1
|
Smith SA, Newby AC, Bond M. Ending Restenosis: Inhibition of Vascular Smooth Muscle Cell Proliferation by cAMP. Cells 2019; 8:cells8111447. [PMID: 31744111 PMCID: PMC6912325 DOI: 10.3390/cells8111447] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 12/17/2022] Open
Abstract
Increased vascular smooth muscle cell (VSMC) proliferation contributes towards restenosis after angioplasty, vein graft intimal thickening and atherogenesis. The second messenger 3′ 5′ cyclic adenosine monophosphate (cAMP) plays an important role in maintaining VSMC quiescence in healthy vessels and repressing VSMC proliferation during resolution of vascular injury. Although the anti-mitogenic properties of cAMP in VSMC have been recognised for many years, it is only recently that we gained a detailed understanding of the underlying signalling mechanisms. Stimuli that elevate cAMP in VSMC inhibit G1-S phase cell cycle progression by inhibiting expression of cyclins and preventing S-Phase Kinase Associated Protein-2 (Skp2-mediated degradation of cyclin-dependent kinase inhibitors. Early studies implicated inhibition of MAPK signalling, although this does not fully explain the anti-mitogenic effects of cAMP. The cAMP effectors, Protein Kinase A (PKA) and Exchange Protein Activated by cAMP (EPAC) act together to inhibit VSMC proliferation by inducing Cyclic-AMP Response Element Binding protein (CREB) activity and inhibiting members of the RhoGTPases, which results in remodelling of the actin cytoskeleton. Cyclic-AMP induced actin remodelling controls proliferation by modulating the activity of Serum Response Factor (SRF) and TEA Domain Transcription Factors (TEAD), which regulate expression of genes required for proliferation. Here we review recent research characterising these mechanisms, highlighting novel drug targets that may allow the anti-mitogenic properties of cAMP to be harnessed therapeutically to limit restenosis.
Collapse
Affiliation(s)
| | | | - Mark Bond
- Correspondence: ; Tel.: +44-117-3423586
| |
Collapse
|
2
|
Su J, Wu W, Huang S, Xue R, Wang Y, Wan Y, Zhang L, Qin L, Zhang Q, Zhu X, Zhang Z, Ye H, Wu X, Li Y. PKA-RIIB Deficiency Induces Brown Fatlike Adipocytes in Inguinal WAT and Promotes Energy Expenditure in Male FVB/NJ Mice. Endocrinology 2017; 158:578-591. [PMID: 27967236 DOI: 10.1210/en.2016-1581] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 12/02/2016] [Indexed: 01/22/2023]
Abstract
Obesity has become the most common metabolic disorder worldwide. Promoting brown adipose tissue (BAT) and beige adipose tissue formation, and therefore, a functional increase in energy expenditure, may counteract obesity. Mice lacking type IIβ regulatory subunit of adenosine 3',5' cyclic monophosphate (cAMP)-dependent protein kinase A (PKA-RIIB) display reduced adiposity and resistance to diet-induced obesity. PKA-RIIB, encoded by the Prkar2b gene, is most abundant in BAT and white adipose tissue (WAT) and in the brain. In this study, we show that mice lacking PKA-RIIB have increased energy expenditure, limited weight gain, and improved glucose metabolism. PKA-RIIB deficiency induces brownlike adipocyte in inguinal WAT (iWAT). PKA-RIIB deficiency also increases the expression of uncoupling protein 1 and other thermogenic genes in iWAT and primary preadipocytes from iWAT through a mechanism involving increased PKA activity, which is represented by increased phosphorylation of PKA substrate, cAMP response element binding protein, and P38 mitogen-activated protein kinase. Our study provides evidence for the role of PKA-RIIB deficiency in regulating thermogenesis in WAT, which may potentially have therapeutic implications for the treatment of obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Jing Su
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Wei Wu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Shan Huang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Ruidan Xue
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi Wang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Yun Wan
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Lv Zhang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Lang Qin
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiongyue Zhang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoming Zhu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhaoyun Zhang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Hongying Ye
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaohui Wu
- Institute of Developmental Biology and Molecular Medicine, School of Life Sciences, Fudan University, Shanghai, China
| | - Yiming Li
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Lee JH, Han JS, Kong J, Ji Y, Lv X, Lee J, Li P, Kim JB. Protein Kinase A Subunit Balance Regulates Lipid Metabolism in Caenorhabditis elegans and Mammalian Adipocytes. J Biol Chem 2016; 291:20315-28. [PMID: 27496951 DOI: 10.1074/jbc.m116.740464] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Indexed: 11/06/2022] Open
Abstract
Protein kinase A (PKA) is a cyclic AMP (cAMP)-dependent protein kinase composed of catalytic and regulatory subunits and involved in various physiological phenomena, including lipid metabolism. Here we demonstrated that the stoichiometric balance between catalytic and regulatory subunits is crucial for maintaining basal PKA activity and lipid homeostasis. To uncover the potential roles of each PKA subunit, Caenorhabditis elegans was used to investigate the effects of PKA subunit deficiency. In worms, suppression of PKA via RNAi resulted in severe phenotypes, including shortened life span, decreased egg laying, reduced locomotion, and altered lipid distribution. Similarly, in mammalian adipocytes, suppression of PKA regulatory subunits RIα and RIIβ via siRNAs potently stimulated PKA activity, leading to potentiated lipolysis without increasing cAMP levels. Nevertheless, insulin exerted anti-lipolytic effects and restored lipid droplet integrity by antagonizing PKA action. Together, these data implicate the importance of subunit stoichiometry as another regulatory mechanism of PKA activity and lipid metabolism.
Collapse
Affiliation(s)
- Jung Hyun Lee
- From the Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, 08862 Seoul, Korea
| | - Ji Seul Han
- From the Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, 08862 Seoul, Korea
| | - Jinuk Kong
- From the Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, 08862 Seoul, Korea
| | - Yul Ji
- From the Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, 08862 Seoul, Korea
| | - Xuchao Lv
- the MOE Key Laboratory of Bioinformatics and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084 Beijing, China and
| | - Junho Lee
- From the Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, 08862 Seoul, Korea, the Department of Biophysics and Chemical Biology, Seoul National University, Seoul 08862, Korea
| | - Peng Li
- the MOE Key Laboratory of Bioinformatics and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084 Beijing, China and
| | - Jae Bum Kim
- From the Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, 08862 Seoul, Korea,
| |
Collapse
|
4
|
He Y, Kulasiri D, Samarasinghe S. Modelling bidirectional modulations in synaptic plasticity: A biochemical pathway model to understand the emergence of long term potentiation (LTP) and long term depression (LTD). J Theor Biol 2016; 403:159-177. [PMID: 27185535 DOI: 10.1016/j.jtbi.2016.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 04/11/2016] [Accepted: 05/06/2016] [Indexed: 12/30/2022]
Abstract
Synaptic plasticity induces bidirectional modulations of the postsynaptic response following a synaptic transmission. The long term forms of synaptic plasticity, named long term potentiation (LTP) and long term depression (LTD), are critical for the antithetic functions of the memory system, memory formation and removal, respectively. A common Ca(2+) signalling upstream triggers both LTP and LTD, and the critical proteins and factors coordinating the LTP/LTD inductions are not well understood. We develop an integrated model based on the sub-models of the indispensable synaptic proteins in the emergence of synaptic plasticity to validate and understand their potential roles in the expression of synaptic plasticity. The model explains Ca(2+)/calmodulin (CaM) complex dependent coordination of LTP/LTD expressions by the interactions among the indispensable proteins using the experimentally estimated kinetic parameters. Analysis of the integrated model provides us with insights into the effective timescales of the key proteins and we conclude that the CaM pool size is critical for the coordination between LTP/LTD expressions.
Collapse
Affiliation(s)
- Yao He
- Centre for Advanced Computational Solutions (C-fACS), Molecular Biosciences Department, Lincoln University, Christchurch, New Zealand
| | - Don Kulasiri
- Centre for Advanced Computational Solutions (C-fACS), Molecular Biosciences Department, Lincoln University, Christchurch, New Zealand.
| | - Sandhya Samarasinghe
- Centre for Advanced Computational Solutions (C-fACS), Molecular Biosciences Department, Lincoln University, Christchurch, New Zealand
| |
Collapse
|
5
|
Structural insights into mis-regulation of protein kinase A in human tumors. Proc Natl Acad Sci U S A 2015; 112:1374-9. [PMID: 25605907 DOI: 10.1073/pnas.1424206112] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The extensively studied cAMP-dependent protein kinase A (PKA) is involved in the regulation of critical cell processes, including metabolism, gene expression, and cell proliferation; consequentially, mis-regulation of PKA signaling is implicated in tumorigenesis. Recent genomic studies have identified recurrent mutations in the catalytic subunit of PKA in tumors associated with Cushing's syndrome, a kidney disorder leading to excessive cortisol production, and also in tumors associated with fibrolamellar hepatocellular carcinoma (FL-HCC), a rare liver cancer. Expression of a L205R point mutant and a DnaJ-PKA fusion protein were found to be linked to Cushing's syndrome and FL-HCC, respectively. Here we reveal contrasting mechanisms for increased PKA signaling at the molecular level through structural determination and biochemical characterization of the aberrant enzymes. In the Cushing's syndrome disorder, we find that the L205R mutation abolishes regulatory-subunit binding, leading to constitutive, cAMP-independent signaling. In FL-HCC, the DnaJ-PKA chimera remains under regulatory subunit control; however, its overexpression from the DnaJ promoter leads to enhanced cAMP-dependent signaling. Our findings provide a structural understanding of the two distinct disease mechanisms and they offer a basis for designing effective drugs for their treatment.
Collapse
|
6
|
Peercy BE, Sherman AS. How pancreatic beta-cells discriminate long and short timescale cAMP signals. Biophys J 2010; 99:398-406. [PMID: 20643057 DOI: 10.1016/j.bpj.2010.04.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 03/15/2010] [Accepted: 04/14/2010] [Indexed: 11/16/2022] Open
Abstract
The translocation of catalytic protein kinase A (cPKA) in response to cyclic-adenosine mono-phosphate (cAMP) depends on the pattern of stimulus applied to the cell. Experiments with IBMX have shown that 1), sustained cAMP elevation is more effective than oscillations of cAMP at getting cPKA into the nucleus; and 2), cPKA enters the nucleus by diffusion. We constructed mathematical models of cAMP activation of cPKA and their diffusion in order to study nuclear translocation of cPKA, and conclude that hindered diffusion of cPKA through the nuclear membrane by a rapid-binding process, but not globally reduced diffusion, can explain the experimental data. Perturbation analysis suggests that normal physiological oscillations of glucose would not result in nuclear translocation, but chronically high glucose that produces extended calcium plateaus and/or chronic glucagonlike peptide-1 stimulation could result in elevated levels of nuclear cPKA.
