1
|
Maeda S, Qu Q, Robertson MJ, Skiniotis G, Kobilka BK. Structures of the M1 and M2 muscarinic acetylcholine receptor/G-protein complexes. Science 2019; 364:552-557. [PMID: 31073061 DOI: 10.1126/science.aaw5188] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 04/15/2019] [Indexed: 12/18/2022]
Abstract
Muscarinic acetylcholine receptors are G protein-coupled receptors that respond to acetylcholine and play important signaling roles in the nervous system. There are five muscarinic receptor subtypes (M1R to M5R), which, despite sharing a high degree of sequence identity in the transmembrane region, couple to different heterotrimeric GTP-binding proteins (G proteins) to transmit signals. M1R, M3R, and M5R couple to the Gq/ 11 family, whereas M2R and M4R couple to the Gi/ o family. Here, we present and compare the cryo-electron microscopy structures of M1R in complex with G11 and M2R in complex with GoA The M1R-G11 complex exhibits distinct features, including an extended transmembrane helix 5 and carboxyl-terminal receptor tail that interacts with G protein. Detailed analysis of these structures provides a framework for understanding the molecular determinants of G-protein coupling selectivity.
Collapse
Affiliation(s)
- Shoji Maeda
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Qianhui Qu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael J Robertson
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Georgios Skiniotis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA. .,Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
2
|
Abstract
G protein-coupled receptors (GPCRs) comprise a large class of transmembrane proteins that play critical roles in both normal physiology and pathophysiology. These critical roles offer targets for therapeutic intervention, as exemplified by the substantial fraction of current pharmaceutical agents that target members of this family. Tremendous contributions to our understanding of GPCR structure and dynamics have come from both indirect and direct structural characterization techniques. Key features of GPCR conformations derived from both types of characterization techniques are reviewed.
Collapse
Affiliation(s)
- Abby L. Parrill
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-901-678-2638; Fax: +1-901-678-3447
| | - Debra L. Bautista
- Christian Brothers High School, 5900 Walnut Grove Road, Memphis, TN 38120, USA; E-Mail: (D.L.B.)
| |
Collapse
|
3
|
Lan H, Liu Y, Bell MI, Gurevich VV, Neve KA. A dopamine D2 receptor mutant capable of G protein-mediated signaling but deficient in arrestin binding. Mol Pharmacol 2008; 75:113-23. [PMID: 18809670 DOI: 10.1124/mol.108.050534] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Arrestins mediate G protein-coupled receptor desensitization, internalization, and signaling. Dopamine D(2) and D(3) receptors have similar structures but distinct characteristics of interaction with arrestins. The goals of this study were to compare arrestin-binding determinants in D(2) and D(3) receptors other than phosphorylation sites and to create a D(2) receptor that is deficient in arrestin binding. We first assessed the ability of purified arrestins to bind to glutathione transferase (GST) fusion proteins containing the receptor third intracellular loops (IC3). Arrestin3 bound to IC3 of both D(2) and D(3) receptors, with the affinity and localization of the binding site indistinguishable between the receptor subtypes. Mutagenesis of the GST-IC3 fusion proteins identified an important determinant of the binding of arrestin3 in the N-terminal region of IC3. Alanine mutations of this determinant (IYIV212-215) in the full-length D(2) receptor generated a signaling-biased receptor with intact ligand binding and G-protein coupling and activation, but deficient in receptor-mediated arrestin3 translocation to the membrane, agonist-induced receptor internalization, and agonist-induced desensitization in human embryonic kidney 293 cells. This mutation also decreased arrestin-dependent activation of extracellular signal-regulated kinases. The finding that nonphosphorylated D(2)-IC3 and D(3)-IC3 have similar affinity for arrestin is consistent with previous suggestions that the differential effects of D(2) and D(3) receptor activation on membrane translocation of arrestin and receptor internalization are due, at least in part, to differential phosphorylation of the receptors. In addition, these results imply that the sequence IYIV212-215 at the N terminus of IC3 of the D(2) receptor is a key element of the arrestin binding site.
Collapse
Affiliation(s)
- Hongxiang Lan
- Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, Oregon, USA
| | | | | | | | | |
Collapse
|
4
|
Jensen RT, Battey JF, Spindel ER, Benya RV. International Union of Pharmacology. LXVIII. Mammalian bombesin receptors: nomenclature, distribution, pharmacology, signaling, and functions in normal and disease states. Pharmacol Rev 2008; 60:1-42. [PMID: 18055507 PMCID: PMC2517428 DOI: 10.1124/pr.107.07108] [Citation(s) in RCA: 395] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The mammalian bombesin receptor family comprises three G protein-coupled heptahelical receptors: the neuromedin B (NMB) receptor (BB(1)), the gastrin-releasing peptide (GRP) receptor (BB(2)), and the orphan receptor bombesin receptor subtype 3 (BRS-3) (BB(3)). Each receptor is widely distributed, especially in the gastrointestinal (GI) tract and central nervous system (CNS), and the receptors have a large range of effects in both normal physiology and pathophysiological conditions. The mammalian bombesin peptides, GRP and NMB, demonstrate a broad spectrum of pharmacological/biological responses. GRP stimulates smooth muscle contraction and GI motility, release of numerous GI hormones/neurotransmitters, and secretion and/or hormone release from the pancreas, stomach, colon, and numerous endocrine organs and has potent effects on immune cells, potent growth effects on both normal tissues and tumors, potent CNS effects, including regulation of circadian rhythm, thermoregulation; anxiety/fear responses, food intake, and numerous CNS effects on the GI tract as well as the spinal transmission of chronic pruritus. NMB causes contraction of smooth muscle, has growth effects in various tissues, has CNS effects, including effects on feeding and thermoregulation, regulates thyroid-stimulating hormone release, stimulates various CNS neurons, has behavioral effects, and has effects on spinal sensory transmission. GRP, and to a lesser extent NMB, affects growth and/or differentiation of various human tumors, including colon, prostate, lung, and some gynecologic cancers. Knockout studies show that BB(3) has important effects in energy balance, glucose homeostasis, control of body weight, lung development and response to injury, tumor growth, and perhaps GI motility. This review summarizes advances in our understanding of the biology/pharmacology of these receptors, including their classification, structure, pharmacology, physiology, and role in pathophysiological conditions.
