1
|
Post A, Minović I, van den Berg E, Eggersdorfer ML, Navis GJ, Geleijnse JM, Gans ROB, van Goor H, Struck J, Franssen CFM, Kema IP, Bakker SJL. Renal sulfate reabsorption in healthy individuals and renal transplant recipients. Physiol Rep 2018; 6:e13670. [PMID: 29671959 PMCID: PMC5907819 DOI: 10.14814/phy2.13670] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 11/24/2022] Open
Abstract
Inorganic sulfate is essential for normal cellular function and its homeostasis is primarily regulated in the kidneys. However, little is known about renal sulfate handling in humans and particularly in populations with impaired kidney function such as renal transplant recipients (RTR). Hence, we aimed to assess sulfate reabsorption in kidney donors and RTR. Plasma and urinary sulfate were determined in 671 RTR and in 251 kidney donors. Tubular sulfate reabsorption (TSR) was defined as filtered load minus sulfate excretion and fractional sulfate reabsorption (FSR) was defined as 1-fractional excretion. Linear regression analyses were employed to explore associations of FSR with baseline parameters and to identify the determinants of FSR in RTR. Compared to kidney donors, RTR had significantly lower TSR (15.2 [11.2-19.5] vs. 20.3 [16.7-26.3] μmol/min), and lower FSR (0.56 [0.48-0.64] vs. 0.64 [0.57-0.69]) (all P < 0.001). Kidney donation reduced both TSR and FSR by circa 50% and 25% respectively (both P < 0.001). In RTR and donors, both TSR and FSR associated positively with renal function. In RTR, FSR was independently associated with urinary thiosulfate (β = -0.18; P = 0.002), growth hormone (β = 0.12; P = 0.007), the intakes of alcohol (β = -0.14; P = 0.002), methionine (β = -0.34; P < 0.001), cysteine (β = -0.41; P < 0.001), and vitamin D (β = -0.14; P = 0.009). In conclusion, TSR and FSR are lower in RTR compared to kidney donors and both associated with renal function. Additionally, FSR is determined by various dietary and metabolic factors. Future research should determine the mechanisms behind sulfate handling in humans and the prognostic value of renal sulfate reabsorption in RTR.
Collapse
Affiliation(s)
- Adrian Post
- Department of Internal MedicineUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Isidor Minović
- Department of Internal MedicineUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
- Top Institute Food and NutritionWageningenThe Netherlands
- Department of Laboratory MedicineUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Else van den Berg
- Department of Internal MedicineUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | | | - Gerjan J. Navis
- Department of Internal MedicineUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | | | - Reinold O. B. Gans
- Department of Internal MedicineUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Harry van Goor
- Department of PathologyUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | | | - Casper F. M. Franssen
- Department of Internal MedicineUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Ido P. Kema
- Department of Laboratory MedicineUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Stephan J. L. Bakker
- Department of Internal MedicineUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
- Top Institute Food and NutritionWageningenThe Netherlands
- Transplant Lines Food and Nutrition Biobank and Cohort StudyUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
2
|
Biber J, Murer H, Mohebbi N, Wagner C. Renal Handling of Phosphate and Sulfate. Compr Physiol 2014; 4:771-92. [DOI: 10.1002/cphy.c120031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
3
|
Busschaert N, Karagiannidis LE, Wenzel M, Haynes CJE, Wells NJ, Young PG, Makuc D, Plavec J, Jolliffe KA, Gale PA. Synthetic transporters for sulfate: a new method for the direct detection of lipid bilayer sulfate transport. Chem Sci 2014. [DOI: 10.1039/c3sc52006d] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
4
|
Markovich D. Na+–sulfate cotransporter SLC13A1. Pflugers Arch 2013; 466:131-7. [DOI: 10.1007/s00424-013-1388-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 10/13/2013] [Accepted: 10/15/2013] [Indexed: 02/07/2023]
|
5
|
Abstract
Chloride transport along the nephron is one of the key actions of the kidney that regulates extracellular volume and blood pressure. To maintain steady state, the kidney needs to reabsorb the vast majority of the filtered load of chloride. This is accomplished by the integrated function of sequential chloride transport activities along the nephron. The detailed mechanisms of transport in each segment generate unique patterns of interactions between chloride and numerous other individual components that are transported by the kidney. Consequently, chloride transport is inextricably intertwined with that of sodium, potassium, protons, calcium, and water. These interactions not only allow for exquisitely precise regulation but also determine the particular patterns in which the system can fail in disease states.
Collapse
Affiliation(s)
- John C Edwards
- UNC Kidney Center and the Departments of Medicine and Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| |
Collapse
|
6
|
Markovich D. Slc13a1 and Slc26a1 KO models reveal physiological roles of anion transporters. Physiology (Bethesda) 2012; 27:7-14. [PMID: 22311966 DOI: 10.1152/physiol.00041.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Anion transporters NaS1 (SLC13A1) and Sat1 (SLC26A1) mediate sulfate (re)absorption across renal proximal tubule and small intestinal epithelia, thereby regulating blood sulfate levels. Disruption of murine NaS1 and Sat1 genes leads to hyposulfatemia and hypersulfaturia. Sat1-null mice also exhibit hyperoxalemia, hyperoxaluria, and calcium oxalate urolithiasis. This review will highlight the current pathophysiological features of NaS1- and Sat1-null mice resulting from alterations in circulating sulfate and oxalate anion levels.
Collapse
Affiliation(s)
- Daniel Markovich
- Molecular Physiology Group, School of Biomedical Sciences, University of Queensland, St. Lucia, Australia.
| |
Collapse
|
7
|
Markovich D. Physiological roles of renal anion transporters NaS1 and Sat1. Am J Physiol Renal Physiol 2011; 300:F1267-70. [PMID: 21490138 DOI: 10.1152/ajprenal.00061.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This review will briefly summarize current knowledge on the renal anion transporters sodium-sulfate cotransporter-1 (NaS1; Slc13a1) and sulfate-anion transporter-1 (Sat1; Slc26a1). NaS1 and Sat1 mediate renal proximal tubular sulfate reabsorption and thereby regulate blood sulfate levels. Sat1 also mediates renal oxalate transport and controls blood oxalate levels. Targeted disruption of murine NaS1 and Sat1 leads to hyposulfatemia and hypersulfaturia. Sat1 null mice also exhibit hyperoxalemia, hyperoxaluria, and calcium oxalate urolithiasis. NaS1 and Sat1 null mice also have other phenotypes that result due to changes in blood sulfate and oxalate levels. Experimental data indicate that NaS1 is essential for maintaining sulfate homeostasis, whereas Sat1 controls both sulfate and oxalate homeostasis in vivo.
Collapse
Affiliation(s)
- Daniel Markovich
- Molecular Physiology Group, School of Biomedical Sciences, Univ. of Queensland, St. Lucia, Australia.
| |
Collapse
|
8
|
Markovich D. Physiological roles of mammalian sulfate transporters NaS1 and Sat1. Arch Immunol Ther Exp (Warsz) 2011; 59:113-6. [PMID: 21298488 DOI: 10.1007/s00005-011-0114-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 10/08/2010] [Indexed: 11/29/2022]
Abstract
This review summarizes the physiological roles of the renal sulfate transporters NaS1 (Slc13a1) and Sat1 (Slc26a1). NaS1 and Sat1 encode renal anion transporters that mediate proximal tubular sulfate reabsorption and thereby regulate blood sulfate levels. Targeted disruption of murine NaS1 and Sat1 leads to hyposulfatemia and hypersulfaturia. Sat1 null mice also exhibit hyperoxalemia, hyperoxaluria and calcium oxalate urolithiasis. Dysregulation of NaS1 and Sat1 leads to hypersulfaturia, hyposulfatemia and liver damage. Loss of Sat1 leads additionally to hyperoxaluria with hyperoxalemia, nephrocalcinosis and calcium oxalate urolithiasis. These data indicate that the renal anion transporters NaS1 and Sat1 are essential for sulfate and oxalate homeostasis, respectively.