Collapse
Affiliation(s)
- Bradford E Peercy
- Department of Mathematics and Statistics, University of Maryland, Baltimore, Maryland, USA
| | | |
Collapse
|
7
|
Qi Z, Miller GW, Voit EO. The internal state of medium spiny neurons varies in response to different input signals. BMC SYSTEMS BIOLOGY 2010; 4:26. [PMID: 20236543 PMCID: PMC2848196 DOI: 10.1186/1752-0509-4-26] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 03/17/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND Parkinson's disease, schizophrenia, Huntington's chorea and drug addiction are manifestations of malfunctioning neurons within the striatum region at the base of the human forebrain. A key component of these neurons is the protein DARPP-32, which receives and processes various types of dopamine and glutamate inputs and translates them into specific biochemical, cellular, physiological, and behavioral responses. DARPP-32's unique capacity of faithfully converting distinct neurotransmitter signals into appropriate responses is achieved through a complex phosphorylation-dephosphorylation system that evades intuition and predictability. RESULTS To gain deeper insights into the functioning of the DARPP-32 signal transduction system, we developed a dynamic model that is robust and consistent with available clinical, pharmacological, and biological observations. Upon validation, the model was first used to explore how different input signal scenarios are processed by DARPP-32 and translated into distinct static and dynamic responses. Secondly, a comprehensive perturbation analysis identified the specific role of each component on the system's signal transduction ability. CONCLUSIONS Our study investigated the effects of various patterns of neurotransmission on signal integration and interpretation by DARPP-32 and showed that the DARPP-32 system has the capability of discerning surprisingly many neurotransmission scenarios. We also screened out potential mechanisms underlying this capability of the DARPP-32 system. This type of insight deepens our understanding of neuronal signal transduction in normal medium spiny neurons, sheds light on neurological disorders associated with the striatum, and might aid the search for intervention targets in neurological diseases and drug addiction.
Collapse
Affiliation(s)
- Zhen Qi
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University Medical School, Atlanta, GA 30332, USA
| | | | | |
Collapse
|
8
|
Temporal sensitivity of protein kinase a activation in late-phase long term potentiation. PLoS Comput Biol 2010; 6:e1000691. [PMID: 20195498 PMCID: PMC2829045 DOI: 10.1371/journal.pcbi.1000691] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 01/26/2010] [Indexed: 01/22/2023] Open
Abstract
Protein kinases play critical roles in learning and memory and in long term potentiation (LTP), a form of synaptic plasticity. The induction of late-phase LTP (L-LTP) in the CA1 region of the hippocampus requires several kinases, including CaMKII and PKA, which are activated by calcium-dependent signaling processes and other intracellular signaling pathways. The requirement for PKA is limited to L-LTP induced using spaced stimuli, but not massed stimuli. To investigate this temporal sensitivity of PKA, a computational biochemical model of L-LTP induction in CA1 pyramidal neurons was developed. The model describes the interactions of calcium and cAMP signaling pathways and is based on published biochemical measurements of two key synaptic signaling molecules, PKA and CaMKII. The model is stimulated using four 100 Hz tetani separated by 3 sec (massed) or 300 sec (spaced), identical to experimental L-LTP induction protocols. Simulations show that spaced stimulation activates more PKA than massed stimulation, and makes a key experimental prediction, that L-LTP is PKA-dependent for intervals larger than 60 sec. Experimental measurements of L-LTP demonstrate that intervals of 80 sec, but not 40 sec, produce PKA-dependent L-LTP, thereby confirming the model prediction. Examination of CaMKII reveals that its temporal sensitivity is opposite that of PKA, suggesting that PKA is required after spaced stimulation to compensate for a decrease in CaMKII. In addition to explaining the temporal sensitivity of PKA, these simulations suggest that the use of several kinases for memory storage allows each to respond optimally to different temporal patterns. The hippocampus is a part of the cerebral cortex intimately involved in learning and memory behavior. A common cellular model of learning is a long lasting form of long term potentiation (L-LTP) in the hippocampus, because it shares several characteristics with learning. For example, both learning and long term potentiation exhibit sensitivity to temporal patterns of synaptic inputs and share common intracellular events such as activation of specific intracellular signaling pathways. Therefore, understanding the pivotal molecules in the intracellular signaling pathways underlying temporal sensitivity of L-LTP in the hippocampus may illuminate mechanisms underlying learning. We developed a computational model to evaluate whether the signaling pathways leading to activation of the two critical enzymes: protein kinase A and calcium-calmodulin-dependent kinase II are sufficient to explain the experimentally observed temporal sensitivity. Indeed, the simulations demonstrate that these enzymes exhibit different temporal sensitivities, and make a key experimental prediction, that L-LTP is dependent on protein kinase A for intervals larger than 60 sec. Measurements of hippocampal L-LTP confirm this prediction, demonstrating the value of a systems biology approach to computational neuroscience.
Collapse
|
9
|
Lefkimmiatis K, Moyer MP, Curci S, Hofer AM. "cAMP sponge": a buffer for cyclic adenosine 3', 5'-monophosphate. PLoS One 2009; 4:e7649. [PMID: 19888343 PMCID: PMC2766031 DOI: 10.1371/journal.pone.0007649] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 10/06/2009] [Indexed: 11/18/2022] Open
Abstract
Background While intracellular buffers are widely used to study calcium signaling, no such tool exists for the other major second messenger, cyclic AMP (cAMP). Methods/Principal Findings Here we describe a genetically encoded buffer for cAMP based on the high-affinity cAMP-binding carboxy-terminus of the regulatory subunit RIβ of protein kinase A (PKA). Addition of targeting sequences permitted localization of this fragment to the extra-nuclear compartment, while tagging with mCherry allowed quantification of its expression at the single cell level. This construct (named “cAMP sponge”) was shown to selectively bind cAMP in vitro. Its expression significantly suppressed agonist-induced cAMP signals and the downstream activation of PKA within the cytosol as measured by FRET-based sensors in single living cells. Point mutations in the cAMP-binding domains of the construct rendered the chimera unable to bind cAMP in vitro or in situ. Cyclic AMP sponge was fruitfully applied to examine feedback regulation of gap junction-mediated transfer of cAMP in epithelial cell couplets. Conclusions This newest member of the cAMP toolbox has the potential to reveal unique biological functions of cAMP, including insight into the functional significance of compartmentalized signaling events.
Collapse
Affiliation(s)
- Konstantinos Lefkimmiatis
- VA Boston Healthcare System and the Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, West Roxbury, Massachusetts, United States of America
| | - Mary Pat Moyer
- INCELL Corporation LLC, San Antonio, Texas, United States of America
| | - Silvana Curci
- VA Boston Healthcare System and the Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, West Roxbury, Massachusetts, United States of America
| | - Aldebaran M. Hofer
- VA Boston Healthcare System and the Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, West Roxbury, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
10
|
Cheng X, Ji Z, Tsalkova T, Mei F. Epac and PKA: a tale of two intracellular cAMP receptors. Acta Biochim Biophys Sin (Shanghai) 2008; 40:651-62. [PMID: 18604457 PMCID: PMC2630796 DOI: 10.1111/j.1745-7270.2008.00438.x] [Citation(s) in RCA: 283] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
cAMP-mediated signaling pathways regulate a multitude of important biological processes under both physiological and pathological conditions, including diabetes, heart failure and cancer. In eukaryotic cells, the effects of cAMP are mediated by two ubiquitously expressed intracellular cAMP receptors, the classic protein kinase A (PKA)/cAMP-dependent protein kinase and the recently discovered exchange protein directly activated by camp (Epac)/cAMP-regulated guanine nucleotide exchange factors. Like PKA, Epac contains an evolutionally conserved cAMP binding domain that acts as a molecular switch for sensing intracellular second messenger cAMP levels to control diverse biological functions. The existence of two families of cAMP effectors provides a mechanism for a more precise and integrated control of the cAMP signaling pathways in a spatial and temporal manner. Depending upon the specific cellular environments as well as their relative abundance, distribution and localization, Epac and PKA may act independently, converge synergistically or oppose each other in regulating a specific cellular function.
Collapse
Affiliation(s)
- Xiaodong Cheng
- Department of Pharmacology and Toxicology, Sealy Center for Cancer Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555-1031, USA.
| | | | | | | |
Collapse
|
11
|
Xin W, Tran TM, Richter W, Clark RB, Rich TC. Roles of GRK and PDE4 activities in the regulation of beta2 adrenergic signaling. ACTA ACUST UNITED AC 2008; 131:349-64. [PMID: 18347080 PMCID: PMC2279169 DOI: 10.1085/jgp.200709881] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
An important focus in cell biology is understanding how different feedback mechanisms regulate G protein-coupled receptor systems. Toward this end we investigated the regulation of endogenous beta(2) adrenergic receptors (beta2ARs) and phosphodiesterases (PDEs) by measuring cAMP signals in single HEK-293 cells. We monitored cAMP signals using genetically encoded cyclic nucleotide-gated (CNG) channels. This high resolution approach allowed us to make several observations. (a) Exposure of cells to 1 muM isoproterenol triggered transient increases in cAMP levels near the plasma membrane. Pretreatment of cells with 10 muM rolipram, a PDE4 inhibitor, prevented the decline in the isoproterenol-induced cAMP signals. (b) 1 muM isoproterenol triggered a sustained, twofold increase in phosphodiesterase type 4 (PDE4) activity. (c) The decline in isoproterenol-dependent cAMP levels was not significantly altered by including 20 nM PKI, a PKA inhibitor, or 3 muM 59-74E, a GRK inhibitor, in the pipette solution; however, the decline in the cAMP levels was prevented when both PKI and 59-74E were included in the pipette solution. (d) After an initial 5-min stimulation with isoproterenol and a 5-min washout, little or no recovery of the signal was observed during a second 5-min stimulation with isoproterenol. (e) The amplitude of the signal in response to the second isoproterenol stimulation was not altered when PKI was included in the pipette solution, but was significantly increased when 59-74E was included. Taken together, these data indicate that either GRK-mediated desensitization of beta2ARs or PKA-mediated stimulation of PDE4 activity is sufficient to cause declines in cAMP signals. In addition, the data indicate that GRK-mediated desensitization is primarily responsible for a sustained suppression of beta2AR signaling. To better understand the interplay between receptor desensitization and PDE4 activity in controlling cAMP signals, we developed a mathematical model of this system. Simulations of cAMP signals using this model are consistent with the experimental data and demonstrate the importance of receptor levels, receptor desensitization, basal adenylyl cyclase activity, and regulation of PDE activity in controlling cAMP signals, and hence, on the overall sensitivity of the system.