Collapse
Affiliation(s)
- R T Jensen
- Digestive Diseases Branch, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | |
Collapse
|
5
|
Rosenbaum DM, Cherezov V, Hanson MA, Rasmussen SGF, Thian FS, Kobilka TS, Choi HJ, Yao XJ, Weis WI, Stevens RC, Kobilka BK. GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function. Science 2007; 318:1266-73. [PMID: 17962519 DOI: 10.1126/science.1150609] [Citation(s) in RCA: 1090] [Impact Index Per Article: 64.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The beta2-adrenergic receptor (beta2AR) is a well-studied prototype for heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) that respond to diffusible hormones and neurotransmitters. To overcome the structural flexibility of the beta2AR and to facilitate its crystallization, we engineered a beta2AR fusion protein in which T4 lysozyme (T4L) replaces most of the third intracellular loop of the GPCR ("beta2AR-T4L") and showed that this protein retains near-native pharmacologic properties. Analysis of adrenergic receptor ligand-binding mutants within the context of the reported high-resolution structure of beta2AR-T4L provides insights into inverse-agonist binding and the structural changes required to accommodate catecholamine agonists. Amino acids known to regulate receptor function are linked through packing interactions and a network of hydrogen bonds, suggesting a conformational pathway from the ligand-binding pocket to regions that interact with G proteins.
Collapse
Affiliation(s)
- Daniel M Rosenbaum
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Sawyer GW, Ehlert FJ, Shults CA. Cysteine Pairs in the Third Intracellular Loop of the Muscarinic M1Acetylcholine Receptor Play a Role in Agonist-Induced Internalization. J Pharmacol Exp Ther 2007; 324:196-205. [PMID: 17540859 DOI: 10.1124/jpet.107.123695] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We determined the functional role of a small domain in the third intracellular loop of the human muscarinic M(1) (hM(1)) receptor. Using site-directed mutagenesis, several mutant hM(1) receptors were made possessing either a deletion or point mutations within the third intracellular loop domain (252)PETPPGRCCRCC(263). Wild-type and mutant hM(1) receptors were transiently expressed in Chinese hamster ovary cells, and the effects of each mutation on radioligand binding, agonist-mediated phosphoinositide hydrolysis, and agonist-induced internalization were determined. The mutant receptors exhibited a modest reduction in affinity for [(3)H]N-methylscopolamine (pK(D) = approximately 9.0) and a moderately increased binding capacity relative to the wild-type receptor. This moderate increase in binding capacity was associated with small increases in the maximal response and potency of carbachol for eliciting phosphoinositide hydrolysis through the mutant receptors (pEC(50) = approximately 5.5) relative to wild-type (pEC(50) = 5.35 +/- 0.05). In contrast, carbachol-induced internalization of mutant hM(1) receptors possessing either C259A/C260A or C262A/C263A or both double point mutations was significantly reduced compared to the wild-type hM(1) receptor. Of the hM(1) receptor mutants tested, those possessing a C262D/C263D double point mutation had the least carbachol-induced internalization. The desensitization and down-regulation of receptors possessing either Cys/Ala or Cys/Asp double point mutations were similar to those observed for the wild-type hM(1) receptor. Collectively, these observations suggest that Cys pairs Cys259/Cys260 and Cys262/Cys263 play an important role in the agonist-induced internalization of hM(1) receptors.
Collapse
Affiliation(s)
- Gregory W Sawyer
- Department of Biochemistry and Microbiology, Center for Health Sciences, Oklahoma State University, 1111 W. 17th Street, Tulsa, OK 74107-1898, USA.
| | | | | |
Collapse
|
7
|
Schumann M, Nakagawa T, Mantey SA, Tokita K, Venzon DJ, Hocart SJ, Benya RV, Jensen RT. Importance of amino acids of the central portion of the second intracellular loop of the gastrin-releasing Peptide receptor for phospholipase C activation, internalization, and chronic down-regulation. J Pharmacol Exp Ther 2003; 307:597-607. [PMID: 12970386 DOI: 10.1124/jpet.103.055087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Little is known about the function of the central portion of the second intracellular loop (i2 loop) of peptide receptors in activation of downstream pathways and receptor modulatory processes such as receptor internalization or chronic down-regulation (DR). Recent data suggest a role for i2 loop hydrophobic amino acids in these processes. We used site-directed mutagenesis to address these issues with the gastrin-releasing peptide receptor (GRP-R). Each i2 loop residue from 142 to 148 was mutated and the receptors were expressed in Balb 3T3 cells. Two mutants showed a minimal (<2-fold) decrease in affinity. Five mutants showed decreased efficacy for activating phospholipase C (PLC). Two double mutants (IM143.147AA and VM144.147AA) showed a minimal decrease in affinity but had a decreased ability to fully activate PLC. Only the IM double mutation had decreased maximal internalization, whereas the R145A single mutant showed an increase, suggesting a tonic inhibitory role for Arg-145 in internalization. Three single and both double mutants showed decreases in receptor DR. There was a weak correlation between the extent of GRP-R internalization and the maximal PLC activation, whereas changes in the maximal PLC activation were significantly (p = 0.008) coupled to receptor DR. This study shows that amino acids of the i2 loop of the GRP-R are important in activation of PLC, internalization and down-regulation, but not for affinity. Our results support the proposal that internalization and chronic down-regulation have differing dependence on PLC and are largely independent processes, because some mutants showed no changes in internalization, but significant alterations in down-regulation.
Collapse
Affiliation(s)
- Michael Schumann
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 10, Rm. 9C-103, 10 Center Drive, MSC 1804, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Sadee W, Hoeg E, Lucas J, Wang D. Genetic variations in human G protein-coupled receptors: implications for drug therapy. AAPS PHARMSCI 2001; 3:E22. [PMID: 11741273 PMCID: PMC2751017 DOI: 10.1208/ps030322] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Numerous genes encode G protein-coupled receptors (GPCRs)-a main molecular target for drug therapy. Estimates indicate that the human genome contains approximately 600 GPCR genes. This article addresses therapeutic implications of sequence variations in GPCR genes. A number of inactivating and activating receptor mutations have been shown to cause a variety of (mostly rare) genetic disorders. However, pharmacogenetic and pharmacogenomic studies on GPCRs are scarce, and therapeutic relevance of variant receptor alleles often remains unclear. Confounding factors in assessing the therapeutic relevance of variant GPCR alleles include 1) interaction of a single drug with multiple closely related receptors, 2) poorly defined binding pockets that can accommodate drug ligands in different orientations or at alternative receptor domains, 3) possibility of multiple receptor conformations with distinct functions, and 4) multiple signaling pathways engaged by a single receptor. For example, antischizophrenic drugs bind to numerous receptors, several of which might be relevant to therapeutic outcome. Without knowing accurately what role a given receptor subtype plays in clinical outcome and how a sequence variation affects drug-induced signal transduction, we cannot predict the therapeutic relevance of a receptor variant. Genome-wide association studies with single nucleotide polymorphisms could identify critical target receptors for disease susceptibility and drug efficacy or toxicity.
