1
|
Imani D, Bahadori T, Mobini M, Judaki MA, Jeddi-Tehrani M, Amiri MM, Shokri F. Production and characterization of pertussis toxin specific monoclonal and polyclonal antibodies: Implication for toxin purification and detection. Toxicon 2025; 258:108334. [PMID: 40147799 DOI: 10.1016/j.toxicon.2025.108334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/12/2025] [Accepted: 03/25/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Pertussis is a pulmonary disease caused by the gram-negative bacteria Bordetella pertussis (BP) with a high fatality rate among newborns and young children. Pertussis toxin (PT) is essential for pertussis pathogenesis as well as production of acellular pertussis vaccines (aPV). Traditional PT purification procedures are laborious and yield low purity and recovery rates. Also, due to the low production levels of PT by BP and the difficulties of purification, an appropriate immunoassay is needed to monitor PT concentrations upstream and downstream of the production process. This study investigates production and application of monoclonal and polyclonal antibodies for efficient PT purification and quantification. METHODS Rabbits and mice were immunized with native PT to produce polyclonal and monoclonal antibodies (MAbs). The MAbs were selected based on affinity, isotype and specificity, as determined by enzyme-linked immunosorbent assay (ELISA) and immunoblotting. The native PT antigen was purified using an immunoaffinity column. The purity and recovery rates of native PT were analyzed by ELISA, SDS-PAGE, and immunoblotting. Additionally, monoclonal and polyclonal antibodies were used to establish an ELISA assay for measurement of PT concentration. RESULTS A highly pure PT with recovery rates of around 74 ± 4.9 % was obtained following purification by immunoaffinity column, using polyclonal antibodies. Furthermore, the designed ELISA demonstrated suitable reactivity for measurement of the PT antigen. CONCLUSION Our results indicate suitability of the produced monoclonal and polyclonal anti-PT antibodies for purification and monitoring of PT by immunoaffinity chromatography and ELISA, respectively. The immunoaffinity method offers an efficient replacement for PT purification in the context of developing aPV.
Collapse
Affiliation(s)
- Danyal Imani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Tannaz Bahadori
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mobini
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Judaki
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Mohammad Mehdi Amiri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Choi GS, Kang KR, Kim SB, Ji JH, Cho GW, Kang HM, Kang JH. Safety assessments of recombinant DTaP vaccines developed in South Korea. Clin Exp Vaccine Res 2024; 13:155-165. [PMID: 38752005 PMCID: PMC11091433 DOI: 10.7774/cevr.2024.13.2.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 05/18/2024] Open
Abstract
Purpose Pertussis bacteria have many pathogenic and virulent antigens and severe adverse reactions have occurred when using inactivated whole-cell pertussis vaccines. Therefore, inactivated acellular pertussis (aP) vaccines and genetically detoxified recombinant pertussis (rP) vaccines are being developed. The aim of this study was to assess the safety profile of a novel rP vaccine under development in comparison to commercial diphtheria-tetanus-acellular pertussis (DTaP) vaccines. Materials and Methods The two positive control DTaP vaccines (two- and tri-components aP vaccines) and two experimental recombinant DTaP (rDTaP) vaccine (two- and tri-components aP vaccines adsorbed to either aluminum hydroxide or purified oat beta-glucan) were used. Temperature histamine sensitization test (HIST), indirect Chinese hamster ovary (CHO) cell cluster assay, mouse-weight-gain (MWG) test, leukocytosis promoting (LP) test, and intramuscular inflammatory cytokine assay of the injection site performed for safety assessments. Results HIST results showed absence of residual pertussis toxin (PTx) in both control and experimental DTaP vaccine groups, whereas in groups immunized with tri-components vaccines, the experimental tri-components rDTaP absorbed to alum showed an ultra-small amount of 0.0066 IU/mL. CHO cell clustering was observed from 4 IU/mL in all groups. LP tests showed that neutrophils and lymphocytes were in the normal range in all groups immunized with the two components vaccine. However, in the tri-components control DTaP vaccine group, as well as two- and tri-components rDTaP with beta-glucan group, a higher monocyte count was observed 3 days after vaccination, although less than 2 times the normal range. In the MWG test, both groups showed changes less than 20% in body temperature and body weight before the after the final immunizations. Inflammatory cytokines within the muscle at the injection site on day 3 after intramuscular injection revealed no significant response in all groups. Conclusion There were no findings associated with residual PTx, and no significant differences in both local and systemic adverse reactions in the novel rDTaP vaccine compared to existing available DTaP vaccines. The results suggest that the novel rDTaP vaccine is safe.
Collapse
Affiliation(s)
| | - Kyu-Ri Kang
- The Vaccine Bio Research Institute, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | - Gyu-Won Cho
- The Vaccine Bio Research Institute, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyun-Mi Kang
- The Vaccine Bio Research Institute, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jin-Han Kang
- The Vaccine Bio Research Institute, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
3
|
Zhao M, Vandersluis M, Stout J, Haupts U, Sanders M, Jacquemart R. Affinity chromatography for vaccines manufacturing: Finally ready for prime time? Vaccine 2019; 37:5491-5503. [DOI: 10.1016/j.vaccine.2018.02.090] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 01/22/2018] [Accepted: 02/22/2018] [Indexed: 01/15/2023]
|
4
|
Intracellular Trafficking and Translocation of Pertussis Toxin. Toxins (Basel) 2019; 11:toxins11080437. [PMID: 31349590 PMCID: PMC6723225 DOI: 10.3390/toxins11080437] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 07/24/2019] [Indexed: 12/25/2022] Open
Abstract
Pertussis toxin (PT) is a multimeric complex of six proteins. The PTS1 subunit is an ADP-ribosyltransferase that inactivates the alpha subunit of heterotrimeric Gi/o proteins. The remaining PT subunits form a pentamer that positions PTS1 in and above the central cavity of the triangular structure. Adhesion of this pentamer to glycoprotein or glycolipid conjugates on the surface of a target cell leads to endocytosis of the PT holotoxin. Vesicle carriers then deliver the holotoxin to the endoplasmic reticulum (ER) where PTS1 dissociates from the rest of the toxin, unfolds, and exploits the ER-associated degradation pathway for export to the cytosol. Refolding of the cytosolic toxin allows it to regain an active conformation for the disruption of cAMP-dependent signaling events. This review will consider the intracellular trafficking of PT and the order-disorder-order transitions of PTS1 that are essential for its cellular activity.
