1
|
Zenz T, Jenke R, Oliinyk D, Noske S, Thieme R, Kahl T, Gockel I, Meier-Rosar F, Aigner A, Büch TR. Acquired vulnerability against EGF receptor inhibition in gastric cancer promoted by class I histone deacetylase inhibitor entinostat. Neoplasia 2025; 60:101121. [PMID: 39864337 PMCID: PMC11802376 DOI: 10.1016/j.neo.2024.101121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/18/2024] [Revised: 12/12/2024] [Accepted: 12/23/2024] [Indexed: 01/28/2025]
Abstract
INTRODUCTION Histone deacetylase inhibitors (HDACi) have shown promising preclinical activity in gastric cancer cells; unfortunately, however, these could not be confirmed in clinical trials. This highlights the need for the identification of underlying reasons, which may also provide the basis for possible combination therapies. Here, we delineated the effects of HDACi on components of EGFR signalling in gastric cancer cells. METHODS We investigated entinostat effects on EGFR and amphiregulin (AREG) expression in various cell line- and primary patient tumor-based in vitro, ex vivo and in vivo models, on the mRNA and protein level. Based on these results, a combined entinostat plus EGFR inhibitor erlotinib treatment in vitro and in vivo was studied. RESULTS Proteomics analyses in gastric cancer cells treated with entinostat revealed a marked upregulation of EGFR in the majority of cell lines and an even more robust induction of the EGFR ligand AREG. This was confirmed in a panel of different cell lines in vitro, in tumor tissue-slice cultures ex vivo and in cell line- or patient-derived tumor xenografts in mice. Since previous studies in other tumor entities showed a downregulation of EGFR by HDACi, our findings thus indicate essential differences in the adaptive response of gastric carcinoma cells. Moreover, our results provided the basis for combined entinostat + EGFR inhibitor (erlotinib) treatment, and indeed we demonstrate synergistic effects in combination therapy studies. CONCLUSION Our findings establish the profound upregulation of the EGFR/AREG axis by entinostat as starting point for a rational combination therapy in gastric carcinoma.
Collapse
Affiliation(s)
- Tamara Zenz
- Leipzig University, Medical Faculty, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig, Germany
| | - Robert Jenke
- Leipzig University, Medical Faculty, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig, Germany; University Cancer Center Leipzig (UCCL), University Hospital Leipzig, Leipzig, Germany; Comprehensive Cancer Center Central Germany (CCCG), Leipzig and Jena
| | - Denys Oliinyk
- Comprehensive Cancer Center Central Germany (CCCG), Leipzig and Jena; Jena University Hospital, Functional Proteomics, Research Center Lobeda, Jena, Germany
| | - Sandra Noske
- Leipzig University, Medical Faculty, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig, Germany
| | - René Thieme
- Comprehensive Cancer Center Central Germany (CCCG), Leipzig and Jena; Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, Leipzig, Germany
| | - Tim Kahl
- Leipzig University, Medical Faculty, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig, Germany; Division of Oncology/Hematology, Cantonal Hospital Graubünden, Chur, Switzerland
| | - Ines Gockel
- Comprehensive Cancer Center Central Germany (CCCG), Leipzig and Jena; Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, Leipzig, Germany
| | - Florian Meier-Rosar
- Comprehensive Cancer Center Central Germany (CCCG), Leipzig and Jena; Jena University Hospital, Functional Proteomics, Research Center Lobeda, Jena, Germany
| | - Achim Aigner
- Leipzig University, Medical Faculty, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig, Germany; Comprehensive Cancer Center Central Germany (CCCG), Leipzig and Jena.
| | - Thomas Rh Büch
- Leipzig University, Medical Faculty, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig, Germany; Comprehensive Cancer Center Central Germany (CCCG), Leipzig and Jena.
| |
Collapse
|
2
|
Sunaga N, Miura Y, Masuda T, Sakurai R. Role of Epiregulin in Lung Tumorigenesis and Therapeutic Resistance. Cancers (Basel) 2024; 16:710. [PMID: 38398101 PMCID: PMC10886815 DOI: 10.3390/cancers16040710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/23/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Epidermal growth factor (EGF) signaling regulates multiple cellular processes and plays an essential role in tumorigenesis. Epiregulin (EREG), a member of the EGF family, binds to the epidermal growth factor receptor (EGFR) and ErbB4, and it stimulates EGFR-related downstream pathways. Increasing evidence indicates that both the aberrant expression and oncogenic function of EREG play pivotal roles in tumor development in many human cancers, including non-small cell lung cancer (NSCLC). EREG overexpression is induced by activating mutations in the EGFR, KRAS, and BRAF and contributes to the aggressive phenotypes of NSCLC with oncogenic drivers. Recent studies have elucidated the roles of EREG in a tumor microenvironment, including the epithelial-mesenchymal transition, angiogenesis, immune evasion, and resistance to anticancer therapy. In this review, we summarized the current understanding of EREG as an oncogene and discussed its oncogenic role in lung tumorigenesis and therapeutic resistance.
Collapse
Affiliation(s)
- Noriaki Sunaga
- Department of Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 Showa-Machi, Maebashi 371-8511, Gunma, Japan; (Y.M.); (T.M.)
| | - Yosuke Miura
- Department of Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 Showa-Machi, Maebashi 371-8511, Gunma, Japan; (Y.M.); (T.M.)
| | - Tomomi Masuda
- Department of Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 Showa-Machi, Maebashi 371-8511, Gunma, Japan; (Y.M.); (T.M.)
| | - Reiko Sakurai
- Oncology Center, Gunma University Hospital, 3-39-15 Showa-Machi, Maebashi 371-8511, Gunma, Japan;
| |
Collapse
|
3
|
Hsu CY, Faisal Mutee A, Porras S, Pineda I, Ahmed Mustafa M, J Saadh M, Adil M, H A Z. Amphiregulin in infectious diseases: Role, mechanism, and potential therapeutic targets. Microb Pathog 2024; 186:106463. [PMID: 38036111 DOI: 10.1016/j.micpath.2023.106463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/07/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
Amphiregulin (AREG) serves as a ligand for the epidermal growth factor receptor (EGFR) and is involved in vital biological functions, including inflammatory responses, tissue regeneration, and immune system function. Upon interaction with the EGFR, AREG initiates a series of signaling cascades necessary for several physiological activities, such as metabolism, cell cycle regulation, and cellular proliferation. Recent findings have provided evidence for the substantial role of AREG in maintaining the equilibrium of homeostasis in damaged tissues and preserving epithelial cell structure in the context of viral infections affecting the lungs. The development of resistance to influenza virus infection depends on the presence of type 1 cytokine responses. Following the eradication of the pathogen, the lungs are subsequently colonized by several cell types that are linked with type 2 immune responses. These cells contribute to the process of repairing and resolving the tissue injury and inflammation caused by infections. Following influenza infection, the activation of AREG promotes the regeneration of bronchial epithelial cells, enhancing the tissue's structural integrity and increasing the survival rate of infected mice. In the same manner, mice afflicted with influenza experience rapid mortality due to a subsequent bacterial infection in the pulmonary region when both bacterial and viral infections manifest concurrently inside the same host. The involvement of AREG in bacterial infections has been demonstrated. The gene AREG experiences increased transcriptional activity inside host cells in response to bacterial infections caused by pathogens such as Escherichia coli and Neisseria gonorrhea. In addition, AREG has been extensively studied as a mitogenic stimulus in epithelial cell layers. Consequently, it is regarded as a prospective contender that might potentially contribute to the observed epithelial cell reactions in helminth infection. Consistent with this finding, mice that lack the AREG gene exhibit a delay in the eradication of the intestinal parasite Trichuris muris. The observed delay is associated with a reduction in the proliferation rate of colonic epithelial cells compared to the infected animals in the control group. The aforementioned findings indicate that AREG plays a pivotal role in facilitating the activation of defensive mechanisms inside the epithelial cells of the intestinal tissue. The precise cellular sources of AREG in this specific context have not yet been determined. However, it is evident that the increased proliferation of the epithelial cell layer in infected mice is reliant on CD4+ T cells. The significance of this finding lies in its demonstration of the crucial role played by the interaction between immunological and epithelial cells in regulating the AREG-EGFR pathway. Additional research is necessary to delve into the cellular origins and signaling mechanisms that govern the synthesis of AREG and its tissue-protective properties, independent of infection.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City 71710, Taiwan
| | | | - Sandra Porras
- Facultad de Mecánica, Escuela Superior Politécnica de Chimborazo (ESPOCH), Panamericana Sur km 1 1/2, Riobamba, 060155, Ecuador
| | - Indira Pineda
- Facultad de Salud Pública, Escuela Superior Politécnica de Chimborazo (ESPOCH), Panamericana Sur km 1 1/2, Riobamba, 060155, Ecuador
| | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, Imam Jaafar AL-Sadiq University, Iraq; Department of Pathological Analyzes, College of Applied Sciences, University of Samarra, Iraq.
| | - Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan; Applied Science Research Center, Applied Science Private University, Amman, Jordan
| | | | - Zainab H A
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| |
Collapse
|
4
|
VanSlyke JK, Boswell BA, Musil LS. ErbBs in Lens Cell Fibrosis and Secondary Cataract. Invest Ophthalmol Vis Sci 2023; 64:6. [PMID: 37418274 PMCID: PMC10337807 DOI: 10.1167/iovs.64.10.6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/11/2023] [Accepted: 05/30/2023] [Indexed: 07/08/2023] Open
Abstract
Purpose TGFβ-induced epithelial-to-myofibroblast transition (EMyT) of lens cells has been linked to the most common vision-disrupting complication of cataract surgery-namely, posterior capsule opacification (PCO; secondary cataract). Although inhibitors of the ErbB family of receptor tyrosine kinases have been shown to block some PCO-associated processes in model systems, our knowledge of ErbB signaling in the lens is very limited. Here, we investigate the expression of ErbBs and their ligands in primary cultures of chick lens epithelial cells (dissociated cell-derived monolayer cultures [DCDMLs]) and how TGFβ affects ErbB function. Methods DCDMLs were analyzed by immunofluorescence microscopy and Western blotting under basal and profibrotic conditions. Results Small-molecule ErbB kinase blockers, including the human therapeutic lapatinib, selectively inhibit TGFβ-induced EMyT of DCDMLs. Lens cells constitutively express ErbB1 (EGFR), ErbB2, and ErbB4 protein on the plasma membrane and release into the medium ErbB-activating ligand. Culturing DCDMLs with TGFβ increases soluble bioactive ErbB ligand and markedly alters ErbBs, reducing total and cell surface ErbB2 and ErbB4 while increasing ErbB1 expression and homodimer formation. Similar, TGFβ-dependent changes in relative ErbB expression are induced when lens cells are exposed to the profibrotic substrate fibronectin. A single, 1-hour treatment with lapatinib inhibits EMyT in DCDMLs assessed 6 days later. Short-term exposure to lower doses of lapatinib is also capable of eliciting a durable response when combined with suboptimal levels of a mechanistically distinct multikinase inhibitor. Conclusions Our findings support ErbB1 as a therapeutic target for fibrotic PCO, which could be leveraged to pharmaceutically preserve the vision of millions of patients with cataracts.
Collapse
Affiliation(s)
- Judy K. VanSlyke
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
| | - Bruce A. Boswell
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
| | - Linda S. Musil
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
| |
Collapse
|
5
|
Singh SS, Chauhan SB, Kumar A, Kumar S, Engwerda CR, Sundar S, Kumar R. Amphiregulin in cellular physiology, health, and disease: Potential use as a biomarker and therapeutic target. J Cell Physiol 2021; 237:1143-1156. [PMID: 34698381 DOI: 10.1002/jcp.30615] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/06/2021] [Revised: 10/02/2021] [Accepted: 10/06/2021] [Indexed: 12/18/2022]
Abstract
Amphiregulin (AREG), which acts as one of the ligands for epidermal receptor growth factor receptor (EGFR), plays a crucial role in tissue repair, inflammation, and immunity. AREG is synthesized as membrane-anchored pre-protein, and is excreted after proteolytic cleavage, and serves as an autocrine or paracrine factor. After engagement with the EGFR, AREG triggers a cascade of signaling events required for many cellular physiological processes including metabolism, cell cycle, and proliferation. Under different inflammatory and pathogenic conditions, AREG is expressed by various activated immune cells that orchestrate both tolerance and host resistance mechanisms. Several factors including xenobiotics, cytokines, and inflammatory lipids have been shown to trigger AREG gene expression and release. In this review, we discuss the structure, function, and regulation of AREG, its role in tissue repair, inflammation, and homeostasis as well as the potential of AREG as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Siddharth S Singh
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shashi B Chauhan
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Awnish Kumar
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shashi Kumar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Christian R Engwerda
- Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Rajiv Kumar
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
6
|
Morato A, Martignani E, Miretti S, Baratta M, Accornero P. External and internal EGFR-activating signals drive mammary epithelial cells proliferation and viability. Mol Cell Endocrinol 2021; 520:111081. [PMID: 33181234 DOI: 10.1016/j.mce.2020.111081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 02/25/2020] [Revised: 10/20/2020] [Accepted: 11/09/2020] [Indexed: 12/24/2022]
Abstract
During puberty, the mammary gland undergoes an intense growth, dependent on the interplay between the Epidermal Growth Factor Receptor (EGFR) in the stroma and different mammary epithelial receptors. We hypothesize that EGFR expressed in the mammary epithelium also has a role in puberty and the epithelial cells can self-sustain by EGFR-mediated autocrine signaling. We adopted mammary cell lines from different species, as in vitro model for the epithelium, and we observed that EGFR-signaling positively affects their survival and proliferation. Once deprived of external growth factors, mammary cells still showed strong Erk 1/2 phosphorylation, abolished upon EGFR inhibition, coupled with a further reduction in survival and proliferation. Based on gene expression analysis, three EGFR-ligands (AREG, EREG and HBEGF) are likely to mediate this autocrine signaling. In conclusion, internal EGFR-activating signals sustain mammary epithelial cell proliferation and survival in vitro.
