1
|
Saxena VK, Vedamurthy GV, Swarnkar CP, Kadam V, Onteru SK, Ahmad H, Singh R. De novo pathway is an active metabolic pathway of cysteine synthesis in Haemonchus contortus. Biochimie 2021; 187:110-120. [PMID: 34082042 DOI: 10.1016/j.biochi.2021.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 01/25/2023]
Abstract
Haemonchus contortus, commonly known as Barber's pole worm, is an economically important gastrointestinal nematode of sheep and goats especially in tropical and sub-tropical regions of the world. Cysteine synthesis is a very important metabolic pathway for the parasite, however the functional aspects of cysteine synthesis in parasite are largely unknown. The key question which we have investigated in the study is; whether the parasite uses a de novo pathway of cysteine synthesis, which is unknown in multicellular organisms of the animal kingdom and known to be absent in mammals. Directional cloning of the cysteine synthase (CS) gene was done in pET303 champion vector using restriction sites XbaI and XhoI. The CS gene of the H.contortus was closely related to CS-A protein of Oesophagostomum dentatum and a hypothetical protein of Ancylostoma ceylanicum. Recombinant protein of the H contortus CS (rHC-CS) gene was expressed using pET303 vector in pLysS BL21 strain of E.coli and subsequently purified by Ni-NTA affinity chromatography. Western blot using anti-His tag antibody confirmed the presence of rHC-CS. Biochemical assay, FTIR and enzyme kinetics studies revealed that rHC-CS used O-acetyl serine as substrate to produce cysteine using de novo pathway and CS activity was also confirmed with the homogenate of H.contortus. Upregulation of CS transcripts in the adult and its downregulation in the L3 larval stage suggests that de novo pathway contributes to the cysteine requirement of mature H.contortus. It is concluded that de novo pathway is an active metabolic pathway in H.contortus.
Collapse
Affiliation(s)
- Vijay Kumar Saxena
- Molecular Physiology Laboratory, Division of Physiology and Biochemistry, Central Sheep and Wool Research Institute, ICAR-CSWRI, Avikanagar, Rajasthan, 304501, India.
| | - G V Vedamurthy
- Livestock Research Centre, Southren Regional Station, National Dairy Research Institute, ICAR-NDRI (SRS), Bengaluru, Karnataka, 560030, India
| | - C P Swarnkar
- Animal Health Division, Central Sheep and Wool Research Institute, ICAR-CSWRI, Avikanagar, Rajasthan, 304501, India
| | - Vinod Kadam
- Textile Manufacturing and Textile Chemistry Division, ICAR- Central Sheep and Wool Research Institute, Avikanagar, Rajasthan, 304501, India
| | - Suneel Kumar Onteru
- Animal Biochemistry Division, National Dairy Research Institute, ICAR-NDRI, Karnal, Haryana, 132001, India
| | - Haseen Ahmad
- Animal Biochemistry Division, National Dairy Research Institute, ICAR-NDRI, Karnal, Haryana, 132001, India
| | - Raghvendar Singh
- Molecular Physiology Laboratory, Division of Physiology and Biochemistry, Central Sheep and Wool Research Institute, ICAR-CSWRI, Avikanagar, Rajasthan, 304501, India
| |
Collapse
|
2
|
Pizzeghello D, Schiavon M, Francioso O, Dalla Vecchia F, Ertani A, Nardi S. Bioactivity of Size-Fractionated and Unfractionated Humic Substances From Two Forest Soils and Comparative Effects on N and S Metabolism, Nutrition, and Root Anatomy of Allium sativum L. FRONTIERS IN PLANT SCIENCE 2020; 11:1203. [PMID: 32922415 PMCID: PMC7457123 DOI: 10.3389/fpls.2020.01203] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/24/2020] [Indexed: 05/03/2023]
Abstract
Humic substances (HS) are powerful natural plant biostimulants. However, there is still a lack of knowledge about the relationship between their structure and bioactivity in plants. We extracted HS (THE1-2) from two forest soils covered with Pinus mugo (1) or Pinus sylvestris (2). The extracts were subjected to weak acid treatment to produce size-fractionated HS (high molecular size, HMS1-2; low molecular size, LMS1-2). HS were characterized for total acidity, functional groups, element and auxin (IAA) contents, and hormone-like activity. HS concentrations ranging from 0 to 5 mg C L-1 were applied to garlic (Allium sativum L.) plantlets in hydroponics to ascertain differences between unfractionated and size-fractionated HS in the capacity to promote mineral nutrition, root growth and cell differentiation, activity of enzymes related to plant development (invertase, peroxidase, and esterase), and N (nitrate reductase, glutamine synthetase) and S (O-acetylserine sulphydrylase) assimilation into amino acids. A positive linear dose-response relationship was determined for all HS in the range 0-1 mg C L-1, while higher HS doses were less effective or ineffective in promoting physiological-biochemical attributes of garlic. Bioactivity was higher for size-fractionated HS according to the trend LMS1-2>HMS1-2>THE1-2, with LMS2 and HMS2 being overall more bioactive than LMS1 and HMS1, respectively. LMS1-2 contained more N, oxygenated functional groups and IAA compared to THE1-2 and HMS1-2. Also, they exhibited higher hormone-like activities. Such chemical properties likely accounted for the greater biostimulant action of LMS1-2. Beside plant growth, nutrition and N metabolism, HS stimulated S assimilation by promoting the enrichment of garlic plantlets with the S amino acid alliin, which has recognized beneficial properties in human health. Concluding, this study endorses that i) treating THE with a weak acid produced sized-fractionated HS with higher bioactivity and differing in properties, perhaps because of novel molecular arrangements of HS components that better interacted with garlic roots; ii) LMS from forest soils covered with P. mugo or P. sylvestris were the most bioactive; iii) the cover vegetation affected HS bioactivity iv); HS stimulated N and S metabolism with relevant benefits to crop nutritional quality.