Collapse
|
5
|
Markey K, Asokanathan C, Feavers I. Assays for Determining Pertussis Toxin Activity in Acellular Pertussis Vaccines. Toxins (Basel) 2019; 11:toxins11070417. [PMID: 31319496 PMCID: PMC6669641 DOI: 10.3390/toxins11070417] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/12/2019] [Accepted: 07/13/2019] [Indexed: 12/29/2022] Open
Abstract
Whooping cough is caused by the bacterium Bordetella pertussis. There are currently two types of vaccines that can prevent the disease; whole cell vaccines (WCV) and acellular vaccines (ACV). The main virulence factor produced by the organism is pertussis toxin (PTx). This toxin is responsible for many physiological effects on the host, but it is also immunogenic and in its detoxified form is the main component of all ACVs. In producing toxoid for vaccines, it is vital to achieve a balance between sufficiently detoxifying PTx to render it safe while maintaining enough molecular structure that it retains its protective immunogenicity. To ensure that the first part of this balancing act has been successfully achieved, assays are required to accurately measure residual PTx activity in ACV products accurately. Quality control assays are also required to ensure that the detoxification procedures are robust and stable. This manuscript reviews the methods that have been used to achieve this aim, or may have the potential to replace them, and highlights their continuing requirement as vaccines that induce a longer lasting immunity are developed to prevent the re-occurrence of outbreaks that have been observed recently.
Collapse
Affiliation(s)
- Kevin Markey
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK.
| | - Catpagavalli Asokanathan
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Ian Feavers
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| |
Collapse
|
6
|
Zuverink M, Barbieri JT. Protein Toxins That Utilize Gangliosides as Host Receptors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 156:325-354. [PMID: 29747819 DOI: 10.1016/bs.pmbts.2017.11.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Subsets of protein toxins utilize gangliosides as host receptors. Gangliosides are preferred receptors due to their extracellular localization on the eukaryotic cell and due to their essential nature in host physiology. Glycosphingolipids, including gangliosides, are mediators of signal transduction within and between eukaryotic cells. Protein toxins possess AB structure-function organization, where the A domain encodes a catalytic function for the posttranslational modification of a host macromolecule, including proteins and nucleic acids, and a B domain, which encodes host receptor recognition, including proteins and glycosphingolipids, alone or in combination. Protein toxins use similar strategies to bind glycans by pockets and loops, generally employing hydrogen bonding and aromatic stacking to stabilize interactions with sugars. In some cases, glycan binding facilitates uptake, while in other cases, cross-linking or a second receptor is necessary to stimulate entry. The affinity that protein toxins have for host glycans is necessary for tissue targeting, but not always sufficient to cause disease. In addition to affinity for binding the glycan, the lipid moiety also plays an important role in productive uptake and tissue tropism. Upon endocytosis, the protein toxin must escape to another intracellular compartment or into cytosol to modify a host substrate, modulating host signaling, often resulting in cytotoxic or apoptotic events in the cell, and a unique morbidity for the organism. The study of protein toxins that utilize gangliosides as host receptors has illuminated numerous eukaryotic cellular processes, identified the basis for developing interventions to prevent disease through vaccines and control bacterial diseases through therapies. In addition, subsets of these protein toxins have been utilized as therapeutic agents to treat numerous human inflictions.
Collapse
|
7
|
Inhibition of Wnt signalling and breast tumour growth by the multi-purpose drug suramin through suppression of heterotrimeric G proteins and Wnt endocytosis. Biochem J 2016; 473:371-81. [DOI: 10.1042/bj20150913] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/24/2015] [Indexed: 11/17/2022]
Abstract
Multi-purpose drug suramin is found to be active against cancer-related Wnt signalling. As a consequence of heterotrimeric G proteins suppression, suramin inhibits Wnt ligand internalization, which renders the drug active against triple-negative breast cancer (TNBC).
Collapse
|
8
|
Abstract
The introduction of vaccination in the 1950s significantly reduced the morbidity and mortality of pertussis. However, since the 1990s, a resurgence of pertussis has been observed in vaccinated populations, and a number of causes have been proposed for this phenomenon, including improved diagnostics, increased awareness, waning immunity, and pathogen adaptation. The resurgence of pertussis highlights the importance of standardized, sensitive, and specific laboratory diagnoses, the lack of which is responsible for the large differences in pertussis notifications between countries. Accurate laboratory diagnosis is also important for distinguishing between the several etiologic agents of pertussis-like diseases, which involve both viruses and bacteria. If pertussis is diagnosed in a timely manner, antibiotic treatment of the patient can mitigate the symptoms and prevent transmission. During an outbreak, timely diagnosis of pertussis allows prophylactic treatment of infants too young to be (fully) vaccinated, for whom pertussis is a severe, sometimes fatal disease. Finally, reliable diagnosis of pertussis is required to reveal trends in the (age-specific) disease incidence, which may point to changes in vaccine efficacy, waning immunity, and the emergence of vaccine-adapted strains. Here we review current approaches to the diagnosis of pertussis and discuss their limitations and strengths. In particular, we emphasize that the optimal diagnostic procedure depends on the stage of the disease, the age of the patient, and the vaccination status of the patient.
Collapse
Affiliation(s)
- Anneke van der Zee
- Molecular Diagnostics Unit, Maasstad Hospital, Rotterdam, The Netherlands
| | | | - Frits R Mooi
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
9
|
Bordetella pertussis proteins dominating the major histocompatibility complex class II-presented epitope repertoire in human monocyte-derived dendritic cells. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:641-50. [PMID: 24599530 DOI: 10.1128/cvi.00665-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Knowledge of naturally processed Bordetella pertussis-specific T cell epitopes may help to increase our understanding of the basis of cell-mediated immune mechanisms to control this reemerging pathogen. Here, we elucidate for the first time the dominant major histocompatibility complex (MHC) class II-presented B. pertussis CD4(+) T cell epitopes, expressed on human monocyte-derived dendritic cells (MDDC) after the processing of whole bacterial cells by use of a platform of immunoproteomics technology. Pertussis epitopes identified in the context of HLA-DR molecules were derived from two envelope proteins, i.e., putative periplasmic protein (PPP) and putative peptidoglycan-associated lipoprotein (PAL), and from two cytosolic proteins, i.e., 10-kDa chaperonin groES protein (groES) and adenylosuccinate synthetase (ASS). No epitopes were detectable from known virulence factors. CD4(+) T cell responsiveness in healthy adults against peptide pools representing epitope regions or full proteins confirmed the immunogenicity of PAL, PPP, groES, and ASS. Elevated lymphoproliferative activity to PPP, groES, and ASS in subjects within a year after the diagnosis of symptomatic pertussis suggested immunogenic exposure to these proteins during clinical infection. The PAL-, PPP-, groES-, and ASS-specific responses were associated with secretion of functional Th1 (tumor necrosis factor alpha [TNF-α] and gamma interferon [IFN-γ]) and Th2 (interleukin 5 [IL-5] and IL-13) cytokines. Relative paucity in the natural B. pertussis epitope display of MDDC, not dominated by epitopes from known protective antigens, can interfere with the effectiveness of immune recognition of B. pertussis. A more complete understanding of hallmarks in B. pertussis-specific immunity may advance the design of novel immunological assays and prevention strategies.
