1
|
Dong B, Zhong H, Zhu D, Wu L, Wang J, Li H, Jin Y. Antibody Responses and the Vaccine Efficacy of Recombinant Glycosyltransferase and Nicastrin Against Schistosoma japonicum. Pathogens 2025; 14:70. [PMID: 39861031 PMCID: PMC11768875 DOI: 10.3390/pathogens14010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Schistosomiasis is a neglected tropical disease and the second most common parasitic disease after malaria. While praziquantel remains the primary treatment, concerns about drug resistance highlight the urgent need for new drugs and effective vaccines to achieve sustainable control. Previous proteomic studies from our group revealed that the expression of Schistosoma japonicum glycosyltransferase and nicastrin as proteins was higher in single-sex males than mated males, suggesting their critical roles in parasite reproduction and their potential as vaccine candidates. In this study, bioinformatic tools were employed to analyze the structural and functional properties of these proteins, including their signal peptide regions, transmembrane domains, tertiary structures, and protein interaction networks. Recombinant forms of glycosyltransferase and nicastrin were expressed and purified, followed by immunization experiments in BALB/c mice. Immunized mice exhibited significantly elevated specific IgG antibody levels after three immunizations compared to adjuvant and PBS controls. Furthermore, immunization with recombinant glycosyltransferase and nicastrin significantly reduced the reproductive capacity of female worms and liver egg burden, though egg hatchability and adult worm survival were unaffected. These findings demonstrate that recombinant glycosyltransferase and nicastrin are immunogenic and reduce female worm fecundity, supporting their potential as vaccine candidates against schistosomiasis.
Collapse
Affiliation(s)
- Bowen Dong
- National Reference Laboratory for Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (B.D.); (H.Z.); (D.Z.); (H.L.)
| | - Haoran Zhong
- National Reference Laboratory for Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (B.D.); (H.Z.); (D.Z.); (H.L.)
| | - Danlin Zhu
- National Reference Laboratory for Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (B.D.); (H.Z.); (D.Z.); (H.L.)
| | - Luobin Wu
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China;
| | - Jinming Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China;
- Key Laboratory of Veterinary Parasitology of Gansu Province, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Hao Li
- National Reference Laboratory for Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (B.D.); (H.Z.); (D.Z.); (H.L.)
| | - Yamei Jin
- National Reference Laboratory for Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (B.D.); (H.Z.); (D.Z.); (H.L.)
| |
Collapse
|
2
|
What Are the Potential Roles of Nuclear Perlecan and Other Heparan Sulphate Proteoglycans in the Normal and Malignant Phenotype. Int J Mol Sci 2021; 22:ijms22094415. [PMID: 33922532 PMCID: PMC8122901 DOI: 10.3390/ijms22094415] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/27/2022] Open
Abstract
The recent discovery of nuclear and perinuclear perlecan in annulus fibrosus and nucleus pulposus cells and its known matrix stabilizing properties in tissues introduces the possibility that perlecan may also have intracellular stabilizing or regulatory roles through interactions with nuclear envelope or cytoskeletal proteins or roles in nucleosomal-chromatin organization that may regulate transcriptional factors and modulate gene expression. The nucleus is a mechano-sensor organelle, and sophisticated dynamic mechanoresponsive cytoskeletal and nuclear envelope components support and protect the nucleus, allowing it to perceive and respond to mechano-stimulation. This review speculates on the potential roles of perlecan in the nucleus based on what is already known about nuclear heparan sulphate proteoglycans. Perlecan is frequently found in the nuclei of tumour cells; however, its specific role in these diseased tissues is largely unknown. The aim of this review is to highlight probable roles for this intriguing interactive regulatory proteoglycan in the nucleus of normal and malignant cell types.
Collapse
|
3
|
Odiparcil, a potential glycosaminoglycans clearance therapy in mucopolysaccharidosis VI-Evidence from in vitro and in vivo models. PLoS One 2020; 15:e0233032. [PMID: 32413051 PMCID: PMC7228089 DOI: 10.1371/journal.pone.0233032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/27/2020] [Indexed: 12/16/2022] Open
Abstract
Mucopolysaccharidoses are a class of lysosomal storage diseases, characterized by enzymatic deficiency in the degradation of specific glycosaminoglycans (GAG). Pathological accumulation of excess GAG leads to multiple clinical symptoms with systemic character, most severely affecting bones, muscles and connective tissues. Current therapies include periodic intravenous infusion of supplementary recombinant enzyme (Enzyme Replacement Therapy–ERT) or bone marrow transplantation. However, ERT has limited efficacy due to poor penetration in some organs and tissues. Here, we investigated the potential of the β-D-xyloside derivative odiparcil as an oral GAG clearance therapy for Maroteaux–Lamy syndrome (Mucopolysaccharidosis type VI, MPS VI). In vitro, in bovine aortic endothelial cells, odiparcil stimulated the secretion of sulphated GAG into culture media, mainly of chondroitin sulphate (CS) /dermatan sulphate (DS) type. Efficacy of odiparcil in reducing intracellular GAG content was investigated in skin fibroblasts from MPS VI patients where odiparcil was shown to reduce efficiently the accumulation of intracellular CS with an EC50 in the range of 1 μM. In vivo, in wild type rats, after oral administrations, odiparcil was well distributed, achieving μM concentrations in MPS VI disease-relevant tissues and organs (bone, cartilage, heart and cornea). In MPS VI Arylsulphatase B deficient mice (Arsb-), after chronic oral administration, odiparcil consistently stimulated the urinary excretion of sulphated GAG throughout the treatment period and significantly reduced tissue GAG accumulation in liver and kidney. Furthermore, odiparcil diminished the pathological cartilage thickening observed in trachea and femoral growth plates of MPS VI mice. The therapeutic efficacy of odiparcil was similar in models of early (treatment starting in juvenile, 4 weeks old mice) or established disease (treatment starting in adult, 3 months old mice). Our data demonstrate that odiparcil effectively diverts the synthesis of cellular glycosaminoglycans into secreted soluble species and this effect can be used for reducing cellular and tissue GAG accumulation in MPS VI models. Therefore, our data reveal the potential of odiparcil as an oral GAG clearance therapy for MPS VI patients.