Collapse
Affiliation(s)
- Diego Pizzeghello
- Dipartimento di Agronomia, Animali, Alimenti, Risorse naturali e Ambiente, Università degli Studi di Padova, Legnaro, Italy
| | - Michela Schiavon
- Dipartimento di Agronomia, Animali, Alimenti, Risorse naturali e Ambiente, Università degli Studi di Padova, Legnaro, Italy
| | - Ornella Francioso
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Università di Bologna, Bologna, Italy
| | | | - Andrea Ertani
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università di Torino, Torino, Italy
| | - Serenella Nardi
- Dipartimento di Agronomia, Animali, Alimenti, Risorse naturali e Ambiente, Università degli Studi di Padova, Legnaro, Italy
| |
Collapse
|
3
|
Harun-Ur-Rashid M, Oogai S, Parveen S, Inafuku M, Iwasaki H, Fukuta M, Amzad Hossain M, Oku H. Molecular cloning of putative chloroplastic cysteine synthase in Leucaena leucocephala. JOURNAL OF PLANT RESEARCH 2020; 133:95-108. [PMID: 31828681 DOI: 10.1007/s10265-019-01158-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 12/02/2019] [Indexed: 05/14/2023]
Abstract
Cysteine biosynthesis is directed by the successive commitments of serine acetyltransferase, and O-acetylserine (thiol) lyase (OASTL) compounds, which subsequently frame the decameric cysteine synthase complex. The isoforms of OASTL are found in three compartments of the cell: the cytosol, plastid, and mitochondria. In this investigation, we first isolated putative chloroplastic OASTL (Ch-OASTL) from Leucaena leucocephala, and the Ch-OASTL was then expressed in BL21-competent Escherichia coli. The putative Ch-OASTL cDNA clone had 1,543 base pairs with 391 amino acids in its open reading frame and a molecular weight of 41.54 kDa. The purified protein product exhibited cysteine synthesis ability, but not mimosine synthesis activity. However, they both make the common α-aminoacrylate intermediate in their first half reaction scheme with the conventional substrate O-acetyl serine (OAS). Hence, we considered putative Ch-OASTL a cysteine-specific enzyme. Kinetic studies demonstrated that the optimum pH for cysteine synthesis was 7.0, and the optimum temperature was 40 °C. In the cysteine synthesis assay, the Km and kcat values were 838 ± 26 µM and 72.83 s-1 for OAS, respectively, and 60 ± 2 µM and 2.43 s-1 for Na2S, respectively. We can infer that putative Ch-OASTL regulatory role is considered a sensor for sulfur constraint conditions, and it acts as a forerunner of various metabolic compound molecules.
Collapse
Affiliation(s)
- Md Harun-Ur-Rashid
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Shigeki Oogai
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Shahanaz Parveen
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
- Molecular Biotechnology Group, Tropical Biosphere Research Center, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa, 903-0213, Japan
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Masashi Inafuku
- Molecular Biotechnology Group, Tropical Biosphere Research Center, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa, 903-0213, Japan
| | - Hironori Iwasaki
- Molecular Biotechnology Group, Tropical Biosphere Research Center, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa, 903-0213, Japan
| | - Masakazu Fukuta
- Department of Subtropical Biochemistry and Biotechnology, Graduate School of Agriculture, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa, 903-0213, Japan.
| | - Md Amzad Hossain
- Department of Subtropical Biochemistry and Biotechnology, Graduate School of Agriculture, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa, 903-0213, Japan
| | - Hirosuke Oku
- Molecular Biotechnology Group, Tropical Biosphere Research Center, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa, 903-0213, Japan
| |
Collapse
|
4
|
Cytosolic Cysteine Synthase Switch Cysteine and Mimosine Production in Leucaena leucocephala. Appl Biochem Biotechnol 2018; 186:613-632. [PMID: 29691793 DOI: 10.1007/s12010-018-2745-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 03/21/2018] [Indexed: 10/17/2022]
Abstract
In higher plants, multiple copies of the cysteine synthase gene are present for cysteine biosynthesis. Some of these genes also have the potential to produce various kinds of β-substitute alanine. In the present study, we cloned a 1275-bp cDNA for cytosolic O-acetylserine(thiol)lyase (cysteine synthase) (Cy-OASTL) from Leucaena leucocephala. The purified protein product showed a dual function of cysteine and mimosine synthesis. Kinetics studies showed pH optima of 7.5 and 8.0, while temperature optima of 40 and 35 °C, respectively, for cysteine and mimosine synthesis. The kinetic parameters such as apparent Km, kcat were determined for both cysteine and mimosine synthesis with substrates O-acetylserine (OAS) and Na2S or 3-hydroxy-4-pyridone (3H4P). From the in vitro results with the common substrate OAS, the apparent kcat for Cys production is over sixfold higher than mimosine synthesis and the apparent Km is 3.7 times lower, suggesting Cys synthesis is the favored pathway.