Collapse
|
10
|
Experience with monocomponent acellular pertussis combination vaccines for infants, children, adolescents and adults—A review of safety, immunogenicity, efficacy and effectiveness studies and 15 years of field experience. Vaccine 2013; 31:5178-91. [DOI: 10.1016/j.vaccine.2013.08.034] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/01/2013] [Accepted: 08/13/2013] [Indexed: 11/21/2022]
|
11
|
Characterization of the carbohydrate binding and ADP-ribosyltransferase activities of chemically detoxified pertussis toxins. Vaccine 2013; 31:2988-93. [DOI: 10.1016/j.vaccine.2013.04.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 04/20/2013] [Accepted: 04/25/2013] [Indexed: 11/19/2022]
|
12
|
Tan Y, Fleck RA, Asokanathan C, Yuen CT, Xing D, Zhang S, Wang J. Confocal microscopy study of pertussis toxin and toxoids on CHO-cells. Hum Vaccin Immunother 2013; 9:332-8. [PMID: 23291938 PMCID: PMC3859756 DOI: 10.4161/hv.22795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 10/28/2012] [Accepted: 11/06/2012] [Indexed: 11/19/2022] Open
Abstract
Pertussis toxin in its detoxified form is a major component of all current acellular pertussis vaccines. Here we report the membrane translocation and internalization activities of pertussis toxin and various pertussis toxoids using Chinese hamster ovary cells and confocal microscopy based on indirect immunofluorescence labeling. Chemically detoxified pertussis toxoids were able to translocate/internalize into cells at the concentration about 1,000 times higher than the native toxin. Pertussis toxoids detoxified with different procedures (glutaraldehyde, glutaraldehyde plus formaldehyde, hydrogen peroxide or genetic mutation) showed differences in fluorescence intensity under the same condition, indicating toxoids from different detoxification methods may have different translocation/internalization activities on cells.
Collapse
Affiliation(s)
- Yajun Tan
- National Institutes for Food and Drug Control; Beijing, China
- Graduate School of Peking Union Medical College; Beijing, China
| | - Roland A. Fleck
- National Institute for Biological Standards and Control; Potters Bar, Hertfordshire, UK
| | | | - Chun-Ting Yuen
- National Institute for Biological Standards and Control; Potters Bar, Hertfordshire, UK
| | - Dorothy Xing
- National Institute for Biological Standards and Control; Potters Bar, Hertfordshire, UK
| | - Shumin Zhang
- National Institutes for Food and Drug Control; Beijing, China
- Graduate School of Peking Union Medical College; Beijing, China
| | - Junzhi Wang
- National Institutes for Food and Drug Control; Beijing, China
| |
Collapse
|
13
|
Petersen RF, Dalby T, Dragsted DM, Mooi F, Lambertsen L. Temporal trends in Bordetella pertussis populations, Denmark, 1949-2010. Emerg Infect Dis 2013; 18:767-74. [PMID: 22515990 PMCID: PMC3358084 DOI: 10.3201/eid1805.110812] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Reduced genetic diversity possibly resulted from introduction of pertussis vaccines We used multilocus variable-number tandem repeat analysis and multiple antigen sequence typing to characterize isolates of Bordetella pertussis strains circulating in Denmark during periods with and without pertussis vaccination coverage. Our results show substantial shifts in the B. pertussis population over time and a reduction in genetic diversity. These changes might have resulted from the introduction of pertussis vaccines in Denmark and other parts of Europe. The predominant strains currently circulating in Denmark resemble those in other European countries.
Collapse
|
14
|
Budman H, Patel N, Tamer M, Al-Gherwi W. A dynamic metabolic flux balance based model of fed-batch fermentation ofbordetella pertussis. Biotechnol Prog 2013; 29:520-31. [DOI: 10.1002/btpr.1675] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 11/27/2012] [Indexed: 11/08/2022]
Affiliation(s)
- Hector Budman
- Dept. of Chemical Engineering; University of Waterloo; Waterloo ON Canada
| | - Nilesh Patel
- Manufacturing Technology; Sanofi Pasteur Canada; ON Canada
| | - Melih Tamer
- Manufacturing Technology; Sanofi Pasteur Canada; ON Canada
| | | |
Collapse
|
15
|
Xing D, Yuen CT, Asokanathan C, Rigsby P, Horiuchi Y. Evaluation of an in vitro assay system as a potential alternative to current histamine sensitization test for acellular pertussis vaccines. Biologicals 2012; 40:456-65. [DOI: 10.1016/j.biologicals.2012.07.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 07/10/2012] [Accepted: 07/20/2012] [Indexed: 11/29/2022] Open
|
16
|
Thierry-Carstensen B, Jordan K, Uhlving HH, Dalby T, Sørensen C, Jensen AM, Heilmann C. A randomised, double-blind, non-inferiority clinical trial on the safety and immunogenicity of a tetanus, diphtheria and monocomponent acellular pertussis (TdaP) vaccine in comparison to a tetanus and diphtheria (Td) vaccine when given as booster vaccinations to healthy adults. Vaccine 2012; 30:5464-71. [PMID: 22776216 DOI: 10.1016/j.vaccine.2012.06.073] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 04/26/2012] [Accepted: 06/25/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND Increasing incidence of pertussis in adolescents and adults has stimulated the development of safe and immunogenic acellular pertussis vaccines for booster vaccination of adolescents and adults. PURPOSE To obtain clinical documentation of the safety and immunogenicity of a tetanus, diphtheria and monocomponent acellular pertussis combination vaccine (TdaP), when given as a booster vaccination to adults. METHODS The trial was double-blind, controlled and randomised. 802 healthy adults, aged 18-55 years who had completed childhood vaccination with diphtheria, tetanus and whole cell pertussis vaccine (DTwP), were booster vaccinated with TdaP or Td. Blood samples were taken before and one month after the vaccination for serological analysis and adverse events were recorded during the one-month-follow-up period. RESULTS The monocomponent acellular pertussis vaccine (aP) in the TdaP vaccine was immunogenic in adults with 92.0% of TdaP vaccinated subjects obtaining an anti-pertussis toxin (anti-PT) antibody booster response. TdaP was non-inferior to Td in eliciting seroprotective anti-tetanus and diphtheria antibody concentrations with more than 98% of subjects obtaining post-vaccination seroprotective concentrations (≥ 0.1 IU/mL). T and d booster response rates were 93.0% and 97.5%, respectively. The frequencies of solicited local adverse reactions were low and comparable between TdaP and Td vaccinees. In the TdaP group, 30.7% reported pain, 4.2% swelling and 2.0% erythema at the injection site. The most frequent solicited general symptoms were headache (20.4%), fatigue (17.0%) and myalgia (10.0%). In the Td group, 35.7% reported pain, 2.5% swelling and 3.2% erythema at the injection site, whereas headache, fatigue and myalgia were reported by 15.7%, 14.5% and 12.5%, respectively. In conclusion, TdaP Vaccine SSI was safe and immunogenic when given as a booster vaccination to adults.