Collapse
Affiliation(s)
- W Sadee
- Department of Biopharmaceutical Sciences, University of California San Francisco, San Francisco CA 94143-0446, USA.
| | | | | | | |
Collapse
|
9
|
Nadler LS, Kumar G, Nathanson NM. Identification of a basolateral sorting signal for the M3 muscarinic acetylcholine receptor in Madin-Darby canine kidney cells. J Biol Chem 2001; 276:10539-47. [PMID: 11136723 DOI: 10.1074/jbc.m007190200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Muscarinic acetylcholine receptors (mAChRs) can be differentially localized in polarized cells. To identify potential sorting signals that mediate mAChR targeting, we examined the sorting of mAChRs in Madin-Darby canine kidney cells, a widely used model system. Expression of FLAG-tagged mAChRs in polarized Madin-Darby canine kidney cells demonstrated that the M(2) subtype is sorted apically, whereas M(3) is targeted basolaterally. Expression of M(2)/M(3) receptor chimeras revealed that a 21-residue sequence, Ser(271)-Ser(291), from the M(3) third intracellular loop contains a basolateral sorting signal. Substitution of sequences containing the M(3) sorting signal into the homologous regions of M(2) was sufficient to confer basolateral localization to this apical receptor. Sequences containing the M(3) sorting signal also conferred basolateral targeting to M(2) when added to either the third intracellular loop or the C-terminal cytoplasmic tail. Furthermore, addition of a sequence containing the M(3) basolateral sorting signal to the cytoplasmic tail of the interleukin-2 receptor alpha-chain caused significant basolateral targeting of this heterologous apical protein. The results indicate that the M(3) basolateral sorting signal is dominant over apical signals in M(2) and acts in a position-independent manner. The M(3) sorting signal represents a novel basolateral targeting motif for G protein-coupled receptors.
Collapse
Affiliation(s)
- L S Nadler
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195-7750, USA
| | | | | |
Collapse
|
10
|
Wang LD, Gantz I, Butler K, Hoeltzel M, Del Valle J. Histamine H2 receptor mediated dual signaling: mapping of structural requirements using beta2 adrenergic chimeric receptors. Biochem Biophys Res Commun 2000; 276:539-45. [PMID: 11027510 DOI: 10.1006/bbrc.2000.3507] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previously we demonstrated that the histamine H2 receptor can activate both the adenylate cyclase and phosphoinositide/protein kinase (PKC) signaling pathways. Although dual coupling occurs via separate GTP-dependent mechanisms the structural components of the H2 receptor directing differential signaling have not been established. We explored this question by attempting to confer to the beta2-adrenergic receptor (betaAR), which is known to stimulate cAMP formation, the ability to activate PKC through the construction of beta2/H2 chimeric receptors. Intracytoplasmic domains of the human beta2 adrenergic receptor were substituted with the corresponding sequences of the human H2 receptor and stably expressed in HEK-293 cells. Binding of [(3)H]-CGP to chimeric wild type beta2 receptors was comparable. Substitution of the second intracellular loop (2i) of the betaAR led to a significant decrease in coupling to adenylate cyclase while leading to a 139.5 +/- 9.4% control increase in epinephrine mediated PKC activation. Introduction of the H2 receptor 3i also led to a decrease in betaAR mediated cAMP generation but provided the latter with the ability to stimulate PKC (182.2 +/- 8% of control). Concomitant expression of both 2i and 3i led to a substantial increase in epinephrine mediated PKC activation (201.8 +/- 10.5% of control). Addition of the carboxyl terminal tail did not facilitate stimulation of PKC. In summary, the third intracellular loop of the H2 receptor plays an essential role in activating PKC with maximal efficiency conferred by the second intracellular domain.
Collapse
Affiliation(s)
- L D Wang
- Department of Internal Medicine and Surgery, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
11
|
Pak Y, O'Dowd BF, Wang JB, George SR. Agonist-induced, G protein-dependent and -independent down-regulation of the mu opioid receptor. The receptor is a direct substrate for protein-tyrosine kinase. J Biol Chem 1999; 274:27610-6. [PMID: 10488100 DOI: 10.1074/jbc.274.39.27610] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mu opioid receptor (MOR) has been shown to desensitize after 1 h of exposure to the opioid peptide, [D-Ala(2), N-MePhe(4), Gly-ol(5)]enkephalin (DAMGO), largely by the loss of receptors from the cell surface and receptor down-regulation. We have previously shown that the Thr(394) in the carboxyl tail is essential for agonist-induced early desensitization, presumably by serving as a primary phosphorylation site for G protein-coupled receptor kinase. Using a T394A mutant receptor, we determined that Thr(394) was also responsible for mu opioid receptor down-regulation. The T394A mutant receptor displayed 50% reduction of receptor down-regulation (14.8%) compared with wild type receptor (34%) upon 1 h of exposure to DAMGO. Agonist-induced T394A receptor down-regulation was unaffected by pertussis toxin treatment, indicating involvement of a mechanism independent of G protein function. Interestingly, pertussis toxin-insensitive T394A receptor down-regulation was completely inhibited by a tyrosine kinase inhibitor, genistein. Tyrosine kinase inhibition blocked wild type MOR down-regulation by 50%, and the genistein-resistant wild type MOR down-regulation was completely pertussis toxin-sensitive. Following DAMGO stimulation, MOR was shown to be phosphorylated at tyrosine residue(s), indicating that the receptor was a direct substrate for tyrosine kinase action. Mutagenesis of the four intracellular tyrosine residues resulted in complete inhibition of the G protein-insensitive MOR internalization. Therefore, agonist-induced MOR down-regulation appears to be mediated by two distinct cellular signal transduction pathways. One is G protein-dependent and GRK-dependent, which can be abolished by pertussis toxin treatment of wild type MOR or by mutagenesis of Thr(394). The other novel pathway is G protein-independent but tyrosine kinase-dependent, blocked by genistein treatment, and one in which Thr(394) has no regulatory role but phosphorylation of tyrosine residues appears essential.