Collapse
|
5
|
Rashid MHU, Iwasaki H, Oogai S, Fukuta M, Parveen S, Hossain MA, Anai T, Oku H. Molecular characterization of cytosolic cysteine synthase in Mimosa pudica. JOURNAL OF PLANT RESEARCH 2018; 131:319-329. [PMID: 29181648 DOI: 10.1007/s10265-017-0986-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 09/21/2017] [Indexed: 06/07/2023]
Abstract
In the cysteine and mimosine biosynthesis process, O-acetyl-L-serine (OAS) is the common substrate. In the presence of O-acetylserine (thiol) lyase (OASTL, cysteine synthase) the reaction of OAS with sulfide produces cysteine, while with 3-hydroxy-4-pyridone (3H4P) produces mimosine. The enzyme OASTL can either catalyze Cys synthesis or both Cys and mimosine. A cDNA for cytosolic OASTL was cloned from M. pudica for the first time containing 1,410 bp nucleotides. The purified protein product from overexpressed bacterial cells produced Cys only, but not mimosine, indicating it is Cys specific. Kinetic studies revealed that pH and temperature optima for Cys production were 6.5 and 50 °C, respectively. The measured Km, Kcat, and Kcat Km-1 values were 159 ± 21 µM, 33.56 s-1, and 211.07 mM-1s-1 for OAS and 252 ± 25 µM, 32.99 s-1, and 130.91 mM-1s-1 for Na2S according to the in vitro Cys assay. The Cy-OASTL of Mimosa pudica is specific to Cys production, although it contains sensory roles in sulfur assimilation and the reduction network in the intracellular environment of M. pudica.
Collapse
Affiliation(s)
- Md Harun-Ur- Rashid
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
- Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Hironori Iwasaki
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Shigeki Oogai
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Masakazu Fukuta
- Graduate School of Agriculture, University of the Ryukyus, Okinawa, Japan.
| | - Shahanaz Parveen
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
- Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Md Amzad Hossain
- Graduate School of Agriculture, University of the Ryukyus, Okinawa, Japan
| | - Toyoaki Anai
- Faculty of Agriculture, Saga University, Saga, Japan
| | - Hirosuke Oku
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
6
|
Yeon JY, Yoo SJ, Takagi H, Kang HA. A Novel Mitochondrial Serine O-Acetyltransferase, OpSAT1, Plays a Critical Role in Sulfur Metabolism in the Thermotolerant Methylotrophic Yeast Ogataea parapolymorpha. Sci Rep 2018; 8:2377. [PMID: 29402922 PMCID: PMC5799214 DOI: 10.1038/s41598-018-20630-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/22/2018] [Indexed: 12/03/2022] Open
Abstract
In most bacteria and plants, direct biosynthesis of cysteine from sulfide via O-acetylserine (OAS) is essential to produce sulfur amino acids from inorganic sulfur. Here, we report the functional analysis of a novel mitochondrial serine O-acetyltransferase (SAT), responsible for converting serine into OAS, in the thermotolerant methylotrophic yeast Ogataea parapolymorpha. Domain analysis of O. parapolymorpha SAT (OpSat1p) and other fungal SATs revealed that these proteins possess a mitochondrial targeting sequence (MTS) at the N-terminus and an α/β hydrolase 1 domain at the C-terminal region, which is quite different from the classical SATs of bacteria and plants. Noticeably, OpSat1p is functionally interchangeable with Escherichia coli SAT, CysE, despite that it displays much less enzymatic activity, with marginal feedback inhibition by cysteine, compared to CysE. The Opsat1Δ-null mutant showed remarkably reduced intracellular levels of cysteine and glutathione, implying OAS generation defect. The MTS of OpSat1p directs the mitochondrial targeting of a reporter protein, thus, supporting the localization of OpSat1p in the mitochondria. Intriguingly, the OpSat1p variant lacking MTS restores the OAS auxotrophy, but not the cysteine auxotrophy of the Opsat1Δ mutant strain. This is the first study on a mitochondrial SAT with critical function in sulfur assimilatory metabolism in fungal species.
Collapse
Affiliation(s)
- Ji Yoon Yeon
- Department of Life Science, Chung-Ang University, Seoul, 06974, Korea
| | - Su Jin Yoo
- Department of Life Science, Chung-Ang University, Seoul, 06974, Korea
| | - Hiroshi Takagi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, 630-0192, Japan.
| | - Hyun Ah Kang
- Department of Life Science, Chung-Ang University, Seoul, 06974, Korea.