Collapse
Affiliation(s)
- Alessia Morato
- Department of Veterinary Sciences, University of Turin, Grugliasco, TO, Italy
| | - Eugenio Martignani
- Department of Veterinary Sciences, University of Turin, Grugliasco, TO, Italy
| | - Silvia Miretti
- Department of Veterinary Sciences, University of Turin, Grugliasco, TO, Italy
| | - Mario Baratta
- Department of Veterinary Sciences, University of Turin, Grugliasco, TO, Italy
| | - Paolo Accornero
- Department of Veterinary Sciences, University of Turin, Grugliasco, TO, Italy.
| |
Collapse
|
7
|
Zhang MZ, Sasaki K, Li Y, Li Z, Pan Y, Jin GN, Wang Y, Niu A, Wang S, Fan X, Chen JC, Borza C, Yang H, Pozzi A, Fogo AB, Harris RC. The Role of the EGF Receptor in Sex Differences in Kidney Injury. J Am Soc Nephrol 2019; 30:1659-1673. [PMID: 31292196 PMCID: PMC6727256 DOI: 10.1681/asn.2018121244] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/19/2018] [Accepted: 05/13/2019] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Sex differences mediating predisposition to kidney injury are well known, with evidence indicating lower CKD incidence rates and slower decline in renal function in nondiabetic CKD for premenopausal women compared with men. However, signaling pathways involved have not been elucidated to date. The EGF receptor (EGFR) is widely expressed in the kidney in glomeruli and tubules, and persistent and dysregulated EGFR activation mediates progressive renal injury. METHODS To investigate the sex differences in response to renal injury, we examined EGFR expression in mice, in human kidney tissue, and in cultured cell lines. RESULTS In wild type mice, renal mRNA and protein EGFR levels were comparable in males and females at postnatal day 7 but were significantly lower in age-matched adult females than in adult males. Similar gender differences in renal EGFR expression were detected in normal adult human kidneys. In Dsk5 mutant mice with a gain-of-function allele that increases basal EGFR kinase activity, males had progressive glomerulopathy, albuminuria, loss of podocytes, and tubulointerstitial fibrosis, but female Dsk5 mice had minimal kidney injury. Oophorectomy had no effect on renal EGFR levels in female Dsk5 mice, while castration protected against the kidney injury in male Dsk5 mice, in association with a reduction in EGFR expression to levels seen in females. Conversely, testosterone increased EGFR expression and renal injury in female Dsk5 mice. Testosterone directly stimulated EGFR expression in cultured kidney cells. CONCLUSIONS These studies indicate that differential renal EGFR expression plays a role in the sex differences in susceptibility to progressive kidney injury that may be mediated at least in part by testosterone.
Collapse
Affiliation(s)
- Ming-Zhi Zhang
- Division of Nephrology and Hypertension, Department of Medicine,
- Vanderbilt Center for Kidney Disease
| | - Kensuke Sasaki
- Division of Nephrology and Hypertension, Department of Medicine
- Vanderbilt Center for Kidney Disease
| | - Yan Li
- Division of Nephrology and Hypertension, Department of Medicine
| | - Zhilian Li
- Division of Nephrology and Hypertension, Department of Medicine
| | - Yu Pan
- Division of Nephrology and Hypertension, Department of Medicine
- Vanderbilt Center for Kidney Disease
| | - Guan-Nan Jin
- Division of Nephrology and Hypertension, Department of Medicine
- Vanderbilt Center for Kidney Disease
| | - Yinqiu Wang
- Division of Nephrology and Hypertension, Department of Medicine
- Vanderbilt Center for Kidney Disease
| | - Aolei Niu
- Division of Nephrology and Hypertension, Department of Medicine
- Vanderbilt Center for Kidney Disease
| | - Suwan Wang
- Division of Nephrology and Hypertension, Department of Medicine
- Vanderbilt Center for Kidney Disease
| | - Xiaofeng Fan
- Division of Nephrology and Hypertension, Department of Medicine
- Vanderbilt Center for Kidney Disease
| | - Jian Chun Chen
- Division of Nephrology and Hypertension, Department of Medicine
- Vanderbilt Center for Kidney Disease
| | - Corina Borza
- Division of Nephrology and Hypertension, Department of Medicine
- Vanderbilt Center for Kidney Disease
| | | | - Ambra Pozzi
- Division of Nephrology and Hypertension, Department of Medicine
- Vanderbilt Center for Kidney Disease
| | - Agnes B Fogo
- Vanderbilt Center for Kidney Disease
- Department of Pathology, and
| | - Raymond C Harris
- Division of Nephrology and Hypertension, Department of Medicine,
- Vanderbilt Center for Kidney Disease
- Department of Veterans Affairs, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
8
|
Zhang Q, Higginbotham JN, Jeppesen DK, Yang YP, Li W, McKinley ET, Graves-Deal R, Ping J, Britain CM, Dorsett KA, Hartman CL, Ford DA, Allen RM, Vickers KC, Liu Q, Franklin JL, Bellis SL, Coffey RJ. Transfer of Functional Cargo in Exomeres. Cell Rep 2019; 27:940-954.e6. [PMID: 30956133 PMCID: PMC6559347 DOI: 10.1016/j.celrep.2019.01.009] [Citation(s) in RCA: 270] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/29/2018] [Revised: 11/02/2018] [Accepted: 01/02/2019] [Indexed: 01/01/2023] Open
Abstract
Exomeres are a recently discovered type of extracellular nanoparticle with no known biological function. Herein, we describe a simple ultracentrifugation-based method for separation of exomeres from exosomes. Exomeres are enriched in Argonaute 1-3 and amyloid precursor protein. We identify distinct functions of exomeres mediated by two of their cargo, the β-galactoside α2,6-sialyltransferase 1 (ST6Gal-I) that α2,6- sialylates N-glycans, and the EGFR ligand, amphiregulin (AREG). Functional ST6Gal-I in exomeres can be transferred to cells, resulting in hypersialylation of recipient cell-surface proteins including β1-integrin. AREG-containing exomeres elicit prolonged EGFR and downstream signaling in recipient cells, modulate EGFR trafficking in normal intestinal organoids, and dramatically enhance the growth of colonic tumor organoids. This study provides a simplified method of exomere isolation and demonstrates that exomeres contain and can transfer functional cargo. These findings underscore the heterogeneity of nanoparticles and should accelerate advances in determining the composition and biological functions of exomeres.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Medicine/Gastroenterology and Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - James N Higginbotham
- Department of Medicine/Gastroenterology and Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Dennis K Jeppesen
- Department of Medicine/Gastroenterology and Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yu-Ping Yang
- Department of Medicine/Gastroenterology and Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Wei Li
- Department of Medicine/Gastroenterology and Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Eliot T McKinley
- Department of Medicine/Gastroenterology and Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ramona Graves-Deal
- Department of Medicine/Gastroenterology and Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jie Ping
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Colleen M Britain
- Cell, Developmental and Integrative Biology (CDIB), School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Kaitlyn A Dorsett
- Cell, Developmental and Integrative Biology (CDIB), School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Celine L Hartman
- Edward A. Doisy Department of Biochemistry and Molecular Biology and Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - David A Ford
- Edward A. Doisy Department of Biochemistry and Molecular Biology and Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Ryan M Allen
- Department of Cardiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kasey C Vickers
- Department of Cardiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeffrey L Franklin
- Department of Medicine/Gastroenterology and Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37235, USA; Department of Veterans Affairs Medical Center, Nashville, Vanderbilt University, TN 37212, USA
| | - Susan L Bellis
- Cell, Developmental and Integrative Biology (CDIB), School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| | - Robert J Coffey
- Department of Medicine/Gastroenterology and Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37235, USA; Department of Veterans Affairs Medical Center, Nashville, Vanderbilt University, TN 37212, USA.
| |
Collapse
|
9
|
Bormann F, Stinzing S, Tierling S, Morkel M, Markelova MR, Walter J, Weichert W, Roßner F, Kuhn N, Perner J, Dietz J, Ispasanie S, Dietel M, Schäfer R, Heinemann V, Sers C. Epigenetic regulation of Amphiregulin and Epiregulin in colorectal cancer. Int J Cancer 2018; 144:569-581. [PMID: 30252132 DOI: 10.1002/ijc.31892] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/15/2018] [Revised: 08/05/2018] [Accepted: 08/20/2018] [Indexed: 12/23/2022]
Abstract
Expression of the epidermal growth factor ligands amphiregulin (AREG) and epiregulin (EREG) is positively correlated with a response to EGFR-targeted therapies in colorectal cancer. Gene-body methylation sites, which show a strong inverse correlation with AREG and EREG gene expression, were identified in cell lines using targeted 454 FLX-bisulfite sequencing and SIRPH analyses for AREG/EREG promoters and intragenic CpGs. Upon treatment of colorectal cancer cells with 5-aza-2'-desoxycytidine, methylation decreases at specific intragenic CpGs accompanied by upregulation of AREG and EREG gene expression. The same AREG gene-body methylation was also found in human colorectal cancer samples and is independent of KRAS and NRAS mutations. Methylation is specifically decreased in the tumor epithelial compartment as compared to stromal tissue and normal epithelium. Investigation of a promoter/enhancer function of the AREG exon 2 region revealed a potential promoter function in reverse orientation. Retrospective comparison of the predictive power of AREG gene-body methylation versus AREG gene expression using samples from colorectal cancer patients treated with anti-EGFR inhibitors with complete clinical follow-up revealed that AREG expression is superior to AREG gene methylation. AREG and EREG genes undergo a complex regulation involving both intragenic methylation and promoter-dependent control.