Collapse
|
17
|
Abstract
Pertussis toxin, produced and secreted by the whooping cough agent Bordetella pertussis, is one of the most complex soluble bacterial proteins. It is actively secreted through the B. pertussis cell envelope by the Ptl secretion system, a member of the widespread type IV secretion systems. The toxin is composed of five subunits (named S1 to S5 according to their decreasing molecular weights) arranged in an A-B structure. The A protomer is composed of the enzymatically active S1 subunit, which catalyzes ADP-ribosylation of the α subunit of trimeric G proteins, thereby disturbing the metabolic functions of the target cells, leading to a variety of biological activities. The B oligomer is composed of 1S2:1S3:2S4:1S5 and is responsible for binding of the toxin to the target cell receptors and for intracellular trafficking via receptor-mediated endocytosis and retrograde transport. The toxin is one of the most important virulence factors of B. pertussis and is a component of all current vaccines against whooping cough.
Collapse
Affiliation(s)
- Camille Locht
- Inserm U1019, CNRS UMR8204, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Univ Lille Nord de France, France.
| | | | | |
Collapse
|
18
|
Mangmool S, Kurose H. G(i/o) protein-dependent and -independent actions of Pertussis Toxin (PTX). Toxins (Basel) 2011; 3:884-99. [PMID: 22069745 PMCID: PMC3202852 DOI: 10.3390/toxins3070884] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 06/14/2011] [Accepted: 06/16/2011] [Indexed: 12/22/2022] Open
Abstract
Pertussis toxin (PTX) is a typical A-B toxin. The A-protomer (S1 subunit) exhibits ADP-ribosyltransferase activity. The B-oligomer consists of four subunits (S2 to S5) and binds extracellular molecules that allow the toxin to enter the cells. The A-protomer ADP-ribosylates the α subunits of heterotrimeric Gi/o proteins, resulting in the receptors being uncoupled from the Gi/o proteins. The B-oligomer binds proteins expressed on the cell surface, such as Toll-like receptor 4, and activates an intracellular signal transduction cascade. Thus, PTX modifies cellular responses by at least two different signaling pathways; ADP-ribosylation of the Gαi/o proteins by the A-protomer (Gi/o protein-dependent action) and the interaction of the B-oligomer with cell surface proteins (Gi/o protein-independent action).
Collapse
Affiliation(s)
- Supachoke Mangmool
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayudhaya, Rajathevi, Bangkok 10400, Thailand;
| | - Hitoshi Kurose
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Author to whom correspondence should be addressed; ; Tel.: +81-92-642-6884; Fax: +81-92-642-6884
| |
Collapse
|
19
|
Sun L, Huang Y, Zhang Y, Meng Q, Luo J, Fan B, Ma G, Su Z. A Simple and Rapid Procedure for Purification of Haptoglobin from Human Plasma Fraction IV. ACTA ACUST UNITED AC 2011; 39:79-86. [DOI: 10.3109/10731199.2010.509705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Fast, antigen-saving multiplex immunoassay to determine levels and avidity of mouse serum antibodies to pertussis, diphtheria, and tetanus antigens. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:595-603. [PMID: 21325488 DOI: 10.1128/cvi.00061-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
To enhance preclinical evaluation of serological immune responses to the individual diphtheria, tetanus, and pertussis (DTP) components of DTP combination vaccines, a fast hexavalent bead-based method was developed. This multiplex immunoassay (MIA) can simultaneously determine levels of specific mouse serum IgG antibodies to P antigens P.69 pertactin (P.69 Prn), filamentous hemagglutinin (FHA), pertussis toxin (Ptx), and combined fimbria type 2 and 3 antigens (Fim2/3) and to diphtheria toxin (Dtx) and tetanus toxin (TT) in a single well. The mouse DTP MIA was shown to be specific and sensitive and to correlate with the six single in-house enzyme-linked immunosorbent assays (ELISAs) for all antigens. Moreover, the MIA was expanded to include avidity measurements of DTP antigens in a multivalent manner. The sensitivities of the mouse DTP avidity MIA per antigen were comparable to those of the six individual in-house avidity ELISAs, and good correlations between IgG concentrations obtained by both methods for all antigens tested were shown. The regular and avidity mouse DTP MIAs were reproducible, with good intra- and interassay coefficients of variability (CV) for all antigens. Finally, the usefulness of the assay was demonstrated in a longitudinal study of the development and avidity maturation of specific IgG antibodies in mice having received different DTP vaccines. We conclude that the hexaplex mouse DTP MIA is a specific, sensitive, and high-throughput alternative for ELISA to investigate the quantity and quality of serological responses to DTP antigens in preclinical vaccine studies.