Collapse
Affiliation(s)
- Wenkuan Xin
- Department of Pharmacology, College of Medicine and Center for Lung Biology, University of South Alabama, Mobile, AL 36688, USA
| | | | | | | | | |
Collapse
|
12
|
Sang Cho-Chung Y. Overview: Oncologic, Endocrine & Metabolic Antisense oligonucleotides for the treatment of cancer. ACTA ACUST UNITED AC 2008. [DOI: 10.1517/13543776.3.12.1737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Abstract
Studies of the biological role of cAMP have indicated dual and often opposing effects on proliferation and differentiation. Elevation of the intracellular cAMP in normal and transformed cells may lead to cell proliferation; in other cells, it induces changes in morphology, apoptosis and/or differentiation. The best known mediator of cAMP action in the cell is cAMP-dependent protein kinase or protein kinase A (PKA). PKA exists as two different isozymes, designated type I (PKA-I) and type II (PKA-II); the two isoforms are essentially distinct in their physicochemical properties. The relative ratio of PKA-I and PKA-II varies throughout the cell cycle in cells of the same type, it changes significantly during development and follows different patterns in the various tissues. Disruption of the apparently fine balance between the main two PKA isozymes is strongly associated with tumorigenesis and tumor growth, and vice versa. The enormous variety of cAMP/PKA functions and the net effect of this signaling system on cellular growth, proliferation and differentiation have been the subject of debate for more than 30 years among investigators in the field. The relatively recent identification of PRKAR1A mutations and PKA-I deficiency as a cause of endocrine and other tumors in human and mice was instrumental in advancing our understanding of how cAMP and PKA work in regulating the cell cycle. This article reviews the current state of knowledge in the field; the use of pharmacologic modulation of the cAMP/PKA system with the goal of treating certain tumors appears to be near, although very little has been accomplished so far, at least in terms of studies on humans.
Collapse
Affiliation(s)
- Maria Nesterova
- a National Institutes of Health, Section on Endocrinology & Genetics, Developmental Endocrinology Branch, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA.
| | - Constantine A Stratakis
- b National Institutes of Health, Section on Endocrinology & Genetics, Developmental Endocrinology Branch, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA.
| |
Collapse
|
14
|
Anand G, Taylor SS, Johnson DA. Cyclic-AMP and pseudosubstrate effects on type-I A-kinase regulatory and catalytic subunit binding kinetics. Biochemistry 2007; 46:9283-91. [PMID: 17658893 DOI: 10.1021/bi700421h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To better understand the molecular mechanism of cAMP-induced and substrate-enhanced activation of type-I A-kinase, we measured the kinetics of A-kinase regulatory subunit interactions using a stopped-flow spectrofluorometric method. Specifically, we conjugated fluorescein maleimide (FM) to two separate single cysteine-substituted and truncated mutants of the type Ialpha regulatory subunit of A-kinase, RIalpha (91-244). One site of cysteine substitution and conjugation was at R92 and the other at R239. Although the emission from both conjugates changed with catalytic subunit binding, only the FM-R92C conjugate yielded unambiguous results in the presence of cAMP and was therefore used to assess whether a pseudosubstrate perturbed the rate of holoenzyme dissociation. We found that cAMP selectively accelerates the rate of dissociation of the RIalpha (91-244):C-subunit complex approximately 700-fold, resulting in an equilibrium dissociation constant of 130 nM. Furthermore, excess amounts of the pseudosubstrate inhibitor, PKI(5-24), had no effect on the rate of RIalpha (91-244):C-subunit complex dissociation. The results indicate that the limited ability of cAMP to induce holoenzyme dissociation reflects a greatly reduced but still significant regulatory catalytic subunit affinity in the presence of cAMP. Moreover, the ability of the substrate to facilitate cAMP-induced dissociation results from the mass action effect of excess substrate and not from direct substrate binding to holoenzyme.
Collapse
Affiliation(s)
- Ganesh Anand
- Department of Chemistry/Biochemistry, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California 92037, USA
| | | | | |
Collapse
|
15
|
Lindskog M, Kim M, Wikström MA, Blackwell KT, Kotaleski JH. Transient calcium and dopamine increase PKA activity and DARPP-32 phosphorylation. PLoS Comput Biol 2006; 2:e119. [PMID: 16965177 PMCID: PMC1562452 DOI: 10.1371/journal.pcbi.0020119] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Accepted: 07/27/2006] [Indexed: 12/03/2022] Open
Abstract
Reinforcement learning theorizes that strengthening of synaptic connections in medium spiny neurons of the striatum occurs when glutamatergic input (from cortex) and dopaminergic input (from substantia nigra) are received simultaneously. Subsequent to learning, medium spiny neurons with strengthened synapses are more likely to fire in response to cortical input alone. This synaptic plasticity is produced by phosphorylation of AMPA receptors, caused by phosphorylation of various signalling molecules. A key signalling molecule is the phosphoprotein DARPP-32, highly expressed in striatal medium spiny neurons. DARPP-32 is regulated by several neurotransmitters through a complex network of intracellular signalling pathways involving cAMP (increased through dopamine stimulation) and calcium (increased through glutamate stimulation). Since DARPP-32 controls several kinases and phosphatases involved in striatal synaptic plasticity, understanding the interactions between cAMP and calcium, in particular the effect of transient stimuli on DARPP-32 phosphorylation, has major implications for understanding reinforcement learning. We developed a computer model of the biochemical reaction pathways involved in the phosphorylation of DARPP-32 on Thr34 and Thr75. Ordinary differential equations describing the biochemical reactions were implemented in a single compartment model using the software XPPAUT. Reaction rate constants were obtained from the biochemical literature. The first set of simulations using sustained elevations of dopamine and calcium produced phosphorylation levels of DARPP-32 similar to that measured experimentally, thereby validating the model. The second set of simulations, using the validated model, showed that transient dopamine elevations increased the phosphorylation of Thr34 as expected, but transient calcium elevations also increased the phosphorylation of Thr34, contrary to what is believed. When transient calcium and dopamine stimuli were paired, PKA activation and Thr34 phosphorylation increased compared with dopamine alone. This result, which is robust to variation in model parameters, supports reinforcement learning theories in which activity-dependent long-term synaptic plasticity requires paired glutamate and dopamine inputs. Reinforcement learning, based on the association of a stimulus-triggered movement with a reward, involves changes in connection strength between neurons. Memory storage occurs in the striatum, the input stage of the basal ganglia, when a stimulus or movement signal originating from the cortex and a reward signal originating from the midbrain reach the target striatal cells together. Repetitive pairing of these two signals strengthens the connection between cortical and striatal cells. The strengthening of the connections is caused by activation of biochemical signalling pathways inside the striatal cells. These intracellular signalling pathways are explored in a quantitative computational model describing the biochemical pathways important for reinforcement learning. Lindskog et al.'s study shows that when brief reward and stimuli signals are paired, a stronger response in the intracellular signalling occurs compared with the situation when each signal is given alone. This result illustrates mechanisms whereby paired stimuli, but not unpaired stimuli, can cause learning. Furthermore, the model predicts that the biochemical responses are different after brief stimulation as compared with prolonged stimulation. This result highlights the difficulties in predicting the nonlinear interactions within signalling cascades based on prolonged stimulations, which often are used in biochemical experiments.
Collapse
Affiliation(s)
- Maria Lindskog
- School of Computer Science and Communication, Royal Institute of Technology, Stockholm, Sweden
| | - MyungSook Kim
- School of Computational Sciences, George Mason University, Fairfax, Virginia, United States of America
- The Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia, United States of America
| | - Martin A Wikström
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Kim T Blackwell
- School of Computational Sciences, George Mason University, Fairfax, Virginia, United States of America
- The Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia, United States of America
| | - Jeanette Hellgren Kotaleski
- School of Computer Science and Communication, Royal Institute of Technology, Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
16
|
Carlson GM, Bechtel PJ, Graves DJ. Chemical and regulatory properties of phosphorylase kinase and cyclic AMP-dependent protein kinase. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 50:41-115. [PMID: 227235 DOI: 10.1002/9780470122952.ch2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Samuelsen JT, Schwarze PE, Huitfeldt HS, Thrane EV, Låg M, Refsnes M, Skarpen E, Becher R. Regulation of rat alveolar type 2 cell proliferation in vitro involves type II cAMP-dependent protein kinase. Am J Physiol Lung Cell Mol Physiol 2006; 292:L232-9. [PMID: 16980378 DOI: 10.1152/ajplung.00049.2006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To elucidate the role of cAMP and different cAMP-dependent protein kinases (PKA; A-kinase) in lung cell proliferation, we investigated rat alveolar type 2 cell proliferation in relation to activation or inhibition of PKA and PKA regulatory subunits (RIIalpha and RIalpha). Both the number of proliferating type 2 cells and the level of different regulatory subunits varied during 7 days of culture. The cells exhibited a distinct peak of proliferation after 5 days of culture. This proliferation peak was preceded by a rise in RIIalpha protein level. In contrast, an inverse relationship between RIalpha and type 2 cell proliferation was noted. Activation of PKA increased type 2 cell proliferation if given at peak RIIalpha expression. Furthermore, PKA inhibitors lowered the rate of proliferation only when a high RII level was observed. An antibody against the anchoring region of RIIalpha showed cell cycle-dependent binding in contrast to antibodies against other regions, possibly related to altered binding to A-kinase anchoring protein. Following activation of PKA, relocalization of RIIalpha was confirmed by immunocytochemistry. In conclusion, it appears that activation of PKA II is important in regulation of alveolar type 2 cell proliferation.