Collapse
|
4
|
Sheng L, He Z, Liu Y, Ma M, Cai Z. Mass spectrometry characterization for N-glycosylation of immunoglobulin Y from hen egg yolk. Int J Biol Macromol 2018; 108:277-283. [DOI: 10.1016/j.ijbiomac.2017.12.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/30/2017] [Accepted: 12/04/2017] [Indexed: 01/26/2023]
|
5
|
Brown DS, Eames BF. Emerging tools to study proteoglycan function during skeletal development. Methods Cell Biol 2016; 134:485-530. [PMID: 27312503 DOI: 10.1016/bs.mcb.2016.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the past 20years, appreciation for the varied roles of proteoglycans (PGs), which are specific types of sugar-coated proteins, has increased dramatically. PGs in the extracellular matrix were long known to impart structural functions to many tissues, especially articular cartilage, which cushions bones and allows mobility at skeletal joints. Indeed, osteoarthritis is a debilitating disease associated with loss of PGs in articular cartilage. Today, however, PGs have a demonstrated role in cell biological processes, such as growth factor signalling, prompting new perspectives on the etiology of PG-associated diseases. Here, we review diseases associated with defects in PG synthesis and sulfation, also highlighting current understanding of the underlying genetics, biochemistry, and cell biology. Since most research has analyzed a class of PGs called heparan sulfate PGs, more attention is paid here to studies of chondroitin sulfate PGs (CSPGs), which are abundant in cartilage. Interestingly, CSPG synthesis is tightly linked to the cell biological processes of secretion and lysosomal degradation, suggesting that these systems may be linked genetically. Animal models of loss of CSPG function have revealed CSPGs to impact skeletal development. Specifically, our work from a mutagenesis screen in zebrafish led to the hypothesis that cartilage PGs normally delay the timing of endochondral ossification. Finally, we outline emerging approaches in zebrafish that may revolutionize the study of cartilage PG function, including transgenic methods and novel imaging techniques. Our recent work with X-ray fluorescent imaging, for example, enables direct correlation of PG function with PG-dependent biological processes.
Collapse
Affiliation(s)
- D S Brown
- University of Saskatchewan, Saskatoon, SK, Canada
| | - B F Eames
- University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
6
|
|
7
|
Pirok EW, Henry J, Schwartz NB. cis elements that control the expression of chick aggrecan. J Biol Chem 2001; 276:16894-903. [PMID: 11350977 DOI: 10.1074/jbc.m009944200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aggrecan is a large chondroitin sulfate proteoglycan whose expression is both cell-specific and developmentally regulated. Cloning and sequencing of the 1.8-kilobase genomic 5'-flanking sequence of the chick aggrecan gene revealed the presence of potential tissue-specific control elements including a consensus sequence found in the cartilage-associated silencers, CSIIS1 and CSIIS2, that were first characterized in the type II collagen promoter sequences, as well as numerous other cis elements. Transient transfections of chick sternal chondrocytes and fibroblasts with reporter plasmids bearing progressively deleted portions of the chick aggrecan promoter and enhancer region demonstrated cell type-specific promoter activity and identified a 420-base pair region in the genomic 5-flanking region responsible for negative regulation of the aggrecan gene. In this report, three complementary methods, DNase I footprinting assays, transient transfections, and electrophoretic mobility shift assays (EMSA), provided an integral approach to better understand the regulation of the aggrecan gene. DNase I footprinting revealed that six regions of this genomic sequence bind to nuclear proteins in a tissue-specific manner. Transient transfection of reporter constructs bearing ablations of these protected sequences showed that four of the six protected sequences, which contain the sequence TCCTCC or TCCCCT, had repressor activities in transfected chick chondrocytes. Cross-competition EMSA using nuclear protein extracted from chondrocytes or fibroblasts explored the contributions of the different sequence elements in formation of DNA-protein complexes specific to cell type. This is the first parallel examination of the EMSA patterns for six functionally defined cis elements with highly similar sequences, using protein from primary cultured cells.
Collapse
Affiliation(s)
- E W Pirok
- Department of Pediatrics, University of Chicago, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
8
|
Schwartz NB, Pirok EW, Mensch JR, Domowicz MS. Domain organization, genomic structure, evolution, and regulation of expression of the aggrecan gene family. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2001; 62:177-225. [PMID: 9932455 DOI: 10.1016/s0079-6603(08)60508-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Proteoglycans are complex macromolecules, consisting of a polypeptide backbone to which are covalently attached one or more glycosaminoglycan chains. Molecular cloning has allowed identification of the genes encoding the core proteins of various proteoglycans, leading to a better understanding of the diversity of proteoglycan structure and function, as well as to the evolution of a classification of proteoglycans on the basis of emerging gene families that encode the different core proteins. One such family includes several proteoglycans that have been grouped with aggrecan, the large aggregating chondroitin sulfate proteoglycan of cartilage, based on a high number of sequence similarities within the N- and C-terminal domains. Thus far these proteoglycans include versican, neurocan, and brevican. It is now apparent that these proteins, as a group, are truly a gene family with shared structural motifs on the protein and nucleotide (mRNA) levels, and with nearly identical genomic organizations. Clearly a common ancestral origin is indicated for the members of the aggrecan family of proteoglycans. However, differing patterns of amplification and divergence have also occurred within certain exons across species and family members, leading to the class-characteristic protein motifs in the central carbohydrate-rich region exclusively. Thus the overall domain organization strongly suggests that sequence conservation in the terminal globular domains underlies common functions, whereas differences in the central portions of the genes account for functional specialization among the members of this gene family.
