis of cardiovascular disease and essential hypertension. These research advances are beginning to converge in the development of transcription-modulating drugs with the potential to attack genetically determined risk factors that often cluster in patients with essential hypertension. Ligand-activated transcription factors that serve as receptors for small lipophilic compounds such as the thiazolidinediones and retinoids represent examples of potential therapeutic targets with direct effects on the expression of genes relevant to the pathogenesis of essential hypertension and its complications. Mounting evidence suggesting that the superior cardiorenal protective properties of converting enzyme inhibitors are related in part to their ability to indirectly modify the expression of genes in the heart and vasculature provides provisional support for the clinical value of this therapeutic approach. Given the success of transcription-modulating drugs in the treatment of type II diabetes and many other clinical disorders, it is anticipated that these agents will be developed as tools for the prevention and treatment of hypertension and cardiovascular disease in the not too distant future.
Collapse
Affiliation(s)
- T W Kurtz
- From the Departments of Laboratory Medicine and Medicine, University of California at San Francisco, USA.
| | | |
Collapse
|
22
|
Nguyen NS, Pulido SM, Rüegg UT. Biphasic effects of cyclosporin A on formyl-methionyl-leucyl-phenylalanine stimulated responses in HL-60 cells differentiated into neutrophils. Br J Pharmacol 1998; 124:1774-80. [PMID: 9756396 PMCID: PMC1565572 DOI: 10.1038/sj.bjp.0702020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The immunosuppressive drug cyclosporin A (CsA) depresses neutrophil oxidative burst which may lead to an increased susceptibility to infection in transplant patients. Using specific CsA analogues we investigated the mechanism of inhibition of the oxidative burst and evaluated short and long-term effects of CsA on dimethylsulphoxide-differentiated HL-60 neutrophils. A biphasic pattern was observed: a 4 h pre-treatment with CsA (1 microM) diminished the fMLP induced [Ca2+]c rise, reactive oxygen species (ROS) production, and beta-glucuronidase release by about 40%, whereas a 20 h pre-treatment increased these responses by about 1.5 fold. [MeVal4]CsA, which binds with high affinity to cyclophilin but inhibits the interaction of the CsA-cyclophilin complex with calcineurin, blocked the stimulation observed with CsA after a 20 h incubation but did not alter the CsA effects after a 4 h pre-treatment. PSC 833 (1 microM), a potent multi drug resistance transporter (MDR) inhibitor, diminished ROS production to the same extent as a 4 h CsA incubation but was ineffective after a 20 h pre-treatment. An involvement of MDR as a basis for CsA or PSC 833 action was ruled out based on the results of the calcein retention assay. [3H]CsA uptake showed that CsA and [MeVal4]CsA, but not CsH or PSC 833 were strongly taken up and retained by the cells. In conclusion, the reduction of the responses after 4 h appear to be due to a primary reduction of calcium signalling, while the enhanced responses after 20 h may be due to calcineurin inhibition.
Collapse
Affiliation(s)
- N S Nguyen
- Pharmacology Group, School of Pharmacy, University of Lausanne, Switzerland
| | | | | |
Collapse
|
23
|
Antoni FA, Smith SM, Simpson J, Rosie R, Fink G, Paterson JM. Calcium control of adenylyl cyclase: the calcineurin connection. ADVANCES IN SECOND MESSENGER AND PHOSPHOPROTEIN RESEARCH 1998; 32:153-72. [PMID: 9421590 DOI: 10.1016/s1040-7952(98)80010-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- F A Antoni
- MRC Brain Metabolism Unit, University of Edinburgh, Scotland, United Kingdom
| | | | | | | | | | | |
Collapse
|
24
|
DeBernardi MA, Brooker G. Simultaneous fluorescence ratio imaging of cyclic AMP and calcium kinetics in single living cells. ADVANCES IN SECOND MESSENGER AND PHOSPHOPROTEIN RESEARCH 1998; 32:195-213. [PMID: 9421592 DOI: 10.1016/s1040-7952(98)80012-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- M A DeBernardi
- Department of Cell Biology, Georgetown University School of Medicine, Washington, DC 20007, USA
| | | |
Collapse
|
25
|
Rodriguez-Henche N, Román ID, Fueyo J, Menor C, Zueco JA, Prieto JC, Guijarro LG. Inhibitory effect of cyclosporin A peptide on rat hepatocytes proliferation induced by mitogens. Peptides 1998; 19:427-35. [PMID: 9533630 DOI: 10.1016/s0196-9781(97)00466-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Treatment of cultured rat hepatocytes with cyclosporin A (0.01-1 microM) for 24, 48, or 72 h in the presence of insulin and epidermal growth factor induced an inhibition on cell proliferation in a time- and concentration-dependent manner, with an IC50 = 0.05 microM CsA corresponding to 48-h treatment. The inhibitory effect of CsA at < or = 0.1 microM doses for 48 h on [3H]thymidine uptake was reversed after withdrawal of the drug and subsequent addition of insulin plus EGF or serum; however, at 1 microM CsA the effect was irreversible and numerous bright small vesicles were observed. The molecular mechanism involved in CsA action in hepatocytes seems to be independent on cAMP and pertussis-toxin sensitive G proteins.