Collapse
Affiliation(s)
- Daniel Markovich
- School of Biomedical Sciences, University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
9
|
Kato A, Chang MH, Kurita Y, Nakada T, Ogoshi M, Nakazato T, Doi H, Hirose S, Romero MF. Identification of renal transporters involved in sulfate excretion in marine teleost fish. Am J Physiol Regul Integr Comp Physiol 2009; 297:R1647-59. [PMID: 19812358 DOI: 10.1152/ajpregu.00228.2009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sulfate (SO(4)(2-)) is the second most abundant anion in seawater (SW), and excretion of excess SO(4)(2-) from ingested SW is essential for marine fish to survive. Marine teleosts excrete SO(4)(2-) via the urine produced in the kidney. The SO(4)(2-) transporter that secretes and concentrates SO(4)(2-) in the urine has not previously been identified. Here, we have identified and characterized candidates for the long-sought transporters. Using sequences from the fugu database, we have cloned cDNA fragments of all transporters belonging to the Slc13 and Slc26 families from mefugu (Takifugu obscurus). We compared Slc13 and Slc26 mRNA expression in the kidney between freshwater (FW) and SW mefugu. Among 14 clones examined, the expression of a Slc26a6 paralog (mfSlc26a6A) was the most upregulated (30-fold) in the kidney of SW mefugu. Electrophysiological analyses of Xenopus oocytes expressing mfSlc26a6A, mfSlc26a6B, and mouse Slc26a6 (mSlc26a6) demonstrated that all transporters mediate electrogenic Cl(-)/SO(4)(2-), Cl(-)/oxalate(2-), and Cl(-)/nHCO(3)(-) exchanges and electroneutral Cl(-)/formate(-) exchange. Two-electrode voltage-clamp experiments demonstrated that the SO(4)(2-)-elicited currents of mfSlc26a6A is quite large (approximately 35 microA at +60 mV) and 50- to 200-fold higher than those of mfSlc26a6B and mSlc26a6. Conversely, the currents elicited by oxalate and HCO(3)(-) are almost identical among mfSlc26a6A, mfSlc26a6B, and mSlc26a6. Kinetic analysis revealed that mfSlc26a6A has the highest SO(4)(2-) affinity as well as capacity. Immunohistochemical analyses demonstrated that mfSlc26a6A localizes to the apical (brush-border) region of the proximal tubules. Together, these findings suggest that mfSlc26a6A is the most likely candidate for the major apical SO(4)(2-) transporter that mediates SO(4)(2-) secretion in the kidney of marine teleosts.
Collapse
Affiliation(s)
- Akira Kato
- Department of Biological Sciences, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Ma L, Wu X, Ling-Ling E, Wang DS, Liu HC. The transmembrane transport of metformin by osteoblasts from rat mandible. Arch Oral Biol 2009; 54:951-62. [PMID: 19700143 DOI: 10.1016/j.archoralbio.2009.07.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 07/22/2009] [Accepted: 07/31/2009] [Indexed: 11/26/2022]
Abstract
Previous studies have demonstrated that metformin, one of systemic antihyperglycemic drugs, can slow bone loss caused by diabetes mellitus and has an osteogenic action on osteoblasts in vitro. It is tempting to speculate that metformin would be transported into bone tissues around dental implant by topical administration to improve the bone-implant contact in diabetic patients. In this study, the osteoblasts from rat mandible were cultured with 5.5 mM (control) or 16.5 mM d-glucose, then the uptake of metformin by osteoblasts was detected with high performance liquid chromatography (HPLC). Rat organic cation transporter (rOct) expression was characterized by immunocytochemistry, RT-PCR and Western blotting. It was found that, the uptake of metformin was saturable, Na(+)-dependent, affected by extracellular pH and inhibited by both phenformin and cimetidine (an inhibitor of Octs). rOct1 but no rOct2 was expressed extensively in osteoblasts and the protein level of rOct1 could be up-regulated by metformin. The uptake of metformin and phosphorylated-rOct1 at hyperglycaemic cell culture (16.5 mM d-glucose) significantly increased versus 5.5 mM control (p < 0.05). In conclusion, rat osteoblasts have the ability to transport the metformin intra-cellularly, the uptake of metformin by osteoblasts is a secondary active transportation mediated by rOct1 and high-glucose can improve the uptake of metformin by osteoblasts through phosphorylation of rOct1. The current results suggest that metformin could be used for dental implant topically in type 2 diabetic patients to increase the bone formation, therefore, to enhance the success rate of dental implants clinically.
Collapse
Affiliation(s)
- Long Ma
- Department of Stomatology, China PLA General Hospital, Beijing 100853, China
| | | | | | | | | |
Collapse
|
11
|
Lee HJ, Sagawa K, Shi W, Murer H, Morris ME. Hormonal Regulation of Sodium/Sulfate Co-Transport in Renal Epithelial Cells. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1525-1373.2000.22506.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Abstract
Sulfate is essential for normal cellular function. The kidney plays a major role in sulfate homeostasis. Sulfate is freely filtered and then undergoes net reabsorption in the proximal tubule. The apical membrane Na(+)/sulfate cotransporter NaS1 (SLC13A1) has a major role in mediating proximal tubule sulfate reabsorption, as demonstrated by the findings of hyposulfatemia and hypersulfaturia in Nas1-null mice. The anion exchanger SAT1 (SLC26A1), the founding member of the SLC26 sulfate transporter family, mediates sulfate exit across the basolateral membrane to complete the process of transtubular sulfate reabsorption. Another member of this family, CFEX (SLC26A6), is present at the apical membrane of proximal tubular cells. It also can transport sulfate by anion exchange, which probably mediates backflux of sulfate into the lumen. Knockout mouse studies have demonstrated a major role of CFEX as an apical membrane Cl(-)/oxalate exchanger that contributes to NaCl reabsorption in the proximal tubule. Several additional SLC26 family members mediate sulfate transport and show some level of renal expression (e.g., SLC26A2, SLC26A7, SLC26A11). Their roles in mediating renal tubular sulfate transport are presently unknown. This paper reviews current data available on the function and regulation of three sulfate transporters (NaS1, SAT1, and CFEX) and their physiological roles in the kidney.
Collapse
Affiliation(s)
- Daniel Markovich
- Department of Physiology and Pharmacology, School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072 Australia.
| | | |
Collapse
|
13
|
Zamek-Gliszczynski MJ, Hoffmaster KA, Nezasa KI, Tallman MN, Brouwer KLR. Integration of hepatic drug transporters and phase II metabolizing enzymes: Mechanisms of hepatic excretion of sulfate, glucuronide, and glutathione metabolites. Eur J Pharm Sci 2006; 27:447-86. [PMID: 16472997 DOI: 10.1016/j.ejps.2005.12.007] [Citation(s) in RCA: 187] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Accepted: 12/06/2005] [Indexed: 12/12/2022]
Abstract
The liver is the primary site of drug metabolism in the body. Typically, metabolic conversion of a drug results in inactivation, detoxification, and enhanced likelihood for excretion in urine or feces. Sulfation, glucuronidation, and glutathione conjugation represent the three most prevalent classes of phase II metabolism, which may occur directly on the parent compounds that contain appropriate structural motifs, or, as is usually the case, on functional groups added or exposed by phase I oxidation. These three conjugation reactions increase the molecular weight and water solubility of the compound, in addition to adding a negative charge to the molecule. As a result of these changes in the physicochemical properties, phase II conjugates tend to have very poor membrane permeability, and necessitate carrier-mediated transport for biliary or hepatic basolateral excretion into sinusoidal blood for eventual excretion into urine. This review summarizes sulfation, glucuronidation, and glutathione conjugation reactions, as well as recent progress in elucidating the hepatic transport mechanisms responsible for the excretion of these conjugates from the liver. The discussion focuses on alterations of metabolism and transport by chemical modulators, and disease states, as well as pharmacodynamic and toxicological implications of hepatic metabolism and/or transport modulation for certain active phase II conjugates. A brief discussion of issues that must be considered in the design and interpretation of phase II metabolite transport studies follows.