Collapse
Affiliation(s)
- N B Schwartz
- Department of Pediatrics, University of Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
9
|
Domowicz M, Mangoura D, Schwartz NB. Cell specific-chondroitin sulfate proteoglycan expression during CNS morphogenesis in the chick embryo. Int J Dev Neurosci 2000; 18:629-41. [PMID: 10978841 DOI: 10.1016/s0736-5748(00)00039-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
There is increasing evidence that proteoglycans, particularly chondroitin sulfate proteoglycans (CSPGs), are integral components in the assembly of the extracellular matrix during early stages of histogenesis. The differential expression of several CSPGs in the developing CNS has raised questions on their origin, phenotype (chemical and structural characteristics), regulation of expression and function. The S103L monoclonal antibody has been an invaluable specific reagent to identify and study a large and abundant CSPG in embryonic chick brain. In the present study we demonstrate that during embryogenesis of the chick CNS, the S103L CSPG (B-aggrecan) is synthesized by neurons of all major neuronal cell types but not by astrocytes, is developmentally regulated, and is associated predominantly with neuronal somata, suggesting that neuronal-specific regulatory mechanisms control the expression of the S103L CSPG in culture. Neurons also exhibit differential expression of glycosaminoglycan type (i.e., KS) and sulfation patterns on different CSPGs when compared to astrocytes, meningial cells or chondrocytes, implying the existence of additional, cell type-specific modes of regulation of the final CSPG phenotype (chemical and structural posttranslational characteristics). A specific temporal pattern of expression of the S103L-CSPG was observed which may contribute to conditions that induce or stabilize specific cell phenotypes during CNS development. In contrast, the other major CSPG in the CNS recognized by the HNK-1 antibody, is synthesized by all cell types of different cell lineages over the entire embryonic period, suggesting a more global cell maintenance function for this CSPG.
Collapse
Affiliation(s)
- M Domowicz
- Departments of Pediatrics, Biochemistry and Molecular Biology, The University of Chicago, 5841 South Maryland, MC 58058, Chicago, IL 60637, USA
| | | | | |
Collapse
|
10
|
Moses J, Oldberg A, Eklund E, Fransson LA. Biosynthesis of the proteoglycan decorin -- identification of intermediates in galactosaminoglycan assembly. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 248:767-74. [PMID: 9342228 DOI: 10.1111/j.1432-1033.1997.t01-1-00767.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Biosynthesis of decorin was investigated by incubating a rat fibroblast cell line with various radiolabelled protein and galactosaminoglycan precursors. The following cell-associated and distinct intermediates were isolated and identified: a pool of non-glycosylated core protein, two pools of decorin with incomplete chains, one with three sulphated disaccharide repeats and another with five or more sulphated disaccharide repeats, as well as decorin with mature chains. Results of pulse/chase experiments indicated that these pools represented discrete stages in chain growth. Treatment with brefeldin A, which blocks transport from the endoplasmic reticulum to the Golgi, resulted in accumulation of decorin with an incomplete chain containing six or seven largely unsulphated disaccharide repeats. During recovery from drug treatment, 4-sulfation reappeared earlier than 6-sulfation. The results suggest that the galactosaminoglycan assembly-line consists of separate multienzyme complexes that build only a limited section of the chain. Furthermore, brefeldin A causes segregation of compartments involved in separate stages of the assembly line. In an earlier report [Moses, J., Oldberg. A., Cheng, F. & Fransson, L.-A. (1997) Eur. J. Biochem. 248, 521-526] we took advantage of such segregation to identify and characterize a transient 2-phosphorylation of xylose in the linkage region.
Collapse
Affiliation(s)
- J Moses
- Department of Cell and Molecular Biology, Faculty of Medicine, Lund University, Sweden.
| | | | | | | |
Collapse
|
11
|
Pirok EW, Li H, Mensch JR, Henry J, Schwartz NB. Structural and functional analysis of the chick chondroitin sulfate proteoglycan (aggrecan) promoter and enhancer region. J Biol Chem 1997; 272:11566-74. [PMID: 9111072 DOI: 10.1074/jbc.272.17.11566] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Aggrecan is a large chondroitin sulfate proteoglycan, the expression of which is both tissue-specific and developmentally regulated. Here we report the cloning and sequencing of the 1.8-kilobase genomic 5' flanking sequence of the chick aggrecan gene and provide a functional and structural characterization of its promoter and enhancer region. Sequence analysis reveals potential Sp1, AP2, and NF-I related sites, as well as several putative transcription factor binding sites, including the cartilage-associated silencers CIIS1 and CIIS2. A number of these transcription factor binding motifs are embedded in a sequence flanked by prominent inverted repeats. Although lacking a classic TATA box, there are two instances in the 1.8-kb genomic fragment of TATA-like TCTAA sequences, as have been defined previously in other promoter regions. Primer extension and S1 protection analyses reveal three major transcription start sites, also located between the inverted repeats. Transient transfections of chick sternal chondrocytes and fibroblasts with reporter plasmids bearing progressively reduced portions of the aggrecan promoter region allowed mapping of chondrocyte-specific transcription enhancer and silencer elements that are consistent with the sequence analysis. These findings suggest the importance of this regulatory region in the tissue-specific expression of the chick aggrecan gene.
Collapse
Affiliation(s)
- E W Pirok
- Department of Pathology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
12
|
Park JW, Lee SY, Yang JY, Rho HW, Park BH, Lim SN, Kim JS, Kim HR. Effect of carbonyl cyanide m-chlorophenylhydrazone (CCCP) on the dimerization of lipoprotein lipase. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1344:132-8. [PMID: 9030190 DOI: 10.1016/s0005-2760(96)00146-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Lipoprotein lipase (LPL), an enzyme playing the central role in triglyceride metabolism, is a glycoprotein and a homodimer of identical subunits. Dimerization and proper processing of oligosaccharide chains are important maturation steps in post-translational regulation of enzyme activity. Indirect evidences suggest that dimerization of LPL occurs in endoplasmic reticulum (ER) or Golgi. In this study, we investigated the dimerization status of LPL in 3T3-L1 adipocytes, using sucrose density gradient ultracentrifugation and carbonyl cyanide m-chlorophenylhydrazone (CCCP), an inhibitor of ER-Golgi protein transport. In the presence of CCCP, no increase of cellular LPL activity was detected during 2 b of recovery period after the depletion of LPL, with heparin and cycloheximide. Only endoglycosidase H (endo H)-sensitive subunits were found in CCCP-treated cells after endo H digestion, suggesting that inactive LPL was retained in ER. In the presence of castanospermine, an inhibitor of ER glucosidase I, LPL subunits of both control and CCCP-treated cells had same molecular weight, indicating that complete oligosaccharides were transferred to LPL subunits in the presence of CCCP. In sucrose density gradient ultracentrifugation, all the LPL protein synthesized in the presence of CCCP was found at the dimeric fractions as in control cells. Most of LPL protein in control cells showed high affinity for heparin, and there was no difference between the control and CCCP-treated cells. These results suggest that dimerization and acquisition of high affinity for heparin of LPL can occur in ER of CCCP-treated cells without acquisition of catalytic activity.