Collapse
Affiliation(s)
- Jan T Samuelsen
- Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Rich TC, Xin W, Mehats C, Hassell KA, Piggott LA, Le X, Karpen JW, Conti M. Cellular mechanisms underlying prostaglandin-induced transient cAMP signals near the plasma membrane of HEK-293 cells. Am J Physiol Cell Physiol 2006; 292:C319-31. [PMID: 16899551 PMCID: PMC4712347 DOI: 10.1152/ajpcell.00121.2006] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously used cyclic nucleotide-gated (CNG) channels as sensors to measure cAMP signals in human embryonic kidney (HEK)-293 cells. We found that prostaglandin E(1) (PGE(1)) triggered transient increases in cAMP concentration near the plasma membrane, whereas total cAMP levels rose to a steady plateau over the same time course. In addition, we presented evidence that the decline in the near-membrane cAMP levels was due primarily to a PGE(1)-induced stimulation of phosphodiesterase (PDE) activity, and that the differences between near-membrane and total cAMP levels were largely due to diffusional barriers and differential PDE activity. Here, we examine the mechanisms regulating transient, near-membrane cAMP signals. We observed that 5-min stimulation of HEK-293 cells with prostaglandins triggered a two- to threefold increase in PDE4 activity. Extracellular application of H89 (a PKA inhibitor) inhibited stimulation of PDE4 activity. Similarly, when we used CNG channels to monitor cAMP signals we found that both extracellular and intracellular (via the whole-cell patch pipette) application of H89, or the highly selective PKA inhibitor, PKI, prevented the decline in prostaglandin-induced responses. Following pretreatment with rolipram (a PDE4 inhibitor), H89 had little or no effect on near-membrane or total cAMP levels. Furthermore, disrupting the subcellular localization of PKA with the A-kinase anchoring protein (AKAP) disruptor Ht31 prevented the decline in the transient response. Based on these data we developed a plausible kinetic model that describes prostaglandin-induced cAMP signals. This model has allowed us to quantitatively demonstrate the importance of PKA-mediated stimulation of PDE4 activity in shaping near-membrane cAMP signals.
Collapse
Affiliation(s)
- Thomas C Rich
- Department of Pharmacology, College of Medicine and Center for Lung Biology, University of South Alabama, Mobile, AL 36688, USA.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Walter U. Physiological role of cGMP and cGMP-dependent protein kinase in the cardiovascular system. Rev Physiol Biochem Pharmacol 2005; 113:41-88. [PMID: 2560585 DOI: 10.1007/bfb0032675] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
20
|
Yu S, Mei FC, Lee JC, Cheng X. Probing cAMP-dependent protein kinase holoenzyme complexes I alpha and II beta by FT-IR and chemical protein footprinting. Biochemistry 2004; 43:1908-20. [PMID: 14967031 DOI: 10.1021/bi0354435] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although individual structures of cAMP-dependent protein kinase (PKA) catalytic (C) and regulatory (R) subunits have been determined at the atomic level, our understanding of the effects of cAMP activation on protein dynamics and intersubunit communication of PKA holoenzymes is very limited. To delineate the mechanism of PKA activation and structural differences between type I and II PKA holoenzymes, the conformation and structural dynamics of PKA holoenzymes Ialpha and IIbeta were probed by amide hydrogen-deuterium exchange coupled with Fourier transform infrared spectroscopy (FT-IR) and chemical protein footprinting. Binding of cAMP to PKA holoenzymes Ialpha and IIbeta leads to a downshift in the wavenumber for both the alpha-helix and beta-strand bands, suggesting that R and C subunits become overall more dynamic in the holoenzyme complexes. This is consistent with the H-D exchange results showing a small change in the overall rate of exchange in response to the binding of cAMP to both PKA holoenzymes Ialpha and IIbeta. Despite the overall similarity, significant differences in the change of FT-IR spectra in response to the binding of cAMP were observed between PKA holoenzymes Ialpha and IIbeta. Activation of PKA holoenzyme Ialpha led to more conformational changes in beta-strand structures, while cAMP induced more apparent changes in the alpha-helical structures in PKA holoenzyme IIbeta. Chemical protein footprinting experiments revealed an extended docking surface for the R subunits on the C subunit. Although the overall subunit interfaces appeared to be similar for PKA holoenzymes Ialpha and IIbeta, a region around the active site cleft of the C subunit was more protected in PKA holoenzyme Ialpha than in PKA holoenzyme IIbeta. These results suggest that the C subunit assumes a more open conformation in PKA holoenzyme IIbeta. In addition, the chemical cleavage patterns around the active site cleft of the C subunit were distinctly different in PKA holoenzymes Ialpha and IIbeta even in the presence of cAMP. These observations provide direct evidence that the R subunits may be partially associated with the C subunit with the pseudosubstrate sequence docked in the active site cleft in the presence of cAMP.
Collapse
Affiliation(s)
- Shaoning Yu
- Department of Human Biological Chemistry and Genetics, School of Medicine, The University of Texas Medical Branch, Galveston, Texas 77555-1031, USA
| | | | | | | |
Collapse
|
21
|
Matsumoto T, Wakabayashi K, Kobayashi T, Kamata K. Diabetes-related changes in cAMP-dependent protein kinase activity and decrease in relaxation response in rat mesenteric artery. Am J Physiol Heart Circ Physiol 2004; 287:H1064-71. [PMID: 15130892 DOI: 10.1152/ajpheart.00069.2004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using superior mesenteric artery rings isolated from age-matched controls and streptozotocin (STZ)-induced diabetic rats, we recently demonstrated that EDHF-type relaxation is impaired in STZ-induced diabetic rats, possibly due to a reduced action of cAMP via increased phosphodiesterase (PDE) activity (Matsumoto T, Kobayashi T, and Kamata K. Am J Physiol Heart Circ Physiol 285: H283-H291, 2003). Here, we investigated the activity and expression of cAMP-dependent protein kinase (PKA), an enzyme that is produced by a pleiotropic and plays key roles in the transduction of many external signals through the cAMP second messenger pathway and in cAMP-mediated vasorelaxation. The relaxation induced by cilostamide, a selective PDE3 inhibitor, was significantly weaker in superior mesenteric artery rings from STZ-induced diabetic rats than in those from age-matched controls. The relaxation responses to 8-bromo-cAMP (8Br-cAMP) and N6,O2-dibutyryl-adenosine-cAMP (db-cAMP), a cell-permeant cAMP analog, were also impaired in the STZ diabetic group. PKA activity in the db-cAMP-treated mesenteric artery was significantly lower in the STZ diabetic group. The expression levels of the mRNA and protein for PKA catalytic subunit Cat-alpha were significantly decreased in the STZ diabetic group, but those for PKA regulatory subunit isoform RII-beta were increased. We conclude that the abnormal vascular relaxation responsiveness seen in STZ-induced diabetic rats may be attributable not only to increased PDE activity but also to decreased PKA activity. Possibly, the decreased PKA activity may result from an imbalance between PKA catalytic and regulatory subunit expressions.
Collapse
Affiliation(s)
- Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | | | | | | |
Collapse
|
22
|
Nguyen PV, Woo NH. Regulation of hippocampal synaptic plasticity by cyclic AMP-dependent protein kinases. Prog Neurobiol 2003; 71:401-37. [PMID: 15013227 DOI: 10.1016/j.pneurobio.2003.12.003] [Citation(s) in RCA: 233] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2003] [Accepted: 12/02/2003] [Indexed: 11/17/2022]
Abstract
Protein kinases critically regulate synaptic plasticity in the mammalian hippocampus. Cyclic-AMP dependent protein kinase (PKA) is a serine-threonine kinase that has been strongly implicated in the expression of specific forms of long-term potentiation (LTP), long-term depression (LTD), and hippocampal long-term memory. We review the roles of PKA in activity-dependent forms of hippocampal synaptic plasticity by highlighting particular themes that have emerged in ongoing research. These include the participation of distinct isoforms of PKA in specific types of synaptic plasticity, modification of the PKA-dependence of LTP by multiple factors such as distinct patterns of imposed activity, environmental enrichment, and genetic manipulation of signalling molecules, and presynaptic versus postsynaptic mechanisms for PKA-dependent LTP. We also discuss many of the substrates that have been implicated as targets for PKA's actions in hippocampal synaptic plasticity, including CREB, protein phosphatases, and glutamatergic receptors. Future prospects for shedding light on the roles of PKA are also described from the perspective of specific aspects of synaptic physiology and brain function that are ripe for investigation using incisive genetic, cell biological, and electrophysiological approaches.
Collapse
Affiliation(s)
- P V Nguyen
- Departments of Physiology and Psychiatry, Centre for Neuroscience, University of Alberta School of Medicine, Edmonton, Alta., Canada T6G 2H7.
| | | |
Collapse
|
23
|
Zawadzki KM, Hamuro Y, Kim JS, Garrod S, Stranz DD, Taylor SS, Woods VL. Dissecting interdomain communication within cAPK regulatory subunit type IIbeta using enhanced amide hydrogen/deuterium exchange mass spectrometry (DXMS). Protein Sci 2003; 12:1980-90. [PMID: 12930997 PMCID: PMC2323995 DOI: 10.1110/ps.03166903] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
cAMP-dependent protein kinase (cAPK) is a heterotetramer containing a regulatory (R) subunit dimer bound to two catalytic (C) subunits and is involved in numerous cell signaling pathways. The C-subunit is activated allosterically when two cAMP molecules bind sequentially to the cAMP-binding domains, designated A and B (cAB-A and cAB-B, respectively). Each cAMP-binding domain contains a conserved Arg residue that is critical for high-affinity cAMP binding. Replacement of this Arg with Lys affects cAMP affinity, the structural integrity of the cAMP-binding domains, and cAPK activation. To better understand the local and long-range effects that the Arg-to-Lys mutation has on the dynamic properties of the R-subunit, the amide hydrogen/deuterium exchange in the RIIbeta subunit was probed by electrospray mass spectrometry. Mutant proteins containing the Arg-to-Lys substitution in either cAMP-binding domain were deuterated for various times and then, prior to mass spectrometry analysis, subjected to pepsin digestion to localize the deuterium incorporation. Mutation of this Arg in cAB-A (Arg230) causes an increase in amide hydrogen exchange throughout the mutated domain that is beyond the modest and localized effects of cAMP removal and is indicative of the importance of this Arg in domain organization. Mutation of Arg359 (cAB-B) leads to increased exchange in the adjacent cAB-A domain, particularly in the cAB-A domain C-helix that lies on top of the cAB-B domain and is believed to be functionally linked to the cAB-B domain. This interdomain communication appears to be a unidirectional pathway, as mutation of Arg230 in cAB-A does not effect dynamics of the cAB-B domain.