| |
Collapse
|
7
|
Ahmad N, Malagoli M, Wirtz M, Hell R. Drought stress in maize causes differential acclimation responses of glutathione and sulfur metabolism in leaves and roots. BMC PLANT BIOLOGY 2016; 16:247. [PMID: 27829370 PMCID: PMC5103438 DOI: 10.1186/s12870-016-0940-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/31/2016] [Indexed: 05/08/2023]
Abstract
BACKGROUND Drought is the most important environmental stress that limits crop yield in a global warming world. Despite the compelling evidence of an important role of oxidized and reduced sulfur-containing compounds during the response of plants to drought stress (e.g. sulfate for stomata closure or glutathione for scavenging of reactive oxygen species), the assimilatory sulfate reduction pathway is almost not investigated at the molecular or at the whole plant level during drought. RESULTS In the present study, we elucidated the role of assimilatory sulfate reduction in roots and leaves of the staple crop maize after application of drought stress. The time-resolved dynamics of the adaption processes to the stress was analyzed in a physiological relevant situation -when prolonged drought caused significant oxidation stress but root growth should be maintained. The allocation of sulfate was significantly shifted to the roots upon drought and allowed for significant increase of thiols derived from sulfate assimilation in roots. This enabled roots to produce biomass, while leaf growth was stopped. Accumulation of harmful reactive oxygen species caused oxidation of the glutathione pool and decreased glutathione levels in leaves. Surprisingly, flux analysis using [35S]-sulfate demonstrated a significant down-regulation of sulfate assimilation and cysteine synthesis in leaves due to the substantial decrease of serine acetyltransferase activity. The insufficient cysteine supply caused depletion of glutathione pool in spite of significant transcriptional induction of glutathione synthesis limiting GSH1. Furthermore, drought impinges on transcription of membrane-localized sulfate transport systems in leaves and roots, which provides a potential molecular mechanism for the reallocation of sulfur upon prolonged water withdrawal. CONCLUSIONS The study demonstrated a significant and organ-specific impact of drought upon sulfate assimilation. The sulfur metabolism related alterations at the transcriptional, metabolic and enzyme activity level are consistent with a promotion of root growth to search for water at the expense of leaf growth. The results provide evidence for the importance of antagonistic regulation of sulfur metabolism in leaves and roots to enable successful drought stress response at the whole plant level.
Collapse
Affiliation(s)
- Nisar Ahmad
- Centre for Organismal Studies Heidelberg, Heidelberg University, Im Neuenheimer Feld 360, 69120, Heidelberg, Germany
- University of Science & Technology Bannu, Bannu, Pakistan
| | - Mario Malagoli
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Padova, Italy
| | - Markus Wirtz
- Centre for Organismal Studies Heidelberg, Heidelberg University, Im Neuenheimer Feld 360, 69120, Heidelberg, Germany
| | - Ruediger Hell
- Centre for Organismal Studies Heidelberg, Heidelberg University, Im Neuenheimer Feld 360, 69120, Heidelberg, Germany.
| |
Collapse
|
8
|
Benoni R, Pertinhez TA, Spyrakis F, Davalli S, Pellegrino S, Paredi G, Pezzotti A, Bettati S, Campanini B, Mozzarelli A. Structural insight into the interaction ofO-acetylserine sulfhydrylase with competitive, peptidic inhibitors by saturation transfer difference-NMR. FEBS Lett 2016; 590:943-53. [DOI: 10.1002/1873-3468.12126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/26/2016] [Accepted: 03/01/2016] [Indexed: 11/10/2022]
Affiliation(s)
| | - Thelma A. Pertinhez
- Department of Oncology and Advanced Techniques; Arcispedale Santa Maria Nuova-IRCCS; Reggio Emilia Italy
| | | | | | - Sara Pellegrino
- Department of Pharmaceutical Sciences; Section of General and Organic Chemistry ‘A. Marchesini’; University of Milan; Italy
| | | | | | - Stefano Bettati
- Department of Neurosciences; University of Parma; Italy
- National Institute for Biostructures and Biosystems; Rome Italy
| | | | - Andrea Mozzarelli
- Department of Pharmacy; University of Parma; Italy
- National Institute for Biostructures and Biosystems; Rome Italy
- Institute of Biophysics; CNR; Pisa Italy
| |
Collapse
|
9
|
Yafuso JT, Negi VS, Bingham JP, Borthakur D. An O-Acetylserine (thiol) Lyase from Leucaena leucocephala Is a Cysteine Synthase But Not a Mimosine Synthase. Appl Biochem Biotechnol 2014; 173:1157-68. [DOI: 10.1007/s12010-014-0917-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 04/09/2014] [Indexed: 10/25/2022]
|
10
|
Su Y, Majtan T, Freeman KM, Linck R, Ponter S, Kraus JP, Burstyn JN. Comparative study of enzyme activity and heme reactivity in Drosophila melanogaster and Homo sapiens cystathionine β-synthases. Biochemistry 2013; 52:741-51. [PMID: 23002992 PMCID: PMC3751582 DOI: 10.1021/bi300615c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cystathionine β-synthase (CBS) is the first and rate-limiting enzyme in the transsulfuration pathway, which is critical for the synthesis of cysteine from methionine in eukaryotes. CBS uses coenzyme pyridoxal 5'-phosphate (PLP) for catalysis, and S-adenosylmethionine regulates the activity of human CBS, but not yeast CBS. Human and fruit fly CBS contain heme; however, the role for heme is not clear. This paper reports biochemical and spectroscopic characterization of CBS from fruit fly Drosophila melanogaster (DmCBS) and the CO/NO gas binding reactions of DmCBS and human CBS. Like CBS enzymes from lower organisms (e.g., yeast), DmCBS is intrinsically highly active and is not regulated by AdoMet. The DmCBS heme coordination environment, the reactivity, and the accompanying effects on enzyme activity are similar to those of human CBS. The DmCBS heme bears histidine and cysteine axial ligands, and the enzyme becomes inactive when the cysteine ligand is replaced. The Fe(II) heme in DmCBS is less stable than that in human CBS, undergoing more facile reoxidation and ligand exchange. In both CBS proteins, the overall stability of the protein is correlated with the heme oxidation state. Human and DmCBS Fe(II) hemes react relatively slowly with CO and NO, and the rate of the CO binding reaction is faster at low pH than at high pH. Together, the results suggest that heme incorporation and AdoMet regulation in CBS are not correlated, possibly providing two independent means for regulating the enzyme.