Collapse
Affiliation(s)
- J W Park
- Department of Biochemistry, Chonbuk National University, Medical School, Chonju, South Korea.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Domowicz M, Krueger RC, Li H, Mangoura D, Vertel BM, Schwartz NB. The nanomelic mutation in the aggrecan gene is expressed in chick chondrocytes and neurons. Int J Dev Neurosci 1996; 14:191-201. [PMID: 8842798 DOI: 10.1016/0736-5748(96)00007-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have established the presence of at least two large chondroitin sulfate proteoglycans in the developing chick brain, one that reacts exclusively with HNK-1, a carbohydrate epitope found on several neural specific molecules, and one that reacts with S103L, a defined peptide epitope in the CS-2 domain of the cartilage-specific chondroitin sulfate proteoglycan (CSPG), aggrecan. In order to determine the relationships between the two distinct S103L-reactive CSPGs from cartilage (chondrocytes) and brain (neurons), as well as among the three large CSPGs expressed in brain, S103L, HNK-1 and versican, we studied the expression of these multiple proteoglycan species in the brain of nanomelic chicks. We have previously shown that homozygous embryos expressing the nanomelic phenotype exhibit a single point mutation in the aggrecan gene. In the present study, the S103L CSPG is not accumulated or synthesized by embryonic chick CNS tissue or E8CH neuronal cultures derived from nanomelic chick embryo cerebral hemispheres. In contrast, expression of both versican and the HNK-1 CSPG was normal in the mutant embryo CNS. Pulse chase experiments demonstrated the presence of the 380 kDa precursor in normal neurons and the 300 kDa truncated precursor in nanomelic neurons. Northern blot analysis revealed normal-sized mRNA but reduced levels of expression of the S103L CSPG message in nanomelic neurons, while expression of the versican message was comparable in normal and nanomelic neurons. Most conclusively, the point mutation previously identified in nanomelic cartilage mRNA was also identified in nanomelic brain mRNA. Together these results provide evidence that a single aggrecan gene is expressed in both cartilage and CNS tissue leading to the production of identical core proteins which then undergo differential and tissue-specific post-translation processing, resulting in the characteristic tissue-specific proteoglycans. Furthermore, versican and the HNK-1 CSPG, although structurally and chemically similar to the S103L CSPG, are the products of separate genes.
Collapse
Affiliation(s)
- M Domowicz
- Department of Pediatrics, University of Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
14
|
Ozeran JD, Westley J, Schwartz NB. Identification and partial purification of PAPS translocase. Biochemistry 1996; 35:3695-703. [PMID: 8619989 DOI: 10.1021/bi951303m] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Sulfation of all macromolecules in higher organisms requires the high-energy donor 3'-phosphoadenosine 5'-phosphosulfate (PAPS). PAPS is synthesized via the sequential actions of two cytoplasmic enzymes, ATP sulfurylase and APS kinase, and then must be transferred across the Golgi membrane for utilization by lumenal sulfotransferases. Following the kinetic characterization of the PAPS translocase as a specific transporter that act through an antiport mechanism with PAP as the returning ligand [Ozeran, J.D., Westley, J., Schwartz, N.B. (1996) Biochemistry 35, 3685-3694 (accompanying paper)], the present study describes the identification and physical characterization of the PAPS translocase from rat liver Golgi membranes. The following evidence suggests the PAPS translocase is a membrane spanning protein of approximately 230 kDa: isolation by affinity chromatography on beta-methylene PAPS matrices of a 230 kDa Golgi membrane protein concomitant with PAPS translocase activity; demonstration that the 230 kDa protein possesses the only PAPS binding site accessible to the cytoplasmic face of intact Golgi membranes, while several other PAPS binding proteins are labeled in solubilized membrane preparations; reduction in size of the 230 kDa membrane protein and loss of PAPS translocase activity following protease treatment; estimation via hydrodynamic analysis of a molecular size of the membrane protein associated with PAPS translocase activity; and correlation of beta-methylene PAPS binding and labeling of the 230 kDa Golgi protein with PAPS translocase activity in artificial liposomes. These and the accompanying data have permitted the identification of the first of a potentially large class of Golgi membrane nucleotide-metabolite transporters.
Collapse
Affiliation(s)
- J D Ozeran
- Department of Pediatrics, University of Chicago, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
15
|
Ozeran JD, Westley J, Schwartz NB. Kinetics of PAPS translocase: evidence for an antiport mechanism. Biochemistry 1996; 35:3685-94. [PMID: 8619988 DOI: 10.1021/bi951302u] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In order to gain an understanding of the mechanisms involved in the transfer of 3'-phosphoadenosine 5'-phosphosulfate (PAPS) from the cytosol where it is synthesized to the Golgi lumen where it serves as the universal sulfate donor for sulfate ester formation in higher organisms, we have undertaken a kinetic characterization of the PAPS translocase from rat liver Golgi. Analyzing the PAS translocase activity in both intact Golgi vesicles and in a reconstituted liposome system, we have determined a number of physical and kinetic parameters. Strong competitive inhibition in zero-trans uptake experiments only with beta-methylene PAPS and adenosine 3',5'-biphosphate (PAP) suggest the transporter is highly specific for the 3'-phosphate. The demonstration of trans acceleration as observed by stimulation of transport activity under exchange conditions suggests that the translocase is a carrier with distinct binding sites accessible from both faces of the membrane. The behavior of the PAPS translocase in the presence of equilibrium concentrations of PAP supports the function of an antiport mechanism. Thus the translocase is characterized by its kinetic properties as a specific transporter of PAPS which acts through an antiport mechanism with PAP as the returning ligand. This characterization of the transport activity has proved instrumental in the identification of an approximate 230 kDa Golgi membrane protein as the PAPS translocase protein [Ozeran, J.D., Westley, J., & Schwartz, N.B. (1996) Biochemistry 35, 3695-3703 (accompanying paper)].