Collapse
Affiliation(s)
- Y Pak
- Department of Pharmacology, University of Toronto, Ontario M5S 1A8, Canada
| | | | | | | |
Collapse
|
12
|
Mhaouty-Kodja S, Barak LS, Scheer A, Abuin L, Diviani D, Caron MG, Cotecchia S. Constitutively active alpha-1b adrenergic receptor mutants display different phosphorylation and internalization features. Mol Pharmacol 1999; 55:339-47. [PMID: 9927627 DOI: 10.1124/mol.55.2.339] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We compared the phosphorylation and internalization properties of constitutively active alpha-1b adrenergic receptor (AR) mutants carrying mutations in two distant receptor domains, i.e., at A293 in the distal part of the third intracellular loop and at D142 of the DRY motif lying at the end of the third transmembrane domain. For the A293E and A293I mutants the levels of agonist-independent phosphorylation were 150% and 50% higher than those of the wild-type alpha-1b AR, respectively. On the other hand, for the constitutively active D142A and D142T mutants, the basal levels of phosphorylation were similar to those of the wild-type alpha-1b AR and did not appear to be further stimulated by epinephrine. Overexpression of the guanyl nucleotide binding regulatory protein-coupled receptor kinase GRK2 further increases the basal phosphorylation of the A293E mutant, but not that of D142A mutant. Both the wild-type alpha-1b AR and the A293E mutant could undergo beta-arrestin-mediated internalization. The epinephrine-induced internalization of the constitutively active A293E mutant was significantly higher than that of the wild-type alpha-1b AR. In contrast, the D142A mutant was impaired in its ability to interact with beta-arrestin and to undergo agonist-induced internalization. Interestingly, a double mutant A293E/D142A retained very high constitutive activity and regulatory properties of both the A293E and D142A receptors. These findings demonstrate that two constitutively activating mutations occurring in distant receptor domains of the alpha-1b AR have divergent effects on the regulatory properties of the receptor.
Collapse
Affiliation(s)
- S Mhaouty-Kodja
- Institut de Pharmacologie et de Toxicologie, Faculté de Médecine, 1005 Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Molecular cloning studies have shown that G-protein-coupled receptors form one of the largest protein families found in nature, and it is estimated that approximately 1000 different such receptors exist in mammals. Characteristically, when activated by the appropriate ligand, an individual receptor can recognize and activate only a limited set of the many structurally closely related heterotrimeric G-proteins expressed within a cell. To understand how this selectivity is achieved at a molecular level has become the focus of an ever increasing number of laboratories. This review provides an overview of recent structural, molecular genetic, biochemical, and biophysical studies that have led to novel insights into the molecular mechanisms governing receptor-mediated G-protein activation and receptor/G-protein coupling selectivity.
Collapse
Affiliation(s)
- J Wess
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
14
|
Valdenaire O, Vernier P. G protein coupled receptors as modules of interacting proteins: a family meeting. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 1997; 49:173-218. [PMID: 9388388 DOI: 10.1007/978-3-0348-8863-9_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
15
|
Ciruela F, McIlhinney RA. Differential internalisation of mGluR1 splice variants in response to agonist and phorbol esters in permanently transfected BHK cells. FEBS Lett 1997; 418:83-6. [PMID: 9414100 DOI: 10.1016/s0014-5793(97)01353-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The internalisation of metabotropic glutamate receptor (mGluR1alpha) and its splice variant (mGluR1beta), in response to agonist and phorbol esters (PMA), has been studied. Both mGluR1alpha and mGluR1beta exhibit a similar rate of internalisation following PMA treatment, with a shift in their distribution from plasma membrane to endosome-enriched membrane fractions. Agonist challenge however caused a rapid loss, within 5-10 min, of mGluR1beta but not mGluR1alpha from the cell surface. These results show that the two forms of mGluR1 show different internalisation responses to agonist and suggest that the C-terminal region of the molecule plays an important role in this phenomenon.
Collapse
Affiliation(s)
- F Ciruela
- Medical Research Council Anatomical Neuropharmacology Unit, Oxford, UK
| | | |
Collapse
|
16
|
Monteclaro FS, Arai H, Charo IF. Molecular approaches to identifying ligand binding and signaling domains of C-C chemokine receptors. Methods Enzymol 1997; 288:70-84. [PMID: 9356988 DOI: 10.1016/s0076-6879(97)88008-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The construction of chimeric receptors provides a useful starting point for the identification of ligand-binding and G-protein-coupling sites on chemokine receptors. Correlation of the binding and signaling properties of a set of complementary receptor chimeras is a powerful approach for probing structure-function relationships. Further molecular resolution can subsequently be achieved by site-directed mutagenesis and/or alanine scanning.
Collapse
Affiliation(s)
- F S Monteclaro
- Gladstone Institute of Cardiovascular Disease, University of California, San Francisco 94141, USA
| | | | | |
Collapse
|
17
|
Le Gouill C, Parent JL, Rola-Pleszczynski M, Stanková J. Structural and functional requirements for agonist-induced internalization of the human platelet-activating factor receptor. J Biol Chem 1997; 272:21289-95. [PMID: 9261140 DOI: 10.1074/jbc.272.34.21289] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The receptor for platelet-activating factor (PAF) is a member of the G-protein-coupled receptor family. To study the structural elements and mechanisms involved in the internalization of human PAF receptor (hPAFR), we used the following mutants: a truncated mutant in the C-terminal tail of the receptor (Cys317 --> Stop) and mutations in the (D/N)P(X)2,3Y motif (Asp289 --> Asn,Ala and Tyr293 --> Phe,Ala). Chinese hamster ovary cells expressing the Cys317 --> Stop mutant exhibited a marked reduction in their capacity to internalize PAF, suggesting the existence of determinants important for endocytosis in the last 26 amino acids of the cytoplasmic tail. Substitution of Asp289 to alanine abolished both internalization and G-protein coupling, whereas substitution of Tyr293 to alanine abolished coupling but not internalization. Inhibition or activation of protein kinase C did not significantly affect the internalization process. Receptor sequestration and ligand uptake was, at least in part, blocked by concanavalin A and blockers of endocytosis mediated by clathrin-coated pits. Our data suggest that the internalization of a G-protein-coupled receptor and coupling to a G-protein can be two independent events. Moreover, the C terminus tail of hPAFR, but not the putative internalization motifs, may be involved in the internalization of hPAFR.