Collapse
|
14
|
Pelis RM, Renfro JL. Role of tubular secretion and carbonic anhydrase in vertebrate renal sulfate excretion. Am J Physiol Regul Integr Comp Physiol 2004; 287:R491-501. [PMID: 15308498 DOI: 10.1152/ajpregu.00084.2004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The renal proximal tubule of vertebrates performs an essential role in controlling plasma SO42−concentration ([SO42−]). Although net tubular SO42−reabsorption is the predominate control process in terrestrial vertebrates, a facilitated secretory flux is also present. In contrast, marine teleosts obtain excess SO42−from drinking, and increased plasma [SO42−] is prevented predominately through net tubular secretion. Tubular SO42−secretion is accomplished by at least two electroneutral anion exchange processes in series. Movement of SO42−into the cell across the basolateral membrane is pH dependent, suggesting SO42−/OH−exchange. Luminal HCO3−and Cl−can facilitate SO42−movement out of the cell across the brush-border membrane. The molecular identities of the anion exchangers are unknown but are probably homologues of SO42−transporters in the mammalian SLC26 gene family. In all species tested, glucocorticoids increase renal SO42−excretion. Whereas glucocorticoids downregulate SO42−reabsorptive mechanisms in terrestrial vertebrates, they may also stimulate a mediated secretory flux. In the marine teleost, cortisol increases the level of SO42−/HCO3−exchange at the brush-border membrane, tubular carbonic anhydrase (CA) activity, CAII protein, and a proportion of tubular SO42−secretion that is CA dependent. CA activity is required for about one-half of this net SO42−secretion but is also required for about one-half of the net reabsorption in bird proximal epithelium. A CA-SO42−/anion exchanger metabolon arrangement is proposed that may speed both the secretory and reabsorptive processes.
Collapse
Affiliation(s)
- Ryan M Pelis
- Department of Physiology and Neurobiology, U-4156, University of Connecticut, 3107 Horsebarn Hill Rd., Storrs, CT 06269-4156, USA
| | | |
Collapse
|
15
|
Gerencser GA, Robbins F, Zhang J, Ahearn GA. Electrogenic proton-regulated oxalate/chloride exchange by lobster hepatopancreatic brush-border membrane vesicles. J Exp Biol 2004; 207:571-8. [PMID: 14718500 DOI: 10.1242/jeb.00495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The transport of [14C]oxalate (Ox2-) by epithelial brush-border membrane vesicles (BBMV) of lobster (Homarus americanus) hepatopancreas, formed by a magnesium precipitation technique, was stimulated by an outward Cl- gradient (in > out). By contrast, Ox2- uptake was not enhanced by an inward Na+ or K+ transmembrane gradient. Generation of an inside-positive membrane potential by K+ in the presence of valinomycin stimulated Ox2-/Cl- exchange, while an inside-negative membrane potential generated by K+ efflux in the presence of valinomycin inhibited this process. Neither Ox2-/Ox2- nor Ox2-/SO4(2-) transport exchange were affected by alterations of transmembrane potential. An inwardly directed proton gradient, or the presence of low bilateral pH, enhanced Ox2-/Cl- exchange, yet the H+ gradient alone could not stimulate Ox2) uptake in Cl(-)-equilibrated BBMV or in vesicles lacking internal Cl-. The stilbenes 4-acetamido-4'-isothiocyanotostilbene-2,2'-disulfonic acid (SITS) and 4,4'-diisothiocyano-2,2'-disulfonic stilbene (DIDS) strongly inhibited Ox2-/Cl- exchange. Oxalate influx occurred by a combination of carrier-mediated transfer, exhibiting Michaelis-Menten kinetics, and nonsaturable 'apparent diffusion'. Apparent kinetic constants for Ox2-/Cl- exchange were Kt = 0.20 mmol l(-1) and Jmax = 1.03 nmol l(-1) mg(-1) protein 7 s(-1). 36Cl- influx into oxalate-loaded BBMV was stimulated by an inside-negative transmembrane potential compared with short-circuited vesicles. These results suggest that Ox2-/Cl- exchange in crustacean hepatopancreatic BBMV occurred by an electrogenic carrier mechanism exhibiting a 1:1 flux ratio that was modulated by an external proton-sensitive regulatory site.
Collapse
Affiliation(s)
- George A Gerencser
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| | | | | | | |
Collapse
|
16
|
Burckhardt BC, Burckhardt G. Transport of organic anions across the basolateral membrane of proximal tubule cells. Rev Physiol Biochem Pharmacol 2003; 146:95-158. [PMID: 12605306 DOI: 10.1007/s10254-002-0003-8] [Citation(s) in RCA: 234] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Renal proximal tubules secrete diverse organic anions (OA) including widely prescribed anionic drugs. Here, we review the molecular properties of cloned transporters involved in uptake of OA from blood into proximal tubule cells and provide extensive lists of substrates handled by these transport systems. Where tested, transporters have been immunolocalized to the basolateral cell membrane. The sulfate anion transporter 1 (sat-1) cloned from human, rat and mouse, transported oxalate and sulfate. Drugs found earlier to interact with sulfate transport in vivo have not yet been tested with sat-1. The Na(+)-dicarboxylate cotransporter 3 (NaDC-3) was cloned from human, rat, mouse and flounder, and transported three Na(+) with one divalent di- or tricarboxylate, such as citric acid cycle intermediates and the heavy metal chelator 2,3-dimercaptosuccinate (succimer). The organic anion transporter 1 (OAT1) cloned from several species was shown to exchange extracellular OA against intracellular alpha-ketoglutarate. OAT1 translocated, e.g., anti-inflammatory drugs, antiviral drugs, beta-lactam antibiotics, loop diuretics, ochratoxin A, and p-aminohippurate. Several OA, including probenecid, inhibited OAT1. Human, rat and mouse OAT2 transported selected anti-inflammatory and antiviral drugs, methotrexate, ochratoxin A, and, with high affinities, prostaglandins E(2) and F(2alpha). OAT3 cloned from human, rat and mouse showed a substrate specificity overlapping with that of OAT1. In addition, OAT3 interacted with sulfated steroid hormones such as estrone-3-sulfate. The driving forces for OAT2 and OAT3, the relative contributions of all OA transporters to, and the impact of transporter regulation by protein kinases on renal drug excretion in vivo must be determined in future experiments.
Collapse
Affiliation(s)
- B C Burckhardt
- Abteilung Vegetative Physiologie und Pathophysiologie, Zentrum Physiologie, Georg-August-Universität Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | | |
Collapse
|
17
|
Gerencser GA, Levin R, Zhang J. Sulfate absorption inAplysiacalifornicagut: thyroid hormone stimulation. CAN J ZOOL 2002. [DOI: 10.1139/z02-065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mucosal membranes of foregut epithelia of Aplysia californica contain a sodium/sulfate symporter. Mucosal or serosal application of triiodothyronine stimulated the absorptive activity of the sodium/sulfate symporter, whereas reverse triiodothyronine had no effect on it. It appears that thyroid hormone or its molluscan equivalent plays a role in the overall regulation of sulfate homeostasis by the A. californica gut.
Collapse
|
18
|
Abstract
All cells require inorganic sulfate for normal function. Sulfate is among the most important macronutrients in cells and is the fourth most abundant anion in human plasma (300 microM). Sulfate is the major sulfur source in many organisms, and because it is a hydrophilic anion that cannot passively cross the lipid bilayer of cell membranes, all cells require a mechanism for sulfate influx and efflux to ensure an optimal supply of sulfate in the body. The class of proteins involved in moving sulfate into or out of cells is called sulfate transporters. To date, numerous sulfate transporters have been identified in tissues and cells from many origins. These include the renal sulfate transporters NaSi-1 and sat-1, the ubiquitously expressed diastrophic dysplasia sulfate transporter DTDST, the intestinal sulfate transporter DRA that is linked to congenital chloride diarrhea, and the erythrocyte anion exchanger AE1. These transporters have only been isolated in the last 10-15 years, and their physiological roles and contributions to body sulfate homeostasis are just now beginning to be determined. This review focuses on the structural and functional properties of mammalian sulfate transporters and highlights some of regulatory mechanisms that control their expression in vivo, under normal physiological and pathophysiological states.
Collapse
Affiliation(s)
- D Markovich
- Department of Physiology and Pharmacology, University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
19
|
Gerencser GA, Levin R, Robbins F. Sulfate absorption in Aplysia californica gut: intracellular regulation by cyclic guanosine monophosphate. CAN J ZOOL 2001. [DOI: 10.1139/z01-093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Luminal membranes of foregut epithelia of Aplysia californica contain a sodiumsulfate symporter. Cyclic guanosine monophosphate stimulated the absorptive activity of the sodiumsulfate symporter, whereas cyclic adenosine monophosphate had no effect on the sodiumsulfate symporter. It appears that guanylate cyclase plays a role in the overall regulation of sulfate homeostasis by the A. californica gut.