Collapse
Affiliation(s)
- Yang Su
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin, 53706 USA
| | - Tomas Majtan
- Department of Pediatrics, University of Colorado, Denver, Aurora, Colorado 80045
- Department of Genomics & Biotechnology, Institute of Molecular Biology SAS, Dubravska cesta 21, Bratislava, 84551, Slovakia
| | - Katherine M. Freeman
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin, 53706 USA
| | - Rachel Linck
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin, 53706 USA
| | - Sarah Ponter
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin, 53706 USA
| | - Jan P. Kraus
- Department of Pediatrics, University of Colorado, Denver, Aurora, Colorado 80045
| | - Judith N. Burstyn
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin, 53706 USA
| |
Collapse
|
11
|
Rayson GD, Williams PA. Competitive Metal Ion Binding to a Silicate-Immobilized Datura innoxiaBiomaterial. SEP SCI TECHNOL 2009. [DOI: 10.1080/01496390802691299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Starkenmann C, Troccaz M, Howell K. The role of cysteine and cysteine-S conjugates as odour precursors in the flavour and fragrance industry. FLAVOUR FRAG J 2008. [DOI: 10.1002/ffj.1907] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Winger AM, Taylor NL, Heazlewood JL, Day DA, Millar AH. Identification of intra- and intermolecular disulphide bonding in the plant mitochondrial proteome by diagonal gel electrophoresis. Proteomics 2008; 7:4158-70. [PMID: 17994621 DOI: 10.1002/pmic.200700209] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Redox active proteins in plant mitochondria were examined using 2-D oxidant/reductant diagonal-SDS-PAGE to separate and identify proteins with intermolecular or intramolecular disulphide bonds using diamide in the first dimension and DTT in the second dimension. Eighteen proteins spots were resolved either above or below the diagonal and these were in-gel digested and identified by MS/MS. This analysis revealed intermolecular disulphide bonds in alternative oxidase, O-acetylserine (thiol) lyase, citrate synthase and between subunits of the ATP synthase. Intramolecular disulphide bonds were observed in a range of mitochondrial dehydrogenases, elongation factor Tu, adenylate kinase and the phosphate translocator. Many of the soluble proteins found were known glutaredoxin/thioredoxin targets in other plants, but the membrane proteins were not found by these methods nor were the nature of the disulphides able to be investigated. The accessibility of thiols involved in disulphide bonds to modification by a lipid derived aldehyde gave an insight into the potential impact of Cys modification on redox-functions in mitochondria during lipid peroxidation. Comparison of the protein sequences of the identified proteins with homologs from other species has identified specific Cys residues that may be responsible for plant-specific redox modulations of mitochondrial proteins.
Collapse
Affiliation(s)
- Alison M Winger
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, Australia
| | | | | | | | | |
Collapse
|
14
|
Heeg C, Kruse C, Jost R, Gutensohn M, Ruppert T, Wirtz M, Hell R. Analysis of the Arabidopsis O-acetylserine(thiol)lyase gene family demonstrates compartment-specific differences in the regulation of cysteine synthesis. THE PLANT CELL 2008; 20:168-85. [PMID: 18223034 PMCID: PMC2254930 DOI: 10.1105/tpc.107.056747] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 12/21/2007] [Accepted: 01/10/2008] [Indexed: 05/18/2023]
Abstract
Cys synthesis in plants takes place in plastids, cytosol, and mitochondria. Why Cys synthesis is required in all compartments with autonomous protein biosynthesis and whether Cys is exchanged between them has remained enigmatic. This question was addressed using Arabidopsis thaliana T-DNA insertion lines deficient in the final step of Cys biosynthesis catalyzed by the enzyme O-acetylserine(thiol)lyase (OAS-TL). Null alleles of oastlA or oastlB alone showed that cytosolic OAS-TL A and plastid OAS-TL B were completely dispensable, although together they contributed 95% of total OAS-TL activity. An oastlAB double mutant, relying solely on mitochondrial OAS-TL C for Cys synthesis, showed 25% growth retardation. Although OAS-TL C alone was sufficient for full development, oastlC plants also showed retarded growth. Targeted affinity purification identified the major OAS-TL-like proteins. Two-dimensional gel electrophoresis and mass spectrometry showed no compensatory changes of OAS-TL isoforms in the four mutants. Steady state concentrations of Cys and glutathione and pulse-chase labeling with [35S]sulfate indicated strong perturbation of primary sulfur metabolism. These data demonstrate that Cys and also sulfide must be sufficiently exchangeable between cytosol and organelles. Despite partial redundancy, the mitochondria and not the plastids play the most important role for Cys synthesis in Arabidopsis.