Collapse
Affiliation(s)
- N Rodriguez-Henche
- Departamento de Bioquímica y Biología Molecular, Universidad de Alcalá, Alcalá de Henares, Spain
| | | | | | | | | | | | | |
Collapse
|
26
|
Richard DE, Laporte SA, Bernier SG, Leduc R, Guillemette G. Desensitization of AT1 receptor-mediated cellular responses requires long term receptor down-regulation in bovine adrenal glomerulosa cells. Endocrinology 1997; 138:3828-35. [PMID: 9275071 DOI: 10.1210/endo.138.9.5409] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Angiotensin II (Ang II) regulates aldosterone production in bovine adrenal glomerulosa cells by interacting with the AT1 receptor. This receptor is coupled to a G protein that controls the activity of phospholipase C. With a primary culture of bovine adrenal glomerulosa cells, we evaluated the desensitization of cellular responses after pretreatment with Ang II. When cells were pretreated for 30 min with 1 microM Ang II at 37 C, we observed a 48% loss of [125I]Ang II-binding activity. Scatchard analysis revealed that this decreased binding activity corresponded to a 53% loss of the total number of binding sites. This phenomenon was time dependent, with a t(1/2) of 20 min, and a maximal loss of 76% of the total binding sites was observed after 14 h. A time-dependent decrease in AT1 receptor messenger RNA levels was also observed after pretreatment with 1 microM Ang II for 12-24 h. Taken together, these results are interpreted as a down-regulation of the AT1 receptor. Desensitization of phospholipase C activity under similar conditions was, however, a slower process, with a t(1/2) of 9 h and a maximal response reduction of 83% observed after 24 h. Dose-response experiments indicated that maximal phospholipase C desensitization was obtained in the presence of 1 microM Ang II, with an EC50 of 90 nM. The desensitization was of a homologous nature, as a 24-h pretreatment with Ang II did not affect bradykinin-induced inositol phosphate production. A 24-h pretreatment with 1 microM Ang II also significantly desensitized the steroidogenic effect of Ang II and the potentiating effect of Ang II on ACTH-induced cAMP production. Lower concentrations of Ang II (10 nM) did not produce any desensitizing effect on these two parameters. This study provides evidence that glomerulosa cells are functionally resistant to short term desensitization of the AT1 receptor and that long term down-regulation with high concentrations of Ang II is needed to desensitize AT1-mediated cellular responses.