Collapse
Affiliation(s)
- J D Ozeran
- Department of Pediatrics, University of Chicago, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
16
|
Li H, Domowicz M, Hennig A, Schwartz NB. S103L reactive chondroitin sulfate proteoglycan (aggrecan) mRNA expressed in developing chick brain and cartilage is encoded by a single gene. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1996; 36:309-21. [PMID: 8965652 DOI: 10.1016/0169-328x(95)00269-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A large chondroitin sulfate proteoglycan (CSPG) identified in embryonic chick brain, and synthesized exclusively by neurons in a developmentally expressed pattern that coincides with migration and establishment of neuronal nuclei, reacts with a monoclonal antibody (S103L) developed against the cartilage-specific CSPG, aggrecan. The relationship of the brain and cartilage S103L CSPGs was established by chemical, biosynthetic and molecular analyses. Significant posttranslational differences (absence of keratan sulfate (KS), less CS, and different sulfation patterns) distinguish the brain S103L species from the cartilage S103L species. However, quantitative and qualitative Northern analysis, cassette RT-PCR and direct cloning and sequencing of the entire brain-specific S103L CSPG coding sequence, all indicate that the brain and cartilage core proteins are identical. Thus, although the S103L CSPG synthesized by chick brain and cartilage are the product of a single gene, they are clearly biochemically distinct and differentially expressed proteoglycan products, suggesting tissue specific roles for these proteoglycan homologs.
Collapse
Affiliation(s)
- H Li
- Department of Pediatrics, University of Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
17
|
Silbert JE, Sugumaran G. Intracellular membranes in the synthesis, transport, and metabolism of proteoglycans. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1241:371-84. [PMID: 8547301 DOI: 10.1016/0304-4157(95)00011-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- J E Silbert
- Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA, USA
| | | |
Collapse
|
18
|
Calabro A, Hascall V. Differential effects of brefeldin A on chondroitin sulfate and hyaluronan synthesis in rat chondrosarcoma cells. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31711-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
19
|
|
20
|
Malemud CJ, Papay RS. Synthesis of low buoyant density proteoglycans by human chondrocytes in culture. MATRIX (STUTTGART, GERMANY) 1992; 12:427-38. [PMID: 1287411 DOI: 10.1016/s0934-8832(11)80087-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Human chondrocyte strains were derived from explant outgrowth of nonarthritic or osteoarthritic human cartilage. Chondrocytes radiolabeled with [35SO4] or [35S]-methionine were used to measure the biosynthesis of proteoglycans recovered from the most buoyant fraction (A4) of a CsCl density gradient centrifugation performed under associative conditions. The proteoglycans isolated from the A4 fraction (rho < 1.47 g/ml) were hydrodynamically small and contained both large and small glycosaminoglycan chains. When assessed by SDS/PAGE using 3-16% gradient gels, two subpopulations of small proteoglycans (smPG) were identified. The larger of the two species (smPG-I) migrated slower than the 200 kDa marker protein; when reassessed on 3-5% acrylamide gels, its apparent molecular mass was larger than the 480 kDa and 440 kDa alpha and beta heavy chains of dynein. We estimated the apparent molecular size of this smPG to be approximately 520 kDa. The smaller smPG (smPG-II) had an apparent average molecular mass of 180 kDa (range 170-210 kDa) after 3-16% SDS/PAGE. Three monoclonal antibodies, 1C6, 5D4, and S103L, reactive with the hyaluronic acid binding region of the aggregating proteoglycan core protein, keratan sulfate, and a core protein domain in the chondroitin sulfate attachment region, respectively, reacted with a single protein (apparent molecular mass, 180 kDa) that was similar in size to smPG-II.
Collapse
Affiliation(s)
- C J Malemud
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | | |
Collapse
|
21
|
Fransson LA, Karlsson P, Schmidtchen A. Effects of cycloheximide, brefeldin A, suramin, heparin and primaquine on proteoglycan and glycosaminoglycan biosynthesis in human embryonic skin fibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1137:287-97. [PMID: 1445930 DOI: 10.1016/0167-4889(92)90149-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
(1) We have isolated radiolabelled proteoglycans and glycosaminoglycans produced by human embryonic skin fibroblasts in the presence of (a) cycloheximide to inhibit protein synthesis or (b) brefeldin A to impede transport between the endoplasmic reticulum and the Golgi complex or (c) suramin, heparin or primaquine to interfere with internalization, recycling and degradation. Effects on glycosaminoglycan synthesis were assayed separately by using exogenous p-nitrophenyl beta-D-xylopyranoside (and [3H]galactose) or 125I-labelled p-hydroxyphenyl beta-D-xylopyranoside as initiators. (2) Inhibition of protein synthesis or blocking of transport to the Golgi complex prevented production of most of the proteoglycans with one exception: Cell-associated heparan sulphate-proteoglycan was still produced at 20% of the control level. (3) Treatment with suramin or heparin resulted in decreased deposition of proteoglycan in the pericellular matrix but increased accumulation of cell-associated proteoglycan. Primaquine blocked all proteoglycan synthesis. (4) In the presence of cycloheximide, exogenous beta-D-xyloside initiated galactosaminoglycan production. In contrast, in brefeldin A-treated cells, synthesis was completely abolished. Not even formation of the linkage-region trisaccharide could be detected. (5) These results suggest that exogenous xyloside enters the endoplasmic reticulum and is subsequently transported to the trans-Golgi complex where all further steps involved in glycosaminoglycan assembly takes place. (6) Heparan sulphate proteoglycan produced by brefeldin A-treated cells could be derived from (a) an intracellular pool of preformed core protein located to the trans-Golgi complex, or (b) resident proteoglycan that was either deglycanated/reglycanated or chain-extended. As combined treatment with suramin and brefeldin A markedly reduced cell-associated proteoglycan production, the latter possibility is favoured.