Collapse
|
20
|
Gerencser GA, Ahearn GA, Zhang J, Cattey MA. Sulfate transport mechanisms in epithelial systems. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2001; 289:245-53. [PMID: 11241395 DOI: 10.1002/1097-010x(20010401/30)289:4<245::aid-jez5>3.0.co;2-g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A novel invertebrate gastrointestinal transport mechanism has been shown to couple chloride-sulfate exchange in an electrogenic fashion. In the lobster, Homarus americanus, the hepatopancreas, or digestive gland, exists as an outpocketing of the digestive tract, representing a single cell layer separating the gut lumen and an open circulatory system composed of hemolymph. Investigations utilizing independently prepared brush border and basolateral membrane vesicles revealed discrete antiport systems which possess the capacity to bring about a transcellular secretion of sulfate. The luminal antiport system functions as a high-affinity, one-to-one chloride-sulfate exchanger that is stimulated by an increase in luminal hydrogen ion concentration. Such a system would take advantage of the high chloride concentration of ingested seawater as well as the high proton concentrations generated during digestion, which further suggests a potential regulation by resident sodium-proton exchangers. Exchange of one chloride for one divalent sulfate ion provides the driving force for electrogenic vectorial translocation. The basolateral antiport system was found to be electroneutral in nature, responsive to gradients of the dicarboxylic anion oxalate while lacking in proton stimulation. No evidence of sodium-sulfate co-transport, commonly reported for the brush border of vertebrate renal and intestinal epithelia, was observed in either membrane preparation. The two antiporters together can account for the low hemolymph to seawater sulfate levels previously described in decapod crustaceans. A secretory pathway for sulfate based upon electrogenic chloride-antiport may appear among invertebrates partly in response to digestion taking place in a seawater environment. J. Exp. Zool. 289:245-253, 2001.
Collapse
Affiliation(s)
- G A Gerencser
- Department of Physiology, College of Medicine, University of Florida, Gainesville, Florida 32610, USA.
| | | | | | | |
Collapse
|
21
|
Abstract
The renal proximal tubular reabsorption of sulfate plays an important role in the maintenance of sulfate homeostasis. Two different renal sulfate transport systems have been identified and characterized at the molecular level in the past few years: NaSi-1 and Sat-1. NaSi-1 belongs to a Na(+)-coupled transporter family comprising the Na(+)-dicarboxylate transporters and the recently characterized SUT1 sulfate transporter. NaSi-1 is a Na(+)-sulfate cotransporter located exclusively in the brush border membrane of renal proximal tubular and ileal cells. Recently, NaSi-1 was shown to be regulated at the protein and mRNA level by a number of factors, such as vitamin D, dietary sulfate, glucocorticoids and thyroid hormones, which are known to modulate sulfate reabsorption in vivo. The second member of renal sulfate transporters, denoted Sat-1, belongs to a family of Na+-independent sulfate transporter family comprising the DTDST, DRA and PDS genes. Sat-1 is a sulfate/bicarbonate-oxalate exchanger located at the basolateral membrane of proximal tubular epithelial cells and canalicular surface of hepatic cells. Contrary to NaSi-1, no physiological factor has been found to date to regulate Sat-1 gene expression. Both NaSi-1 and Sat-1 transporter activities are implicated in pathophysiological states such as heavy metal intoxication and chronic renal failure. This review focuses on recent developments in the molecular characterization of NaSi-1 and Sat-1 and the mechanisms involved in their regulation.
Collapse
Affiliation(s)
- L Beck
- INSERM U 426 and Institut Fédératif de Recherche Cellules Epithéliales, Faculté de Médecine Xavier Bichat, Paris, France
| | | |
Collapse
|
22
|
Lee HJ, Sagawa K, Shi W, Murer H, Morris ME. Hormonal regulation of sodium/sulfate co-transport in renal epithelial cells. PROCEEDINGS OF THE SOCIETY FOR EXPERIMENTAL BIOLOGY AND MEDICINE. SOCIETY FOR EXPERIMENTAL BIOLOGY AND MEDICINE (NEW YORK, N.Y.) 2000; 225:49-57. [PMID: 10998198 DOI: 10.1046/j.1525-1373.2000.22506.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Serum sulfate concentrations are elevated in infants, young children, and pregnant women due, at least in part, to increased renal sulfate reabsorption. Little is known about the effects of hormones, particularly those involved in growth, development, and pregnancy, on renal sulfate reabsorption. The objective of this investigation was to examine the effects of growth hormone (GH), insulin-like growth factor 1 (IGF-1), progesterone (PG), and 17beta-estradiol (EST) on renal sodium/sulfate co-transport. 35S-sulfate uptake was determined in Madin-Darby canine kidney (MDCK)/NaSi-1 cells (MDCK cells that have been stably transfected with rat sodium/sulfate co-transporter (NaSi-1) cDNA) and in opossum kidney (OK) cells. NaSi-1 mRNA was determined by RT-PCR and protein levels by ELISA. GH (0.1 nM) significantly increased the sodium/sulfate co-transport in MDCK/NaSi-1 cells up to 35%. IGF-1 induced a concentration-related stimulation of the sodium/sulfate co-transport with a maximal response observed at 1000 nM (59% increase). Sodium-dependent sulfate uptake was significantly increased when cells were preincubated with 10 nM PG, 10 nM EST, or 10 nM PG/10 nM EST up to 41%, 46%, or 39%, respectively. OK cells exhibited endogenous sodium-dependent sulfate transport; significantly increased sodium/sulfate co-transport was also observed in OK cells that were preincubated with GH, IGF-1, and PG/EST, although not with EST alone. The NaSi-1 mRNA and NaSi-1 protein levels were significantly increased in MDCK/NaSi-1 cells treated with 0.1 nM GH, 100 nM IGF-1, 10 nM PG, and/or 10 nM EST compared with control. These results suggest that the increased renal sulfate reabsorption that occurs in neonates, young and pregnant humans, and animals could be mediated by the increased steady-state levels of NaSi-1 mRNA produced by the higher plasma concentrations of GH, IGF-1, or PG/EST.
Collapse
Affiliation(s)
- H J Lee
- Department of Pharmaceutics, School of Pharmacy, State University of New York at Buffalo, Amherst, New York 14260, USA
| | | | | | | | | |
Collapse
|
23
|
Abstract
Inorganic sulfate is an important physiological anion that is a required cofactor for sulfate conjugation reactions of both endogenous and exogenous compounds. It is necessary for the detoxification of xenobiotics and endogenous compounds (catecholamines, steroids, bile acids), for the synthesis of structural components of membranes and tissues (sulfated glycosaminoglycans), and for the biologic activity of endogenous compounds (heparin and cholecystokinin). Inorganic sulfate homeostasis is largely maintained by reabsorption in the renal proximal tubule. Sodium-dependent sulfate cotransport in the brush border membrane is of primary importance in the regulation of plasma inorganic sulfate concentrations. Altered renal reabsorption of sulfate has been observed under different physiological (age, pregnancy, low dietary intake), pathological (hypothyroidism, trace metal excess), and pharmacological conditions (treatment with nonsteroidal antiinflammatory agents). The recent identification of the sulfate transporter genes has allowed the investigation of the molecular mechanisms of altered sulfate transport. Although the regulation of sulfate homeostasis is not fully understood, recent investigations have explored the cellular mechanisms of some of these alterations. In this review, the physiological importance of inorganic sulfate, the availability of this anion, and the regulation of sulfate homeostasis are discussed.