Collapse
Affiliation(s)
- Felix Bormann
- Charité Universitätsmedizin Berlin, Institute of Pathology, Laboratory of Molecular Tumor Pathology and Systems Biology, Berlin, Germany
| | - Sebastian Stinzing
- Department of Hematology and Medical Oncology, Klinikum der Universität München (LMU); German Cancer Consortium site Munich (DKTK); German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Sascha Tierling
- Department of Genetics/Epigenetics, FR8.3 Life Sciences, Saarland University, Saarbrücken
| | - Markus Morkel
- Charité Universitätsmedizin Berlin, Institute of Pathology, Laboratory of Molecular Tumor Pathology and Systems Biology, Berlin, Germany.,DKTK, German Consortium for Translational Cancer Research, Partner Site Berlin and DKFZ, German Cancer Research Center, Heidelberg, Germany
| | | | - Jörn Walter
- Department of Genetics/Epigenetics, FR8.3 Life Sciences, Saarland University, Saarbrücken
| | - Wilko Weichert
- DKTK, German Consortium for Translational Cancer Research, Partner Site Berlin and DKFZ, German Cancer Research Center, Heidelberg, Germany.,Institute of Pathology, Technical University Munich, Germany and Munich German Cancer Consortium (DKTK), German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Florian Roßner
- Charité Universitätsmedizin Berlin, Institute of Pathology, Laboratory of Molecular Tumor Pathology and Systems Biology, Berlin, Germany
| | - Natalia Kuhn
- Charité Universitätsmedizin Berlin, Institute of Pathology, Laboratory of Molecular Tumor Pathology and Systems Biology, Berlin, Germany
| | - Juliane Perner
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Johanna Dietz
- Charité Universitätsmedizin Berlin, Institute of Pathology, Laboratory of Molecular Tumor Pathology and Systems Biology, Berlin, Germany
| | - Sylvia Ispasanie
- Charité Universitätsmedizin Berlin, Institute of Pathology, Laboratory of Molecular Tumor Pathology and Systems Biology, Berlin, Germany.,BSIO Berlin School of Integrative Oncology, University Medicine Charité, Berlin, Germany
| | - Manfred Dietel
- Charité Universitätsmedizin Berlin, Institute of Pathology, Laboratory of Molecular Tumor Pathology and Systems Biology, Berlin, Germany.,DKTK, German Consortium for Translational Cancer Research, Partner Site Berlin and DKFZ, German Cancer Research Center, Heidelberg, Germany
| | - Reinhold Schäfer
- Charité Universitätsmedizin Berlin, Institute of Pathology, Laboratory of Molecular Tumor Pathology and Systems Biology, Berlin, Germany.,DKTK, German Consortium for Translational Cancer Research, Partner Site Berlin and DKFZ, German Cancer Research Center, Heidelberg, Germany
| | - Volker Heinemann
- Department of Hematology and Medical Oncology, Klinikum der Universität München (LMU); German Cancer Consortium site Munich (DKTK); German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Christine Sers
- Charité Universitätsmedizin Berlin, Institute of Pathology, Laboratory of Molecular Tumor Pathology and Systems Biology, Berlin, Germany.,DKTK, German Consortium for Translational Cancer Research, Partner Site Berlin and DKFZ, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
10
|
Kefaloyianni E, Muthu ML, Kaeppler J, Sun X, Sabbisetti V, Chalaris A, Rose-John S, Wong E, Sagi I, Waikar SS, Rennke H, Humphreys BD, Bonventre JV, Herrlich A. ADAM17 substrate release in proximal tubule drives kidney fibrosis. JCI Insight 2018; 1:87023. [PMID: 27642633 DOI: 10.1172/jci.insight.87023] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/10/2023] Open
Abstract
Kidney fibrosis following kidney injury is an unresolved health problem and causes significant morbidity and mortality worldwide. In a study into its molecular mechanism, we identified essential causative features. Acute or chronic kidney injury causes sustained elevation of a disintegrin and metalloprotease 17 (ADAM17); of its cleavage-activated proligand substrates, in particular of pro-TNFα and the EGFR ligand amphiregulin (pro-AREG); and of the substrates' receptors. As a consequence, EGFR is persistently activated and triggers the synthesis and release of proinflammatory and profibrotic factors, resulting in macrophage/neutrophil ingress and fibrosis. ADAM17 hypomorphic mice, specific ADAM17 inhibitor-treated WT mice, or mice with inducible KO of ADAM17 in proximal tubule (Slc34a1-Cre) were significantly protected against these effects. In vitro, in proximal tubule cells, we show that AREG has unique profibrotic actions that are potentiated by TNFα-induced AREG cleavage. In vivo, in acute kidney injury (AKI) and chronic kidney disease (CKD, fibrosis) patients, soluble AREG is indeed highly upregulated in human urine, and both ADAM17 and AREG expression show strong positive correlation with fibrosis markers in related kidney biopsies. Our results indicate that targeting of the ADAM17 pathway represents a therapeutic target for human kidney fibrosis.
Collapse
Affiliation(s)
| | | | - Jakob Kaeppler
- Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Xiaoming Sun
- Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Venkata Sabbisetti
- Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Athena Chalaris
- Institute for Biochemistry, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Stefan Rose-John
- Institute for Biochemistry, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Eitan Wong
- Weizmann Institute of Science, Rehovot, Israel
| | - Irit Sagi
- Weizmann Institute of Science, Rehovot, Israel
| | - Sushrut S Waikar
- Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Helmut Rennke
- Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Benjamin D Humphreys
- Division of Nephrology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Joseph V Bonventre
- Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Andreas Herrlich
- Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Ødegård J, Sondresen JE, Aasrum M, Tveteraas IH, Guren TK, Christoffersen T, Thoresen GH. Differential effects of epidermal growth factor (EGF) receptor ligands on receptor binding, downstream signalling pathways and DNA synthesis in hepatocytes. Growth Factors 2017; 35:239-248. [PMID: 29582692 DOI: 10.1080/08977194.2018.1453506] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 01/05/2023]
Abstract
Hepatocytes are responsive to mitogenic effects of several ligands acting via EGFR. Studying primary cultures of rat hepatocytes, we found that, as compared to EGF, HB-EGF had a markedly higher affinity of the EGFR, while AR and TGFα had lower affinity. HB-EGF was also more potent compared to the other growth factors regarding phosphorylation of EGFR, Shc, ERK1/2 and Akt. All ligands induced phosphorylation of ErbB2, indicating receptor heterodimerization. TGFα, despite having much lower receptor affinity, was about equally potent and efficacious as HB-EGF as a stimulator of DNA synthesis. In contrast, EGF had relatively high affinity but markedly lower efficacy in stimulation of DNA synthesis. The results suggest that amplifying and/or inhibitory mechanisms may modulate the mitogenic responses downstream of the initial signalling steps, and that this may affect the effects of the EGFR ligands differentially.
Collapse
Affiliation(s)
- J Ødegård
- a Department of Pharmacology , Institute of Clinical Medicine, University of Oslo , Oslo , Norway
| | - J E Sondresen
- a Department of Pharmacology , Institute of Clinical Medicine, University of Oslo , Oslo , Norway
| | - M Aasrum
- a Department of Pharmacology , Institute of Clinical Medicine, University of Oslo , Oslo , Norway
| | - I H Tveteraas
- a Department of Pharmacology , Institute of Clinical Medicine, University of Oslo , Oslo , Norway
- b Department of Pharmacology , Oslo University Hospital , Oslo , Norway
| | - T K Guren
- c Department of Oncology , Oslo University Hospital , Oslo , Norway
| | - T Christoffersen
- a Department of Pharmacology , Institute of Clinical Medicine, University of Oslo , Oslo , Norway
| | - G H Thoresen
- a Department of Pharmacology , Institute of Clinical Medicine, University of Oslo , Oslo , Norway
- d Department of Pharmaceutical Biosciences, School of Pharmacy , University of Oslo , Oslo , Norway
| |
Collapse
|
12
|
Scheving LA, Zhang X, Threadgill DW, Russell WE. Hepatocyte ERBB3 and EGFR are required for maximal CCl4-induced liver fibrosis. Am J Physiol Gastrointest Liver Physiol 2016; 311:G807-G816. [PMID: 27586651 PMCID: PMC5130544 DOI: 10.1152/ajpgi.00423.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/02/2015] [Accepted: 08/18/2016] [Indexed: 01/31/2023]
Abstract
Epidermal growth factor receptor (EGFR) and its ligands have been implicated in liver fibrosis. However, it has not been directly shown that hepatocellular genetic ablation of either this receptor tyrosine kinase or ERBB3, its interactive signaling partner, affects hepatic fibrosis. Carbon tetrachloride (CCl4)-induced liver fibrosis in hepatocyte-specific (HS) mouse models of EGFR and ERBB3 ablation was evaluated in both single gene knockouts and an HS-EGFR-ERBB3 double knockout (DKO). Loss of hepatocellular EGFR or ERBB3 did not impact cytochrome P450-2E1 expression, the extent of centrilobular injury, or the initial regenerative response, but it did diminish liver fibrosis induced by chronic intraperitoneal administration of CCl4 The reduction of liver fibrosis correlated with reduced α-smooth muscle actin expression. Maximal impact to fibrogenesis occurred in the ERBB3 and EGFR-ERBB3 DKO models, suggesting that EGFR-ERBB3 heterodimeric signaling in damaged hepatocytes may play a more important role in liver fibrosis than EGFR-EGFR homodimeric signaling. Immunohistochemical analyses of phospho-EGFR and phospho-ERBB3 isoforms revealed clear staining in hepatocytes, activated stellate cells, and macrophages. Our results support a role for the hepatocellular ERBB tyrosine kinases in fibrogenesis and suggest that pharmacologic inhibition of EGFR-ERBB3 signaling may reverse or retard hepatic fibrosis.
Collapse
Affiliation(s)
- Lawrence A. Scheving
- 1Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee;
| | - Xiuqi Zhang
- 1Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee;
| | - David W. Threadgill
- 6Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas; and ,7Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas
| | - William E. Russell
- 1Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee; ,2Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee; ,3Digestive Disease Research Center, Vanderbilt University Medical Center, Nashville, Tennessee; ,4Vanderbilt Diabetes Center, Vanderbilt University Medical Center, Nashville, Tennessee; ,5Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee;
| |
Collapse
|
13
|
Abstract
Seven ligands bind to and activate the mammalian epidermal growth factor (EGF) receptor (EGFR/ERBB1/HER1): EGF, transforming growth factor-alpha (TGFA), heparin-binding EGF-like growth factor (HBEGF), betacellulin (BTC), amphiregulin (AREG), epiregulin (EREG), and epigen (EPGN). Of these, EGF, TGFA, HBEGF, and BTC are thought to be high-affinity ligands, whereas AREG, EREG, and EPGN constitute low-affinity ligands. This focused review is meant to highlight recent studies related to actions of the individual EGFR ligands, the interesting biology that has been uncovered, and relevant advances related to ligand interactions with the EGFR.
Collapse
Affiliation(s)
- Bhuminder Singh
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Graham Carpenter
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Robert J Coffey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Veterans Health Administration, Tennessee Valley Healthcare System, Nashville, TN, 37212, USA
| |
Collapse
|
14
|
Li Y, Stoll SW, Sekhon S, Talsma C, Camhi MI, Jones JL, Lambert S, Marley H, Rittié L, Grachtchouk M, Fritz Y, Ward NL, Elder JT. Transgenic expression of human amphiregulin in mouse skin: inflammatory epidermal hyperplasia and enlarged sebaceous glands. Exp Dermatol 2016; 25:187-93. [PMID: 26519132 DOI: 10.1111/exd.12886] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 10/25/2015] [Indexed: 12/15/2022]
Abstract
To explore the role of amphiregulin in inflammatory epidermal hyperplasia, we overexpressed human AREG (hAREG) in FVB/N mice using a bovine K5 promoter. A construct containing AREG coding sequences flanked by 5' and 3' untranslated region sequences (AREG-UTR) led to a >10-fold increase in hAREG expression compared to an otherwise-identical construct containing only the coding region (AREG-CDR). AREG-UTR mice developed tousled, greasy fur as well as elongated nails and thickened, erythematous tail skin. No such phenotype was evident in AREG-CDR mice. Histologically, AREG-UTR mice presented with marked epidermal hyperplasia of tail skin (2.1-fold increase in epidermal thickness with a 9.5-fold increase in Ki-67(+) cells) accompanied by significantly increased CD4+ T-cell infiltration. Dorsal skin of AREG-UTR mice manifested lesser but still significant increases in epidermal thickness and keratinocyte hyperplasia. AREG-UTR mice also developed marked and significant sebaceous gland enlargement, with corresponding increases in Ki-67(+) cells. To determine the response of AREG-UTR animals to a pro-inflammatory skin challenge, topical imiquimod (IMQ) or vehicle cream was applied to dorsal and tail skin. IMQ increased dorsal skin thickness similarly in both AREG-UTR and wild type mice (1.7- and 2.2-fold vs vehicle, P < 0.001 each), but had no such effect on tail skin. These results confirm that keratinocyte expression of hAREG elicits inflammatory epidermal hyperplasia, and are consistent with prior reports of tail epidermal hyperplasia and increased sebaceous gland size in mice expressing human epigen.
Collapse
Affiliation(s)
- Yong Li
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Stefan W Stoll
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sahil Sekhon
- Department of Dermatology, Case Western Reserve University, Cleveland, OH, USA
| | - Caroline Talsma
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Maya I Camhi
- Department of Dermatology, Case Western Reserve University, Cleveland, OH, USA
| | - Jennifer L Jones
- Department of Dermatology, Case Western Reserve University, Cleveland, OH, USA
| | - Sylviane Lambert
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Hue Marley
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Laure Rittié
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Marina Grachtchouk
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yi Fritz
- Department of Dermatology, Case Western Reserve University, Cleveland, OH, USA
| | - Nicole L Ward
- Department of Dermatology, Case Western Reserve University, Cleveland, OH, USA
| | - James T Elder
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA.,Ann Arbor VA Hospital, Ann Arbor, MI, USA
| |
Collapse
|
15
|
Wang Y, Shi C, Lu Y, Poulin EJ, Franklin JL, Coffey RJ. Loss of Lrig1 leads to expansion of Brunner glands followed by duodenal adenomas with gastric metaplasia. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1123-34. [PMID: 25794708 DOI: 10.1016/j.ajpath.2014.12.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Academic Contribution Register] [Received: 06/17/2014] [Revised: 12/16/2014] [Accepted: 12/23/2014] [Indexed: 01/15/2023]
Abstract
Leucine-rich repeats and immunoglobulin-like domains 1 (LRIG1) is a pan-ErbB negative regulator and intestinal stem cell marker down-regulated in many malignancies. We previously reported that 14 of 16 Lrig1-CreERT2/CreERT2 (Lrig1(-/-)) mice developed duodenal adenomas, providing the first in vivo evidence that Lrig1 acts as a tumor suppressor. We extended this study to a larger cohort and found that 49 of 54 Lrig1(-/-) mice develop duodenal adenomas beginning at 3 months. Most adenomas were histologically low grade and overlaid expanded Brunner glands. There was morphologic and biochemical blurring of the boundary between the epithelium and Brunner glands with glandular coexpression of ErbB2, which is normally restricted to the epithelium, and the Brunner gland marker Mucin6. Some adenomas were high grade with reduced Brunner glands. At age 4 to 5 weeks, before adenoma formation, we observed enhanced proliferation in Brunner glands and, at 2 months, an increase in the size of the Brunner gland compartment. Elevated expression of the epidermal growth factor receptor (Egfr) ligands amphiregulin and β-cellulin, as well as Egfr and phosphorylated Egfr, was detected in adenomas compared with adjacent normal tissue. These adenomas expressed the gastric-specific genes gastrokine1 and mucin5ac, indicating gastric metaplasia. Moreover, we found that a subset of human duodenal tumors exhibited features of LRIG1(-/-) adenomas, including loss of LRIG1, gastric metaplasia (MUCIN5AC and MUCIN6), and increased amphiregulin and Egfr activity.