Collapse
Affiliation(s)
- L A Fransson
- Department of Medical and Physiological Chemistry, University of Lund, Sweden
| | | | | |
Collapse
|
22
|
Krueger RC, Hennig A, Schwartz N. Two immunologically and developmentally distinct chondroitin sulfate proteolglycans in embryonic chick brain. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)49817-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
23
|
Yeo TK, Yeo KT, Wight TN. Differential transport kinetics of chondroitin sulfate and dermatan sulfate proteoglycan by monkey aorta smooth muscle cells. Arch Biochem Biophys 1992; 294:9-16. [PMID: 1550362 DOI: 10.1016/0003-9861(92)90129-k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Pulse-chase studies were performed to study the kinetics of chondroitin sulfate proteoglycan (CSPG) and dermatan sulfate proteoglycan (DSPG) transport in monkey aorta smooth muscle cells. During a short pulse (5 min) with [35S]Na2SO4 (500 microCi/ml), the cells synthesized 59% DSPG, 38% CSPG, and 3% heparan sulfate proteoglycan. Both DSPG and CSPG were transported out of the cell very rapidly after sulfate incorporation. At various chase times, proteoglycans (PGs) were isolated from four cellular compartments: (a) medium, (b) total cell lysate, (c) intracellular pool, and (d) extracellular pool. The PGs from the different pools were analyzed by Sepharose CL-2B column chromatography. The data of intracellular DSPG loss fitted a double exponential decay model: approximately 90% was secreted quickly with a t1/2 of 7 min, and the remaining 10% had a dramatically slower rate of secretion (t1/2 of 130 min). DSPG was rapidly secreted into the medium without prior accumulation in the extracellular matrix. In contrast, the loss of intracellular CSPG fitted a single exponential decay model with a t1/2 of 8 min; however, there was a significant accumulation of CSPG in the extracellular matrix compartment before release into the medium, resulting in a relatively slower secretion of CSPG into the medium (t1/2 of about 31 min). This delay in CSPG secretion into the medium is probably due to aggregation in the extracellular matrix, since addition of short hyaluronan oligomers (8-14 oligosaccharides) to the medium during the chase increased the rate of CSPG being secreted into the medium. We concluded that in aortic smooth muscle cell cultures, CSPG and DSPG are secreted via two distinct pathways through the cellular compartments.
Collapse
Affiliation(s)
- T K Yeo
- Department of Pathology, School of Medicine, University of Washington, Seattle 98195
| | | | | |
Collapse
|
24
|
Rahemtulla F. Proteoglycans of oral tissues. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 1992; 3:135-62. [PMID: 1730068 DOI: 10.1177/10454411920030010301] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- F Rahemtulla
- Department of Oral Biology, University of Alabama School of Dentistry, Birmingham 35294
| |
Collapse
|
25
|
Presence of terminal N-acetylgalactosamine residues in subregions of the endoplasmic reticulum is influenced by cell differentiation in culture. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54379-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
26
|
Berrou E, Breton M, Deudon E, Picard J. Stimulation of large proteoglycan synthesis in cultured smooth muscle cells from pig aorta by endothelial cell-conditioned medium. J Cell Physiol 1991; 149:436-43. [PMID: 1744172 DOI: 10.1002/jcp.1041490312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have previously shown (Berrou et al., J. Cell. Phys., 137:430-438, 1988) that porcine endothelial cell-conditioned medium (ECCM) stimulates proteoglycan synthesis by smooth muscle cells from pig aorta. ECCM stimulation requires protein cores for glycosaminoglycan chain initiation and is accompanied by an increase in the hydrodynamic size of proteoglycans secreted into the medium. This work investigates the mechanisms involved in the ECCM effect. 1) Control and ECCM stimulated proteoglycan synthesis (measured by a 20 min [35S]-sulfate labeling assay) was not inhibited by cycloheximide, indicating that the proteoglycans were composed of preexisting protein cores and that ECCM stimulates glycosylation of these protein cores. 2) Whereas ECCM stimulation of [35S]-methionine incorporation into secreted proteins only occurred after a 6 h incubation, the increase in [35S] methionine-labeled proteoglycans was observed after 1 h, and the increase was stable for at least 16 h. 3) As analysed by electrophoresis in SDS, chondroitinase digestion generated from [14C] serine-labeled proteoglycans 7 protein cores of high apparent molecular mass (550-200 kDa) and one of 47 kDa. The two protein cores of highest apparent molecular masses (550 and 460 kDa), but not the 47 kDa protein cores, showed increased [14C]-serine incorporation in response to ECCM (51%, as measured by Sepharose CL-6B chromatography). 4) Finally, incorporation of [35S]-sulfate into chondroitinase-generated glycosaminoglycan linkage stubs on protein cores was determined by Sepharose CL-6B chromatography: ECCM did not modify the ratio [35S]/[14C] in stimulated protein cores, indicating that ECCM did not affect the number of glycosaminoglycan chains. The results of these studies reveal that 1) endothelial cells secrete factor(s) that preferentially stimulate synthesis of the largest smooth muscle cell proteoglycans without structural modifications and 2) the stimulation proceeds via increased glycosylation of protein core through enhancement of xylosylated protein core, followed by enhanced protein synthesis.
Collapse
Affiliation(s)
- E Berrou
- Laboratoire de Biochimie, Inserm U. 181, Faculté de Médecine Saint-Antoine, Paris, France
| | | | | | | |
Collapse
|
27
|
Sugumaran G, Silbert J. Subfractionation of chick embryo epiphyseal cartilage Golgi. Localization of enzymes involved in the synthesis of the polysaccharide portion of proteochondroitin sulfate. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)92857-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
28
|
Eisenbrey AB, Chen JC, Dyer CA, Bernstein J, Poulik MD. Monoclonal antibody to human cartilage cells and its reactivities to chondrocytic tumors. J Clin Lab Anal 1991; 5:180-6. [PMID: 2061741 DOI: 10.1002/jcla.1860050306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A murine monoclonal antibody (E10) was made against cultured cartilage cells. The E10 antibody binding is localized to the surface of cultured cartilage cells in suspension and is present in the cytoplasm in paraffin embedded sections. There is no reactivity with cartilage matrix, or with the matrix of cartilaginous tumors. Reactivity is removed by treatment with trypsin and hyaluronidase, but not by treatment with heparinase, neuraminidase, and chondroitinase. Regeneration of E10 antigen after trypsinization takes 48 hours in chondrocytes in tissue culture. SDS-polyacrylamide gel electrophoresis of an E10 immune precipitate of cultured chondrocytes results in two peaks: one at a very high molecular weight and a small fragment at approximately 250 kd. Specificity has been demonstrated by cytofluorometry, immunofluorescence, and immunohistochemistry, in both frozen and paraffin-embedded tissues. Positive reactivity was seen in cultured cartilage cells, chondrocytes in fetal and adult cartilage, chondrosarcomas, and chordomas. Minimal reactivity was found in a chondromyxoid liposarcoma. Acinar cells of salivary and sweat glands and mast cells in various tissues and tumors were also positive. There was no reactivity with other tissues and tumors, including myxoid and mucinous tumors and epithelial tissues.