Collapse
Affiliation(s)
- C Le Gouill
- Immunology Division, Department of Pediatrics, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | | | | | | |
Collapse
|
18
|
Lázari MF, Porto CS, Freymüller E, Abreu LC, Picarelli ZP. Receptor-mediated endocytosis of angiotensin II in rat myometrial cells. Biochem Pharmacol 1997; 54:399-408. [PMID: 9278099 DOI: 10.1016/s0006-2952(97)00194-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The events involved in the processing of the angiotensin II (Ang II)-receptor complex were studied in primary cultures of rat myometrial cells. Ang II bound to rat myometrial cells in a specific, time- and temperature-dependent fashion. Pretreatment with cycloheximide did not interfere with binding up to 3 hr, but inhibited increases in binding observed over longer periods. The [3H]Ang II binding to intact cells was inhibited by dithiothreitol (DTT), and the rank order of potency of Ang II and nonpeptide antagonists to inhibit the [3H]Ang II binding was Ang II > Losartan >> PD 123319 or CGP 42112B, indicating the presence of the AT1 receptor type. Whereas most of the [3H]Ang II binding at 4 degrees was susceptible to acid or pronase treatment, binding at 35 degrees was resistant to both treatments, suggesting an internalization of the Ang II-receptor complex. Phenylarsine oxide (PAO) and N-ethylmaleimide (NEM) caused a concentration-dependent inhibition when the binding assay was performed at 35 degrees, but no effect was observed at 4 degrees, indicating that these agents did not alter cell-surface binding but actually prevented the internalization process. Simultaneous treatment with 1 mM DTT or beta-mercaptoethanol prevented the inhibitory effect of NEM, but only DTT could prevent the inhibition caused by PAO, indicating that two closely located sulfhydryl groups must be involved in the internalization process. Chloroquine (100 microM) inhibited the [3H]Ang II dissociation from cells, and monensin (25 microM) induced a 30% inhibition of [3H]Ang II binding (35 degrees, 3 hr), suggesting endosomal processing of the Ang II-receptor complex with receptor recycling to the cell surface. These results indicate that Ang II binding to AT1 receptors in rat myometrial cells is followed by internalization of the Ang II-receptor complex and recycling of the receptor to the cell surface.
Collapse
Affiliation(s)
- M F Lázari
- Laboratory of Pharmacology, Instituto Butantan, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
19
|
Iida-Klein A, Guo J, Takemura M, Drake MT, Potts JT, Abou-Samra A, Bringhurst FR, Segre GV. Mutations in the second cytoplasmic loop of the rat parathyroid hormone (PTH)/PTH-related protein receptor result in selective loss of PTH-stimulated phospholipase C activity. J Biol Chem 1997; 272:6882-9. [PMID: 9054374 DOI: 10.1074/jbc.272.11.6882] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
To define the structural requirements of the parathyroid hormone (PTH)/PTH-related protein (PTHrP) receptor necessary for activation of phospholipase C (PLC), receptors with random mutations in their second cytoplasmic loop were synthesized, and their properties were assessed. A mutant in which the wild type (WT) rat PTH/PTHrP receptor sequence EKKY (amino acids 317-320) was replaced with DSEL had little or no PTH-stimulated PLC activity when expressed transiently in COS-7 cells, but it retained full capacity to bind ligand and to generate cAMP. This phenotype was confirmed in LLC-PK1 cells stably expressing the DSEL mutant receptor, where both PTH-stimulated PLC activity and sodium-dependent phosphate co-transport were essentially abolished. Individual mutations of these four residues point to a critical role for Lys-319 in receptor-G protein coupling. PTH-generated IPs were reduced to 27 +/- 13% when K319E, compared with the WT receptor, and PLC activation was fully recovered in a receptor revertant in which Glu-319 in the DSEL mutant cassette was restored to the WT residue, Lys. Moreover, the WT receptor and a mutant receptor in which K319R had indistinguishable properties, thus suggesting that a basic amino acid at this position may be important for PLC activation. All of these receptors had unimpaired capacity to bind ligand and to generate cAMP. To ensure adequacy of Galphaq-subunits for transducing the receptor signal, Galphaq was expressed in HEK293 and in LLC-PK1 cells together with either WT receptors or receptors with the DSEL mutant cassette. PTH generated no inositol phosphates (IPs) in either HEK293 or LLC-PK1 cells, when they expressed DSEL mutant receptors together with Galphaq. In contrast, PTH generated 2- and 2. 5-fold increases in IPs, respectively, when these cells co-expressed both the WT receptor and Galphaq. Thus, generation of IPs by the activated PTH/PTHrP receptor can be selectively abolished without affecting its capacity to generate cAMP, and Lys-319 in the second intracellular loop is critical for activating the PLC pathway. Moreover, alpha-subunits of the Gq family, rather than betagamma-subunits, transduce the signal from the activated receptor to PLC, and the PLC, rather than the adenylyl cyclase, pathway mediates sodium-dependent phosphate co-transport in LLC-PK1 cells.
Collapse
Affiliation(s)
- A Iida-Klein
- Endocrine Unit, Massachusetts General Hospital and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Lu ZL, Curtis CA, Jones PG, Pavia J, Hulme EC. The role of the aspartate-arginine-tyrosine triad in the m1 muscarinic receptor: mutations of aspartate 122 and tyrosine 124 decrease receptor expression but do not abolish signaling. Mol Pharmacol 1997; 51:234-41. [PMID: 9203628 DOI: 10.1124/mol.51.2.234] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
An Asp-Arg-Tyr triad occurs in a majority of rhodopsin-like G protein-coupled receptors. The fully conserved Arg is critical for G protein activation, but the function of the flanking residues is not well understood. We expressed in COS-7 cells m1 muscarinic receptors that were mutated at Asp122 and Tyr124. Most mutations at either position strongly attenuated or prevented the expression of binding sites for the antagonist [3H]N-methylscopolamine. However, sites that were expressed displayed unaltered affinity for the antagonist. Receptor protein, visualized with a carboxyl-terminally directed antibody, was reduced but never completely abolished. The effects of these mutations were partially reversed by the deletion of 129 amino acids from the third intracellular loop of the receptor. In several cases, comparison of immunocytochemistry with binding measurements suggested the presence of substantial amounts of inactive, presumably misfolded, receptor protein. Some of the variants that bound [3H]N-methylscopolamine underwent small changes in their affinities for acetylcholine. All retained nearly normal abilities to mediate an acetylcholine-induced phosphoinositide response. We propose that Asp122 and Tyr124 make intramolecular contacts whose integrity is important for efficient receptor folding but that they do not participate directly in signaling. The role of these residues is completely distinct from that of Arg123, whose mutation abolishes signaling without diminishing receptor expression.