Collapse
Affiliation(s)
- M E Morris
- Department of Pharmaceutics, State University of New York at Buffalo, Amherst 14260, USA
| | | |
Collapse
|
24
|
Gerencser GA, Levin R. Sodium-Sulfate Symport by Aplysia californica Gut. Zoolog Sci 2000; 17:579-83. [DOI: 10.2108/zsj.17.579] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/1999] [Accepted: 12/24/1999] [Indexed: 11/17/2022]
|
25
|
Abstract
Pentachlorophenol (PCP) is an inhibitor of phenol-sulfotransferases and has been used to ascertain the role of sulfation in toxicology. Recently, molybdate has been shown to inhibit the sulfation of various chemicals by decreasing hepatic concentrations of the cosubstrate, 3'-phosphoadenosine 5'-phosphosulfate (PAPS). The purpose of this study was to compare the effectiveness of these two chemicals in inhibiting the sulfation of various doses of acetaminophen (AA) in the rat. PCP (40 micromol/kg) decreased the 2-h combined biliary and urinary excretion of AA-sulfate by 78, 83, 84, and 47% of the 0.1, 0.3, 1, and 3 mmol/kg doses of AA, respectively. Molybdate (7.5 mmol/kg) decreased the sulfation of these same doses of AA by 50, 65, 62, and 81%, respectively. These data indicate that PCP is more effective in decreasing the sulfation of low than high doses of AA, which may result from less AA, at lower doses, to compete with PCP for sulfotransferases. Conversely, molybdate is more effective in decreasing sulfation of high rather than low doses of AA because molybdate decreases sulfate availability and decreases PAPS synthesis. More PAPS is required for the sulfation of high than low doses of AA. Therefore, PCP inhibits sulfation more effectively at low doses of AA when sulfation is limited by sulfotransferases, and molybdate inhibits sulfation more effectively at high doses of AA when sulfation is limited by PAPS.
Collapse
Affiliation(s)
- J W Boles
- Center for Environmental and Occupational Health, Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160-7417, USA
| | | |
Collapse
|
26
|
Lee HJ, Balasubramanian SV, Murer H, Biber J, Morris ME. Modulation of sulfate renal transport by alterations in cell membrane fluidity. J Pharm Sci 1999; 88:976-80. [PMID: 10514342 DOI: 10.1021/js990114c] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Changes in membrane fluidity have been shown to alter the sodium-dependent renal transport of glucose and phosphate; however, this has not been examined for sodium/sulfate cotransport in the renal proximal tubule. Sodium/sulfate cotransport regulates the homeostasis of sulfate in mammals. The objective of this study was to investigate the influence of alterations of membrane fluidity on sodium-coupled sulfate transport in the Madin-Darby canine kidney cells, which have been stably transfected with sodium/sulfate cotransporter (NaSi-1) cDNA (MDCK-Si). Preincubation of cells with 0. 2 mM cholesterol significantly decreased the V(max) for sodium/sulfate cotransport (13.69 +/- 1.11 vs 10.15 +/- 1.17 nmol/mg protein/5 min, mean +/- SD, n = 4, p < 0.01) with no significant alteration in K(m). The addition of benzyl alcohol (20 mM) to cells increased the V(max) of sulfate uptake by 20% (11.97 +/- 0.91 vs 14. 35 +/- 0.56 nmol/mg protein/5 min, mean +/- SD, n = 3, p < 0.05) with no significant change in K(m). Membrane fluidity, as measured by the fluorescence polarization of 1,6-diphenyl 1,3,5-hexatriene (DPH), was significantly increased in MDCK-Si cells treated with 20 mM benzyl alcohol and decreased in the cells preincubated with 0.2 mM cholesterol, compared with control cells. Our results suggest that alterations in membrane fluidity that may occur as a result of disease states, aging, and pregnancy may play an important role in the modulation of renal sodium/sulfate cotransport.
Collapse
Affiliation(s)
- H J Lee
- Department of Pharmaceutics, School of Pharmacy, State University of New York at Buffalo, Amherst, New York 14260, USA
| | | | | | | | | |
Collapse
|
27
|
Abstract
Sulfation is the conjugation of chemicals with sulfate, which usually decreases, but occasionally increases, their biological effects. The phenol-sulfotransferase inhibitor pentachlorophenol (PCP) is often used to distinguish the biological effects of a chemical from its sulfate conjugate. Recently, molybdate has been shown to decrease the hepatic concentration of 3'-phosphoadenosine 5'-phosphosulfate (PAPS), the cosubstrate for sulfation. Therefore, the present study was designed to compare the effectiveness and specificity of molybdate and PCP as inhibitors of sulfation. Alpha-naphthol (125 and 250 micromol/kg, i.p.) was administered to rats and the sulfate and glucuronide conjugates excreted into urine were quantified for this comparison. Molybdate (5.0, 7.5, and 10 mmol/kg) decreased the 24-h cumulative urinary excretion of the sulfate conjugate of the lower dose of alpha-naphthol by 54, 53, and 55%, respectively, with corresponding compensatory increases in glucuronide excretion at the two lower doses of molybdate. PCP (20, 40, and 80 micromol/kg) similarly decreased the sulfation of alpha-naphthol by 48, 38, and 41%, respectively, but prevented compensatory increases in glucuronide excretion. Molybdate (2.5, 5.0, and 7.5 mmol/kg) decreased the sulfation of the higher dose of alpha-naphthol by 21, 30, and 44%, respectively, again with corresponding compensatory increases in glucuronide excretion. In contrast, PCP did not decrease significantly the sulfation of the higher dose of alpha-naphthol. These data suggest that molybdate is equally or more effective than PCP at inhibiting sulfation of alpha-naphthol, and appears to be more specific.
Collapse
Affiliation(s)
- J W Boles
- Center for Environmental and Occupational Health, Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City 66160-7417, USA
| | | |
Collapse
|
28
|
Boles JW, Klaassen CD. Effects of molybdate and pentachlorophenol on the sulfation of dehydroepiandrosterone. Toxicol Appl Pharmacol 1998; 151:105-9. [PMID: 9705892 DOI: 10.1006/taap.1998.8448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pentachlorophenol (PCP) and molybdate have been shown to inhibit the sulfoconjugation of various chemicals in rats and therefore are useful to examine the role of sulfoconjugation on the toxicity of a chemical. PCP inhibits sulfation by competing with substrates for phenol-sulfotransferases, but not hydroxysteroid-sulfotransferases. In contrast, molybdate decreases sulfation by limiting sulfate availability and thereby decreasing the synthesis of 3'-phosphoadenosine 5'-phosphosulfate (PAPS), which is the obligate cosubstrate for sulfation. Therefore, it was of interest to determine whether PCP or molybdate is effective in decreasing the in vivo sulfation of dehydroepiandrosterone (DHEA), which is a substrate for hydroxysteroid-sulfotransferases. PCP (40 micromol/kg ip) or molybdate (7.5 mmol/kg po) was given 45 min and 4 h, respectively, prior to the start of DHEA infusion. The effects of these two sulfation inhibitors on DHEA sulfation were dependent on the rate of DHEA infusion in rats. PCP had different effects on the sulfation of various infusion rates of DHEA in rats. PCP had little effect on the sulfation after the two lowest infusion rates of DHEA (12.5 and 25 mg/kg) and actually increased (233%) DHEA-sulfate serum concentrations with the highest DHEA infusion rate (50 mg/kg). Although molybdate had little affect on the sulfation of the lowest DHEA infusion rate, it significantly decreased (50-85%) DHEA-sulfate serum concentrations with the two higher DHEA infusion rates. These data indicate that molybdate, unlike PCP, decreases the sulfation of DHEA and may be a useful tool to decrease the sulfation of other substrates of hydroxysteroid-sulfotransferases.