Collapse
Affiliation(s)
- Kerri M Zawadzki
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Chang A, Li PP, Warsh JJ. Altered cAMP-dependent protein kinase subunit immunolabeling in post-mortem brain from patients with bipolar affective disorder. J Neurochem 2003; 84:781-91. [PMID: 12562522 DOI: 10.1046/j.1471-4159.2003.01605.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous findings of reduced [3H]cAMP binding and increased activities of cAMP-dependent protein kinase (PKA) in discrete post-mortem brain regions from patients with bipolar affective disorder (BD) suggest that PKA, the major downstream target of cAMP, is also affected in this illness. As prolonged elevation of intracellular cAMP levels can modify PKA regulatory (R) and catalytic (C) subunit levels, we sought to determine whether these PKA abnormalities are related to changes in the abundance of PKA subunits in BD brain. Using immunoblotting techniques along with PKA subunit isoform-specific polyclonal antisera, levels of PKA RIalpha, RIbeta, RIIalpha, RIIbeta and Calpha subunits were measured in cytosolic and particulate fractions of temporal, frontal and parietal cortices of post-mortem brain from BD patients and matched, non-neurological, non-psychiatric controls. Immunoreactive levels of cytosolic Calpha in temporal and frontal cortices, as well as that of cytosolic RIIbeta in temporal cortex, were significantly higher in the BD compared with the matched control brains. These changes were independent of age, post-mortem interval or pH and unrelated to ante-mortem lithium treatment or suicide. These findings strengthen further the notion that the cAMP/PKA signaling system is up-regulated in discrete cerebral cortical regions in BD.
Collapse
Affiliation(s)
- Annisa Chang
- Laboratory of Cellular and Molecular Pathophysiology, Center for Addiction and Mental Health, University of Toronto, 250 College Street, Toronto, Ontario, Canada M5T 1R8
| | | | | |
Collapse
|
25
|
Kopperud R, Christensen AE, Kjarland E, Viste K, Kleivdal H, Døskeland SO. Formation of inactive cAMP-saturated holoenzyme of cAMP-dependent protein kinase under physiological conditions. J Biol Chem 2002; 277:13443-8. [PMID: 11834733 DOI: 10.1074/jbc.m109869200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The complex of the subunits (RIalpha, Calpha) of cAMP-dependent protein kinase I (cA-PKI) was much more stable (K(d) = 0.25 microm) in the presence of excess cAMP than previously thought. The ternary complex of C subunit with cAMP-saturated RIalpha or RIIalpha was devoid of catalytic activity against either peptide or physiological protein substrates. The ternary complex was destabilized by protein kinase substrate. Extrapolation from the in vitro data suggested about one-fourth of the C subunit to be in ternary complex in maximally cAMP-stimulated cells. Cells overexpressing either RIalpha or RIIalpha showed decreased CRE-dependent gene induction in response to maximal cAMP stimulation. This could be explained by enhanced ternary complex formation. Modulation of ternary complex formation by the level of R subunit may represent a novel way of regulating the cAMP kinase activity in maximally cAMP-stimulated cells.
Collapse
Affiliation(s)
- Reidun Kopperud
- Department of Anatomy and Cell Biology, University of Bergen, N-5009 Bergen, Norway
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Vascular smooth muscle tone is controlled by a balance between the cellular signaling pathways that mediate the generation of force (contraction) and the release of force (relaxation). The signaling events that activate contraction include Ca(2+)-dependent myosin light chain phosphorylation. The signaling events that mediate relaxation include the removal of a contractile agonist (passive relaxation) and activation of cyclic nucleotide-dependent signaling pathways in the continued presence of a contractile agonist (active relaxation). The major questions that remain in contractile physiology include (1) how is tonic force maintained when intracellular Ca(2+) levels and myosin light chain phosphorylation have returned to basal levels; and (2) what is the mechanism of cyclic nucleotide-dependent relaxation? This review focuses on these specific controversies surrounding the molecular mechanisms of contraction and relaxation of vascular smooth muscle.
Collapse
Affiliation(s)
- D A Woodrum
- Institute for Molecular Medicine and Genetics, Medical College of Georgia, 1120 15th Street, Augusta, GA, USA
| | | |
Collapse
|
27
|
Eisenhardt D, Fiala A, Braun P, Rosenboom H, Kress H, Ebert PR, Menzel R. Cloning of a catalytic subunit of cAMP-dependent protein kinase from the honeybee (Apis mellifera) and its localization in the brain. INSECT MOLECULAR BIOLOGY 2001; 10:173-181. [PMID: 11422513 DOI: 10.1046/j.1365-2583.2001.00252.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In the honeybee the cAMP-dependent signal transduction cascade has been implicated in processes underlying learning and memory. The cAMP-dependent protein kinase (PKA) is the major mediator of cAMP action. To characterize the PKA system in the honeybee brain we cloned a homologue of a PKA catalytic subunit from the honeybee. The deduced amino acid sequence shows 80-94% identity with catalytic subunits of PKA from Drosophila melanogaster, Aplysia californica and mammals. The corresponding gene is predominantly expressed in the mushroom bodies, a structure that is involved in learning and memory processes. However, expression can also be found in the antennal and optic lobes. The level of expression varies within all three neuropiles.
Collapse
Affiliation(s)
- D Eisenhardt
- Freie Universitaet Berlin, Institut für Biologie-Neurobiologie, Koenigin-Luise-Strasse 28/30, 14195 Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
28
|
Cheng X, Phelps C, Taylor SS. Differential binding of cAMP-dependent protein kinase regulatory subunit isoforms Ialpha and IIbeta to the catalytic subunit. J Biol Chem 2001; 276:4102-8. [PMID: 11110787 DOI: 10.1074/jbc.m006447200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Limited trypsin digestion of type I cAMP-dependent protein kinase holoenzyme results in a proteolytic-resistant Delta(1-72) regulatory subunit core, indicating that interaction between the regulatory and catalytic subunits extends beyond the autoinhibitory site in the R subunit at the NH(2) terminus. Sequence alignment of the two R subunit isoforms, RI and RII, reveals a significantly sequence diversity at this specific region. To determine whether this sequence diversity is functionally important for interaction with the catalytic subunit, specific mutations, R133A and D328A, are introduced into sites adjacent to the active site cleft in the catalytic subunit. While replacing Arg(133) with Ala decreases binding affinity for RII, interaction between the catalytic subunit and RI is not affected. In contrast, mutant C(D328A) showed a decrease in affinity for binding RI while maintaining similar affinities for RII as compared with the wild-type catalytic subunit. These results suggest that sequence immediately NH(2)-terminal to the consensus inhibition site in RI and RII interacts with different sites at the proximal region of the active site cleft in the catalytic subunit. These isoform-specific differences would dictate a significantly different domain organization in the type I and type II holoenzymes.
Collapse
Affiliation(s)
- X Cheng
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, School of Medicine, University of California, San Diego, La Jolla, California 92093-0654, USA
| | | | | |
Collapse
|
29
|
Nesterova M, Cho-Chung YS. Oligonucleotide sequence-specific inhibition of gene expression, tumor growth inhibition, and modulation of cAMP signaling by an RNA-DNA hybrid antisense targeted to protein kinase A RIalpha subunit. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 2000; 10:423-33. [PMID: 11198926 DOI: 10.1089/oli.1.2000.10.423] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The primary mediator of cAMP action in mammalian cells is cAMP-dependent protein kinase (PKA). There are two types of PKA, type I (PKA-I) and type II (PKA-II), which share a common catalytic subunit but contain distinct regulatory subunits, RI and RII, respectively. Evidence suggests that increased expression of RIalpha/PKA-I correlates with neoplastic cell growth. Here, we show that sequence-specific oligonucleotide inhibition of RIalpha expression results in inhibition of growth and modulation of cAMP signaling in cancer cells. The antisense promoted growth inhibition in a time-dependent, concentration-dependent, and sequence-dependent manner in human cancer cells in monolayer culture, and it inhibited colony formation in soft agar and tumor growth in nude mice. Among the cancer cells are LS-174T, HCT-15, and Colo-205 colon carcinoma cells; A-549 lung carcinoma cells; LNCaP prostate adenocarcinoma cells; Molt-4 leukemia cells; and Jurkat T lymphoma cells. Northern blot and immunoprecipitation analyses revealed that the growth inhibitory effect of the antisense correlated with a decrease in RIalpha expression at both the mRNA and protein levels. Pulse-chase experiments revealed that the antisense-directed inhibition of RIalpha expression resulted in compensatory changes in expression of the isoforms of R and C subunits and cAMP signaling in a cell type-specific manner. These results demonstrate that cAMP is ubiquitous in the regulation of cell growth and that the antisense oligonucleotide, which inhibits the synthesis of the RIalpha subunit of PKA, can be targeted to a single gene for treatment of cancer in a variety of cell types.
Collapse
Affiliation(s)
- M Nesterova
- Cellular Biochemistry Section, Laboratory of Tumor Immunology and Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1750, USA
| | | |
Collapse
|
30
|
Krebs EG, Graves JD. Interactions between protein kinases and proteases in cellular signaling and regulation. ADVANCES IN ENZYME REGULATION 2000; 40:441-70. [PMID: 10828362 DOI: 10.1016/s0065-2571(99)00030-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- E G Krebs
- Department of Pharmacology, University of Washington Medical Center, Seattle, WA 98195, USA
| | | |
Collapse
|
31
|
Pepperkok R, Hotz-Wagenblatt A, König N, Girod A, Bossemeyer D, Kinzel V. Intracellular distribution of mammalian protein kinase A catalytic subunit altered by conserved Asn2 deamidation. J Cell Biol 2000; 148:715-26. [PMID: 10684253 PMCID: PMC2169370 DOI: 10.1083/jcb.148.4.715] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The catalytic (C) subunit of protein kinase A functions both in the cytoplasm and the nucleus. A major charge variant representing about one third of the enzyme in striated muscle results from deamidation in vivo of the Asn2 residue at the conserved NH(2)-terminal sequence myrGly-Asn-Ala (Jedrzejewski, P.T., A. Girod, A. Tholey, N. König, S. Thullner, V. Kinzel, and D. Bossemeyer. 1998. Protein Sci. 7:457-469). Because of the increase of electronegativity by generation of Asp2, it is reminiscent of a myristoyl-electrostatic switch. To compare the intracellular distribution of the enzymes, both forms of porcine or bovine heart enzyme were microinjected into the cytoplasm of mouse NIH 3T3 cells after conjugation with fluorescein, rhodamine, or in unlabeled form. The nuclear/cytoplasmic fluorescence ratio (N/C) was analyzed in the presence of cAMP (in the case of unlabeled enzyme by antibodies). Under all circumstances, the N/C ratio obtained with the encoded Asn2 form was significantly higher than that with the deamidated, Asp2 form; i.e., the Asn2 form reached a larger nuclear concentration than the Asp2 form. Comparable data were obtained with a human cell line. The differential intracellular distribution of both enzyme forms is also reflected by functional data. It correlates with the degree of phosphorylation of the key serine in CREB family transcription factors in the nucleus. Microinjection of myristoylated recombinant bovine Calpha and the Asn2 deletion mutant of it yielded N/C ratios in the same range as encoded native enzymes. Thus, Asn2 seems to serve as a potential site for modulating electronegativity. The data indicate that the NH(2)-terminal domain of the PKA C-subunit contributes to the intracellular distribution of free enzyme, which can be altered by site-specific in vivo deamidation. The model character for other signaling proteins starting with myrGly-Asn is discussed.