Collapse
Affiliation(s)
- Yang Wang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Chanjuan Shi
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yuanyuan Lu
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Emily J Poulin
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jeffery L Franklin
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Robert J Coffey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Veterans Affairs Medical Center, Nashville, Tennessee.
| |
Collapse
|
16
|
Bae JA, Kho DH, Sun EG, Ko YS, Yoon S, Lee KH, Ahn KY, Lee JH, Joo YE, Chung IJ, Lee SH, Kim H, Kim KK. Elevated Coexpression of KITENIN and the ErbB4 CYT-2 Isoform Promotes the Transition from Colon Adenoma to Carcinoma Following APC loss. Clin Cancer Res 2015; 22:1284-94. [PMID: 26527747 DOI: 10.1158/1078-0432.ccr-15-0306] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/11/2015] [Accepted: 10/16/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE AND EXPERIMENTAL DESIGN The molecular events in the malignant progression of colon adenoma after loss of adenomatous polyposis coli (APC) are not fully understood. KITENIN (KAI1 C-terminal interacting tetraspanin) increases the invasiveness of colorectal cancer cells, and we identified a novel EGFR-independent oncogenic signal of EGF that works under coexpressed KITENIN and ErbB4. Here we tested whether elevated KITENIN and ErbB4 contribute to further progression of intestinal adenoma following APC loss. RESULTS The intestinal tissues of villin-KITENIN transgenic mice in which villin-driven KITENIN expression induces increased c-Jun expression exhibit mild epithelial cell proliferation but no epithelial lineage changes compared with those of nontransgenic mice. Among the four ErbB4 isoforms, JM-a/CYT-2 and JM-b/CYT-2 exhibited the highest AP-1 activity when cells coexpressing KITENIN and each isoform were stimulated by EGF. Interestingly, predominant overexpression of the ErB4-CYT-2 mRNA as well as increased EGFR expression were observed in intestinal adenoma of APC(min/+) mice, which makes the microenvironment of activated EGF signaling. When we crossed villin-KITENIN mice with APC(min/+) mice, intestinal tumor tissues in the crossed mice showed the characteristics of early-stage invading adenocarcinoma. In patients with colorectal cancer, ErbB4-CYT-2 mRNA expression was significantly greater in tumor tissues than in normal adjacent tissues, but no significant differences in tumor tissue expression were found between different colorectal cancer stages. Furthermore, the mRNA expression of KITENIN and that of ErbB4-CYT-2 were positively correlated in human colorectal cancer tissue. CONCLUSIONS Elevated coexpression of KITENIN and ErbB4-CYT-2 promotes the transition of colon adenoma to adenocarcinoma within an APC loss-associated tumor microenvironment.
Collapse
Affiliation(s)
- Jeong A Bae
- Medical Research Center for Gene Regulation, Chonnam National University Medical School, Kwangju, Korea
| | - Dhong Hyo Kho
- Medical Research Center for Gene Regulation, Chonnam National University Medical School, Kwangju, Korea
| | - Eun Gene Sun
- Medical Research Center for Gene Regulation, Chonnam National University Medical School, Kwangju, Korea
| | - Yoo-Seung Ko
- Medical Research Center for Gene Regulation, Chonnam National University Medical School, Kwangju, Korea
| | - Somy Yoon
- Medical Research Center for Gene Regulation, Chonnam National University Medical School, Kwangju, Korea
| | - Kyung Hwa Lee
- Department of Pathology, Chonnam National University Medical School, Kwangju, Korea
| | - Kyu Youn Ahn
- Medical Research Center for Gene Regulation, Chonnam National University Medical School, Kwangju, Korea
| | - Jae Hyuk Lee
- Department of Pathology, Chonnam National University Medical School, Kwangju, Korea
| | - Young Eun Joo
- Department of Gastroenterology-Hepatology, Chonnam National University Medical School, Kwangju, Korea
| | - Ik Joo Chung
- Department of Hematology-Oncology, Chonnam National University Medical School, Kwangju, Korea
| | - Sug Hyung Lee
- Department of Pathology, The Catholic University of Korea, Seoul, Korea
| | - Hangun Kim
- College of Pharmacy, Sunchon National University, Sunchon, Korea
| | - Kyung Keun Kim
- Medical Research Center for Gene Regulation, Chonnam National University Medical School, Kwangju, Korea.
| |
Collapse
|
17
|
Singh B, Coffey RJ. From wavy hair to naked proteins: the role of transforming growth factor alpha in health and disease. Semin Cell Dev Biol 2014; 28:12-21. [PMID: 24631356 DOI: 10.1016/j.semcdb.2014.03.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/30/2014] [Revised: 02/28/2014] [Accepted: 03/04/2014] [Indexed: 02/07/2023]
Abstract
Since its discovery in 1978 and cloning in 1984, transforming growth factor-alpha (TGF-α, TGFA) has been one of the most extensively studied EGF receptor (EGFR) ligands. In this review, we provide a historical perspective on TGFA-related studies, highlighting what we consider important advances related to its function in normal and disease states.
Collapse
Affiliation(s)
- Bhuminder Singh
- Departments of Medicine and Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Robert J Coffey
- Departments of Medicine and Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Veteran Affairs Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
18
|
Parnia S, Hamilton LM, Puddicombe SM, Holgate ST, Frew AJ, Davies DE. Autocrine ligands of the epithelial growth factor receptor mediate inflammatory responses to diesel exhaust particles. Respir Res 2014; 15:22. [PMID: 24555532 PMCID: PMC3996104 DOI: 10.1186/1465-9921-15-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/24/2013] [Accepted: 02/03/2014] [Indexed: 11/12/2022] Open
Abstract
Background Diesel exhaust is associated with cardiovascular and respiratory mortality and morbidity. Acute exposure leads to increased IL-8 expression and airway neutrophilia, however the mechanism of this response is unknown. Objectives: As cigarette smoke-induced IL-8 expression by epithelial cells involves transactivation of the epidermal growth factor receptor (EGFR), we studied the effects of diesel exhaust particles (DEP) on IL-8 release and the role of the EGFR. Methods Primary bronchial epithelial cells (PBEC) were exposed to DEPs or carbon black. IL-8 and EGFR ligand expression (transforming growth factor alpha (TGFα), heparin-binding EGF-like growth factor, and amphiregulin (AR)) were assessed by quantitative RT-PCR and ELISA. Results DEP, but not carbon black, caused a dose-dependent increase in mitogen-activated protein kinase (MAPK) activation and IL-8 expression, however above 50 μg/ml there was an increase in cytotoxicity. At 50 μg/ml, DEPs stimulated transcription and release of IL-8 and EGFR ligands. IL-8 release was blocked by EGFR neutralizing antibodies, an EGFR-selective tyrosine kinase inhibitor and by the metalloprotease inhibitor, GM6001, which blocks EGFR ligand shedding. Neutralizing antibodies to AR, TGFα and heparin-binding (HB)-EGF reduced DEP-induced IL-8 by >50%. Conclusion Expression of IL-8 in response to DEPs is dependent on EGFR activation and that autocrine production of EGFR ligands makes a substantial contribution to this response. Capsule Summary: This study identifies a mechanism whereby diesel particles stimulates IL-8 release from bronchial epithelial cells. This mechanism may help to explain the recruitment of neutrophils into the airways of people exposed to particulate air pollution.
Collapse
Affiliation(s)
| | | | | | | | | | - Donna E Davies
- The Brooke Laboratories, Division of Infection, Inflammation and Repair, School of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK.
| |
Collapse
|
19
|
Abstract
Amphiregulin (AREG) is a ligand of the epidermal growth factor receptor (EGFR), a widely expressed transmembrane tyrosine kinase. AREG is synthesized as a membrane-anchored precursor protein that can engage in juxtacrine signaling on adjacent cells. Alternatively, after proteolytic processing by cell membrane proteases, mainly TACE/ADAM17, AREG is secreted and behaves as an autocrine or paracrine factor. AREG gene expression and release is induced by a plethora of stimuli including inflammatory lipids, cytokines, hormones, growth factors and xenobiotics. Through EGFR binding AREG activates major intracellular signaling cascades governing cell survival, proliferation and motility. Physiologically, AREG plays an important role in the development and maturation of mammary glands, bone tissue and oocytes. Chronic elevation of AREG expression is increasingly associated with different pathological conditions, mostly of inflammatory and/or neoplastic nature. Here we review the essential aspects of AREG structure, function and regulation, discuss the basis for its differential role within the EGFR family of ligands, and identify emerging aspects in AREG research with translational potential.
Collapse
Affiliation(s)
- Carmen Berasain
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain; CIBERehd, Clinica Universidad de Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain.
| | - Matías A Avila
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain; CIBERehd, Clinica Universidad de Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain.
| |
Collapse
|
20
|
The ABC of BTC: structural properties and biological roles of betacellulin. Semin Cell Dev Biol 2014; 28:42-8. [PMID: 24440602 DOI: 10.1016/j.semcdb.2014.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/18/2013] [Accepted: 01/08/2014] [Indexed: 12/17/2022]
Abstract
Betacellulin was initially detected as a growth-promoting factor in the conditioned medium of a mouse pancreatic β-cell tumor cell line. Sequencing of the purified protein and of the cloned cDNA supported the assumption that betacellulin is a new ligand of the epidermal growth factor receptor (EGFR), which was later confirmed experimentally. As a typical EGFR ligand, betacellulin is expressed by a variety of cell types and tissues, and the soluble growth factor is proteolytically cleaved from a larger membrane-anchored precursor. Importantly, BTC can - in addition to the EGFR - bind and activate all possible heterodimeric combinations of the related ERBB receptors including the highly oncogenic ERBB2/3 dimer, as well as homodimers of ERBB4. While a large number of studies attest a role for betacellulin in the differentiation of pancreatic β-cells, the last decade witnessed the association of betacellulin with a large number of additional biological processes, ranging from reproduction to the control of neural stem cells.
Collapse
|
21
|
Nakayama H, Fukuda S, Matsushita N, Nishida-Fukuda H, Inoue H, Shirakata Y, Hashimoto K, Higashiyama S. Human antigen R-mediated mRNA stabilization is required for ultraviolet B-induced autoinduction of amphiregulin in keratinocytes. J Biol Chem 2013; 288:10338-48. [PMID: 23430747 DOI: 10.1074/jbc.m112.417527] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/06/2023] Open
Abstract
All members of the EGF family are produced as transmembrane precursors that are proteolytically processed into soluble forms by disintegrin and metalloproteinases (ADAMs) for autocrine/paracrine pathways. In turn, the ligand-activated EGF receptor (EGFR) induces the expression of EGF family members, so-called "autoinduction." However, it is not well understood how this autoinduction occurs. In this study, we investigated the molecular mechanism of the autoinduction of amphiregulin (AREG), a member of the EGF family. We found that ultraviolet B (UVB) exposure increased the AREG mRNA level by stabilization of its mRNA in a human immortalized keratinocyte cell line, HaCaT. The 3' UTR of AREG mRNA was responsible for binding to an mRNA-binding protein, human antigen R (HuR), and the interaction between AREG mRNA and HuR was enhanced by UVB. Inducible knockdown of HuR expression significantly decreased AREG mRNA stability. Interestingly, treatment of HaCaT cells with an EGFR inhibitor, an EGFR neutralizing antibody, or an ADAM inhibitor destabilized AREG mRNA. In the case of ADAM inhibition, administration of soluble AREG restored the mRNA level, indicating that the stabilization occurs in a shedding-dependent manner of EGFR ligands. The HuR dependence of AREG mRNA and protein expression was also confirmed in human primary keratinocytes. Taken together, we propose a novel mechanism by which HuR regulates the stability of AREG mRNA in keratinocytes after UVB exposure and suggest that targeting of HuR functions might be crucial for understanding skin cancers caused by aberrant EGF family member-EGFR signaling.