Collapse
Affiliation(s)
- J W Boles
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, 66160-7417, USA
| | | |
Collapse
|
29
|
Gerencser GA, Ahearn GA, Cattey MA. Antiport-driven sulfate secretion in an invertebrate epithelium. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 1996; 275:269-76. [PMID: 8759923 DOI: 10.1002/(sici)1097-010x(19960701)275:4<269::aid-jez4>3.0.co;2-n] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A novel invertebrate gastrointestinal transport mechanism has been shown to couple chloride/sulfate exchange in an electrogenic fashion. In the lobster, Homarus americanus, the hepatopancreas, or digestive gland, exists as an outpocketing of the digestive tract, representing a single cell layer separating the gut lumen and an open circulatory system comprised of hemolymph. Investigations utilizing independently prepared brush-border and basolateral membrane vesicles revealed discrete antiport systems which possess the capacity to bring about a transcellular secretion of sulfate. The luminal antiport system functions as a high affinity, one-to-one chloride-sulfate exchanger that is stimulated by an increase in luminal hydrogen ion concentration. Such a system would take advantage of the high chloride concentration of ingested seawater, as well as the high proton concentrations generated during digestion, which further suggests a potential regulation by resident sodium-proton exchangers. Exchange of one chloride for one divalent sulfate ion provides the driving force for electrogenic vectorial translocation. The basolateral antiport system was found to be electroneutral in nature, responsive to gradients of the dicarboxylic anion oxalate, while lacking in proton stimulation. No evidence of sodium-sulfate cotransport, commonly reported for the brush border of vertebrate renal and intestinal epithelia, was observed in either membrane preparation. The two antiporters together can account for the low hemolymph to seawater sulfate levels previously described in decapod crustaceans. A secretory pathway for sulfate based upon electrogenic chloride-antiport may appear among invertebrates partly in response to digestion taking place in a seawater environment.
Collapse
Affiliation(s)
- G A Gerencser
- Department of Physiology, College of Medicine, University of Florida, Gainesville 32610, USA
| | | | | |
Collapse
|
30
|
Kuo SM, Aronson PS. Pathways for oxalate transport in rabbit renal microvillus membrane vesicles. J Biol Chem 1996; 271:15491-7. [PMID: 8663096 DOI: 10.1074/jbc.271.26.15491] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Recent evidence suggests that apical membrane Cl--oxalate exchange plays a major role in mediating Cl- absorption in the renal proximal tubule. To sustain steady-state Cl- absorption by a mechanism of exchange for intracellular oxalate requires the presence of one or more pathways for recycling oxalate from lumen to cell. Accordingly, we evaluated the mechanisms of oxalate transport in luminal membrane vesicles isolated from the rabbit renal cortex. We found that transport of oxalate by Na+ cotransport is negligible compared to the transport of sulfate. In contrast, we demonstrated that oxalate shares the electroneutral pathway mediating Na+-independent sulfate-carbonate exchange. We also demonstrated the presence of OH--oxalate exchange (indistinguishable from H+-oxalate cotransport). The process of OH--oxalate exchange was electrogenic and partially inhibited by Cl-, indicating that it occurs, at least in part, as a mode of the Cl--oxalate exchanger described previously. An additional component of OH--oxalate exchange was insensitive to inhibition by either Cl- or sulfate, suggesting that it takes place by neither the Cl--oxalate exchanger nor the sulfate-carbonate exchanger. We conclude that multiple anion exchange mechanisms exist by which oxalate can recycle from lumen to cell to sustain Cl- absorption occurring via apical membrane Cl--oxalate exchange in the renal proximal tubule.
Collapse
Affiliation(s)
- S M Kuo
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | |
Collapse
|
31
|
Norbis F, Perego C, Markovich D, Stange G, Verri T, Murer H. cDNA cloning of a rat small-intestinal Na+/SO4(2-) cotransporter. Pflugers Arch 1994; 428:217-23. [PMID: 7816544 DOI: 10.1007/bf00724500] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have isolated a cDNA (ileal NaSi-1) from rat small intestine by homology screening with a cDNA (renal NaSi-1) encoding rat kidney cortex Na(+)-SO4(2-) cotransport. Ileal NaSi-1 cRNA specifically stimulates Na(+)-dependent SO4(2-) uptake in a time- and dose-dependent manner in Xenopus laevis oocytes, with kinetic parameters almost identical to those of the renal NaSi-1. Ileal NaSi-1 cDNA contains 2722 base pairs (bp), almost 500 bp more than the renal NaSi-1 cDNA; however, it encodes a protein of 595 amino acids identical to the renal NaSi-1 protein. Northern blot analysis shows strong signals in rat lower small intestine and kidney cortex (2.9 x 10(3) and 2.3 x 10(3) bases), with the ileal NaSi-1 corresponding to the longer transcript. We conclude that we have identified a rat ileal cDNA that encodes a membrane protein most likely involved in brush-border Na(+)-SO4(2-) cotransport. It differs to the renal NaSi-1 only in the length of the 3' untranslated region, suggesting that the major difference lies in the differential use of polyadenylation signals.
Collapse
Affiliation(s)
- F Norbis
- University of Zürich, Institute of Physiology, Switzerland
| | | | | | | | | | | |
Collapse
|
32
|
Hästbacka J, de la Chapelle A, Mahtani MM, Clines G, Reeve-Daly MP, Daly M, Hamilton BA, Kusumi K, Trivedi B, Weaver A. The diastrophic dysplasia gene encodes a novel sulfate transporter: positional cloning by fine-structure linkage disequilibrium mapping. Cell 1994; 78:1073-87. [PMID: 7923357 DOI: 10.1016/0092-8674(94)90281-x] [Citation(s) in RCA: 541] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Diastrophic dysplasia (DTD) is a well-characterized autosomal recessive osteochondrodysplasia with clinical features including dwarfism, spinal deformation, and specific joint abnormalities. The disease occurs in most populations, but is particularly prevalent in Finland owing to an apparent founder effect. DTD maps to distal chromosome 5q and, based on linkage disequilibrium studies in the Finnish population, we had previously predicted that the DTD gene should lie about 64 kb away from the CSF1R locus. Here, we report the positional cloning of the DTD gene by fine-structure linkage disequilibrium mapping. The gene lies in the predicted location, approximately 70 kb proximal to CSF1R, and encodes a novel sulfate transporter. Impaired function of its product is likely to lead to undersulfation of proteoglycans in cartilage matrix and thereby to cause the clinical phenotype of the disease. These results demonstrate the power of linkage disequilibrium mapping in isolated populations for positional cloning.
Collapse
Affiliation(s)
- J Hästbacka
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Massachusetts 02142
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Gregus Z, Oguro T, Klaassen CD. Nutritionally and chemically induced impairment of sulfate activation and sulfation of xenobiotics in vivo. Chem Biol Interact 1994; 92:169-77. [PMID: 8033252 DOI: 10.1016/0009-2797(94)90062-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Sulfation requires 3'-phosphoadenosine 5'-phosphosulfate (PAPS) as the sulfate donor. In the search for methods to inhibit sulfation reactions via impairment of PAPS synthesis, two experimental conditions have been tested in rats. A low-sulfur diet, which does not deplete hepatic glutathione, reduced inorganic sulfate but not PAPS levels in the liver and moderately decreased sulfation of acetaminophen. Administration of molybdate, which is an alternative substrate for intestinal and renal sulfate transport as well as for ATP-sulfurylase, depleted both sulfate and PAPS in liver and markedly inhibited sulfation of acetaminophen. Therefore, administration of molybdate may be used as an experimental tool to study the role of sulfation in the fate and effect of xenobiotics.
Collapse
Affiliation(s)
- Z Gregus
- Department of Pharmacology, University Medical School of Pécs, Hungary
| | | | | |
Collapse
|
34
|
Perego C, Markovich D, Norbis F, Verri T, Sorribas V, Murer H. Expression of rat ileal Na(+)-sulphate cotransport in Xenopus laevis oocytes: functional characterization. Pflugers Arch 1994; 427:252-6. [PMID: 8072843 DOI: 10.1007/bf00374531] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Small-intestinal sulphate absorption is a Na(+)-dependent process having its highest rate in the ileum; it involves brush-border membrane Na(+)-sulphate cotransport. Injection of rat ileal mRNA into Xenopus laevis oocytes induced Na(+)-dependent sulphate uptake in a dose-dependent manner, with no apparent effect on Na(+)-independent sulphate uptake. For mRNA-induced transport, the apparent Km value for sulphate interaction was 0.6 +/- 0.2 mM and that for sodium interaction was 25 +/- 2 mM (Hill coefficient: 2.3 +/- 0.3). mRNA-induced transport, was inhibited by thiosulphate, but not by phosphate or 4,4,'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS). Using a rat renal Na(+)-sulphate cotransporter cDNA as a probe [NaSi-1; Markovich et al. (1993) Proc Natl Acad Sci USA 90:8073-8077], the highest hybridization signals (2.3 kb and 2.9 kb) were obtained in size fractions showing the highest expression of Na(+)-dependent sulphate transport in oocytes. Hybrid depletion experiments using antisense oligonucleotides (from the NaSi-1 cDNA sequence), provided further evidence that rat small-intestinal (ileal) Na(+)-sulphate cotransport is closely related to rat proximal-tubular brush-border membrane Na(+)-sulphate cotransport.