Collapse
Affiliation(s)
- Rainer Pepperkok
- European Molecular Biology Laboratory, D-69012 Heidelberg, Germany
| | - Agnes Hotz-Wagenblatt
- Department of Pathochemistry, German Cancer Research Center, D-69120 Heidelberg, Germany
| | - Norbert König
- Department of Pathochemistry, German Cancer Research Center, D-69120 Heidelberg, Germany
| | - Andreas Girod
- European Molecular Biology Laboratory, D-69012 Heidelberg, Germany
- Department of Pathochemistry, German Cancer Research Center, D-69120 Heidelberg, Germany
| | - Dirk Bossemeyer
- Department of Pathochemistry, German Cancer Research Center, D-69120 Heidelberg, Germany
| | - Volker Kinzel
- Department of Pathochemistry, German Cancer Research Center, D-69120 Heidelberg, Germany
| |
Collapse
|
32
|
Angelo RG, Rubin CS. Characterization of structural features that mediate the tethering of Caenorhabditis elegans protein kinase A to a novel A kinase anchor protein. Insights into the anchoring of PKAI isoforms. J Biol Chem 2000; 275:4351-62. [PMID: 10660605 DOI: 10.1074/jbc.275.6.4351] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Caenorhabditis elegans protein kinase A (PKAI(CE)) is tethered to organelles in vivo. A unique A kinase anchor protein (AKAP(CE)) avidly binds the RI-like regulatory subunits (R(CE)) of PKAI(CE) and stringently discriminates against RIIalpha and RIIbeta subunits, the preferred ligands for classical AKAPs. We elucidated structural features that stabilize AKAP(CE).R(CE) complexes and confer atypical R isoform specificity on the anchor protein. Three large aliphatic amino acids (Leu(236), Ile(248), and Leu(252)) in the tethering domain of AKAP(CE) (residues 236-255) are crucial for ligation of R(CE). Their side chains apparently generate a precisely configured hydrophobic binding pocket that accommodates an apolar surface on R(CE) dimers. Basic residues (His(254)-Arg(255)-Lys(256)) at the C terminus of the tethering site set an upper limit on affinity for R(CE.) A central dipeptide (Phe(243)-Ser(244)) contributes critical and distinctive properties of the tethering site. Ser(244) is essential for selective binding of R(CE) and exclusion of RII isoforms. The aromatic hydrophobic character of Phe(243) ensures maximal R(CE) binding activity, thereby supporting a "gatekeeper" function of Ser(244). Substitution of Phe(243)-Ser(244) with Leu-Val generated an RII-specific AKAP. R(CE) and RII subunits contain similar dimerization domains. AKAP-binding domains of R(CE) (residues 23-47) and RII differ markedly in size, amino acid sequence, and docking specificity. Four hydrophobic residues (Cys(23), Val(27), Ile(32), and Cys(44)) in R(CE) are crucial for avid binding with AKAP(CE), whereas side chains from Leu(20), Leu(35), Val(36), Ile(40), and Ile(41) have little impact on complex formation. Tyr(26) is embedded in the docking domain, but its aromatic ring is required for R(CE)-R(CE) dimerization. Residues 236-255 in AKAP(CE) also constitute a binding site for mammalian RIalpha. RIalpha (PKAIalpha) is tightly sequestered by AKAP(CE) in vitro (K(D) = approximately 10 nM) and in the environment of intact cells. The tethering domain of AKAP(CE) provides a molecular module for manipulating intracellular localization of RI and elucidating functions of anchored PKAI in eukaryotes.
Collapse
Affiliation(s)
- R G Angelo
- Department of Molecular Pharmacology, Atran Laboratories, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
33
|
Chain DG, Casadio A, Schacher S, Hegde AN, Valbrun M, Yamamoto N, Goldberg AL, Bartsch D, Kandel ER, Schwartz JH. Mechanisms for generating the autonomous cAMP-dependent protein kinase required for long-term facilitation in Aplysia. Neuron 1999; 22:147-56. [PMID: 10027297 DOI: 10.1016/s0896-6273(00)80686-8] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The formation of a persistently active cAMP-dependent protein kinase (PKA) is critical for establishing long-term synaptic facilitation (LTF) in Aplysia. The injection of bovine catalytic (C) subunits into sensory neurons is sufficient to produce protein synthesis-dependent LTF. Early in the LTF induced by serotonin (5-HT), an autonomous PKA is generated through the ubiquitin-proteasome-mediated proteolysis of regulatory (R) subunits. The degradation of R occurs during an early time window and appears to be a key function of proteasomes in LTF. Lactacystin, a specific proteasome inhibitor, blocks the facilitation induced by 5-HT, and this block is rescued by injecting C subunits. R is degraded through an allosteric mechanism requiring an elevation of cAMP coincident with the induction of a ubiquitin carboxy-terminal hydrolase.
Collapse
Affiliation(s)
- D G Chain
- Center for Neurobiology and Behavior, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Angelo R, Rubin CS. Molecular characterization of an anchor protein (AKAPCE) that binds the RI subunit (RCE) of type I protein kinase A from Caenorhabditis elegans. J Biol Chem 1998; 273:14633-43. [PMID: 9603981 DOI: 10.1074/jbc.273.23.14633] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Classical A kinase anchor proteins (AKAPs) preferentially tether type II protein kinase A (PKAII) isoforms to sites in the cytoskeleton and organelles. It is not known if distinct proteins selectively sequester regulatory (R) subunits of type I PKAs, thereby diversifying functions of these critical enzymes. In Caenorhabditis elegans, a single type I PKA mediates all aspects of cAMP signaling. We have discovered a cDNA that encodes a binding protein (AKAPCE) for the regulatory subunit (RCE) of C. elegans PKAICE. AKAPCE is a novel, highly acidic RING finger protein composed of 1,280 amino acids. It binds RI-like RCE with high affinity and neither RIIalpha nor RIIbeta competitively inhibits formation of AKAPCE.RCE complexes. The RCE-binding site was mapped to a segment of 20 amino acids in an N-terminal region of AKAPCE. Several hydrophobic residues in the binding site align with essential Leu and Ile residues in the RII-selective tethering domain of prototypic mammalian AKAPs. However, the RCE-binding region in AKAPCE diverges sharply from consensus RII-binding sites by inclusion of three aromatic amino acids, exclusion of a highly conserved Leu or Ile at position 8 and replacement of C-terminal hydrophobic amino acids with basic residues. AKAPCE.RCE complexes accumulate in intact cells.
Collapse
Affiliation(s)
- R Angelo
- Department of Molecular Pharmacology, Atran Laboratories, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
35
|
Abel T, Kandel E. Positive and negative regulatory mechanisms that mediate long-term memory storage. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1998; 26:360-78. [PMID: 9651552 DOI: 10.1016/s0165-0173(97)00050-7] [Citation(s) in RCA: 209] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The protein kinase A pathway and the cyclic AMP-response element binding protein (CREB) appear to play a critical role in the consolidation of short-term changes in neuronal activity into long-term memory storage in a variety of systems ranging from the gill and siphon withdrawal reflex in Aplysia to olfactory conditioning in Drosophila to spatial and contextual learning in mice. In this review we describe the molecular machinery that mediates memory consolidation in each of these systems. One of the surprising findings to emerge, particularly from studies of long-term facilitation in Aplysia, is that memory storage is mediated by not only positive but also negative regulatory mechanisms, in much the same way as cell division is controlled by the proteins encoded by oncogenes and tumor suppressor genes. This suggests the interesting possibility that there are memory suppressor genes whose protein products impede memory storage.
Collapse
Affiliation(s)
- T Abel
- Howard Hughes Medical Institute, Center for Neurobiology and Behavior, Columbia University, 722 West 168th Street, New York, NY 10032, USA
| | | |
Collapse
|
36
|
Dong F, Feldmesser M, Casadevall A, Rubin CS. Molecular characterization of a cDNA that encodes six isoforms of a novel murine A kinase anchor protein. J Biol Chem 1998; 273:6533-41. [PMID: 9497389 DOI: 10.1074/jbc.273.11.6533] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have cloned cDNA that encodes six novel A kinase anchor proteins (collectively named AKAP-KL). AKAP-KL diversity is generated by alternative mRNA splicing and utilization of two translation initiation codons. AKAP-KL polypeptides are evident in lung, kidney, and cerebellum, but are absent from many tissues. Different isoforms predominate in different tissues. Thus, AKAP-KL expression is differentially regulated in vivo. All AKAP-KL isoforms contain a 20-residue domain that avidly binds (Kd approximately 10 nM) regulatory subunits (RII) of protein kinase AII and is highly homologous with the RII tethering site in neuronal AKAP75. The distribution of AKAP-KL is strikingly asymmetric (polarized) in situ. Anchor protein accumulates near the inner, apical surface of highly polarized epithelium in tubules of nephrons. Both RII and AKAP-KL are enriched at an intracellular site that lies just below the plasma membrane of alveolar epithelial cells in lung. AKAP-KL interacts with and modulates the structure of the actin cytoskeleton in transfected cells. We also demonstrate that the tethering domain of AKAP-KL avidly ligates RII subunits in intact cells. AKAP-KL may be involved in (a) establishing polarity in signaling systems and (b) physically and functionally integrating PKAII isoforms with downstream effectors to capture, amplify, and precisely focus diffuse, trans-cellular signals carried by cAMP.