Collapse
Affiliation(s)
- Corinna Heeg
- Heidelberg Institute of Plant Sciences, University of Heidelberg, 69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
Kumaran S, Jez JM. Thermodynamics of the Interaction between O-Acetylserine Sulfhydrylase and the C-Terminus of Serine Acetyltransferase. Biochemistry 2007; 46:5586-94. [PMID: 17425333 DOI: 10.1021/bi7001168] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cysteine biosynthesis in plants is partly regulated by the physical association of O-acetylserine sulfhydrylase (OASS) and serine acetyltransferase (SAT). Interaction of OASS and SAT requires only the 10 C-terminal residues of SAT. Here we analyze the thermodynamics of formation of a complex of Arabidopsis thaliana OASS (AtOASS) and the C-terminal ligand of AtSAT (C10 peptide) as a function of temperature and salt concentration using fluorescence spectroscopy and isothermal titration calorimetry (ITC). Our results suggest that the C-terminus of AtSAT provides the major contribution to the total binding energy in the plant cysteine synthase complex. The C10 peptide binds to the AtOASS homodimer in a 2:1 complex. Interaction between AtOASS and the C10 peptide is tight (Kd = 5-100 nM) over a range of temperatures (10-35 degrees C) and NaCl concentrations (0.02-1.3 M). AtOASS binding of the C10 peptide displays negative cooperativity at higher temperatures. ITC studies reveal compensating changes in the enthalpy and entropy of binding that also depend on temperature. The enthalpy of interaction has a significant temperature dependence (DeltaCp = -401 cal mol-1 K-1). The heat capacity change and salt dependence studies suggest that hydrophobic interactions drive formation of the AtOASS.C10 peptide complex. The potential regulatory effect of temperature on the plant cysteine synthase complex is discussed.
Collapse
Affiliation(s)
- Sangaralingam Kumaran
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, Missouri 63132, USA
| | | |
Collapse
|
16
|
Wirtz M, Hell R. Dominant-negative modification reveals the regulatory function of the multimeric cysteine synthase protein complex in transgenic tobacco. THE PLANT CELL 2007; 19:625-39. [PMID: 17293569 PMCID: PMC1867341 DOI: 10.1105/tpc.106.043125] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 12/21/2006] [Accepted: 01/23/2007] [Indexed: 05/13/2023]
Abstract
Cys synthesis in plants constitutes the entry of reduced sulfur from assimilatory sulfate reduction into metabolism. The catalyzing enzymes serine acetyltransferase (SAT) and O-acetylserine (OAS) thiol lyase (OAS-TL) reversibly form the heterooligomeric Cys synthase complex (CSC). Dominant-negative mutation of the CSC showed the crucial function for the regulation of Cys biosynthesis in vivo. An Arabidopsis thaliana SAT was overexpressed in the cytosol of transgenic tobacco (Nicotiana tabacum) plants in either enzymatically active or inactive forms that were both shown to interact efficiently with endogenous tobacco OAS-TL proteins. Active SAT expression resulted in a 40-fold increase in SAT activity and strong increases in the reaction intermediate OAS as well as Cys, glutathione, Met, and total sulfur contents. However, inactive SAT expression produced much greater enhancing effects, including 30-fold increased Cys levels, attributable, apparently, to the competition of inactive transgenic SAT with endogenous tobacco SAT for binding to OAS-TL. Expression levels of tobacco SAT and OAS-TL remained unaffected. Flux control coefficients suggested that the accumulation of OAS and Cys in both types of transgenic plants was accomplished by different mechanisms. These data provide evidence that the CSC and its subcellular compartmentation play a crucial role in the control of Cys biosynthesis, a unique function for a plant metabolic protein complex.
Collapse
Affiliation(s)
- Markus Wirtz
- Heidelberg Institute of Plant Sciences, University of Heidelberg, 69120 Heidelberg, Germany
| | | |
Collapse
|
17
|
BOATRIGHT WL, STINE JC. Residual Sulfur Metabolites in Isolated Soy Proteins: Sulfite to Cysteine. J Food Sci 2006. [DOI: 10.1111/j.1365-2621.2004.tb13358.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Campanini B, Speroni F, Salsi E, Cook PF, Roderick SL, Huang B, Bettati S, Mozzarelli A. Interaction of serine acetyltransferase with O-acetylserine sulfhydrylase active site: evidence from fluorescence spectroscopy. Protein Sci 2005; 14:2115-24. [PMID: 15987896 PMCID: PMC2279323 DOI: 10.1110/ps.051492805] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 05/09/2005] [Accepted: 05/09/2005] [Indexed: 10/25/2022]
Abstract
Serine acetyltransferase is a key enzyme in the sulfur assimilation pathway of bacteria and plants, and is known to form a bienzyme complex with O-acetylserine sulfhydrylase, the last enzyme in the cysteine biosynthetic pathway. The biological function of the complex and the mechanism of reciprocal regulation of the constituent enzymes are still poorly understood. In this work the effect of complex formation on the O-acetylserine sulfhydrylase active site has been investigated exploiting the fluorescence properties of pyridoxal 5'-phosphate, which are sensitive to the cofactor microenvironment and to conformational changes within the protein matrix. The results indicate that both serine acetyltransferase and its C-terminal decapeptide bind to the alpha-carboxyl subsite of O-acetylserine sulfhydrylase, triggering a transition from an open to a closed conformation. This finding suggests that serine acetyltransferase can inhibit O-acetylserine sulfhydrylase catalytic activity with a double mechanism, the competition with O-acetylserine for binding to the enzyme active site and the stabilization of a closed conformation that is less accessible to the natural substrate.