Collapse
Affiliation(s)
- C Perego
- Institute of Physiology, University of Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
35
|
Ullrich KJ. Specificity of transporters for 'organic anions' and 'organic cations' in the kidney. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1197:45-62. [PMID: 8155691 DOI: 10.1016/0304-4157(94)90018-3] [Citation(s) in RCA: 142] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- K J Ullrich
- Max-Planck-Institut für Biophysik, Frankfurt am Main, Germany
| |
Collapse
|
36
|
Electrogenic cotransport of Na+ and sulfate in Xenopus oocytes expressing the cloned Na+SO4(2-) transport protein NaSi-1. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)99887-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
37
|
Markovich D, Bissig M, Sorribas V, Hagenbuch B, Meier P, Murer H. Expression of rat renal sulfate transport systems in Xenopus laevis oocytes. Functional characterization and molecular identification. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42041-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
38
|
Tenenhouse HS, Martel J. Na(+)-dependent sulfate transport in opossum kidney cells is DIDS sensitive. THE AMERICAN JOURNAL OF PHYSIOLOGY 1993; 265:C54-61. [PMID: 8338138 DOI: 10.1152/ajpcell.1993.265.1.c54] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Sulfate transport was examined in OK/E cells, a clonal subline of opossum kidney cells that express several differentiated functions of the proximal tubule. Extracellular Na+ stimulated [35S]sulfate uptake five- to sixfold. Hill analysis demonstrating the dependence of sulfate uptake on Na+ concentration yielded a Hill coefficient of 1.5 and a Michaelis constant (KNa+) of 23 mM. Na(+)-dependent sulfate uptake was increased by lowering the pH from 7.4 to 6.4, decreased by raising the pH to 8.4 and inhibited by a 10-fold molar excess of SO3(2-), S2O3(2-) and CrO4(2-), but not by phosphate. The Na(+)-mediated component of sulfate uptake was saturable and kinetic parameters were estimated [Michaelis constant (Km) = 2.4 +/- 0.2 mM and maximum velocity (Vmax) = 125 +/- 15 pmol.mg protein-1.min-1]. Omitting extracellular Cl- resulted in a significant increase in the affinity of the carrier for sulfate (Km = 0.5 mm), without changing Vmax, consistent with competitive inhibition by Cl-. Na(+)-dependent sulfate uptake in OK/E cells was also inhibited by HCO3- [half-maximal inhibitory concentration (IC50) = 7 mM], 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS, IC50 = 0.9 microM), 0.5 mM picrylsulfonic acid and 0.1 mM ethacrynic acid, but not by 1 mM amiloride. Na(+)-dependent, DIDS-sensitive sulfate uptake was also expressed in the parental OK cell line and was not influenced by serum or 3,3',5-triiodo-L-thyronine. We conclude that Na(+)-dependent sulfate uptake in OK/E cells observes many of the features of Na(+)-sulfate cotransport in the renal brush-border membrane and provides a useful model to investigate the regulation of renal sulfate transport.
Collapse
Affiliation(s)
- H S Tenenhouse
- Department of Pediatrics, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
39
|
Mohapatra NK, Cheng PW, Parker JC, Paradiso AM, Yankaskas JR, Boucher RC, Boat TF. Sulfate concentrations and transport in human bronchial epithelial cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1993; 264:C1231-7. [PMID: 8498482 DOI: 10.1152/ajpcell.1993.264.5.c1231] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Inorganic sulfate concentrations in the cytoplasm of human bronchial epithelial cells exceeded levels in the bathing medium under all circumstances tested. Cell sulfate concentrations were directly related to medium sulfate concentrations and inversely related to medium chloride concentrations. In physiological media there was a sulfate compartment of approximately 0.3 mM that exchanged very slowly with extracellular sulfate. In media lacking chloride, sulfate was accumulated by the cells to a level as high as 2 mM. Sulfate uptake was markedly inhibited by external chloride and by stilbene sulfonic acid derivatives but was not affected by sodium in the medium. Efflux of 35SO4(2-) was stimulated by both chloride and sulfate in the bathing medium but inhibited by stilbenes. The following compounds had no effect on sulfate movements: phorbol esters, adenosine 3',5'-cyclic monophosphate derivatives, and okadaic acid. Changes in medium tonicity were likewise without effect. Our results suggest that human bronchial epithelial cells maintain a steady-state disequilibrium for inorganic sulfate. Furthermore, sulfate appears to exist in at least two compartments in the cells: one that is slowly exchangeable with sulfate in the medium and another exchangeable compartment that is of negligible size in physiological media but that becomes very large in media lacking chloride. Sulfate is transported by an anion exchanger of broad specificity that is not influenced by substances known to modulate chloride channels.
Collapse
Affiliation(s)
- N K Mohapatra
- Department of Pediatrics, University of North Carolina, Chapel Hill 27599-7220
| | | | | | | | | | | | | |
Collapse
|
40
|
Murer H, Manganel M, Roch‐Ramel F. Tubular Transport of Monocarboxylates, Krebs Cycle Intermediates, and Inorganic Sulfate. Compr Physiol 1992. [DOI: 10.1002/cphy.cp080247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
41
|
Pena DR, Neiberger RE. Developmental differences in renal sulfate reabsorption: transport kinetics in brush border membrane vesicles. Pediatr Nephrol 1992; 6:532-5. [PMID: 1482640 DOI: 10.1007/bf00866495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Renal tubular reabsorption of inorganic sulfate is greater in younger than older guinea pigs. To determine the mechanism of this difference, we studied the transport of inorganic sulfate in renal brush border membrane vesicles (BBMV) obtained from young (< 25 days) and adult guinea pigs (> 60 days). BBMV were obtained by mechanical and osmotic disruption of dissected renal cortices followed by magnesium precipitation and differential centrifugation. After the membranes were incubated for 10 s in solutions containing inorganic sulfate at several concentrations (0.1-10 mM) and trace amounts of 35sulfate, intravesicular uptake was measured. Based on 35sulfur uptake, reabsorption transport kinetics (Vmax and Km) were estimated. BBMV obtained from young guinea pigs demonstrated higher sodium-sulfate cotransport, Vmax (51.79 +/- 4.34 pmol/mg protein per s) than those obtained from adult animals (Vmax = 34.28 +/- 9.17 pmol/mg per s), P < 0.05. Vmax values are represented as means plus or minus standard deviation. No differences in Km were observed. Our results indicate that age-related differences in renal inorganic sulfate reabsorption are due to a higher Vmax for sodium-sulfate cotransport in the younger animals, suggesting a higher density of sodium-sulfate cotransporters or an increased cotransport turnover rate in this age group.