Collapse
Affiliation(s)
- Z L Lu
- Division of Physical Biochemistry, Medical Research Council National Institute for Medical Research, London, UK
| | | | | | | | | |
Collapse
|
21
|
Ferguson SSG, Barak LS, Zhang J, Caron MG. G-protein-coupled receptor regulation: role of G-protein-coupled receptor kinases and arrestins. Can J Physiol Pharmacol 1996. [DOI: 10.1139/y96-124] [Citation(s) in RCA: 234] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Goldman PS, Schlador ML, Shapiro RA, Nathanson NM. Identification of a region required for subtype-specific agonist-induced sequestration of the m2 muscarinic acetylcholine receptor. J Biol Chem 1996; 271:4215-22. [PMID: 8626765 DOI: 10.1074/jbc.271.8.4215] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
When the m1 and m2 muscarinic acetylcholine receptors are transiently expressed in JEG-3 cells, the m2, but not the m1, receptor undergoes agonist-induced sequestration. Both receptors exhibit internalization when expressed in Y1 cells. These results suggest that the m1 and m2 receptors use distinct cellular mechanisms or pathways for agonist-induced internalization and that JEG-3 cells are deficient in the mechanism or pathway used by the m1 receptor. Transfection experiments with chimeric receptors indicate that the specificity for agonist-induced internalization for the m2 receptor lies in the carboxyl-terminal fifth of the receptor. The intracellular carboxyl-terminal tail of the m2 receptor is neither sufficient nor required for the m2-specific sequestration. Site-directed mutagenesis demonstrates that two amino acids in the carboxyl-terminal end of the third cytoplasmic loop of the m2 receptor are required for sequestration in JEG-3 cells. In addition, the sixth transmembrane domain, which is adjacent to this cytoplasmic domain, is also required. Thus, m2-specific agonist-induced sequestration requires sequences both in the carboxyl-terminal end of the third cytoplasmic loop and the adjacent transmembrane domain.
Collapse
Affiliation(s)
- P S Goldman
- Department of Pharmacology, University of Washington, Seattle, Washington 98195-7750, USA
| | | | | | | |
Collapse
|
23
|
[12] Cloning and site-directed mutagenesis studies of gonadotropin-releasing hormone receptor. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1043-9471(96)80048-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
24
|
Haga T, Haga K, Kameyama K, Tsuga H. G protein-coupled receptor kinase: phosphorylation of muscarinic receptors and facilitation of receptor sequestration. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1996; 36:173-91. [PMID: 8783560 DOI: 10.1016/s1054-3589(08)60582-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- T Haga
- Department of Biochemistry, Faculty of Medicine, University of Tokyo, Japan
| | | | | | | |
Collapse
|
25
|
Van Koppen CJ, Lenz W, Nunes JP, Zhang C, Schmidt M, Jakobs KH. The role of membrane proximal threonine residues conserved among guanine-nucleotide-binding-protein-coupled receptors in internalization of the m4 muscarinic acetylcholine receptor. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 234:536-41. [PMID: 8536700 DOI: 10.1111/j.1432-1033.1995.536_b.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Many guanine-nucleotide-binding-protein-coupled receptors contain consensus sequences for phosphorylation by cAMP-dependent protein kinase (PKA), often located in the membrane proximal regions critically important for receptor signalling. In the present study, we have evaluated by site-directed mutagenesis the role of the putative PKA phosphorylation sites in the m4 muscarinic acetylcholine receptor (mAChR), i.e. Thr145 in the second cytoplasmic loop and Thr399 in the third cytoplasmic loop, and the influence of PKA on m4 mAChR function and internalization. Antagonist binding was unaltered by any of the mutations studied, while the agonist-binding affinity was either not affected (Thr145 alanine), increased (Thr399 alanine) or decreased (Thr399 serine or aspartic acid). m4 mAChR-mediated inhibition of adenylyl cyclase was unaltered by the mutations, except for an approximately tenfold reduced agonist potency of the Thr399 aspartic acid mutated receptor. Agonist-induced receptor internalization was unaltered with Thr399 serine or aspartic acid mutations of the receptors, but was strongly decreased in its rate and extent upon replacement of Thr399, Thr145 or both of these residues with alanine. These mutational effects could not be reproduced by treatment of wild-type receptor-expressing cells with the PKA inhibitor H-8. Furthermore, maximal stimulation of cellular PKA neither affected receptor internalization nor signalling measured as receptor-mediated Ca2+ mobilization. We conclude that the membrane proximal threonine residues of the m4 mAChR are not required for receptor signalling, but replacement by alanine residues can significantly affect receptor internalization, independently of PKA phosphorylation. Sequence comparisons suggest that threonine residues at corresponding positions may be relevant to internalization of other guanine-nucleotide-binding-protein-coupled receptors.
Collapse
Affiliation(s)
- C J Van Koppen
- Institut für Pharmakologie, Universität GH Essen, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Arora KK, Sakai A, Catt KJ. Effects of second intracellular loop mutations on signal transduction and internalization of the gonadotropin-releasing hormone receptor. J Biol Chem 1995; 270:22820-6. [PMID: 7559413 DOI: 10.1074/jbc.270.39.22820] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The gonadotropin-releasing hormone (GnRH) receptor belongs to the superfamily of heptahelical G protein coupled receptors, most of which have a highly conserved DRYXXV/IXXPL sequence in the second intracellular (2i) loop that has been implicated in G protein coupling. The predicted 2i loop of the GnRH receptor contains serine rather than tyrosine in the DRY sequence but retains the conserved hydrophobic Leu residue, which is required for G protein coupling and internalization of muscarinic receptors. The present study examined the effects of mutating the unique Ser140 to the conserved Tyr, and the conserved Leu147 to Ala or Asp, on agonist binding, internalization, and signal transduction. The S140Y mutant showed a 100% increase in agonist binding affinity, and its internalization was increased by 60% above that of the wild-type receptor. The binding characteristics of the Leu147 mutants were indistinguishable from those of the wild-type receptor, but their internalization was reduced by about 50%. The L147A and L147D mutants also showed significant impairment of GnRH-stimulated inositol phosphate production. These findings demonstrate that substitution of Ser140 by Tyr does not affect G protein coupling but significantly increases receptor affinity and internalization rate. In contrast, replacement of a conserved aliphatic residue (Leu147) impairs both G protein coupling and agonist-induced receptor internalization.