Collapse
Affiliation(s)
- Barbara Campanini
- Department of Biochemistry and Molecular Biology, Univeristy of Parma, 43100 Parma, Italy
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Cysteine is the major source of fixed sulfur for the synthesis of sulfur-containing compounds in organisms of the Bacteria and Eucarya domains. Though pathways for cysteine biosynthesis have been established for both of these domains, it is unknown how the Archaea fix sulfur or synthesize cysteine. None of the four archaeal genomes sequenced to date contain open reading frames with identities to either O-acetyl-L-serine sulfhydrylase (OASS) or homocysteine synthase, the only sulfur-fixing enzymes known in nature. We report the purification and characterization of OASS from acetate-grown Methanosarcina thermophila, a moderately thermophilic methanoarchaeon. The purified OASS contained pyridoxal 5'-phosphate and catalyzed the formation of L-cysteine and acetate from O-acetyl-L-serine and sulfide. The N-terminal amino acid sequence has high sequence similarity with other known OASS enzymes from the Eucarya and Bacteria domains. The purified OASS had a specific activity of 129 micromol of cysteine/min/mg, with a K(m) of 500 +/- 80 microM for sulfide, and exhibited positive cooperativity and substrate inhibition with O-acetyl-L-serine. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a single band at 36 kDa, and native gel filtration chromatography indicated a molecular mass of 93 kDa, suggesting that the purified OASS is either a homodimer or a homotrimer. The optimum temperature for activity was between 40 and 60 degrees C, consistent with the optimum growth temperature for M. thermophila. The results of this study provide the first evidence for a sulfur-fixing enzyme in the Archaea domain. The results also provide the first biochemical evidence for an enzyme with the potential for involvement in cysteine biosynthesis in the Archaea.
Collapse
Affiliation(s)
- B Borup
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
20
|
Yamaguchi T, Zhu X, Masada M. Purification and characterization of a novel cysteine synthase isozyme from spinach hydrated seeds. Biosci Biotechnol Biochem 1998; 62:501-7. [PMID: 9571779 DOI: 10.1271/bbb.62.501] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A novel type of cysteine synthase (CSase, EC 4.2.99.8) isozyme, designated as CSase 1', was purified to homogeneity from hydrated spinach seeds. The enzyme had a molecular weight of 68,000 and consisted of two identical subunits of M(r), 34,000. The apparent K(m) for O-acetyl-L-serine was 8.33 mM and that for sulfide was 0.66 mM. The activity of CSase 1' was maintained when it was treated at 60 degrees C for 1 min. This novel enzyme was similar to CSases 1, 2, and 3 already purified from spinach leaves, in results of double immunodiffusion, molecular weight, subunit composition, K(m) values for O-acetyl-L-serine and sulfide, and heat stability. On the other hand, N-terminal amino acid sequence, effects of immunotitration, pH optimum, and effects of hydroxylamine on purified CSase 1' were different from those of the other CSases. Furthermore, it was found that CSases 2S and 3S isolated from hydrated spinach seeds were identical with the CSases 2 and 3 reported previously. It was also disclosed that CSases 1, 2, and 3 were localized in chloroplasts, cytosol, and mitochondria, respectively.
Collapse
Affiliation(s)
- T Yamaguchi
- Department of Bioresources Chemistry, Faculty of Horticulture, Chiba University, Japan
| | | | | |
Collapse
|
21
|
|
22
|
Azevedo RA, Arruda P, Turner WL, Lea PJ. The biosynthesis and metabolism of the aspartate derived amino acids in higher plants. PHYTOCHEMISTRY 1997; 46:395-419. [PMID: 9332022 DOI: 10.1016/s0031-9422(97)00319-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The essential amino acids lysine, threonine, methionine and isoleucine are synthesised in higher plants via a common pathway starting with aspartate. The regulation of the pathway is discussed in detail, and the properties of the key enzymes described. Recent data obtained from studies of regulation at the gene level and information derived from mutant and transgenic plants are also discussed. The herbicide target enzyme acetohydroxyacid synthase involved in the synthesis of the branched chain amino acids is reviewed.