Collapse
Affiliation(s)
- F Dong
- Department of Molecular Pharmacology, Atran Laboratories, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
37
|
Amieux PS, Cummings DE, Motamed K, Brandon EP, Wailes LA, Le K, Idzerda RL, McKnight GS. Compensatory regulation of RIalpha protein levels in protein kinase A mutant mice. J Biol Chem 1997; 272:3993-8. [PMID: 9020105 DOI: 10.1074/jbc.272.7.3993] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The cAMP-dependent protein kinase holoenzyme is assembled from regulatory (R) and catalytic (C) subunits that are expressed in tissue-specific patterns. Despite the dispersion of the R and C subunit genes to different chromosomal loci, mechanisms exist that coordinately regulate the intracellular levels of R and C protein such that cAMP-dependent regulation is preserved. We have created null mutations in the RIbeta and RIIbeta regulatory subunit genes in mice, and find that both result in an increase in the level of RIalpha protein in tissues that normally express the beta isoforms. Examination of RIalpha mRNA levels and the rates of RIalpha protein synthesis in wild type and RIIbeta mutant mice reveals that the mechanism of this biochemical compensation by RIalpha does not involve transcriptional or translational control. These in vivo findings are consistent with observations made in cell culture, where we demonstrate that the overexpression of Calpha in NIH 3T3 cells results in increased RIalpha protein without increases in the rate of RIalpha synthesis or the level of RIalpha mRNA. Pulse-chase experiments reveal a 4-5-fold increase in the half-life of RIalpha protein as it becomes incorporated into the holoenzyme. Compensation by RIalpha stabilization may represent an important biological mechanism that safeguards cells from unregulated catalytic subunit activity.
Collapse
Affiliation(s)
- P S Amieux
- Department of Pharmacology, University of Washington, Seattle, Washington 98195-7750, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Cho-Chung YS. Protein kinase A-directed antisense restrains cancer growth: sequence-specific inhibition of gene expression. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 1996; 6:237-44. [PMID: 8915509 DOI: 10.1089/oli.1.1996.6.237] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Increased expression of the RI alpha subunit of cAMP-dependent protein kinase type I has been shown in human cancer cell lines, in primary tumors, in cells after transformation, and in cells upon stimulation of growth. The sequence-specific inhibition of RI alpha gene expression by an antisense oligodeoxynucleotide results in the differentiation of leukemia cells and growth arrest of cancer cells of epithelial origin. A single-injection RI alpha antisense treatment in vivo also causes a reduction in RI alpha expression and inhibition of tumor growth. Tumor cells behave like untransformed cells by making less protein kinase type I. The RI alpha antisense, which produces a biochemical imprint for growth control, requires infrequent dosing to restrain neoplastic growth in vivo.
Collapse
Affiliation(s)
- Y S Cho-Chung
- Cellular Biochemistry Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1750, USA
| |
Collapse
|
39
|
Cho-Chung YS, Pepe S, Clair T, Budillon A, Nesterova M. cAMP-dependent protein kinase: role in normal and malignant growth. Crit Rev Oncol Hematol 1995; 21:33-61. [PMID: 8822496 DOI: 10.1016/1040-8428(94)00166-9] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Y S Cho-Chung
- Laboratory of Tumor Immunology and Biology, DCBDC, NCI, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
40
|
Abstract
The aim of this study was to achieve a better understanding of the integration in striatal medium-sized spiny neurons (MSNs) of converging signals from glutamatergic and dopaminergic afferents. The review of the literature in the first section shows that these two types of afferents not only contact the same striatal cell type, but that individual MSNs receive both a corticostriatal and a dopaminergic terminal. The most common sites of convergence are dendritic shafts and spines of MSNs with a distance between the terminals of less than 1-2 microns. The second section focuses on synaptic transmission and second messenger activation. Glutamate, the candidate transmitter of corticostriatal terminals, via different types of glutamate receptors can evoke an increase in intracellular free calcium concentrations. The net effect of dopamine in the striatum is a stimulation of adenylate cyclase activity leading to an increase in cAMP. The subsequent sections present information on calcium- and cAMP-sensitive biochemical pathways and review the regional and subcellular distribution of the components in the striatum. The specific biochemical reaction steps were formalized as simplified equilibrium equations. Parameter values of the model were chosen from published experimental data. Major results of this analysis are: at intracellular free calcium concentrations below 1 microM the stimulation of adenylate cyclase by calcium and dopamine is at least additive in the steady state. Free calcium concentrations exceeding 1 microM inhibit adenylate cyclase, which is not overcome by dopaminergic stimulation. The kinases and phosphatases studied can be divided in those that are almost exclusively calcium-sensitive (PP2B and CaMPK), and others that are modulated by both calcium and dopamine (PKA and PP1). Maximal threonine-phosphorylation of the phosphoprotein DARPP requires optimal concentrations of calcium (about 0.3 microM) and dopamine (above 5 microM). It seems favourable if the glutamate signal precedes phasic dopamine release by approximately 100 msec. The phosphorylation of MAP2 is under essentially calcium-dependent control of at least five kinases and phosphatases, which differentially affect its heterogeneous phosphorylation sites. Therefore, MAP2 could respond specifically to the spatio-temporal characteristics of different intracellular calcium fluxes. The quantitative description of the calcium- and dopamine-dependent regulation of DARPP and MAP2 provides insights into the crosstalk between glutamatergic and dopaminergic signals in striatal MSNs. Such insights constitute an important step towards a better understanding of the links between biochemical pathways, physiological processes, and behavioural consequences connected with striatal function. The relevance to long-term potentiation, reinforcement learning, and Parkinson's disease is discussed.
Collapse
Affiliation(s)
- R Kötter
- Department of Anatomy and Structural Biology, University of Otago, Medical School, Dunedin, New Zealand
| |
Collapse
|
41
|
Bold RJ, Alpard S, Ishizuka J, Townsend CM, Thompson JC. Growth-regulatory effect of gastrin on human colon cancer cell lines is determined by protein kinase a isoform content. REGULATORY PEPTIDES 1994; 53:61-70. [PMID: 7800859 DOI: 10.1016/0167-0115(94)90159-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cell growth is regulated by various peptide growth factors through receptor-linked multiple intracellular signal-transduction pathways, such as the cyclic adenosine monophosphate (cAMP) pathway. cAMP activates cAMP-dependent protein kinase A (PKA) either to stimulate or inhibit cell growth. The effect on growth is determined by the presence of two isoforms of the regulatory (R) subunit of PKA; activation of RI alpha-type PKA leads to stimulation of growth, activation of RII beta-type inhibits cell growth. We determined whether the effect of gastrin on the growth of human colon cancer cells is determined by cell-specific content of PKA. We utilized two human colon cancer cell lines: LoVo, growth of which is stimulated by gastrin, and HCT116, growth of which is inhibited by gastrin. Activation of both types of PKA with 8-Br-cAMP mimicked the regulation of growth by gastrin; preferential activation of RII beta-type PKA with 8-Cl-cAMP inhibited growth of both cell lines. LoVo cells possess the predominantly RI alpha isoform of PKA at the mRNA and protein level; HCT116 cells possess predominantly the RII beta-type PKA. The cAMP-mediated regulation of growth (either stimulatory or inhibitory) by gastrin on these human colon cancer cells was determined by the predominant isoform of PKA.
Collapse
Affiliation(s)
- R J Bold
- Department of Surgery, University of Texas Medical Branch, Galveston 77555-0533
| | | | | | | | | |
Collapse
|
42
|
Tehrani MH, Barnes EM. GABAA receptors in mouse cortical homogenates are phosphorylated by endogenous protein kinase A. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1994; 24:55-64. [PMID: 7968377 DOI: 10.1016/0169-328x(94)90117-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Biochemical, molecular, and electrophysiological studies suggest that phosphorylation of beta subunits of the GABAA receptor (GaR) by exogenous protein kinase A inactivates the receptor channels. We have developed a method which for the first time allows the study of GaR phosphorylation in brain tissues by endogenous PKA. Desalted homogenates or crude synaptic membranes from mouse cerebral cortex were incubated with [gamma-32P]ATP and 8-Br-cAMP or chlorophenylthio-cAMP. Extracts from these incubations were immunoprecipitated by polyclonal antibodies against native GaR and analyzed by SDS-gel electrophoresis and autoradiography. In both homogenates and membranes, cAMP-dependent incorporation of 32P was observed for a 57-kDa peptide, and to a lesser extent 51- to 53-kDa peptides. Phosphorylation of affinity-purified GaR by the catalytic subunit of PKA also produced a major 57-kDa phosphopeptide and a minor 51-kDa phosphopeptide. Limited digestion by S. aureus V-8 protease of the 57-kDa phosphopeptide from the desalted homogenates or from purified receptors produced a major 32P-labeled fragment of 11 kDa, suggesting that the phosphorylation site is similar to that shown previously to reduce GaR function. The phosphorylation of GaRs in homogenates was time dependent and blocked by H-89 or protein kinase inhibitor 5-24, specific inhibitors of protein kinase A. Prolonged incubations resulted in dephosphorylation of the 57-kDa phosphoprotein by a microcystin-LR sensitive phosphatase. In cortical homogenates the level of cAMP-dependent phosphorylation of the 57-kDa GaR peptide was more than 5 times that obtained with washed synaptic membranes. However, assays of PKA using the heptamer kemptide as substrate showed that the specific activity in the particulate fraction was 57% that of the homogenate. This suggests that GaRs on synaptic membranes are preferentially phosphorylated by a cytoplasmic form of protein kinase A. By comparing the [3H]flunitrazepam-photolabeled 53-kDa GaR subunit with the 51-57 kDa [32P]peptides from cortical homogenates, the molar ratio of [32P]/[3H] was estimated at 0.43, suggesting that a substantial fraction of the GaR pool is phosphorylated under these conditions.