Collapse
|
21
|
Stenger RM, Smits M, Kuipers B, van Gaans-van den Brink J, Poelen M, Boog CJP, van Els CACM. Impaired long-term maintenance and function of Bordetella pertussis specific B cell memory. Vaccine 2010; 28:6637-46. [PMID: 20637762 DOI: 10.1016/j.vaccine.2010.06.118] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 06/19/2010] [Accepted: 06/30/2010] [Indexed: 01/26/2023]
Abstract
Frequent occurrence of whooping cough in vaccinated populations suggests limited duration of vaccine-induced immunological memory. To investigate peculiarities in B cell memory specific for pertussis antigens P.69 pertactin (P.69 Prn), pertussis toxin (Ptx) and filamentous hemagglutinin (FHA), we monitored the induction and maintenance of specific serum IgG, long-lived bone marrow (BM)-derived plasma cell (PC) and splenic memory B cell (B(mem)) populations in a long-term preclinical vaccination model. Groups of BALB/c mice were primed and boosted (day 28) with a combined diphtheria (D), tetanus (T), acellular pertussis (aP) vaccine (DTaP) or whole cell pertussis (P) vaccine (DTP) and the immune status was followed over time. Levels of pertussis specific IgG, induced after primary and booster immunization, peaked at day 98 to decline thereafter. This was not paralleled by a decay, but rather an increase in BM resident specific PC, over time (>1 year). In contrast, splenic B(mem) peaked after booster immunization to decline till background levels. Late recall of immunological memory more than 1 year after primary and booster vaccination, however, did reveal a rapid proliferative response of pre-existing B(mem) but failed to evoke an anamnestic IgG response. A combination of waning P-antigen specific IgG production by PC and poor functions of the B(mem) compartment such as self-maintenance and anamnestic IgG responses could be a hallmark of waning pertussis immunity. A better understanding of the mechanisms of limited immunological memory to pertussis may help to improve current vaccines.
Collapse
Affiliation(s)
- Rachel M Stenger
- Laboratory of Vaccine Research, Netherlands Vaccine Institute, Bilthoven, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
22
|
Mass spectrometric analysis of multiple pertussis toxins and toxoids. J Biomed Biotechnol 2010; 2010:942365. [PMID: 20508854 PMCID: PMC2874995 DOI: 10.1155/2010/942365] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 03/09/2010] [Indexed: 11/17/2022] Open
Abstract
Bordetella pertussis (Bp) is the causative agent of pertussis, a vaccine preventable disease occurring primarily in children. In recent years, there has been increased reporting of pertussis. Current pertussis vaccines are acellular and consist of Bp proteins including the major virulence factor pertussis toxin (Ptx), a 5-subunit exotoxin. Variation in Ptx subunit amino acid (AA) sequence could possibly affect the immune response. A blind comparative mass spectrometric (MS) analysis of commercially available Ptx as well as the chemically modified toxoid (Ptxd) from licensed vaccines was performed to assess peptide sequence and AA coverage variability as well as relative amounts of Ptx subunits. Qualitatively, there are similarities among the various sources based on AA percent coverages and MS/MS fragmentation profiles. Additionally, based on a label-free mass spectrometry-based quantification method there is differential relative abundance of the subunits among the sources.
Collapse
|
23
|
Yuen CT, Horiuchi Y, Asokanathan C, Cook S, Douglas-Bardsley A, Ochiai M, Corbel M, Xing D. An in vitro assay system as a potential replacement for the histamine sensitisation test for acellular pertussis based combination vaccines. Vaccine 2010; 28:3714-21. [DOI: 10.1016/j.vaccine.2010.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 03/01/2010] [Accepted: 03/05/2010] [Indexed: 11/28/2022]
|
24
|
Mielcarek N, Debrie AS, Mahieux S, Locht C. Dose response of attenuated Bordetella pertussis BPZE1-induced protection in mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:317-24. [PMID: 20107007 PMCID: PMC2837960 DOI: 10.1128/cvi.00322-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 10/19/2009] [Accepted: 01/18/2010] [Indexed: 11/20/2022]
Abstract
Despite the availability of efficacious vaccines, the incidence of whooping cough is still high in many countries and is even increasing in countries with high vaccine coverage. Most severe and life-threatening pertussis cases occur in infants who are too young to be sufficiently protected by current vaccine regimens. As a potential solution to this problem, we have developed an attenuated live Bordetella pertussis vaccine strain, named BPZE1. Here, we show that after a single administration, BPZE1 induces dose-dependent protection against challenge with virulent B. pertussis in low-dose and in high-dose intranasal mouse lung colonization models. In addition, we observed BPZE1 dose-dependent antibody titers to B. pertussis antigens, as well as cell-mediated immunity, evidenced by the amounts of gamma interferon (IFN-gamma) released from spleen cells upon stimulation with B. pertussis antigens. These two parameters may perhaps be used as readouts in clinical trials in humans that are currently being planned.
Collapse
|
25
|
Tummala M, Hu P, Lee SM, Robinson A, Chess E. Characterization of pertussis toxin by LC–MS/MS. Anal Biochem 2008; 374:16-24. [DOI: 10.1016/j.ab.2007.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 10/01/2007] [Accepted: 10/02/2007] [Indexed: 11/28/2022]
|
26
|
Gomez SR, Yuen CT, Asokanathan C, Douglas-Bardsley A, Corbel MJ, Coote JG, Parton R, Xing DKL. ADP-ribosylation activity in pertussis vaccines and its relationship to the in vivo histamine-sensitisation test. Vaccine 2007; 25:3311-8. [PMID: 17287049 DOI: 10.1016/j.vaccine.2007.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Revised: 12/20/2006] [Accepted: 01/03/2007] [Indexed: 10/23/2022]
Abstract
Pertussis toxin (PTx) is a major virulence factor produced by Bordetella pertussis. In its detoxified form (PTd), it is an important component of acellular pertussis vaccines although some residual PTx activity may likely be present because of the limitations of the detoxification processes used. Furthermore, different detoxification procedures have been shown to result in different amino acid side-chain modifications for the resulting PTd. The histamine-sensitisation test (HIST) in mice is currently used for the safety testing of these vaccines. However, an alternative test is needed because of large assay variability and ethical concerns. The ADP-ribosylation enzyme activity of PTx is thought to be the major factor responsible for the histamine-sensitising activity detected in vivo. In the present study, the ADP-ribosylation activity in different acellular pertussis-based combination vaccine formulations was measured and compared with reactivity in the HIST. The results indicated that different products showed differences in ADP-ribosylation activity and a level which would be significant in relation to the reactivity seen in the HIST could not be defined, except for vaccines that contain genetically detoxified PTx, which do not have enzymatic activity nor in vivo toxicity. Different detoxification procedures as well as formulation factors could contribute to this variation. Relying solely on the residual enzyme activity of PTx in vaccines containing chemically detoxified PTd may not fully reflect the in vivo reactivity observed by the HIST. Refinement of the in vitro test to include a step which monitors the B-subunit activity of PTx may provide a better correlation with the in vivo HIST.