Collapse
Affiliation(s)
- R A Azevedo
- Departamento de Genética, Universidade de São Paulo, Piracicaba, SP, Brasil
| | | | | | | |
Collapse
|
23
|
Rolland N, Ruffet ML, Job D, Douce R, Droux M. Spinach chloroplast 0-acetylserine (thiol)-lyase exhibits two catalytically non-equivalent pyridoxal-5'-phosphate-containing active sites. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 236:272-82. [PMID: 8617276 DOI: 10.1111/j.1432-1033.1996.00272.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A synthetic gene encoding the mature spinach- chloroplast O-acetylserine (thiol)-lyase was constructed and expressed in an Escherichia coli strain carrying the T7 RNA polymerase system. The pure recombinant protein was obtained at high yield (6 mg/l cell culture) using a new purification procedure that includes affinity chromatography on Green A agarose. Its specific activity was of the order of 1000 U/mg, and its physical properties were similar to those previously reported for the natural enzyme isolated from spinach chloroplasts. In particular the recombinant enzyme, as for the natural enzyme, behaved as a homodimer composed of two identical subunits each of Mr 35000. From steady-state kinetic studies using sulfide or 5-thio(2-nitrobenzoate) (Nbs) as alternative nucleophilic co-substrates, the enzyme exhibited positive kinetic co-operativity with respect to O-acetylserine [Ser(Ac)] in the presence of sulfide and a negative kinetic co-operativity in the presence of Nbs. Binding of Ser(Ac) to the enzyme was also investigated by absorbance and fluorescence measurements to obtain insight into the role of pyridoxal 5'-phosphate and of the single tryptophan residue (Trp176) present in the enzyme molecule. Addition of Ser(Ac) to the enzyme provoked the disappearance of the 409-nm absorbance band of the pyridoxal 5'-phosphate Schiff base and the appearance of two new absorbance bands, the one located between 320 nm and 360 nm and the other centered at 470 nm. Also, the fluorescence emission of the pyridoxal 5'-phosphate Schiff base was quenched upon addition of Ser(Ac) to the enzyme. These changes were most presumably due to the formation of a Schiff base intermediate between alpha-aminoacrylate and the pyridoxal 5'-phosphate cofactor. The fluorescence emission of Trp176 was also quenched upon Ser(Ac) binding to the enzyme. Quantitative analysis of the absorbance and fluorescence equilibrium data disclosed a co-operative behavior in Ser(Ac) binding, in agreement with the steady-state kinetic results. Fluorescence quenching experiments with the acrylamide and iodide revealed that the indole ring of Trp176 was largely exposed and located within the pyridoxal 5'-phosphate active site. These results are consistent with the finding that the native enzyme is composed of two identical subunits. Yet, presumably due to subunit-subunit interactions, the enzyme exhibits two non-equivalent pyridoxal-5'-phosphate-containing active sites.
Collapse
Affiliation(s)
- N Rolland
- Unité Mixte C.N.R.S./Rhône-Poulenc, U.M. 41, Lyon, France
| | | | | | | | | |
Collapse
|
24
|
Yamaguchi T, Masada M. Comparative studies on cysteine synthase isozymes from spinach leaves. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1251:91-8. [PMID: 7669816 DOI: 10.1016/0167-4838(95)00085-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Three types of cysteine synthase (CSase, EC 4.2.99.8) isozymes were purified from spinach leaves. Each isozyme was isolated to homogeneity by preparative PAGE. These isozymes were revealed to have different primary structures by amino-acid and proteinase digestion analyses, respectively. The enzymes designated as CSase 1, CSase 2 and CSase 3 with reference to the mobility on native PAGE were characterized with respect to physicochemical and enzymatic properties, and it was found that those enzymes had similar properties. It was also found that CSase 1 could be attributed to chloroplasts.
Collapse
Affiliation(s)
- T Yamaguchi
- Department of Bioresources Chemistry, Faculty of Horticulture, Chiba University, Japan
| | | |
Collapse
|
25
|
Ruffet ML, Lebrun M, Droux M, Douce R. Subcellular distribution of serine acetyltransferase from Pisum sativum and characterization of an Arabidopsis thaliana putative cytosolic isoform. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 227:500-9. [PMID: 7851429 DOI: 10.1111/j.1432-1033.1995.tb20416.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The intracellular compartmentation of serine acetyltransferase, a key enzyme in the L-cysteine biosynthesis pathway, has been investigated in pea (Pisum sativum) leaves, by isolation of organelles and fractionation of protoplasts. Enzyme activity was mainly located in mitochondria (approximately 76% of total cellular activity). Significant activity was also identified in both the cytosol (14% of total activity) and chloroplasts (10% of total activity). Three enzyme forms were separated by anion-exchange chromatography, and each form was found to be specific for a given intracellular compartment. To obtain cDNA encoding the isoforms, functional complementation experiments were performed using an Arabidopsis thaliana expression library and an Escherichia coli mutant devoid of serine acetyltransferase activity. This strategy allowed isolation of three distinct cDNAs encoding serine acetyltransferase isoforms, as confirmed by enzyme activity measurements, genomic hybridizations, and nucleotide sequencing. The cDNA and related gene for one of the three isoforms have been characterized. The predicted amino acid sequence shows that it encodes a polypeptide of M(r) 34,330 exhibiting 41% amino acid identity with the E. coli serine acetyltransferase. Since none of the general features of transit peptides could be observed in the N-terminal region of this isoform, we assume that it is a cytosolic form.
Collapse
Affiliation(s)
- M L Ruffet
- Unité mixte Centre National de la Recherche Scientifique, Rhône-Poulenc Agrochimie, Lyon, France
| | | | | | | |
Collapse
|