Collapse
Affiliation(s)
- K K Arora
- Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
27
|
Tseng MJ, Detjen K, Struk V, Logsdon CD. Carboxyl-terminal domains determine internalization and recycling characteristics of bombesin receptor chimeras. J Biol Chem 1995; 270:18858-64. [PMID: 7642540 DOI: 10.1074/jbc.270.32.18858] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
To investigate the role of the carboxy terminus in the regulation of the bombesin (BN) receptor, we constructed two chimeric receptors with carboxyl termini transferred from either m3 muscarinic cholinergic (m3 ACh) (BMC) or cholecystokinin A (CCKA) (BCC) receptors and expressed them in Chinese hamster ovary cells. Previous studies showed that agonist treatment caused rapid internalization of CCKA but not m3 ACh receptors in these cells. In the current study we conducted separate analyses of ligand and receptor internalization and analyzed receptor recycling. Ligand internalization was assessed using acid washing. BN and CCKA receptors internalized ligand with 80 +/- 3 and 85 +/- 7% in an acid-resistant compartment at equilibrium. Ligand internalization of chimeric receptors generally assumed the properties of the donor receptors. Thus, BCC receptors internalized ligand to a similar extent as wild-type CCKA receptors (75 +/- 3%), whereas, BMC receptors showed reduced ligand internalization (38 +/- 1%). Receptor internalization was more directly assessed by determining agonist-induced loss of surface binding. BN and CCKA receptors were largely internalized (56 +/- 8 and 50 +/- 7%, respectively). BCC receptors were also extensively internalized (82 +/- 3%). In contrast, BMC receptors were minimally internalized (22 +/- 8%). Receptor recycling was assessed as recovery from agonist induced loss of binding. BN, CCKA, and BMC receptors showed rapid recycling. In contrast, BCC receptors did not recycle. These data indicate that carboxyl-terminal structures determine both internalization of ligand-receptor complexes and subsequent receptor recycling.
Collapse
Affiliation(s)
- M J Tseng
- Department of Physiology, University of Michigan, Ann Arbor 48109-0622, USA
| | | | | | | |
Collapse
|
28
|
Tseng MJ, Coon S, Stuenkel E, Struk V, Logsdon CD. Influence of second and third cytoplasmic loops on binding, internalization, and coupling of chimeric bombesin/m3 muscarinic receptors. J Biol Chem 1995; 270:17884-91. [PMID: 7629092 DOI: 10.1074/jbc.270.30.17884] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In order to investigate the molecular basis for differences in the characteristics of bombesin (Bn) and m3 muscarinic cholinergic (m3 ACh) receptors, chimeric Bn receptors possessing cytoplasmic domains from the m3 ACh receptor were produced. The receptors were expressed in CHO-K1 cells and binding, structural, and signal transduction characteristics were analyzed. Cell lines bearing chimeric Bn receptors possessing m3 ACh receptor domains in place of either the second cytoplasmic loop (BM2L), the third cytoplasmic loop (BM3L), or both loops (BM23L) each bound 125I-bombesin with a single affinity that was approximately the same as that of the Bn receptor (5-10 nM). However, Bn receptors possessing the m3 ACh third cytoplasmic loop were severely affected in other respects. Internalization of ligand in Bn and BM2L cells was rapid and extensive (> 80% of bound 125I-bombesin was acid-resistant). In contrast, internalization was dramatically reduced in BM3L and BM23L cells (approximately 20% of bound 125I-bombesin was acid-resistant). In Bn or BM2L cells 10 nM bombesin stimulated approximately 10-fold increases in phosphatidylinositol hydrolysis. Activation of Bn receptors also induced an increase in arachidonic acid release (478 +/- 32% of control, n = 3) and large increases in intracellular Ca2+. In contrast, in BM3L or BM23L cells, bombesin had no significant effect on phosphatidylinositol hydrolysis. Furthermore, BM3L receptor activation did not increase arachidonic acid release. However, BM3L and BM23L cells showed a small increase in intracellular Ca2+ at high concentrations of bombesin. These data indicate that the third cytoplasmic loop alone, or together with the second cytoplasmic loop, was not sufficient to transfer the characteristics of G protein interaction between m3 ACh and bombesin receptors. Furthermore, for the Bn receptor, ligand internalization does, whereas formation of the high affinity binding state does not, appear to require activation of G proteins.
Collapse
Affiliation(s)
- M J Tseng
- Department of Physiology, University of Michigan, Ann Arbor 48109-0622, USA
| | | | | | | | | |
Collapse
|
29
|
Mueller SG, Schraw WP, Richmond A. Activation of protein kinase C enhances the phosphorylation of the type B interleukin-8 receptor and stimulates its degradation in non-hematopoietic cells. J Biol Chem 1995; 270:10439-48. [PMID: 7737978 DOI: 10.1074/jbc.270.18.10439] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have previously characterized the stably transfected, clonally selected human placental cell line, 3ASubE P-3, which overexpresses the type B interleukin-8 receptor (IL-8RB) and responds to the chemokine melanoma growth stimulatory activity (MGSA) with enhanced phosphorylation of this receptor. In work described here, we demonstrate that the MGSA-enhanced phosphorylation of this receptor is mediated via a process involving pertussis toxin-sensitive G proteins. Furthermore, treatment of the 3ASubE P-3 cells with either 12-O-tetradecanoylphorbol 13-acetate (TPA) or 1,2-dioctanoyl-sn-glycerol (diC8), two different activators of protein kinase C (PKC), results in a concentration-dependent increase in the phosphorylation of the IL-8RB. Inhibition of PKC, by treatment with staurosporin (50 nM for 2 h), or down-regulation of PKC, by prolonged treatment with TPA (400 nM for 40 h) suppresses the TPA-enhanced receptor phosphorylation, but has no effect on the MGSA-enhanced receptor phosphorylation. These data suggest that the isoforms of PKC that are sensitive to these manipulations may not play a role in mediating the MGSA-enhanced phosphorylation of the IL-8RB. TPA treatment also results in a time-dependent decrease in 125I-MGSA binding to the 3ASubE P-3 cells. A 30-min treatment with 400 nM TPA results in approximately a 50% decrease in binding, whereas a 2-h treatment essentially eliminates specific binding of 125I-MGSA to these cells. The TPA-induced decrease in 125I-MGSA binding is accompanied by enhanced degradation of the IL-8RB, as indicated by Western blot analysis and pulse-chase experiments, suggesting a potential role for PKC as a negative regulator of the IL-8RB. MGSA treatment (50 nM for 2 h) also stimulates receptor degradation in the 3ASubE P-3 cells, indicating that this receptor is down-regulated in response to prolonged exposure to its ligand. In similar studies conducted on the promonocytic cell line, U937, MGSA treatment of the U937 cells resulted in receptor phosphorylation, whereas PKC activation failed to significantly modulate the phosphorylation state of the IL-8RB. Treatment of the U937 cells with MGSA, TPA, or diC8 resulted in a loss of receptor protein present in these cell types. These data imply that MGSA signaling through the IL-8RB is similar in both the non-hematopoietic and hematopoietic cell types, whereas activation of PKC by TPA or diC8 elicits different responses in these two distinct cell types.