Collapse
Affiliation(s)
- S R Gomez
- Division of Bacteriology, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, EN6 3QG, UK
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Moss J, Vaughan M. ADP-ribosylation of guanyl nucleotide-binding regulatory proteins by bacterial toxins. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 61:303-79. [PMID: 3128060 DOI: 10.1002/9780470123072.ch6] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- J Moss
- Laboratory of Cellular Metabolism, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892
| | | |
Collapse
|
28
|
Mielcarek N, Debrie AS, Raze D, Bertout J, Rouanet C, Younes AB, Creusy C, Engle J, Goldman WE, Locht C. Live attenuated B. pertussis as a single-dose nasal vaccine against whooping cough. PLoS Pathog 2006; 2:e65. [PMID: 16839199 PMCID: PMC1487175 DOI: 10.1371/journal.ppat.0020065] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Accepted: 05/19/2006] [Indexed: 11/25/2022] Open
Abstract
Pertussis is still among the principal causes of death worldwide, and its incidence is increasing even in countries with high vaccine coverage. Although all age groups are susceptible, it is most severe in infants too young to be protected by currently available vaccines. To induce strong protective immunity in neonates, we have developed BPZE1, a live attenuated Bordetella pertussis strain to be given as a single-dose nasal vaccine in early life. BPZE1 was developed by the genetic inactivation or removal of three major toxins. In mice, BPZE1 was highly attenuated, yet able to colonize the respiratory tract and to induce strong protective immunity after a single nasal administration. Protection against B. pertussis was comparable to that induced by two injections of acellular vaccine (aPV) in adult mice, but was significantly better than two administrations of aPV in infant mice. Moreover, BPZE1 protected against Bordetella parapertussis infection, whereas aPV did not. BPZE1 is thus an attractive vaccine candidate to protect against whooping cough by nasal, needle-free administration early in life, possibly at birth. Although vaccination has strongly reduced the incidence of whooping cough in many countries, this disease still causes approximately 300,000 deaths per year, mainly in young children that are not fully vaccinated. Efficient protection against pertussis requires at least three vaccine doses and is not achieved before the age of 6 mo. A new strategy to induce strong protective immunity in neonates is to mimic as closely as possible natural infection without inducing the disease, by the use of a live attenuated B. pertussis strain to be given as a single-dose nasal vaccine. The authors examined in the mouse model the efficacy of a genetically attenuated strain, BPZE1. This strain colonizes the mouse respiratory tract, but appears to be highly attenuated as evidenced by histopathological studies. In addition, a single nasal administration of this strain protects against challenge with virulent B. pertussis better than two administrations of acellular vaccine in infant mice. Moreover, BPZE1 provides protection against infection with Bordetella parapertussis responsible for a milder pertussis-like syndrome, which was not seen after vaccination with acellular vaccine. These results show that BPZE1 could be an efficient, single-dose nasal vaccine to protect early in life against whooping cough.
Collapse
MESH Headings
- Administration, Intranasal
- Age Factors
- Animals
- Animals, Newborn/immunology
- Antibodies, Bacterial/immunology
- Antigens, Bacterial/immunology
- Bacterial Vaccines/administration & dosage
- Bacterial Vaccines/therapeutic use
- Bordetella pertussis/genetics
- Bordetella pertussis/immunology
- Bordetella pertussis/pathogenicity
- Dose-Response Relationship, Drug
- Female
- Immunization/methods
- Mice
- Mice, Inbred BALB C
- Respiratory System/microbiology
- Respiratory System/pathology
- Vaccines, Acellular/administration & dosage
- Vaccines, Acellular/therapeutic use
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/therapeutic use
- Whooping Cough/immunology
- Whooping Cough/physiopathology
- Whooping Cough/prevention & control
Collapse
Affiliation(s)
| | | | - Dominique Raze
- INSERM U629, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Julie Bertout
- INSERM U629, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Carine Rouanet
- INSERM U629, Lille, France
- Institut Pasteur de Lille, Lille, France
| | | | - Colette Creusy
- Service d'Anatomie et de Cytologie Pathologique, Groupe Hospitalier de l'Institut Catholique de Lille, Faculté Libre de Médecine, Lille, France
| | - Jacquelyn Engle
- Washington University, St. Louis, Missouri, United States of America
| | - William E Goldman
- Washington University, St. Louis, Missouri, United States of America
| | - Camille Locht
- INSERM U629, Lille, France
- Institut Pasteur de Lille, Lille, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
29
|
Raze D, Veithen A, Sato H, Antoine R, Menozzi FD, Locht C. Genetic exchange of the S2 and S3 subunits in pertussis toxin. Mol Microbiol 2006; 60:1241-50. [PMID: 16689799 DOI: 10.1111/j.1365-2958.2006.05165.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bordetella pertussis, the causative agent of whooping cough, produces a complex hetero-oligomeric exotoxin, named pertussis toxin (PTX), which is responsible for several of the clinical manifestations associated with whooping cough. The toxin is composed of five dissimilar subunits, named S1 through S5 and arranged in a hexameric structure with a 1S1:1S2:1S3:2S4:1S5 stoichiometry. Although S2 and S3 share 70% amino acid identity, these two subunits were previously thought not to be able to substitute for each other in toxin assembly/secretion and the biological activities of PTX. Here, we show that toxin analogues containing two S3 subunits and lacking S2 (PTXdeltaS2), or containing two S2 subunits and lacking S3 (PTXdeltaS3), can be produced, assembled and secreted by B. pertussis strains, in which the S2-encoding cistron or the S3-coding cistrons have been inactivated by internal in-frame deletions that avoid downstream effects. In fact, PTXdeltaS3 was produced in higher amounts in the bacterial culture supernatants than natural PTX, whereas PTXdeltaS2 was produced in lower amounts than PTX. The action of the toxin analogues on the clustering of Chinese Hamster Ovary cells was also affected differentially by the S2-S3 substitution. These toxin analogues constitute thus interesting probes for the study of cellular functions, in particular immune cell functions, for which natural PTX has already shown its usefulness.