Collapse
Affiliation(s)
- M H Tehrani
- Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, TX 77030
| | | |
Collapse
|
43
|
Araki T, Kanai Y, Murakami F, Kato H, Kogure K. Changes of [3H]cyclic adenosine monophosphate binding in the gerbil brain following transient cerebral ischemia: an autoradiographic study and investigation of the effects of vinconate and pentobarbital. RESEARCH IN EXPERIMENTAL MEDICINE. ZEITSCHRIFT FUR DIE GESAMTE EXPERIMENTELLE MEDIZIN EINSCHLIESSLICH EXPERIMENTELLER CHIRURGIE 1993; 193:57-64. [PMID: 8383351 DOI: 10.1007/bf02576211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We studied the alterations in binding of cyclic AMP as an indicator of particulate cyclic AMP-dependent protein kinase binding activity following transient cerebral ischemia in Mongolian gerbils and examined the effects of vinconate and pentobarbital against alterations in the binding. Animals were allowed to survive for 5 h and 7 days after 10 min of cerebral ischemia induced by bilateral occlusion of common carotid arteries. [3H]Cyclic AMP binding was significantly reduced in the hippocampus 5 h after ischemia, whereas the striatum showed no significant change in the binding. Seven days after ischemia, a severe reduction of [3H]cyclic AMP binding was noted in the dorsolateral striatum, hippocampal CA1 and CA3 sectors, and dentate gyrus. Intraperitoneal administration of vinconate (100 or 300 mg/kg) showed a significant elevation of [3H]cyclic AMP binding in the striatum, stratum pyramidale of hippocampal CA1 and CA3 sectors, and dentate gyrus 5 h after ischemia. By contrast, the intraperitoneal administration of pentobarbital (40 mg/kg) showed no significant alteration of [3H]cyclic AMP binding in most of these regions. However, vinconate and pentobarbital prevented a significant reduction of [3H]cyclic AMP binding in the dorsolateral striatum and stratum pyramidale of hippocampal CA3 sector 7 days after ischemia, although both drugs failed to prevent damage to the hippocampal CA1 sector. These results suggest that alteration in cyclic AMP binding may not be a major factor in causing ischemic neuronal damage.
Collapse
Affiliation(s)
- T Araki
- Department of Neurology, Tohoku University School of Medicine, Sendai, Japan
| | | | | | | | | |
Collapse
|
44
|
Cho-Chung YS, Clair T. The regulatory subunit of cAMP-dependent protein kinase as a target for chemotherapy of cancer and other cellular dysfunctional-related diseases. Pharmacol Ther 1993; 60:265-88. [PMID: 8022860 DOI: 10.1016/0163-7258(93)90010-b] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Three separate experimental approaches, using site-selective cAMP analogs, antisense strategy and retroviral vector-mediated gene transfer, have provided evidence that two isoforms, the RI- and RII-regulatory subunits of cAMP-dependent protein kinase, have opposite roles in cell growth and differentiation; RI being growth stimulatory while RII is a growth-inhibitory and differentiation-inducing protein. As RI expression is enhanced during chemical or viral carcinogenesis, in human cancer cell lines and in primary human tumors, it is a target for cancer diagnosis and therapy. 8-Cl-cAMP and RI antisense oligodeoxynucleotide, those that effectively down-regulate RI alpha and up-regulate RII beta, provide new approaches toward the treatment of cancer. This approach to modulation of RI vs RII cAMP transducers may also be beneficial toward therapy of endocrine or cellular dysfunction-related diseases where abnormal signal transduction of cAMP is critically involved.
Collapse
Affiliation(s)
- Y S Cho-Chung
- Cellular Biochemistry Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | | |
Collapse
|
45
|
Araki T, Kato H, Kanai Y, Kogure K. Sequential changes of [3H]cyclic AMP binding in the gerbil brain following transient cerebral ischaemia. J Pharm Pharmacol 1993; 45:674-7. [PMID: 8105069 DOI: 10.1111/j.2042-7158.1993.tb05678.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Sequential alterations in the binding of [3H]cyclic AMP (cAMP) as an indicator of cAMP-dependent protein kinase (cAMP-DPK) binding activity following transient cerebral ischaemia were studied in the gerbil brain using receptor autoradiography. Transient ischaemia was induced for 10 min. [3H]cAMP binding in the stratum oriens and pyramidale of the hippocampal CA1 sector significantly decreased in the early post-ischaemic stage and showed severe reduction 7 days and 1 month after recirculation. By contrast, [3H]cAMP binding showed no significant alterations in the stratum radiatum of the hippocampal CA1 sector and the stratum pyramidale of the hippocampal CA3 sector up to 48 h after ischaemia. However, the binding in these areas significantly decreased 7 days and 1 month after ischaemia. The stratum lacunosum-moleculare of the hippocampal CA1 sector and dentate gyrus showed no significant changes in [3H]cAMP binding throughout the recirculation period. However, in the dorsolateral part of the striatum, where severe neuronal damage was seen morphologically, [3H]cAMP binding was significantly reduced only one month after ischaemia. These results indicate that marked alteration of intracellular signal transduction precedes neuronal damage in the hippocampal CA1 sector, but not in the striatum. Furthermore, our autoradiographic data suggest that post-ischaemic alteration in [3H]cAMP binding between the hippocampal CA1 sector and striatum may be produced by different mechanisms.
Collapse
Affiliation(s)
- T Araki
- Department of Neurology, Tohoku University School of Medicine, Sendai, Japan
| | | | | | | |
Collapse
|
46
|
Johnson DA, Leathers VL, Martinez AM, Walsh DA, Fletcher WH. Fluorescence resonance energy transfer within a heterochromatic cAMP-dependent protein kinase holoenzyme under equilibrium conditions: new insights into the conformational changes that result in cAMP-dependent activation. Biochemistry 1993; 32:6402-10. [PMID: 8390856 DOI: 10.1021/bi00076a013] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Previous studies of the ligand regulation of the cAMP-dependent protein kinase have demonstrated the cAMP-mediated dissociation of the holoenzyme by using nonequilibrium techniques; i.e., gel filtration, ion-exchange chromatography, and differential centrifugation. While physically mild, these could have caused weakly associated species to dissociate, thereby providing a potentially flawed interpretation of the mechanism of activation of the protein kinase. To assess this, the activation of the cAMP-dependent protein kinase has been monitored under equilibrium conditions using dipolar fluorescence energy transfer to measure changes in the proximity relations between the catalytic (C) and regulatory (R) subunits that compose the holoenzyme. Specifically, we prepared a heterochromatically labeled protein kinase type II holoenzyme, with the regulatory and catalytic subunits labeled with sulforhodamine and carboxyfluorescein, respectively, and monitored the exchange of electronic excitation energy between the C and R subunits by both donor lifetime and steady-state fluorescence. Biochemically, the heterochromatic holoenzyme was closely identical to the native protein with regard to cAMP-induced increase in catalytic activity, reassociation of C and R subunits, inhibition of catalytic activity by the specific protein kinase inhibitor (PKI), and observed dissociation examined by gel filtration upon cAMP addition. However, under equilibrium conditions, the energy-transfer measurements revealed that the addition of cAMP to this heterochromatic reporter complex promoted an estimated 10-A increase in the distance between the derivatization sites on C and R but not a dissociation of these subunits. Addition of PKI plus cAMP promoted full dissociation of the two subunits.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- D A Johnson
- Department of Neuroscience, University of California, Riverside 92521
| | | | | | | | | |
Collapse
|
47
|
Antiapoptotic effect of heterozygously expressed mutant RI (Ala336–>Asp) subunit of cAMP kinase I in a rat leukemia cell line. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53100-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
48
|
8-Cl-cAMP induces truncation and down-regulation of the RI alpha subunit and up-regulation of the RII beta subunit of cAMP-dependent protein kinase leading to type II holoenzyme-dependent growth inhibition and differentiation of HL-60 leukemia cells. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53386-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
49
|
Laychock SG. Sp-5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole-3',5'-cyclic monophosphorothioate is a potent stimulus for insulin release. Endocr Res 1993; 19:113-22. [PMID: 8287829 DOI: 10.3109/07435809309033018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The Sp-isomer of 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole-3',5'-cyclic monophosphorothioate (Sp-5,6-DCl-cBIMPS) at micromolar concentrations was a more potent stimulus for insulin release than 8-bromo-cyclic (c) AMP in isolated pancreatic islets of the rat. Sp-5,6-DCl-cBIMPS increased basal secretion, and potentiated glucose-stimulated insulin release to levels similar to those evoked by glucagon. A ten-fold higher concentration of 8-bromo-cAMP was required to mimic the potentiating effects of Sp-5,6-DCl-cBIMPS. Neither 8-para-chlorophenylthio-cGMP, 8-bromo-cGMP, nor dibutyryl-cGMP affected insulin release. Thus, Sp-5,6-DCl-cBIMPS is a potent and specific stimulus for cAMP-mediated insulin release.
Collapse
Affiliation(s)
- S G Laychock
- Department of Pharmacology and Therapeutics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo 14214
| |
Collapse
|
50
|
Nishio K, Morikage T, Kubota N, Ohmori T, Takeda Y, Fujiwara Y, Miki K, Abe K, Saijo N. Alteration of type II regulatory subunit of cAMP-dependent protein kinase in human cisplatin-resistant cells as a basis of collateral sensitivity to 8-chloro-cAMP. Jpn J Cancer Res 1992; 83:754-60. [PMID: 1325432 PMCID: PMC5918934 DOI: 10.1111/j.1349-7006.1992.tb01976.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A cyclic adenosine 3',5'-monophosphate (cAMP) analogue, 8-chloro-cAMP (8-Cl-cAMP), had a collateral growth-inhibitory effect on a cis-diamminedichloroplatinum(II) (CDDP)-resistant human cancer cell lines (PC-14/CDDP). The non-selective analogues dibutyryl-cAMP, 8-bromo-cAMP and forskolin, which are cAMP agonists, showed far less cytotoxicity than 8-Cl-cAMP in both cell lines. There was no significant difference in cAMP content between PC-14 and PC-14/CDDP. Because 8-Cl-cAMP has been shown to bind selectively to the site I receptor of the type II regulatory subunit (RII) of cAMP-dependent protein kinase, we determined the level of expression of regulatory subunits in PC-14 and PC-14/CDDP cells by photoaffinity labeling. PC-14/CDDP cells had a higher RII level, low site I receptor of type I regulatory subunit (RI) level, and a lower RI/RII ratio than the parental PC-14 cells. Exposure to 8-Cl-cAMP increased the RI and RII level in PC-14/CDDP cells in dose- and time-dependent manners. On the other hand, in parental PC-14 cells, RII was not detected and the levels of RI and RII were not increased by exposure to 8-Cl-cAMP. These results suggested that the change in RI and/or RII levels caused by 8-Cl-cAMP was correlated with 8-Cl-cAMP-induced growth inhibition and that the collateral sensitivity to 8-Cl-cAMP in CDDP-resistant cells was due to the increased RII level. Our results suggest that 8-Cl-cAMP can be used in combination with CDDP and that measurement of RI and RII levels and/or the RI/RII ratio is a useful tool to predict CDDP sensitivity.
Collapse
Affiliation(s)
- K Nishio
- Pharmacology Division, National Cancer Center Research Institute, Tokyo
| | | | | | | | | | | | | | | | | |
Collapse
|