Collapse
Affiliation(s)
- S G Mueller
- Department of Cell Biology, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
30
|
Högger P, Shockley MS, Lameh J, Sadée W. Activating and inactivating mutations in N- and C-terminal i3 loop junctions of muscarinic acetylcholine Hm1 receptors. J Biol Chem 1995; 270:7405-10. [PMID: 7706286 DOI: 10.1074/jbc.270.13.7405] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The N- and C-terminal junctions of the third intracellular loop (i3) of G protein-coupled receptors play a role in the coupling process. We had previously constructed two triple point alanine mutants of the i3 junction of the muscarinic Hm1 receptor, W209A/I211A/Y212A and E360A/K362A/T366A, which are defective in mediating carbachol stimulation of phosphatidylinositol (PI) turnover (Moro, O., Lameh, J., Högger, P., and Sadée, W. (1993) J. Biol. Chem. 268, 22273-22276). Each of the corresponding six single point mutations were constructed to determine residues crucial to receptor coupling. Mutants W209A and T366A were similar to or only slightly less effective than wild type Hm1 in stimulating PI turnover. In the N-terminal junction, I211A and Y212A were defective in coupling, and I211A was even more defective than the corresponding triple mutant. Therefore, the triple mutation compensated at least partially for the effect of these two single point mutations. In the C-terminal i3 loop junction, mutant K362A was again more strongly defective than the corresponding triple mutant. In contrast, mutation E360A was found to be activating, leading to elevated PI turnover in the absence of agonist and sensitization toward carbachol activation. Activating mutations in the C-terminal i3 loop junction have been reported previously for the adrenergic receptors, but E360A represents the first muscarinic receptor with substantial basal activity. The effects of the single point mutations observed in this study were not readily predictable from similar mutations from closely related G protein-coupled receptors despite sequence conservation in the i3 loop junctions. Our results caution against defining precise coupling domains in these regions by mutagenesis results.
Collapse
Affiliation(s)
- P Högger
- Department of Pharmacy, University of California, San Francisco 94143-0446, USA
| | | | | | | |
Collapse
|
31
|
Vouret-Craviari V, Auberger P, Pouysségur J, Van Obberghen-Schilling E. Distinct mechanisms regulate 5-HT2 and thrombin receptor desensitization. J Biol Chem 1995; 270:4813-21. [PMID: 7533166 DOI: 10.1074/jbc.270.9.4813] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We have compared the desensitization of two receptors, the thrombin receptor which displays dual coupling to both pertussis toxin-sensitive (Gi) and -insensitive (Gq) proteins and the serotonin type 2 (5-HT2) receptor which selectively couples to Gq. In the case of the thrombin receptor, cleavage induces activation and irreversible receptor modification followed by rapid (T1/2 = 3 min) and extensive desensitization of the receptor's ability to modulate phospholipase C (Gq). 5-HT-induced desensitization of its receptor is markedly slower (T1/2 = 10 min) and by 60 min only 50% of the phospholipase C response is lost. This effect occurs with a parallel disappearance of 5-HT receptors from the cell surface. Whole cell phosphorylation studies showed that the thrombin receptor is rapidly phosphorylated upon activation. In contrast, the 5-HT2 receptor displays a low basal level of phosphorylation which is not increased upon agonist treatment. The cytoplasmic tail of the 5-HT2 receptor which contains several protein kinase consensus sequences was found not to be involved in receptor activation or desensitization. However, a chimeric receptor having the core of the 5-HT2 receptor and the cytoplasmic tail of the thrombin receptor was able to undergo 5-HT-induced desensitization and phosphorylation. These results indicate that (i) both 5-HT2 and thrombin receptors have unique shut-off mechanisms, and (ii) that sequences in the carboxyl terminus of the thrombin receptor are sufficient to trigger rapid uncoupling of the receptor from its G protein(s) and downstream effector(s).
Collapse
|
32
|
Huang Z, Chen Y, Nissenson RA. The cytoplasmic tail of the G-protein-coupled receptor for parathyroid hormone and parathyroid hormone-related protein contains positive and negative signals for endocytosis. J Biol Chem 1995; 270:151-6. [PMID: 7814366 DOI: 10.1074/jbc.270.1.151] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The present studies were done to evaluate the role of the cytoplasmic tail of the G-protein-coupled receptor for parathyroid hormone (PTH) and PTH-related protein (PTHrP) in the endocytosis of agonist-occupied receptors. PTH/PTHrP receptor mutants progressively truncated from the C terminus were expressed in COS-7 cells, and their ability to internalize 125I-PTHrP(1-34)amide was determined. Most of the C-terminal tail (91 of 127 residues) could be deleted without affecting internalization. However, further truncation removing residues 475-494 resulted in a 50-60% decrease in ligand internalization. A mutant with an internal deletion of these 20 amino acids showed a similar reduction in internalization, confirming the presence of a positive endocytic signal. No additional positive signals were found in the membrane-proximal region of the tail. However, alanine mutagenesis of the membrane-proximal residues 459-461 (EVQ-->AAA) resulted in a mutant PTH/PTHrP receptor displaying a 40% increase in ligand endocytosis, indicating that EVQ functions as a negative signal. Treatment of COS-7 cells with hypertonic sucrose (to disrupt clathrin lattices) markedly suppressed (by > 80%) PTH/PTHrP receptor internalization. These results demonstrate the presence of both positive and negative endocytic signals in the membrane-proximal cytoplasmic tail of the PTH/PTHrP receptor and suggest that these signals regulate the ability of the receptor to accumulate in clathrin-coated pits.
Collapse
Affiliation(s)
- Z Huang
- Endocrine Research Unit, Veterans Administration Medical Center, San Francisco, California
| | | | | |
Collapse
|
33
|
|
34
|
Hunyady L, Bor M, Balla T, Catt KJ. Identification of a cytoplasmic Ser-Thr-Leu motif that determines agonist-induced internalization of the AT1 angiotensin receptor. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)31704-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
35
|
Independence of type I angiotensin II receptor endocytosis from G protein coupling and signal transduction. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31462-x] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|