Collapse
Affiliation(s)
- Dominique Raze
- INSERM U629, Institut Pasteur de Lille, 1 rue du Professeur Calmette, 59019 Lille Cedex, France
| | | | | | | | | | | |
Collapse
|
30
|
Watanabe M, Connelly B, Weiss AA. Characterization of serological responses to pertussis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2006; 13:341-8. [PMID: 16522775 PMCID: PMC1391967 DOI: 10.1128/cvi.13.3.341-348.2006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have compared the use of five nonvaccine antigens to the use of conventional vaccine antigens, pertussis toxin (PT), and filamentous hemagglutinin (FHA) for the serological diagnosis of pertussis by enzyme-linked immunosorbent assay (ELISA). The nonvaccine antigens included the catalytic region of adenylate cyclase toxin (CatACT), the C-terminal region of FHA (C-FHA), lipooligosaccharide (LOS), the peptidoglycan-associated lipoprotein (PAL), and the BrkA protein. The serological responses of individuals with culture-confirmed pertussis were compared to those of adults with no recent history of a coughing disease. An immunoglobulin G (IgG) ELISA for PT was the most sensitive (92.2%) test for the serodiagnosis of pertussis. Of the nonvaccine antigens, ELISA for IgG responses to CatACT (sensitivity, 62.8%), C-FHA (sensitivity, 39.2%), and LOS IgA (sensitivity, 29.4%) were less sensitive but could also distinguish culture-positive individuals from control individuals. The use of a combination of multiple ELISA targets improved the sensitivity of the assay for serological diagnosis. Elevated IgG and IgA antibody titers persisted for more than a year in the individuals with culture-confirmed pertussis.
Collapse
Affiliation(s)
- Mineo Watanabe
- Department of Molecular Genetics, Biochemistry, and Microbiology, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267-0524, USA
| | | | | |
Collapse
|
31
|
|
32
|
Byrne S, Slack AT. Analysis of Bordetella pertussis pertactin and pertussis toxin types from Queensland, Australia, 1999-2003. BMC Infect Dis 2006; 6:53. [PMID: 16542440 PMCID: PMC1459169 DOI: 10.1186/1471-2334-6-53] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Accepted: 03/16/2006] [Indexed: 11/24/2022] Open
Abstract
Background In Australia two acellular Bordetella pertussis vaccines have replaced the use of a whole cell vaccine. Both of the licensed acellular vaccines contain the following three components; pertussis toxoid, pertussis filamentous haemagglutinin and the 69 kDa pertactin adhesin. One vaccine also contains pertussis fimbriae 2 and 3. Various researchers have postulated that herd immunity due to high levels of pertussis vaccination might be influencing the makeup of endemic B. pertussis populations by selective pressure for strains possessing variants of these genes, in particular the pertactin gene type. Some publications have suggested that B. pertussis variants may be contributing to a reduced efficacy of the existing vaccines and a concomitant re-emergence of pertussis within vaccinated populations. This study was conducted to survey the pertactin and pertussis toxin subunit 1 types from B. pertussis isolates in Queensland, Australia following the introduction of acellular vaccines. Methods Forty-six B. pertussis isolates recovered from Queensland patients between 1999 and 2003 were examined by both DNA sequencing and LightCycler™ real time PCR to determine their pertactin and pertussis toxin subunit 1 genotypes. Results Pertactin typing showed that 38 isolates possessed the prn1 allele, 3 possessed the prn2 allele and 5 possessed the prn3 allele. All forty-six isolates possessed the pertussis toxin ptxS1A genotype. Amongst the circulating B. pertussis population in Queensland, 82.5% of the recovered clinical isolates therefore possessed the prn1/ptxS1A genotype. Conclusion The results of this study compared to historical research on Queensland isolates suggest that B. pertussis pertactin and pertussis toxin variants are not becoming more prevalent in Queensland since the introduction of the acellular vaccines. Current prevalences of pertactin variants are significantly different to that described in a number of other countries with high vaccine coverage. Relative paucity of recovered isolates compared to notified infections, due primarily to non culture based pertussis diagnostics is however a confounding factor in the assessment of variant prevalence.
Collapse
Affiliation(s)
- Shane Byrne
- Public Health Microbiology, Queensland Health Scientific Services, Brisbane, Australia
| | - Andrew T Slack
- Public Health Microbiology, Queensland Health Scientific Services, Brisbane, Australia
- Molecular Pathology Department, Sullivan Nicolaides Pathology, Brisbane, Australia
| |
Collapse
|
33
|
Avendaño-Vázquez S, García-Caballero A, García-Sáinz J. Phosphorylation and desensitization of the lysophosphatidic acid receptor LPA1. Biochem J 2005; 385:677-84. [PMID: 15369458 PMCID: PMC1134742 DOI: 10.1042/bj20040891] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In C9 cells, LPA (lysophosphatidic acid) induced inositol phosphate production, increased intracellular calcium concentration and inhibited adenylate cyclase activity. These responses were abolished in cells challenged with active phorbol esters. Action of phorbol esters was blocked by inhibitors of PKC (protein kinase C) and by its down-regulation. LPA1 receptor phosphorylation was observed in response to phorbol esters. The effect was rapid (t1/2 approximately 1 min), intense (2-fold) and sustained (at least 60 min). PKC inhibitors markedly decreased the LPA1 receptor phosphorylation induced by phorbol esters. LPA1 receptor tagged with the green fluorescent protein internalized in response to PKC activation. In addition, LPA and angiotensin II were also capable of inducing LPA1 receptor phosphorylation, showing that LPA1 receptor can be subjected to homologous and heterologous desensitization.
Collapse
Affiliation(s)
- S. Eréndira Avendaño-Vázquez
- Departamento de Biología Celular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-248, México, DF 04510, México
| | - Agustín García-Caballero
- Departamento de Biología Celular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-248, México, DF 04510, México
| | - J. Adolfo García-Sáinz
- Departamento de Biología Celular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-248, México, DF 04510, México
- To whom correspondence should be addressed (email )
| |
Collapse
|
34
|
Mattoo S, Cherry JD. Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clin Microbiol Rev 2005; 18:326-82. [PMID: 15831828 PMCID: PMC1082800 DOI: 10.1128/cmr.18.2.326-382.2005] [Citation(s) in RCA: 799] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bordetella respiratory infections are common in people (B. pertussis) and in animals (B. bronchiseptica). During the last two decades, much has been learned about the virulence determinants, pathogenesis, and immunity of Bordetella. Clinically, the full spectrum of disease due to B. pertussis infection is now understood, and infections in adolescents and adults are recognized as the reservoir for cyclic outbreaks of disease. DTaP vaccines, which are less reactogenic than DTP vaccines, are now in general use in many developed countries, and it is expected that the expansion of their use to adolescents and adults will have a significant impact on reducing pertussis and perhaps decrease the circulation of B. pertussis. Future studies should seek to determine the cause of the unique cough which is associated with Bordetella respiratory infections. It is also hoped that data gathered from molecular Bordetella research will lead to a new generation of DTaP vaccines which provide greater efficacy than is provided by today's vaccines.