Collapse
Affiliation(s)
- A B Eisenbrey
- Department of Clinical Pathology, William Beaumont Hospital, Royal Oak, Michigan 48073-6769
| | | | | | | | | |
Collapse
|
29
|
Dennis JE, Carrino DA, Schwartz NB, Caplan AI. Ultrastructural characterization of embryonic chick cartilage proteoglycan core protein and the mapping of a monoclonal antibody epitope. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38511-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
30
|
Krueger RC, Fields TA, Mensch JR, Schwartz NB. Chick cartilage chondroitin sulfate proteoglycan core protein. II. Nucleotide sequence of cDNA clone and localization of the S103L epitope. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38510-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
31
|
Krueger RC, Fields TA, Hildreth J, Schwartz NB. Chick cartilage chondroitin sulfate proteoglycan core protein. I. Generation and characterization of peptides and specificity for glycosaminoglycan attachment. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38509-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
32
|
|
33
|
|
34
|
O'Donnell CM, Kaczman-Daniel K, Goetinck PF, Vertel BM. Nanomelic chondrocytes synthesize a glycoprotein related to chondroitin sulfate proteoglycan core protein. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)77899-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
35
|
Deschuyteneer M, Eckhardt AE, Roth J, Hill RL. The subcellular localization of apomucin and nonreducing terminal N-acetylgalactosamine in porcine submaxillary glands. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)69228-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
36
|
Vertel BM, Hitti Y. Biosynthetic precursors of cartilage chondroitin sulfate proteoglycan. COLLAGEN AND RELATED RESEARCH 1987; 7:57-75. [PMID: 3301184 DOI: 10.1016/s0174-173x(87)80021-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Early steps in the biosynthesis of chondroitin sulfate proteoglycan (CSPG) and collagenous cartilage matrix molecules were examined by the comparison of products translated in mRNA-directed cell-free reactions and those synthesized by intact cartilage cells. RNA isolated from embryonic chicken sterna was used to direct cell-free translation reactions. Chicken sternal chondrocytes in culture were pulse-labeled with [35S]-methionine. The CSPG core protein was identified by immunoprecipitation. The Mr of the cartilage cell-synthetized core protein was determined to be 370K, approximately 10-15K greater than that of the comparable cell-free translation product. Experimental results strongly support the view that the observed difference in Mr reflects the cotranslational addition of mannose-rich, N-asparagine-linked oligosaccharides to the cell-synthesized core protein: 1) the cell-synthesized product was labeled with [3H]-mannose and precipitated by concanavalin A-sepharose beads; 2) the incorporated [3H]-mannose could be subsequently removed by digestion with endoglycosidase H (Endo H); 3) the Mr of the cell-synthesized core protein was reduced by Endo H digestion to that of the comparable cell-free translation product; 4) the core protein synthesized by tunicamycin-treated chondrocytes (inhibited in their ability to add N-asparagine-linked mannose-rich oligosaccharides to proteins) was comparable in electrophoretic mobility to that of the core protein cell-free translation product; and 5) the core protein translated in microsome-coupled cell-free reactions had an Mr 8-10K greater than that of the core protein translated in the absence of microsomes. For the purpose of examining biosynthetic intermediates, chondrocytes were labeled continuously or pulse-chase labeled for varying times. No biosynthetic CSPG intermediates migrating between the core protein and the CSPG monomer were detected. However, a band of 355Kdal appeared to share certain characteristics with the 307Kdal core protein (including its immunoprecipitability with CSPG antibodies), and a 340Kdal band was noted. Type II procollagen and other collagenase-sensitive products of 205Kdal and 110Kdal were observed among translation and chondrocyte-synthesized products. In chondrocytes, all three products exhibited labeling or chase time-dependent increases in Mr which were accelerated by ascorbate supplements and inhibited by the addition of alpha, alpha'-dipyridyl. These results suggest that the observed time-dependent increases in Mr are a consequence of collagen hydroxylation. The 110Kdal and 205Kdal collagenous proteins may be related to the minor collagens recently described in cartilage.
Collapse
|
37
|
Abeijon C, Hirschberg C. Subcellular site of synthesis of the N-acetylgalactosamine (alpha 1-0) serine (or threonine) linkage in rat liver. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)61325-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
38
|
|
39
|
Velasco A, Hidalgo J. Light and electron microscopical localization of concanavalin A lectin binding sites in rat epiphyseal chondrocytes. THE HISTOCHEMICAL JOURNAL 1987; 19:7-14. [PMID: 3583815 DOI: 10.1007/bf01675287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Concanavalin A lectin binding sites have been detected within the cytoplasm of epiphyseal chondrocytes. Correlative light and electron microscopic results were obtained, indicating the presence of alpha-D-mannose and/or alpha-D-glucose residues detected by the lectin in the rough endoplasmic reticulum region. Quantitation of the electron microscopic cytochemical reaction also showed that the specific labelling was almost exclusively localized in the lumen of endoplasmic reticulum cisternae. No significant staining was found in other membrane compartments or extracellular matrix. This labelling pattern could be considered as the cytochemical evidence of N-glycosylation processes occurring during the biosynthesis of cartilage extracellular matrix components by chondrocytes.