Collapse
Affiliation(s)
- D E Richard
- Department of Pharmacology, Faculty of Medicine, University of Sherbrooke, Quebec, Canada
| | | | | | | | | |
Collapse
|
27
|
Tanaka K, Fukuuchi Y, Nozaki H, Nagata E, Kondo T, Koyama S, Dembo T. Calcineurin inhibitor, FK506, prevents reduction in the binding capacity of cyclic AMP-dependent protein kinase in ischemic gerbil brain. J Cereb Blood Flow Metab 1997; 17:412-20. [PMID: 9143223 DOI: 10.1097/00004647-199704000-00006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We examined the effects of FK506, a specific inhibitor of calcineurin, on the binding capacity of cyclic AMP-dependent protein kinase (cAMP-DPK) in gerbils subjected to 2-h cerebral hemispheric ischemia. FK506 (0.1 mg/kg) was infused intravenously at 15 min prior to the induction of ischemia by common carotid artery occlusion. The binding capacity of cAMP-DPK was evaluated by autoradiographic analysis of the cAMP binding, and cerebral blood flow (CBF) was measured by the [14C] iodoantipyrine method. In the sham-operated gerbils. FK506 significantly increased mean arterial blood pressure and tended to decrease CBF, suggesting that FK506 may constrict systemic blood vessels as well as cerebral blood vessels. On the other hand, cAMP binding was not altered by FK506 in the sham-operated gerbils. In the ischemia group of gerbils, FK506 prevented any significant reduction of cAMP binding in the hippocampus CA1 and cerebral cortices on the ischemic side, whereas it exerted no significant influence on the cAMP binding of the nonischemic side. The values of CBF were comparable between the vehicle-treated gerbils and FK506-treated gerbils in the ischemic regions. Preservation of cAMP binding indicates that intracellular signal transduction via cAMP-DPK can be maintained by FK506 despite ischemia, suggesting that this agent may be beneficial for reducing ischemic tissue damage.
Collapse
Affiliation(s)
- K Tanaka
- Department of Neurology, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
A fundamental process in the hormonal regulation of body functions is the conversion of the intercellular signal into an intracellular signal. The first recognized intracellular messengers mediating the actions of hormones were calcium ions (Ca(2+)) and adenosine 3':5' monophosphate (cAMP), which is synthesized from ATP by adenylyl cyclase. Recent work on the structure of adenylyl cyclases has shown that these enzymes are individually tailored molecular machines controlled by diverse Ca(2+)-dependent mechanisms. These include allosteric regulation of enzyme activity through the Ca(2+)-receptor protein calmodulin, apparently direct actions of Ca(2+)on the cyclase catalytic moiety and phosphorylation/dephosphorylation by Ca(2+)-regulated protein kinases and protein phosphatases. This article is a brief review of the recent developments in the area of cyclase control that forecast a major revival of the interest in cAMP-Ca(2+)interactions. (c) 1997, Elsevier Science Inc. (Trends Endocrinol Metab 1997;8:7-14).
Collapse
|
29
|
Raufman JP, Lin J, Raffaniello RD. Calcineurin mediates calcium-induced potentiation of adenylyl cyclase activity in dispersed chief cells from guinea pig stomach. Further evidence for cross-talk between signal transduction pathways that regulate pepsinogen secretion. J Biol Chem 1996; 271:19877-82. [PMID: 8702699 DOI: 10.1074/jbc.271.33.19877] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In cholera toxin-treated gastric chief cells, incubation with a cholinergic agonist (carbamylcholine), a regulatory peptide (cholecystokinin), or a calcium ionophore (A23187) causes a dose- and time-dependent potentiation of cAMP levels. Because this augmented response is calcium/calmodulin-dependent, we hypothesized that it was mediated by calcineurin (protein phosphatase 2B). To test this hypothesis, we examined the actions of calcineurin inhibitors on secretagogue-induced potentiation of cAMP levels in guinea pig chief cells. Preincubation of cells with 0.1 microM FK-506 completely prevented carbachol-induced augmentation of cAMP levels and pepsinogen secretion from cholera toxin-treated cells. Cyclosporin-A, another calcineurin inhibitor, also prevented the augmented cAMP response. FK-506 and cyclosporin inhibited augmentation of cAMP levels following treatment with cholecystokinin(26-33) and A23187, but not the smaller increase in cAMP following treatment with a phorbol ester that activates protein kinase C. Hence, the actions of calcineurin inhibitors were limited to secretagogues that increase cellular calcium. Rapamycin, an agent that competes with FK-506 for the immunophilin, FK binding protein 12, does not inhibit calcineurin. In the present study, preincubation with rapamycin did not prevent carbachol-induced augmentation of cAMP levels in cholera toxin-treated chief cells. However, a molar excess of rapamycin reversed the inhibitory actions of FK-506. These experiments provide further evidence that the actions of FK-506 on cholera toxin-treated gastric chief cells are caused by its inhibitory actions on calcineurin. FK-506 also inhibited potentiation of cAMP levels when carbachol was added to cells that were preincubated with forskolin, an agent that directly activates adenylyl cyclase. We conclude that, in gastric chief cells, calcineurin mediates cross-talk between the calcium/calmodulin and adenylyl cyclase signaling pathways.