Collapse
Affiliation(s)
- Hironao Nakayama
- Department of Biochemistry and Molecular Genetics, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Demory Beckler M, Higginbotham JN, Franklin JL, Ham AJ, Halvey PJ, Imasuen IE, Whitwell C, Li M, Liebler DC, Coffey RJ. Proteomic analysis of exosomes from mutant KRAS colon cancer cells identifies intercellular transfer of mutant KRAS. Mol Cell Proteomics 2012; 12:343-55. [PMID: 23161513 DOI: 10.1074/mcp.m112.022806] [Citation(s) in RCA: 393] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022] Open
Abstract
Activating mutations in KRAS occur in 30% to 40% of colorectal cancers. How mutant KRAS alters cancer cell behavior has been studied intensively, but non-cell autonomous effects of mutant KRAS are less understood. We recently reported that exosomes isolated from mutant KRAS-expressing colon cancer cells enhanced the invasiveness of recipient cells relative to exosomes purified from wild-type KRAS-expressing cells, leading us to hypothesize mutant KRAS might affect neighboring and distant cells by regulating exosome composition and behavior. Herein, we show the results of a comprehensive proteomic analysis of exosomes from parental DLD-1 cells that contain both wild-type and G13D mutant KRAS alleles and isogenically matched derivative cell lines, DKO-1 (mutant KRAS allele only) and DKs-8 (wild-type KRAS allele only). Mutant KRAS status dramatically affects the composition of the exosome proteome. Exosomes from mutant KRAS cells contain many tumor-promoting proteins, including KRAS, EGFR, SRC family kinases, and integrins. DKs-8 cells internalize DKO-1 exosomes, and, notably, DKO-1 exosomes transfer mutant KRAS to DKs-8 cells, leading to enhanced three-dimensional growth of these wild-type KRAS-expressing non-transformed cells. These results have important implications for non-cell autonomous effects of mutant KRAS, such as field effect and tumor progression.
Collapse
|
23
|
Bongers G, Muniz LR, Pacer ME, Iuga AC, Thirunarayanan N, Slinger E, Smit MJ, Reddy EP, Mayer L, Furtado GC, Harpaz N, Lira SA. A role for the epidermal growth factor receptor signaling in development of intestinal serrated polyps in mice and humans. Gastroenterology 2012; 143:730-740. [PMID: 22643351 PMCID: PMC3431560 DOI: 10.1053/j.gastro.2012.05.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/14/2012] [Revised: 05/16/2012] [Accepted: 05/21/2012] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Epithelial cancers can be initiated by activating mutations in components of the mitogen-activated protein kinase signaling pathway such as v-raf murine sarcoma viral oncogene homolog B1 (BRAF), v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS), or epidermal growth factor receptor (EGFR). Human intestinal serrated polyps are a heterogeneous group of benign lesions, but some progress to colorectal cancer. Tumors that arise from these polyps frequently contain activating mutations in BRAF or KRAS, but little is known about the role of EGFR activation in their development. METHODS Polyp samples were obtained from adults during screening colonoscopies at Mount Sinai Hospital in New York. We measured levels of EGFR protein and phosphorylation in human serrated polyps by immunohistochemical and immunoblot analyses. We generated transgenic mice that express the ligand for EGFR, Heparin-binding EGF-like growth factor (HB-EGF), in the intestine. RESULTS EGFR and the extracellular-regulated kinases (ERK)1/2 were phosphorylated in serrated areas of human hyperplastic polyps (HPPs), sessile serrated adenomas, and traditional serrated adenomas. EGFR and ERK1/2 were phosphorylated in the absence of KRAS or BRAF activating mutations in a subset of HPP. Transgenic expression of the EGFR ligand HB-EGF in the intestines of mice promoted development of small cecal serrated polyps. Mice that expressed a combination of HB-EGF and US28 (a constitutively active, G-protein-coupled receptor that increases processing of HB-EGF from the membrane) rapidly developed large cecal serrated polyps. These polyps were similar to HPPs and had increased phosphorylation of EGFR and ERK1/2 within the serrated epithelium. Administration of pharmacologic inhibitors of EGFR or MAPK to these transgenic mice significantly reduced polyp development. CONCLUSIONS Activation of EGFR signaling in the intestine of mice promotes development of serrated polyps. EGFR signaling also is activated in human HPPs, sessile serrated adenomas, and traditional serrated adenomas.
Collapse
Affiliation(s)
- Gerold Bongers
- Immunology Institute, Mount Sinai School of Medicine, 1425 Madison Ave, Box 1630, New York, NY 10029-6574, USA
| | - Luciana R. Muniz
- Immunology Institute, Mount Sinai School of Medicine, 1425 Madison Ave, Box 1630, New York, NY 10029-6574, USA
| | - Michelle E. Pacer
- Immunology Institute, Mount Sinai School of Medicine, 1425 Madison Ave, Box 1630, New York, NY 10029-6574, USA
| | - Alina C. Iuga
- Division of Gastrointestinal Pathology, Department of Pathology, The Mount Sinai Medical Center, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Nanthakumar Thirunarayanan
- Immunology Institute, Mount Sinai School of Medicine, 1425 Madison Ave, Box 1630, New York, NY 10029-6574, USA
| | - Erik Slinger
- Immunology Institute, Mount Sinai School of Medicine, 1425 Madison Ave, Box 1630, New York, NY 10029-6574, USA
| | - Martine J. Smit
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - E. Premkumar Reddy
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY, USA
| | - Lloyd Mayer
- Immunology Institute, Mount Sinai School of Medicine, 1425 Madison Ave, Box 1630, New York, NY 10029-6574, USA
| | - Glaucia C. Furtado
- Immunology Institute, Mount Sinai School of Medicine, 1425 Madison Ave, Box 1630, New York, NY 10029-6574, USA
| | - Noam Harpaz
- Division of Gastrointestinal Pathology, Department of Pathology, The Mount Sinai Medical Center, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Sergio A. Lira
- Immunology Institute, Mount Sinai School of Medicine, 1425 Madison Ave, Box 1630, New York, NY 10029-6574, USA
| |
Collapse
|
24
|
Dahlhoff M, Gerhard M, Rad R, Lindén S, Wolf E, Schneider MR. A new mouse model for studying EGFR-dependent gastric polyps. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1293-9. [DOI: 10.1016/j.bbadis.2012.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/02/2012] [Revised: 04/27/2012] [Accepted: 05/01/2012] [Indexed: 11/29/2022]
|
25
|
At the crossroads: EGFR and PTHrP signaling in cancer-mediated diseases of bone. Odontology 2012; 100:109-29. [PMID: 22684584 DOI: 10.1007/s10266-012-0070-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/02/2012] [Accepted: 05/21/2012] [Indexed: 01/01/2023]
Abstract
The epidermal growth factor receptor is a well-established cancer therapeutic target due to its stimulation of proliferation, motility, and resistance to apoptosis. Recently, additional roles for the receptor have been identified in growth of metastases. Similar to development, metastatic spread requires signaling interactions between epithelial-derived tumor cells and mesenchymal derivatives of the microenvironment. This necessitates reactivation of developmental signaling molecules, including the hypercalcemia factor parathyroid hormone-related protein. This review covers the variations of epidermal growth factor receptor signaling in cancers that produce bone metastases, regulation of parathyroid hormone-related protein, and evidence that the two molecules drive cancer-mediated diseases of bone.
Collapse
|
26
|
Hitch MC, Leinicke JA, Wakeman D, Guo J, Erwin CR, Rowland KJ, Merrick EC, Heuckeroth RO, Warner BW. Ret heterozygous mice have enhanced intestinal adaptation after massive small bowel resection. Am J Physiol Gastrointest Liver Physiol 2012; 302:G1143-50. [PMID: 22421622 PMCID: PMC3362098 DOI: 10.1152/ajpgi.00296.2011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 01/31/2023]
Abstract
Intestinal adaptation is an important compensatory response to massive small bowel resection (SBR) and occurs because of a proliferative stimulus to crypt enterocytes by poorly understood mechanisms. Recent studies suggest the enteric nervous system (ENS) influences enterocyte proliferation. We, therefore, sought to determine whether ENS dysfunction alters resection-induced adaptation responses. Ret+/- mice with abnormal ENS function and wild-type (WT) littermates underwent sham surgery or 50% SBR. After 7 days, ileal morphology, enterocyte proliferation, apoptosis, and selected signaling proteins were characterized. Crypt depth and villus height were equivalent at baseline in WT and Ret+/- mice. In contrast after SBR, Ret+/- mice had longer villi (Ret+/- 426.7 ± 46.0 μm vs. WT 306.5 ± 7.7 μm, P < 0.001) and deeper crypts (Ret+/- 119 ± 3.4 μm vs. WT 82.4 ± 3.1 μm, P < 0.001) than WT. Crypt enterocyte proliferation was higher in Ret+/- (48.8 ± 1.3%) than WT (39.9 ± 2.1%; P < 0.001) after resection, but apoptosis rates were similar. Remnant bowel of Ret+/- mice also had higher levels of glucagon-like peptide 2 (6.2-fold, P = 0.005) and amphiregulin (4.6-fold, P < 0.001) mRNA after SBR, but serum glucagon-like peptide 2 protein levels were equal in WT and Ret+/- mice, and there was no evidence of increased c-Fos nuclear localization in submucosal neurons. Western blot confirmed higher crypt epidermal growth factor receptor (EGFR) protein levels (1.44-fold; P < 0.001) and more phosphorylated EGFR (2-fold; P = 0.003) in Ret+/- than WT mice after SBR. These data suggest that Ret heterozygosity enhances intestinal adaptation after massive SBR, likely via enhanced EGFR signaling. Reducing Ret activity or altering ENS function may provide a novel strategy to enhance adaptation attenuating morbidity in patients with short bowel syndrome.
Collapse
Affiliation(s)
- Meredith C. Hitch
- 1Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology, and Nutrition, and
| | - Jennifer A. Leinicke
- 2Department of Surgery, Division of Pediatric Surgery, Washington University School of Medicine, St. Louis Children's Hospital, and
| | - Derek Wakeman
- 2Department of Surgery, Division of Pediatric Surgery, Washington University School of Medicine, St. Louis Children's Hospital, and
| | - Jun Guo
- 2Department of Surgery, Division of Pediatric Surgery, Washington University School of Medicine, St. Louis Children's Hospital, and
| | - Chris R. Erwin
- 2Department of Surgery, Division of Pediatric Surgery, Washington University School of Medicine, St. Louis Children's Hospital, and
| | - Kathryn J. Rowland
- 2Department of Surgery, Division of Pediatric Surgery, Washington University School of Medicine, St. Louis Children's Hospital, and
| | - Ellen C. Merrick
- 1Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology, and Nutrition, and
| | - Robert O. Heuckeroth
- 1Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology, and Nutrition, and ,3Department of Developmental, Regenerative and Stem Cell Biology, Washington University School of Medicine, St. Louis, Missouri
| | - Brad W. Warner
- 2Department of Surgery, Division of Pediatric Surgery, Washington University School of Medicine, St. Louis Children's Hospital, and
| |
Collapse
|
27
|
Nojiri T, Yoshizato T, Fukami T, Obama H, Yagi H, Yotsumoto F, Miyamoto S. Clinical significance of amphiregulin and epidermal growth factor in colostrum. Arch Gynecol Obstet 2012; 286:643-7. [PMID: 22581387 DOI: 10.1007/s00404-012-2365-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/21/2011] [Accepted: 04/23/2012] [Indexed: 12/24/2022]
Abstract
BACKGROUND Colostrum contains a wide variety of crucial nutritional elements including growth factors for newborn infants to adapt to the extrauterine environment. OBJECTIVE To investigate the clinical significance of epidermal growth factor receptor ligands in milk during the first month of lactation. METHODS The concentrations of epidermal growth factor (EGF), amphiregulin (AR) and transforming growth factor-α (TGF-α) in milk sampled from a total of 31 normal mothers at days 1-3, 5, and 30 postpartum were examined using ELISA. RESULTS At days 1-3, the concentration of EGF was extremely high [131.6 ± 20.4 (mean ± SEM) ng/ml] compared to that of AR (4,197.2 ± 1,055.2 pg/ml) or TGF-α (261.7 ± 33.6 pg/ml), while the concentration of AR was significantly elevated compared to that of TGF-α. At days 5 and 30, the concentration of EGF was significantly elevated compared to that of AR or TGF-α. In 16 mothers among the same 31 subjects, samples were longitudinally obtained on days 1, 2, 5, and 30 postpartum. Concentrations of AR were higher on days 1 and 2 and rapidly declined to below 1 ng/ml on day 5, and were maintained at lower levels on day 30. Concentrations of EGF were high on day 1 (greater than 10 ng/ml) but gradually declined by days 2, 5, and 30. Concentrations of TGF-α remained at lower levels of below 1 ng/ml throughout the lactation period from days 1 to 30. CONCLUSION These results suggested that EGF and amphiregulin in colostrum might contribute to the early stage of development of neonatal gastrointestinal function.