Collapse
Affiliation(s)
- D R Pena
- Department of Pediatrics, JHMHC, University of Florida College of Medicine, Gainesville 32610-0296
| | | |
Collapse
|
42
|
David C, Ullrich KJ. Substrate specificity of the luminal Na(+)-dependent sulphate transport system in the proximal renal tubule as compared to the contraluminal sulphate exchange system. Pflugers Arch 1992; 421:455-65. [PMID: 1461715 DOI: 10.1007/bf00370256] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The efflux of [35S]sulphate from the lumen of the proximal renal tubule into tubular cells of rats was measured by the stop-flow tubular-lumen microperfusion technique. The transport parameters obtained and the apparent Ki values of competing substrates were compared with those of the contraluminal influx of [35S]-sulphate from the interstitium into tubular cells. For the luminal sulphate efflux a Km(l, SO4(2-)) of 0.8 mmol/l and a Jmax(l, SO4(2-)) of 0.2 pmol s-1 cm-1 were found. The corresponding contraluminal values were Km(cl,SO4(2-)) 1.4 mmol/l and Jmax(cl,SO4(2-)) 1.2 pmol s-1 cm-1. Omission of Na+ from the perfusates reduced the luminal efflux of sulphate by 83%, while the contraluminal influx of sulphate was not changed. Increase in HCO3- concentration inhibited both luminal efflux and contraluminal influx of sulphate, while a change of pH from 6.0 to 8.0 was without effect. Comparing the apparent Ki(SO4(2-)) values for luminal and contraluminal sulphate transport, a relationship close to 1:1 was seen for some inorganic substrates with tetrahedral molecular structure (thiosulphate, sulphate, molybdate and selenate). The same holds for phosphate, while for oxalate the contraluminal Ki(SO4(2-)) value was lower than the luminal one (1.2 and 4.5 mmol/l). Some of the dicarboxylates and disulphonates tested show the same affinity to the luminal Na(+)-dependent sulphate transporter and the contraluminal sulphate exchange system, whereas most of the benzene carboxylate and benzenesulphonate derivatives tested exhibit higher luminal than contraluminal Ki values. The inhibitory potency increased with rising numbers of substituents on the benzene ring. This effect was more pronounced for the contraluminal sulphate transporter. In general, only disulphonates and analogues as well as similarly structured compounds (5-sulphosalicylate, 2-hydroxy-5-nitrobenzenesulphonate, eosine-5-isothiocyanate) have a good inhibitory potency toward the luminal sulphate transporter [apparent Ki 0.9-3.1 mmol/l]. All the tested sulphamoyl and phenoxy diuretics, and fluorescein and phenolphthalein dyes showed no or a smaller inhibitory potency to the luminal sulphate transport system than to the contraluminal. The most effective inhibitors of both sulphate transport systems are 8-anilino-1-naphthalenesulphonate, orange G, and H2-DIDS. The data indicate that the Na(+)-dependent luminal and the Na(+)-independent contraluminal sulphate transport systems accommodate a similar spectrum of anionic substrates, whereby the inhibitory potency against the luminal Na(+)-dependent sulphate transport system is identical or smaller than against the contraluminal transporter.
Collapse
Affiliation(s)
- C David
- Max-Planck-Institut für Biophysik, Frankfurt am Main, Federal Republic of Germany
| | | |
Collapse
|
43
|
Abstract
During growth, immature guinea pigs maintain a positive inorganic sulfate balance. In the present study, renal clearance techniques were used to determine the maximum renal capacity for sulfate reabsorption [TmRsi/glomerular filtration rate (GFR)] in three groups of guinea pigs at different stages of development (10-34 days, 35-80 days and greater than 120 days of age). These ages are comparable to infant, adolescent, and adult guinea pigs. The guinea pigs were weaned at 10 days and then maintained on normal guinea pig chow (0.13% sulfate). The TmRsi/GFR was determined by infusions of increasing concentrations of sulfate (0-16.8 mumol/min). TmRsi/GFR was significantly greater in young (infant and adolescent) than in older (adult) guinea pigs (2.20 +/- 0.26 mumol/ml and 1.80 +/- 0.27 mumol/ml vs 0.942 +/- 0.08 mumol/ml, P less than 0.05). These results demonstrate that the tubular capacity for inorganic sulfate reabsorption per milliliter of glomerular filtrate is enhanced in immature guinea pigs and decreases with age.
Collapse
Affiliation(s)
- R E Neiberger
- Department of Pediatrics, University of Florida, Gainesville 32610
| |
Collapse
|
44
|
Kunkler KJ, Everett LM, Breedlove DK, Kempson SA. Insulin stimulates sodium-dependent phosphate transport by osteoblast-like cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1991; 260:E751-5. [PMID: 2035631 DOI: 10.1152/ajpendo.1991.260.5.e751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The rat osteosarcoma cell line UMR-106-01 has an osteoblast-like phenotype. When grown in monolayer culture, these cells transport Pi via a Na(+)-dependent carrier. The Na(+)-Pi cotransport system is stimulated by parathyroid hormone (PTH). Because there are insulin receptors on osteoblast-like cells, we determined possible effects of insulin on Na(+)-Pi cotransport in UMR-106-01 cells. Incubation of cells with 10(-8) M insulin for 3 h produced a 73% increase (P less than 0.025) in Na(+)-Pi cotransport. There was no significant change in Na(+)-L-alanine cotransport or in Na(+)-independent uptake of Pi and alanine. The stimulatory action of insulin on Na(+)-Pi cotransport was present within 2 h and was dose dependent in the range 10(-10) to 10(-7) M. The increase in Na(+)-Pi cotransport was accompanied by an increase in apparent maximal velocity with no change in apparent Michaelis constant for Pi. Use of cycloheximide to block de novo protein synthesis did not interfere with this action of insulin. We conclude that insulin, like PTH, directly stimulates the Na(+)-Pi cotransport system in osteoblast-like cells. The mechanism remains to be determined.
Collapse
Affiliation(s)
- K J Kunkler
- Department of Physiology and Biophysics, Indiana University School of Medicine, Indianapolis 46202-5120
| | | | | | | |
Collapse
|
45
|
Werner A, Biber J, Forgo J, Palacin M, Murer H. Expression of renal transport systems for inorganic phosphate and sulfate in Xenopus laevis oocytes. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38350-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
46
|
Aronson PS, Kuo SM. Heterogeneity of anion exchangers mediating chloride transport in the proximal tubule. Ann N Y Acad Sci 1989; 574:96-101. [PMID: 2634360 DOI: 10.1111/j.1749-6632.1989.tb25139.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Three distinct anion exchangers are described that directly or indirectly mediate Cl- transport across the luminal membrane of the proximal tubule cell. Studies on the intact proximal tubule indicate that the Cl(-)-formate exchanger is a major mechanism for Cl- transport under physiologic conditions. As just discussed, the physiologic importance of the Cl(-)-oxalate and SO4 = (oxalate)-CO3 = exchangers mediating Cl- transport across the luminal membrane of the proximal tubule cell is currently unknown. These three anion exchangers are part of a larger group of at least eight distinct anion transporters in the proximal tubule that share with erythrocyte Band 3 the properties of stilbene sensitivity and/or the ability to mediate anion exchange. It is tempting to speculate that these proximal tubule anion transporters are members of a family of proteins structurally related to the prototypic anion exchanger, erythrocyte Band 3. If this is true, comparing the structures of these anion transporters with each other and with Band 3 should provide important insight into the molecular basis for differences in substrate and inhibitor specificity within this family of transport proteins.
Collapse
Affiliation(s)
- P S Aronson
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut 06510
| | | |
Collapse
|
47
|
|
48
|
ELGAVISH ADA, ESKO JEFFREYD, FRIZZELL RAYMOND, BENOS DALE, SORSCHER ERIC. Chinese Hamster Ovary Cell Mutants Deficient in an Anion Exchanger Functionally Similar to Erythroid Band 3. Ann N Y Acad Sci 1989. [DOI: 10.1111/j.1749-6632.1989.tb25143.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Politi L, Chiaraluce R, Consalvi V, Cerulli N, Scandurra R. Oxalate, phosphate and sulphate determination in serum and urine by ion chromatography. Clin Chim Acta 1989; 184:155-65. [PMID: 2605783 DOI: 10.1016/0009-8981(89)90285-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A rapid method for the determination of phosphate, sulphate and oxalate in serum by ion chromatography is described. Serum is deproteinized through a Centrifree filter by centrifugation and the ultrafiltrate directly injected into an ion chromatograph equipped with an anion exchange column and a conductivity detector. By this procedure the sample is not diluted and even small amounts of oxalate in biological fluids can be detected. Mean serum concentrations found in healthy individuals are: phosphate 1.07 mmol/l; sulphate 0.35 mmol/l; oxalate 21.02 mumols/l. Phosphate, sulphate and oxalate contents were also determined in urine from healthy individuals. Values found in serum and urine are in good agreement with those previously reported.
Collapse
Affiliation(s)
- L Politi
- Dipartimento di Scienze e Tecnologie Biochimiche e Biometria, Università dell'Aquila, Rome, Italy
| | | | | | | | | |
Collapse
|
50
|
Burckhardt G, Ullrich KJ. Organic anion transport across the contraluminal membrane--dependence on sodium. Kidney Int 1989; 36:370-7. [PMID: 2687563 DOI: 10.1038/ki.1989.205] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- G Burckhardt
- Max-Planck-Institut für Biophysik, Frankfurt/Main, Federal Republic of Germany
| | | |
Collapse
|