Collapse
|
40
|
Nuwayhid N, Glaser JH, Johnson JC, Conrad HE, Hauser SC, Hirschberg CB. Xylosylation and glucuronosylation reactions in rat liver Golgi apparatus and endoplasmic reticulum. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)69252-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
41
|
Lohmander LS, Hascall VC, Yanagishita M, Kuettner KE, Kimura JH. Post-translational events in proteoglycan synthesis: kinetics of synthesis of chondroitin sulfate and oligosaccharides on the core protein. Arch Biochem Biophys 1986; 250:211-27. [PMID: 3094452 DOI: 10.1016/0003-9861(86)90719-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Chondrocytes isolated from the Swarm rat chondrosarcoma were incubated in culture with [1-3H]glucose for 30 min to 8 h. Labeled proteoglycans were isolated, treated with borohydride under alkaline conditions, and the three complex sugar structures purified: N- and O-linked oligosaccharides and chondroitin sulfate chains. The amount of incorporated radioactivity into each component sugar was analyzed by HPLC after enzyme digestion and hydrolysis. The kinetic data for labeling of each sugar over the time course of the experiment were fit to first-order rate equations and the half times (t1/2) to linear labeling were calculated. The t1/2 values were essentially the same, 5-8 min, for galactose in all three complex sugar structures and for chain glucuronic acid in chondroitin sulfate, while that for xylitol in chondroitin sulfate, 15.8 min, was significantly longer. Thus, oligosaccharide synthesis is concomitant with chondroitin sulfate chain synthesis; the addition of the chondroitin sulfate linkage galactose occurs at or nearly at the same time as chain elongation while the addition of linkage xylose residues to the core protein may precede chain synthesis by up to 8 min. Since the intracellular t1/2 of the core protein precursor for these cells is 45 to 90 min, the data strongly suggest that the addition of xylose is not completed to any significant extent while the polypeptide is still nascent or shortly after its release into the rough endoplasmic reticulum. It is proposed that the addition of xylose to the core protein precursor is a late endoplasmic reticulum or early Golgi event. The analytical data were consistent with the presence of ester phosphate on about 80% of the xylose residues of the newly synthesized proteoglycan.
Collapse
|
42
|
Mechanism for the decreased biosynthesis of cartilage proteoglycan in the scorbutic guinea pig. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)67363-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
43
|
|
44
|
Workshop Communications. Clin Chem Lab Med 1986. [DOI: 10.1515/cclm.1986.24.11.913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
45
|
Farnum CE. Binding of lectin-fluorescein conjugates to intracellular compartments of growth-plate chondrocytes in situ. THE AMERICAN JOURNAL OF ANATOMY 1985; 174:419-35. [PMID: 3841262 DOI: 10.1002/aja.1001740406] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In this study, lectin-binding techniques are applied to growth-plate cartilage to analyze the intracellular localization of lectin-binding glycoconjugates of chondrocytes in situ. The binding of ten fluorescein-conjugated lectins is analyzed on 1-micron-thick Epon-embedded, nondecalcified sections of growth plates from Yucatan swine. Comparisons are made to intracellular binding in chondrocytes of tracheal, articular, and auricular cartilage. Ear epithelium, tracheal epithelium, and kidney are used as positive control tissues for the specificity of lectin binding. Only the mannose-binding lectins had affinity for the RER and nuclear envelope. Eight lectins reacted within the Golgi complex with characteristic patterns which ranged from localized fine linear strands to extensive vesicular accumulations. When cartilage slabs were exposed before embedment to the ionophore monensin to disrupt intracellular transport through the Golgi, it was possible to define differential subcompartments of the Golgi complex, based upon sites of sugar addition. Also, it was possible to characterize the cytoplasmic deposits of reserve-zone chondrocytes which were positive with concanavalin A as glycogen, based upon their sensitivity to amylase. This method allows resolution at the light-microscopic level of lectin-binding glycoconjugates with localization to specific organelles. Patterns of intracellular binding were consistent with biochemical data relating to the subcellular localization of processing steps of complex carbohydrates prior to secretion.
Collapse
|
46
|
Sulfation of p-nitrophenyl-N-acetyl-beta-D-galactosaminide with a microsomal fraction from cultured chondrocytes. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(17)38844-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
47
|
Sulfation and transport of basement membrane proteoglycans, as visualized by35S-sulfate radioautography in the endodermal cells of the rat parietal yolk sac. ACTA ACUST UNITED AC 1985; 173:127-45. [DOI: 10.1002/aja.1001730206] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
48
|
Vertel BM, Barkman LL, Morrell JJ. Intracellular features of type II procollagen and chondroitin sulfate proteoglycan synthesis in chondrocytes. J Cell Biochem 1985; 27:215-29. [PMID: 3886677 DOI: 10.1002/jcb.240270304] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The intracellular compartments of chondrocytes involved in the synthesis and processing of type II procollagen and chondroitin sulfate proteoglycan (CSPG) monomer were investigated using simultaneous double immunofluorescence and lectin localization reactions. Type II procollagen was distributed in vesicles throughout the cytoplasm, whereas intracellular precursors of CSPG monomer were accumulated in the perinuclear cytoplasm. In this study, cytoplasmic vesicles that stained intensely with antibodies directed against CSPG monomer but did not react with type II collagen antibodies, also were observed. A monoclonal antibody, 5-D-4, that recognizes keratan sulfate determinants was used to identify the Golgi complex (the site of keratan sulfate chain elongation). Staining with 5-D-4 was restricted to the perinuclear cytoplasm. The vesicles outside the perinuclear cytoplasm that stained intensely with antibodies to CSPG monomer did not react with 5-D-4. Fluorescent lectins were used to characterize further subcellular compartments. Concanavalin A, which reacts with mannose-rich oligosaccharides, did not stain the perinuclear region, but it did stain vesicles throughout the rest of the cytoplasm. Because mannose oligosaccharides are added cotranslationally, the stained vesicles throughout the cytoplasm presumably correspond to the rough endoplasmic reticulum. Wheat germ agglutinin, which recognizes N-acetyl-D-glucosamine and sialic acid (carbohydrates added in the Golgi), stained exclusively the perinuclear cytoplasm. By several criteria (staining with the monoclonal antibody 5-D-4 and with wheat germ agglutinin), the perinuclear cytoplasm seems to correspond to the Golgi complex. The cytoplasmic vesicles that react with anti-CSPG monomer and not with anti-type II collagen contain precursors of CSPG monomer not yet modified by Golgi-mediated oligosaccharide additions (because they are not stained with wheat germ agglutinin or with the anti-keratan sulfate antibody); these vesicles may have a unique function in the processing of CSPG.
Collapse
|