Collapse
Affiliation(s)
- Takeshi Nojiri
- Department of Obstetrics and Gynecology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Busser B, Sancey L, Brambilla E, Coll JL, Hurbin A. The multiple roles of amphiregulin in human cancer. Biochim Biophys Acta Rev Cancer 2011; 1816:119-31. [PMID: 21658434 DOI: 10.1016/j.bbcan.2011.05.003] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/04/2011] [Revised: 05/20/2011] [Accepted: 05/21/2011] [Indexed: 12/21/2022]
Abstract
Amphiregulin (AREG) is one of the ligands of the epidermal growth factor receptor (EGFR). AREG plays a central role in mammary gland development and branching morphogenesis in organs and is expressed both in physiological and in cancerous tissues. Various studies have highlighted the functional role of AREG in several aspects of tumorigenesis, including self-sufficiency in generating growth signals, limitless replicative potential, tissue invasion and metastasis, angiogenesis, and resistance to apoptosis. The oncogenic activity of AREG has already been described in the most common human epithelial malignancies, such as lung, breast, colorectal, ovary and prostate carcinomas, as well as in some hematological and mesenchymal cancers. Furthermore, AREG is also involved in resistance to several cancer treatments. In this review, we describe the various roles of AREG in oncogenesis and discuss its translational potential, such as the development of anti-AREG treatments, based on AREG activity. In the last decade, independent groups have reported successful but sometimes contradictory results in relation to the potential of AREG to serve as a prognostic and/or predictive marker for oncology, especially with regard to anti-EGFR therapies. Thus, we also discuss the potential usefulness of using AREG as a therapeutic target and validated biomarker for predicting cancer outcomes or treatment efficacy.
Collapse
Affiliation(s)
- Benoit Busser
- INSERM, U823, Institut Albert Bonniot, Grenoble, France, Université Joseph Fourier, Grenoble, France.
| | | | | | | | | |
Collapse
|
29
|
Sisto M, Lisi S, Lofrumento DD, Cucci L, Mitolo V, D'Amore M. RETRACTED: Blockade of TNF-α signaling suppresses the AREG-mediated IL-6 and IL-8 cytokines secretion induced by anti-Ro/SSA autoantibodies. J Transl Med 2010:labinvest2010168. [PMID: 20856228 DOI: 10.1038/labinvest.2010.168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/08/2022] Open
Abstract
The aim of this study was to analyze the Furin-TNF-α-converting enzyme (TACE)-amphiregulin (AREG)-IL-6/IL-8 secretion pathway in non-neoplastic human salivary gland epithelial cells (SGECs) stimulated with anti-Ro/SSA autoantibodies (Abs). We examined whether anti-Ro/SSA Abs-mediated TACE activation is responsible for AREG activation. As recent studies have demonstrated that AREG could induce proinflammatory cytokines secretion in epithelial cells, we discuss how TACE-mediated AREG shedding, caused by anti-Ro/SSA Abs treatment, could have a critical role in TNF-α-induced IL-6 and IL-8 secretion by SGEC. Furthermore, the effects of TNF-α blockade on AREG expression and TNF-α-AREG-mediated IL-6 and IL-8 secretion were evaluated. We have discovered that the upregulation of AREG occurs through TNF-α produced after anti-Ro/SSA Abs uptake via Fcγ receptors. Biological drug adalimumab and the gene silencing technique were used to study the AREG-IL-6/IL-8 secretion pathway, demonstrating that (i) adalimumab-mediated TNF-α blocking and TNF-α gene silencing provoke a significant decrease of proinflammatory cytokines production and AREG expression in anti-Ro/SSA Abs-treated SGEC; (ii) AREG gene silencing has a potent inhibitory effect on TNF-α-induced IL-6 and IL-8 secretion in SGEC treated with anti-Ro/SSA Abs; (iii) an inspection of the kinetics of cytokine production after exogeni TNF-α and AREG addition, and the use of cycloheximide in the presence of exogenous TNF-α as stimulant, clarified that TNF-α induces IL-6 and IL-8 secretion through AREG.Laboratory Investigation advance online publication, 20 September 2010; doi:10.1038/labinvest.2010.168.
Collapse
Affiliation(s)
- Margherita Sisto
- Laboratory of Cell Biology, Department of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | | | | | | | | | | |
Collapse
|
30
|
Prolyl-4-hydroxylase PHD2- and hypoxia-inducible factor 2-dependent regulation of amphiregulin contributes to breast tumorigenesis. Oncogene 2010; 30:548-60. [PMID: 20856199 DOI: 10.1038/onc.2010.433] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/21/2022]
Abstract
Hypoxia-elicited adaptations of tumor cells are essential for tumor growth and cancer progression. Although ample evidence exists for a positive correlation between hypoxia-inducible factors (HIFs) and tumor formation, metastasis and bad prognosis, the function of the HIF-α protein stability regulating prolyl-4-hydroxylase domain enzyme PHD2 in carcinogenesis is less well understood. In this study, we demonstrate that downregulation of PHD2 leads to increased tumor growth in a hormone-dependent mammary carcinoma mouse model. Tissue microarray analysis of PHD2 protein expression in 281 clinical samples of human breast cancer showed significantly shorter survival times of patients with low-level PHD2 tumors over a period of 10 years. An angiogenesis-related antibody array identified, amongst others, amphiregulin to be increased in the absence of PHD2 and normalized after PHD2 reconstitution. Cultivation of endothelial cells in conditioned media derived from PHD2-downregulated cells resulted in enhanced tube formation that was blocked by the addition of neutralizing anti-amphiregulin antibodies. Functionally, amphiregulin was regulated on the transcriptional level specifically by HIF-2 but not HIF-1. Our data suggest that PHD2/HIF-2/amphiregulin signaling has a critical role in the regulation of breast tumor progression and propose PHD2 as a potential tumor suppressor in breast cancer.
Collapse
|
31
|
Lisi S, Sisto M, Lofrumento DD, Cucci L, Frassanito MA, Mitolo V, D’Amore M. Pro-inflammatory role of Anti-Ro/SSA autoantibodies through the activation of Furin–TACE–amphiregulin axis. J Autoimmun 2010; 35:160-70. [DOI: 10.1016/j.jaut.2010.06.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/04/2010] [Revised: 06/29/2010] [Accepted: 06/30/2010] [Indexed: 11/29/2022]
|
32
|
Stoll SW, Johnson JL, Li Y, Rittié L, Elder JT. Amphiregulin carboxy-terminal domain is required for autocrine keratinocyte growth. J Invest Dermatol 2010; 130:2031-40. [PMID: 20428186 DOI: 10.1038/jid.2010.98] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/19/2023]
Abstract
The EGFR ligand amphiregulin (AREG) has been implicated as an important autocrine growth factor in several epithelial malignancies and in psoriasis, a hyperproliferative skin disorder. To characterize the mechanisms by which AREG regulates autocrine epithelial cell growth, we transduced human keratinocytes (KCs) with lentiviral constructs expressing tetracycline (TET)-inducible small hairpin RNA (shRNA). TET-induced expression of AREG shRNA markedly reduced autocrine extracellular signal-regulated kinase phosphorylation, strongly inhibited autocrine KC growth with an efficiency similar to metalloproteinase and EGFR inhibitors, and induced several markers of KC differentiation, including keratins 1 and 10. Addition of various concentrations of exogenous EGFR ligands to KC cultures reversed the growth inhibition in response to AREG-blocking antibodies but not to shRNA-mediated AREG knockdown. Lentivirus-mediated expression of the full-length AREG transmembrane (TM) precursor, but not of the AREG extracellular domain, markedly reversed the shRNA-mediated growth inhibition and morphological changes, and strongly reduced the induction of multiple markers of KC differentiation. Taken together, our data show that autocrine human KC growth is highly dependent on the AREG TM precursor protein and strongly suggest a previously unreported function of the metalloproteinase-processed carboxy (C)-terminal domain of AREG.
Collapse
Affiliation(s)
- Stefan W Stoll
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | | | | | |
Collapse
|
33
|
Wang SE, Yu Y, Criswell TL, Debusk LM, Lin PC, Zent R, Johnson DH, Ren X, Arteaga CL. Oncogenic mutations regulate tumor microenvironment through induction of growth factors and angiogenic mediators. Oncogene 2010; 29:3335-48. [PMID: 20383197 PMCID: PMC2883631 DOI: 10.1038/onc.2010.112] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/07/2023]
Abstract
Activating mutations in the tyrosine kinase domain of HER2 (ErbB2) have been identified in human cancers. Compared to wild-type HER2, mutant HER2 shows constitutively activate kinase activity and increased oncogenicity. Cells transformed by mutant HER2 are resistant to EGFR tyrosine kinase inhibitors and exhibit an attenuated response to the HER2 antibody trastuzumab. We investigated herein pathways through which mutant HER2 alters the extracellular environment, potentially leading to drug resistance and the effect of simultaneously targeting HER2 and the tumor cell microenvironment with a therapeutic intent. Expression of mutant HER2 in mammary epithelial cells activated autocrine transforming growth factor (TGF) β1 signaling through a mechanism involving Rac1 and JNK-AP1-dependent transcription. Cells transformed by an activating mutant of H-Ras (G12V) also expressed higher TGF-β1 level through Rac1 activation. In addition, mutant HER2 induced the EGFR ligands TGF-α and amphiregulin at the mRNA and protein levels. Vascular endothelial growth factor (VEGF), a target of the TGF-β-Smad transcriptional regulation, was also induced as a result of expression of mutant HER2. Inhibition of TGF-β signaling with the Alk5 small molecule inhibitor LY2109761 reduced growth and invasiveness of cells expressing mutant HER2. Combined inhibition of intracellular and paracrine effects of mutant HER2 by trastuzumab and the EGFR antibody cetuximab was more efficient than single-agent therapies. These data suggest that mutations in oncogenes such as HER2 and Ras not only alter intracellular signaling and also influence on other components of the tumor microenvironment by inducing several pro-invasive growth factors. In turn, these serve as extracellular targets of novel therapeutic strategies directed at both cancer-driving oncogenes and the modified tumor microenvironment.
Collapse
Affiliation(s)
- S E Wang
- Division of Tumor Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Trang SH, Joyner DE, Damron TA, Aboulafia AJ, Randall RL. Potential for functional redundancy in EGF and TGFalpha signaling in desmoid cells: a cDNA microarray analysis. Growth Factors 2010; 28:10-23. [PMID: 20092031 DOI: 10.3109/08977190903299387] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/21/2022]
Abstract
Genes that replace or duplicate the function of other genes are considered functionally redundant. In this cDNA microarray study, using an Agilent microarray platform and GeneSifter analysis software, we evaluated (1) the degree of downstream transcriptional redundancy and (2) the level of genetic uniqueness apparent in desmoid tumor cells stimulated in vitro for 3 h or for 24 h with 100 ng/ml of exogenous recombinant human EGF (rhEGF) or with recombinant human transforming growth factor alpha (rhTGFalpha). Our intent was to identify genes costimulated, or genes unique to, desmoid cells stimulated in vitro with rhEGF and rhTGFalpha. This experimental approach demonstrated a 55% transcriptional redundancy in the number of desmoid genes significantly upregulated or downregulated following 3 h of stimulation with rhEGF or with rhTGFalpha, and a 65% transcriptional redundancy following 24 h of growth factor stimulation. Approximately 150 genes costimulated by rhEGF and rhTGFalpha were identified. This study suggests that EGF and TGFalpha retain some level of functional redundancy, possibly resulting from their divergence from a common ancestral gene.
Collapse
Affiliation(s)
- Sylvia H Trang
- SARC Laboratory, Sarcoma Services, Department of Orthopaedics and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | | | |
Collapse
|
35
|
Stoll SW, Johnson JL, Bhasin A, Johnston A, Gudjonsson JE, Rittié L, Elder JT. Metalloproteinase-mediated, context-dependent function of amphiregulin and HB-EGF in human keratinocytes and skin. J Invest Dermatol 2010; 130:295-304. [PMID: 19609315 DOI: 10.1038/jid.2009.211] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/10/2022]
Abstract
Human keratinocytes (KCs) express multiple EGF receptor (EGFR) ligands; however, their functions in specific cellular contexts remain largely undefined. To address this issue, first we measured mRNA and protein levels for multiple EGFR ligands in KCs and skin. Amphiregulin (AREG) was by far the most abundant EGFR ligand in cultured KCs, with >19 times more mRNA and >7.5 times more shed protein than any other family member. EGFR ligand expression in normal skin was low (<8 per thousand of RPLP0/36B4); however, HB-EGF and AREG mRNAs were strongly induced in human skin organ culture. KC migration in scratch wound assays was highly metalloproteinase (MP)- and EGFR dependent, and was markedly inhibited by EGFR ligand antibodies. However, lentivirus-mediated expression of soluble HB-EGF, but not soluble AREG, strongly enhanced KC migration, even in the presence of MP inhibitors. Lysophosphatidic acid (LPA)-induced ERK phosphorylation was also strongly EGFR and MP dependent and markedly inhibited by neutralization of HB-EGF. In contrast, autocrine KC proliferation and ERK phosphorylation were selectively blocked by neutralization of AREG. These data show that distinct EGFR ligands stimulate KC behavior in different cellular contexts, and in an MP-dependent fashion.