Collapse
Affiliation(s)
- J P Raufman
- Division of Gastroenterology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199, USA
| | | | | |
Collapse
|
30
|
Zhang J, Pratt RE. The AT2 Receptor Selectively Associates with Giα2 and Giα3 in the Rat Fetus. J Biol Chem 1996. [DOI: 10.1074/jbc.271.25.15026] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
31
|
Aptel HB, Johnson EI, Vallotton MB, Rossier MF, Capponi AM. Demonstration of an angiotensin II-induced negative feedback effect on aldosterone synthesis in isolated rat adrenal zona glomerulosa cells. Mol Cell Endocrinol 1996; 119:105-11. [PMID: 8793859 DOI: 10.1016/0303-7207(96)03805-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Although both angiotensin II (Ang II) and potassium ion (K+) induce marked elevations of cytosolic free calcium concentration, [Ca2+]c, in adrenal zona glomerulosa cells-an effect which is thought to trigger aldosterone synthesis-Ang II is also known to reduce the sustained [Ca2+]c rise induced by K+. We have examined whether this effect of Ang II on the calcium messenger system is reflected at the level of the final biological response, aldosterone synthesis. In superfused isolated rat glomerulosa cells, K+ (8 mM) induced a sustained, 60-fold increase in aldosterone production. In contrast, the maximal response to Ang II (10 nM) amounted to only 10 times the basal production. When added subsequent to K+ stimulation, Ang II provoked an immediate and dramatic drop in aldosterone synthesis, to levels obtained with Ang II alone. Under conditions of maximal K+ stimulation, this effect depended upon Ang II concentration, while the well-known synergistic effect was observed with submaximal concentrations of both agonists. The inhibitory effect of Ang II could be reproduced with dioctanoylglycerol, a selective activator of protein kinase C. By contrast, the aldosterone response to adrenocorticotropic hormone (ACTH) was not affected by Ang II. At submaximal concentrations of ACTH, the steroidogenic effect of Ang II was even additive to that of ACTH. Thus, we have shown that, under conditions of maximal stimulation, Ang II exerts a profound inhibition of steroidogenesis in K(+)-stimulated rat adrenal glomerulosa cells. This counter-regulatory mechanism may ensure adequate levels of aldosterone production in vivo.
Collapse
Affiliation(s)
- H B Aptel
- Division of Endocrinology and Diabetology, University Hospital, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
32
|
Antoni FA, Barnard RJ, Shipston MJ, Smith SM, Simpson J, Paterson JM. Calcineurin feedback inhibition of agonist-evoked cAMP formation. J Biol Chem 1995; 270:28055-61. [PMID: 7499291 DOI: 10.1074/jbc.270.47.28055] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The effects of immunosuppressant blockers of calcineurin (protein phosphatase 2B) on cAMP formation and hormone release were investigated in mouse pituitary tumor (AtT20) cells. Immunosuppressants enhanced corticotropin-releasing factor- and isoproterenol-evoked cAMP production in proportion with their potency to block calcineurin. Further analysis of cAMP production revealed that intracellular Ca2+ derived through voltage-regulated calcium channels reduces cAMP formation induced by corticotropin releasing-factor or beta 2-adrenergic stimulation and that this effect of Ca2+ is inhibited by blockers of calcineurin. AtT20 cells were found to express at least three species of adenylyl cyclase mRNA-encoding types 1 and 6 as well as a novel isotype, which appeared to be the predominant species. In two cell lines expressing very low or undetectable levels of the novel cyclase mRNA (NCB20 and HEK293 cells respectively), corticotropin-releasing factor-induced cAMP formation was not altered upon blockage of calcineurin activity. These data identify calcineurin as a Ca2+ sensor that mediates the negative feedback effect of intracellular Ca2+ on receptor-stimulated cAMP production. Furthermore, the effect of calcineurin on cAMP synthesis appears to be associated with the expression of a novel adenylyl cyclase isotype, which is highly abundant in AtT20 cells.
Collapse
Affiliation(s)
- F A Antoni
- Department of Pharmacology, University of Edinburgh, Scotland, United Kingdom
| | | | | | | | | | | |
Collapse
|