Collapse
Affiliation(s)
- Stefan W Stoll
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Richardson GD, Bazzi H, Fantauzzo KA, Waters JM, Crawford H, Hynd P, Christiano AM, Jahoda CAB. KGF and EGF signalling block hair follicle induction and promote interfollicular epidermal fate in developing mouse skin. Development 2009; 136:2153-64. [PMID: 19474150 DOI: 10.1242/dev.031427] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/28/2023]
Abstract
A key initial event in hair follicle morphogenesis is the localised thickening of the skin epithelium to form a placode, partitioning future hair follicle epithelium from interfollicular epidermis. Although many developmental signalling pathways are implicated in follicle morphogenesis, the role of epidermal growth factor (EGF) and keratinocyte growth factor (KGF, also known as FGF7) receptors are not defined. EGF receptor (EGFR) ligands have previously been shown to inhibit developing hair follicles; however, the underlying mechanisms have not been characterised. Here we show that receptors for EGF and KGF undergo marked downregulation in hair follicle placodes from multiple body sites, whereas the expression of endogenous ligands persist throughout hair follicle initiation. Using embryonic skin organ culture, we show that when skin from the sites of primary pelage and whisker follicle development is exposed to increased levels of two ectopic EGFR ligands (HBEGF and amphiregulin) and the FGFR2(IIIb) receptor ligand KGF, follicle formation is inhibited in a time- and dose-dependent manner. We then used downstream molecular markers and microarray profiling to provide evidence that, in response to KGF and EGF signalling, epidermal differentiation is promoted at the expense of hair follicle fate. We propose that hair follicle initiation in placodes requires downregulation of the two pathways in question, both of which are crucial for the ongoing development of the interfollicular epidermis. We have also uncovered a previously unrecognised role for KGF signalling in the formation of hair follicles in the mouse.
Collapse
Affiliation(s)
- Gavin D Richardson
- School of Biological and Biomedical Sciences, University of Durham, Durham DH1 3LE, UK
| | | | | | | | | | | | | | | |
Collapse
|
37
|
ERBBs in the gastrointestinal tract: recent progress and new perspectives. Exp Cell Res 2008; 315:583-601. [PMID: 19041864 DOI: 10.1016/j.yexcr.2008.10.043] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/07/2008] [Revised: 10/21/2008] [Accepted: 10/21/2008] [Indexed: 12/24/2022]
Abstract
The gastrointestinal epithelium does much more than provide a physical barrier between the intestinal lumen and our internal milieu. It is actively engaged in absorption and secretion of salt and water via ion transporters, exchangers and selective ion channels. It is also a continuously self-renewing epithelium that undergoes ordered growth and differentiation along its vertical axis. From this dual perspective, we will consider the actions of the ERBB family of ligands and receptors in the maintenance of gastrointestinal homeostasis and discuss instances when the actions of this family go awry such as in cancer and Ménétrier's disease.
Collapse
|
38
|
Abstract
The molecular mechanisms that transmit information from cell surface receptors to the nucleus are exceedingly complex; thus, much effort has been expended in developing computational models to understand these processes. A recent study on modeling the nuclear-cytoplasmic shuttling of Smad2-Smad4 complexes in response to transforming growth factor-beta (TGF-beta) receptor activation has provided substantial insight into how this signaling network translates the degree of TGF-beta receptor activation (input) into the amount of nuclear Smad2-Smad4 complexes (output). The study addressed this question by combining a simple, mechanistic model with targeted experiments, an approach that proved particularly powerful for exploring the fundamental properties of a complex signaling network. The mathematical model revealed that Smad nuclear-cytoplasmic dynamics enables a proportional but time-delayed coupling between the input and the output. As a result, the output can faithfully track gradual changes in the input while the rapid input fluctuations that constitute signaling noise are dampened out.
Collapse
Affiliation(s)
- Harish Shankaran
- Systems Biology Program, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | | |
Collapse
|
39
|
Berasain C, Castillo J, Perugorría MJ, Prieto J, Avila MA. Amphiregulin: A new growth factor in hepatocarcinogenesis. Cancer Lett 2007; 254:30-41. [PMID: 17321672 DOI: 10.1016/j.canlet.2007.01.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/19/2006] [Revised: 01/19/2007] [Accepted: 01/22/2007] [Indexed: 12/22/2022]
Abstract
Amphiregulin (AR) is a member of the epidermal growth factor family and a ligand of the epidermal growth factor receptor (EGFR). As other ligands of the EGFR, AR is synthesized as a precursor that is shed from the plasma membrane by metalloproteases. Hyperactive autocrine loops involving AR production have been described in a variety of tumors, and this growth factor is thought to play a non-redundant role in cancer development. AR expression is not detected in the normal liver, however it is readily induced during acute liver injury and behaves as a potent pro-regenerative and survival factor. Increased AR expression is also detected in human chronic liver injury (liver cirrhosis), which is considered a pre-neoplastic condition. Recent evidences suggest that AR can play a unique role in liver tumorigenesis and in the maintenance of the neoplastic phenotype of hepatocarcinoma cells. In this review, we summarize some aspects of AR patho-biology and the rationale behind its definition as a novel target in hepatocarcinoma therapy.
Collapse
Affiliation(s)
- C Berasain
- Division of Hepatology and Gene Therapy, CIMA, Universidad de Navarra, Pamplona, Spain.
| | | | | | | | | |
Collapse
|
40
|
Park GT, Kim HY, Kim EK, Yang JM. Autocrine extracellular signal-regulated kinase activation in normal human keratinocytes is not interrupted by calcium triggering and is involved in the control of cell cycle at the early stage of calcium-induced differentiation. J Korean Med Sci 2007; 22:290-7. [PMID: 17449939 PMCID: PMC2693597 DOI: 10.3346/jkms.2007.22.2.290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/15/2022] Open
Abstract
Normal human epidermal keratinocytes (NHEK) respond to the autocrine activated extracellular signal-regulated kinase (ERK) signaling pathway, which contributes to the survival of keratinocytes. However, during the condition of calcium-induced differentiation, how the autocrine ERK signaling is regulated and affected is poorly understood. The purpose of this study was to understand and to obtain clues to the possible function of the autocrine ERK activation during the calcium-induced differentiation of NHEK. We demonstrated that the autocrine activated ERK was not interrupted by calcium triggering and that it was sustained for at least one day after changing the medium. We also found that the autocrine ERK activation was associated with the expression of cyclin D1 and the cell cycle regulation at the early stage of calcium triggering by treating the cells with the mitogen-activated protein kinase inhibitor PD98059. However, the PD98059 treatment did not have a significant influence on the expression of involucrin and loricrin. In addition, we demonstrated that autocrine ERK activation was associated with protein kinase C and p38MAPK signaling. We suggest that the activation of autocrine ERK is not interrupted by calcium triggering and it might participate in cell growth during the early stage of calcium-induced differentiation in NHEK.
Collapse
Affiliation(s)
- Geon Tae Park
- Department of Dermatology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Korea
| | - Hyo-Youn Kim
- Department of Dermatology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Korea
| | - Eun-Kyoung Kim
- Department of Dermatology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Korea
| | - Jun-Mo Yang
- Department of Dermatology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Korea
| |
Collapse
|
41
|
Coffey RJ, Washington MK, Corless CL, Heinrich MC. Ménétrier disease and gastrointestinal stromal tumors: hyperproliferative disorders of the stomach. J Clin Invest 2007; 117:70-80. [PMID: 17200708 PMCID: PMC1716220 DOI: 10.1172/jci30491] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/18/2022] Open
Abstract
Ménétrier disease and gastrointestinal stromal tumors (GISTs) are hyperproliferative disorders of the stomach caused by dysregulated receptor tyrosine kinases (RTKs). In Ménétrier disease, overexpression of TGF-alpha, a ligand for the RTK EGFR, results in selective expansion of surface mucous cells in the body and fundus of the stomach. In GISTs, somatic mutations of the genes encoding the RTK KIT (or PDGFRA in a minority of cases) result in constitutive kinase activity and neoplastic transformation of gut pacemaker cells (interstitial cells of Cajal). On the basis of the involvement of these RTKs in the pathogenesis of these disorders, Ménétrier disease patients have been effectively treated with a blocking monoclonal antibody specific for EGFR and GIST patients with KIT and PDGFRA tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Robert J Coffey
- Department of Medicine, Vanderbilt University Medical Center and Nashville Veterans Affairs Medical Center, Nashville, Tennessee, USA.
| | | | | | | |
Collapse
|
42
|
Tamariz E, Hernandez-Quintero M, Sánchez-Guzman E, Arguello C, Castro-Muñozledo F. RCE1 Corneal Epithelial Cell Line: Its Variability on Phenotype Expression and Differential Response to Growth Factors. Arch Med Res 2007; 38:176-84. [PMID: 17227726 DOI: 10.1016/j.arcmed.2006.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/06/2005] [Accepted: 10/02/2006] [Indexed: 11/25/2022]
Abstract
BACKGROUND By serial transfer of rabbit corneal epithelial cells, the spontaneous RCE1 cell line was previously established. These cells mimic the stage-dependent differentiation of the corresponding cell type. METHODS RCE1 cells were cultured either on plastic culture dishes or on collagen rafts to compare the epithelial ultrastructure after growth on these substrata. Phenotypic variability was studied after subcloning of cells. The differentiation ability of each subclone was determined by Western blot with antibodies against the differentiation-linked keratin pair K3/K12 and by measuring LDH activity and LDH isozymes in cytosolic extracts. The proliferative response of RCE1 cells to EGF, TGFalpha, amphiregulin, bFGF or IL-6 was determined under serum-free culture conditions. RESULTS Cells grown on collagen rafts formed 5- to 7-layered epithelia with characteristics closer to those found in normal corneal epithelium than cells cultivated on plastic substrata, which formed 3- to 5-layered epithelia. Subcloning experiments demonstrated that every proliferative cell is able to grow and constitute stratified epithelia expressing K3/K12 keratins. LDH levels in RCE1 epithelia were similar to those of cultured or freshly harvested corneal epithelia; however, they showed a slightly altered LDH isozyme set, with prevalence of LDH-3 isoform. Whereas EGF and TGF-alpha were equipotent, amphiregulin elicited a 4-fold lower proliferative response. Also, bFGF was 10-fold less mitogenic than EGF, and IL-6 had the lowest effect with an ED(50) 20-fold lower than EGF. CONCLUSIONS The results demonstrate that every RCE1 proliferative cell has the ability to generate epithelial sheets. We conclude that EGF and TGF-alpha are the major effectors of RCE1 cell proliferation.
Collapse
Affiliation(s)
- Elisa Tamariz
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, México, DF, México
| | | | | | | | | |
Collapse
|
43
|
Memon AA, Sorensen SB, Nexo E. The epidermal growth factor family has a dual role in deciding the fate of cancer cells. Scandinavian Journal of Clinical and Laboratory Investigation 2007; 66:623-30. [PMID: 17101554 DOI: 10.1080/00365510600891458] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/21/2022]
Abstract
Expression of the epidermal growth factor (EGF) receptors HER1 and HER2 has been implicated in tumour growth and poor survival, whereas expression of HER3 and HER4 has been associated with improved survival of bladder cancer patients. The balance between the expression of the EGF family members may therefore have a role to play in determining the final outcome in cancer cells. To check this, we examined the effect of HER1 activation and inhibition on the expression of the EGF receptors HER3 and HER4 and ligands - the heregulins (HRGs). RT4 bladder cancer cells were treated with 1nM HB-EGF (known to induce cell proliferation by activating HER1 receptor) and the mRNA content of the two receptors (HER3 and HER4) and their activating ligands (HRG1-HRG4) was quantified by real time PCR at indicated time-points. Expressions of HRG1alpha and HRG1beta increased 8-fold and 9-fold, respectively, whereas the expressions of HRG2alpha (4-fold), HRG2beta (2.5-fold) and HRG4 (3.5-fold) decreased. In contrast, inhibition of tyrosine kinase activity of HER1 with 5 microM Iressa (a specific inhibitor of HER1) resulted in an increase in mRNA expression of HRG2alpha (2.5-fold) and HRG4 (1.5-fold). In addition, expression of the receptors HER3 (1.5-fold) and HER4 (2-fold) was also increased. In conclusion, we demonstrate that activation of the HER1 receptor suppressed the expression of a specific set of HRGs. A decrease in expression of HRG2 and HRG4 during HB-EGF treatment supports their role in growth inhibition, whereas an increase in HRG1 expression points to a role as a growth stimulatory member of the EGF family.
Collapse
Affiliation(s)
- A A Memon
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark.
| | | | | |
Collapse
|
44
|
El-Bassiouni A, Nosseir M, Zoheiry M, El-Ahwany E, Ghali A, El-Bassiouni N. Immunohistochemical expression of CD95 (Fas), c-myc and epidermal growth factor receptor in hepatitis C virus infection, cirrhotic liver disease and hepatocellular carcinoma. APMIS 2006; 114:420-7. [PMID: 16856963 DOI: 10.1111/j.1600-0463.2006.apm_323.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/23/2023]
Abstract
Gene product expression in normal and chronic hepatitis C virus infection was determined in an attempt to improve our understanding of the molecular events leading to the development of cirrhosis and liver carcinoma. Activation of CD95 (Fas) causes apoptosis of cells and liver failure in mice and has been associated with human liver disorders. c-myc is involved in cell proliferation and EGFR in regeneration of cells. The material of the current study included 50 cases of chronic hepatitis C (CHC) (and negative hepatitis B virus infection), 29 cases of liver cirrhosis and HCV (LC), and 19 cases of hepatocellular carcinoma and HCV (HCC) admitted to the Theodor Bilharz Research Institute (TBRI) during the years 2003-2004. Ten wedge liver biopsies - taken during laparoscopic cholecystectomy - were included in the study as normal controls. Laboratory investigations, including liver function tests, serological markers for viral hepatitis and serum alpha fetoprotein level (alpha-FP), were determined for all cases. Histopathological study and immunohistochemistry using monoclonal antibodies for CD95, c-myc and EGFR were also done. In CHC cases, the histological activity index (HAI) revealed more expression of Fas antigen in liver tissues with active inflammation than in those without active inflammation (p < 0.01). EGFR and c-myc act synergistically in liver tumorigenesis. Upregulation of Fas in chronic hepatitis C infection and of c-myc & EGFR in malignant transformation was concluded from this study. c-myc expression may obstruct the induction of apoptosis of HCC cells and lead to uncontrolled cell growth.
Collapse
Affiliation(s)
- A El-Bassiouni
- Department of Immunology, Theodor Bilharz Research Institute, Imbaba, Guiza, Egypt
| | | | | | | | | | | |
Collapse
|
45
|
Koivisto L, Jiang G, Häkkinen L, Chan B, Larjava H. HaCaT keratinocyte migration is dependent on epidermal growth factor receptor signaling and glycogen synthase kinase-3alpha. Exp Cell Res 2006; 312:2791-805. [PMID: 16806170 DOI: 10.1016/j.yexcr.2006.05.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/30/2005] [Revised: 05/09/2006] [Accepted: 05/10/2006] [Indexed: 11/17/2022]
Abstract
After epithelial disruption by tissue injury, keratinocytes migrate from the wound edge into a provisional matrix. This process is stimulated by growth factors that signal through epidermal growth factor (EGF) receptor, including EGF, heparin-binding EGF-like growth factor (HB-EGF) and transforming growth factor-alpha (TGF-alpha), and by for example keratinocyte growth factor (KGF) and TGF-beta1 that function through different receptors. We have previously shown that keratinocyte migration induced by EGF or staurosporine is dependent on the activity of glycogen synthase kinase-3 (GSK-3). In the present study, we show that keratinocyte migration induced by TGF-beta1, KGF, EGF, TGF-alpha and staurosporine depends on EGFR signaling, involves autocrine HB-EGF expression and is potently blocked by GSK-3 inhibitors SB-415286 and LiCl. Inhibition of GSK-3 also retards wound reepithelialization in vivo in mice. Moreover, inhibition of GSK-3 activity prevented cell rounding that is an early event in EGFR-mediated keratinocyte migration. Isoform-specific GSK-3alpha and GSK-3beta knockdown and overexpression experiments with siRNAs and adenoviral constructs, respectively, revealed that GSK-3alpha is required for keratinocyte migration, whereas excessive activity of GSK-3beta is inhibitory. Thus, induction of keratinocyte migration is conveyed through EGFR, promoted by endogenous HB-EGF and requires GSK-3alpha activity.
Collapse
Affiliation(s)
- Leeni Koivisto
- University of British Columbia, Faculty of Dentistry, Department of Oral Biological and Medical Sciences, 2199 Wesbrook Mall, Vancouver, Canada BC V6T 1Z3.
| | | | | | | | | |
Collapse
|
46
|
Coffey RJ, Beauchamp RD. Roles for transforming growth factor-α and transforming growth factor-ß in colorectal cancer. CURRENT COLORECTAL CANCER REPORTS 2006. [DOI: 10.1007/s11888-006-0005-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
|
47
|
Kim J, Adam RM, Freeman MR. Trafficking of nuclear heparin-binding epidermal growth factor-like growth factor into an epidermal growth factor receptor-dependent autocrine loop in response to oxidative stress. Cancer Res 2005; 65:8242-9. [PMID: 16166300 DOI: 10.1158/0008-5472.can-05-0942] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022]
Abstract
Heparin-binding epidermal growth factor (EGF)-like growth factor (HB-EGF) accumulates in the nucleus in aggressive transitional cell carcinoma (TCC) cells and this histologic feature is a marker of poor prognosis in human bladder cancer tissues. Here we report that HB-EGF can be exported from the nucleus during stimulated processing and secretion of the growth factor. Production of reactive oxygen species (ROS) resulted in mobilization of the HB-EGF precursor, proHB-EGF, from the nucleus of TCCSUP bladder cancer cells to a detergent-resistant membrane compartment, where the growth factor was cleaved by a metalloproteinase-mediated mechanism and shed into the extracellular space. Inhibition of nuclear export suppressed HB-EGF shedding. Production of ROS resulted in EGF receptor (EGFR) and Akt1 phosphorylation in HB-EGF-expressing cells. HB-EGF also stimulated cell proliferation and conferred cytoprotection when cells were challenged with cisplatin. These findings show that the nucleus can serve as an intracellular reservoir for a secreted EGFR ligand and, thus, can contribute to an autocrine loop leading to cell proliferation and protection from apoptotic stimuli.
Collapse
Affiliation(s)
- Jayoung Kim
- The Urological Diseases Research Center, Childrens Hospital, Boston, Massachusetts, USA
| | | | | |
Collapse
|
48
|
Chen LL, Johansson JK, Hodges RR, Zoukhri D, Ghinelli E, Rios JD, Dartt DA. Differential effects of the EGF family of growth factors on protein secretion, MAPK activation, and intracellular calcium concentration in rat lacrimal gland. Exp Eye Res 2005; 80:379-89. [PMID: 15721620 DOI: 10.1016/j.exer.2004.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/18/2004] [Accepted: 10/04/2004] [Indexed: 11/29/2022]
Abstract
The purpose of this study was to investigate the expression of the EGF family of growth factors and EGF receptor subtypes (ErbB1-4) present in lacrimal gland and determine the effects of these growth factors on different functions of rat lacrimal gland. RT-PCR was used to detect mRNA expression in the lacrimal gland of selected members of the EGF family of growth factors, namely EGF, transforming growth factor alpha (TGF-alpha), heparin-binding EGF (HB-EGF), and heregulin. The presence of ErbB receptors was investigated by immunofluorescence microscopy and western blot analysis. The effects of EGF, TGF-alpha, HB-EGF, and heregulin on protein secretion from lacrimal gland acini were examined using a fluorescent assay for peroxidase, a marker of protein secretion. Fura-2 tetra-acetoxymethyl ester was used to measure the effects of the growth factors on intracellular [Ca2+] ([Ca2+]i) in acini. MAPK activation in acini by these growth factors was also examined by western blot analysis using antibodies specific to phosphorylated p42/44 MAPK and total p42 MAPK. Rat lacrimal gland expressed EGF, TGF-alpha, HB-EGF, and heregulin mRNA, and all four ErbB receptors were present in the lacrimal gland as detected by western blot analyses. ErbB 1 and ErbB2 were located in basal and lateral membranes of acinar and ductal cells. The location of ErbB3 could not be determined while ErbB4 was found in ductal cells. Heregulin (10(-7) m) significantly increased protein secretion in lacrimal gland acini whereas all growth factors tested significantly increased [Ca2+]i at 10(-7) m. TGF-alpha (10(-9) m), heregulin (10(-7) m), EGF (10(-7) m), and HB-EGF (10(-7) m) significantly increased the amount of phosphorylated MAPK in lacrimal gland acini. We conclude that all members of the EGF family of growth factors studied are synthesised in rat lacrimal gland, could activate all four ErbB receptors that are present in this tissue, and differentially activate lacrimal gland functions.
Collapse
Affiliation(s)
- L L Chen
- Schepens Eye Research Institute, Harvard Medical School, Department of Ophthalmology, 20 Staniford Street, Boston, MA 02114, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Kishida O, Miyazaki Y, Murayama Y, Ogasa M, Miyazaki T, Yamamoto T, Watabe K, Tsutsui S, Kiyohara T, Shimomura I, Shinomura Y. Gefitinib (Iressa, ZD1839) inhibits SN38-triggered EGF signals and IL-8 production in gastric cancer cells. Cancer Chemother Pharmacol 2005; 55:584-94. [PMID: 15723219 DOI: 10.1007/s00280-004-0959-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/10/2004] [Accepted: 06/04/2004] [Indexed: 12/21/2022]
Abstract
Epidermal growth factor receptor (EGFR) and its ligands are involved in tumor growth, metastasis, angiogenesis, and resistance to chemotherapy. In the experiments described here using AGS gastric cancer cells, SN38 (the active metabolite of CPT-11) induced tyrosine phosphorylation of EGFR within 5 min, and this was followed by the induction of transcripts and/or proteins of heparin-binding EGF-like growth factor, amphiregulin, transforming growth factor-alpha, and interlukin-8 (IL-8). SN38 also activates nuclear factor-kappaB and activator protein-1, both of which are critical for the transcription of the IL-8 gene. However, the blocking of EGFR activation by gefitinib (Iressa, ZD1839), an EGFR-TKI (tyrosine kinase inhibitor), abrogates all the above reactions. The SN38-triggered mechanisms include the generation of reactive oxygen species (ROS) and the activation of protein kinase C (PKC), followed by metalloproteinase activation and the sequential ectodomain shedding of EGFR ligands. These findings suggest that EGF signaling is enhanced by CPT-11 and point to the potential benefit of the use of a combination of CPT-11 with gefitinib in the treatment of certain gastric cancers.
Collapse
Affiliation(s)
- Osamu Kishida
- Department of Internal Medicine and Molecular Science, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Chu EK, Foley JS, Cheng J, Patel AS, Drazen JM, Tschumperlin DJ. Bronchial epithelial compression regulates epidermal growth factor receptor family ligand expression in an autocrine manner. Am J Respir Cell Mol Biol 2005; 32:373-80. [PMID: 15705969 DOI: 10.1165/rcmb.2004-0266oc] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/23/2022] Open
Abstract
The epidermal growth factor receptor (EGFR), an important signaling pathway in airway biology, is stimulated by compressive stress applied to human airway epithelial cells. Although the EGFR ligand, heparin-binding epidermal growth factor-like growth factor (HB-EGF), is known to be released as a result of this stimulation, whether compressive stress enhances expression of other EGFR ligands, and the duration of mechanical compression required to initiate this response, is not known. Human airway epithelial cells were exposed to compressive stress, and expression of four EGFR ligands was examined by quantitative PCR. Cells were exposed to: (1) continuous compressive stress over 8 h, (2) compression with and without EGFR inhibitor (AG1478), or (3) time-limited compression (3.75, 7.5, 15, 30, and 60 min). Compressive stress produced a sustained upregulation of the EGFR ligands HB-EGF, epiregulin, and amphiregulin, but not transforming growth factor-alpha. Inhibition with AG1478 demonstrated that expression of HB-EGF, epiregulin, and amphiregulin is dependent on the signaling via the EGFR. Immunostaining for epiregulin protein demonstrated increased expression with compression and attenuation with EGFR inhibition. The response of all three EGFR ligands persisted long after the mechanical stimulus was removed. Taken together, these data suggest the possibility of a mechanically activated EGFR autocrine feedback loop involving selected EGFR ligands.
Collapse
Affiliation(s)
- Eric K Chu
- Department of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|