Collapse
Affiliation(s)
- Seema Mattoo
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, California 90095-1752, USA
| | | |
Collapse
|
35
|
Kodama A, Kamachi K, Horiuchi Y, Konda T, Arakawa Y. Antigenic divergence suggested by correlation between antigenic variation and pulsed-field gel electrophoresis profiles of Bordetella pertussis isolates in Japan. J Clin Microbiol 2005; 42:5453-7. [PMID: 15583264 PMCID: PMC535240 DOI: 10.1128/jcm.42.12.5453-5457.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antigenic divergence has been found between Bordetella pertussis vaccine strains and circulating strains in several countries. In the present study, we analyzed B. pertussis isolates collected in Japan from 1988 to 2001 using pulsed-field gel electrophoresis (PFGE) and sequencing of two virulence-associated proteins. The 107 isolates were classified into three major groups by PFGE analysis; 87 (81%) were type A, 19 (18%) were type B, and 1 (1%) was type C. Sequence analysis of the S1 subunit of pertussis toxin (ptxS1) and adhesion pertactin (prn) genes revealed the presence of two (ptxS1A and ptxS1B) and three (prn1, prn2, and prn3) variants, respectively, in the isolates. Among those isolates, 82 (95%) of the 87 type A strains and the type C strain had the same combination of ptxS1B and prn1 alleles (ptxS1B/prn1) as the Japanese vaccine strain. On the other hand, 17 (90%) of 19 type B strains had an allele (ptxS1A/prn2) distinct from that of the vaccine strain. A correlation was found between the antigenic variation and the PFGE profile in the isolates. In addition, the frequency of the type B strain was 0, 27, 0, 42, and 37% of the isolates in the periods 1988 to 1993, 1994 to 1995, 1996 to 1997, 1998 to 1999, and 2000 to 2001, respectively. In contrast, the number of reported pertussis-like and pertussis cases decreased gradually from 1991 on, suggesting that the antigenic divergence did not affect the efficacy of pertussis vaccination in Japan.
Collapse
Affiliation(s)
- Atsuko Kodama
- Department of Bacterial Pathogenesis and Infection Control, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama City, Tokyo 208-0011, Japan
| | | | | | | | | |
Collapse
|
36
|
Colombi D, Horton DSPQ, Oliveira MLS, Sakauchi MA, Ho PL. Antibodies produced against a fragment of filamentous haemagglutinin (FHA) of Bordetella pertussis are able to inhibit hemagglutination induced by the whole adhesin. FEMS Microbiol Lett 2004; 240:41-7. [PMID: 15500977 DOI: 10.1016/j.femsle.2004.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 08/26/2004] [Accepted: 09/10/2004] [Indexed: 11/17/2022] Open
Abstract
Filamentous hemagglutinin adhesin (FHA) is important for the adherence of Bordetella pertussis to the host ciliary epithelial cells of the respiratory tract. Several binding domains have been characterized in the FHA molecule. For example, an putative heparin-binding domain of FHA was previously located in the FHA(442-863) region. In this work, the HEP fragment, corresponding to FHA(430-873) was amplified by PCR and subcloned in an Escherichia coli expression plasmid. Purified recombinant HEP was used to produce polyclonal antibodies in mice that were able to recognize HEP and FHA in ELISA and in Western-blot assays. Although recombinant HEP displayed low ability to bind heparin and no hemagglutination activity, the anti-HEP antibodies were able to inhibit FHA mediated hemagglutination activity in goose erythrocytes. These results indicate that other amino acid residues that are not present in the FHA(430-873) fragment may be necessary for heparin binding. Further studies to address the immunogenic response against HEP are also required.
Collapse
MESH Headings
- Adhesins, Bacterial/chemistry
- Adhesins, Bacterial/genetics
- Adhesins, Bacterial/immunology
- Animals
- Antibodies, Bacterial/immunology
- Antibody Specificity
- Bordetella pertussis/immunology
- Cloning, Molecular
- Erythrocytes/immunology
- Erythrocytes/microbiology
- Female
- Hemagglutination/immunology
- Hemagglutinins/chemistry
- Hemagglutinins/genetics
- Hemagglutinins/immunology
- Heparin/metabolism
- Mice
- Mice, Inbred BALB C
- Protein Structure, Tertiary
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Virulence Factors, Bordetella/chemistry
- Virulence Factors, Bordetella/genetics
- Virulence Factors, Bordetella/immunology
- Whooping Cough/prevention & control
Collapse
Affiliation(s)
- Débora Colombi
- Centro de Biotecnologia, Instituto Butantan, Av. Vital Brasil, 1500 Butantan, CEP 05503-900 São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
37
|
Ozcengiz E, Kilinç K, Büyüktanir O, Günalp A. Rapid purification of pertussis toxin (PT) and filamentous hemagglutinin (FHA) by cation-exchange chromatography. Vaccine 2004; 22:1570-5. [PMID: 15063583 DOI: 10.1016/j.vaccine.2003.09.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2003] [Accepted: 09/26/2003] [Indexed: 12/01/2022]
Abstract
Pertussis toxin (PT) and filamentous hemagglutinin (FHA) were purified from culture supernatant of Bordetella pertussis Saadet and Tohama strains, using CM-Sepharose CL-6B cation-exchange chromatography. By the rapid purification method described here, both proteins were separately eluted from the same column in pure forms. The PT and FHA in the extract of culture supernatant were bounded to CM-Sepharose CL-6B cation-exchange column in 50 mM phosphate buffer containing 2 M urea (Buffer A), pH 6.0. Then the PT was eluted from the column with Buffer A (pH 7.4) and after elution of the PT, the FHA was eluted with 0.5 M NaCl in 50 mM phosphate buffer. Pertussis toxin and filamentous haemagglutinin purified by this procedure were electrophoretically and immunologically identical to the reference preparations.
Collapse
Affiliation(s)
- Erkan Ozcengiz
- Bacterial Vaccines Research Laboratory, Refik Saydam Hygiene Center, 06100 Ankara, Turkey
| | | | | | | |
Collapse
|
38
|
Bogdan JA, Yuan W, Long-Rowe KO, Sarwar J, Brucker EA, Blake MS. Identification of peptides that mimic the pertussis toxin binding site on bovine fetuin. Appl Environ Microbiol 2004; 69:6272-9. [PMID: 14532091 PMCID: PMC201256 DOI: 10.1128/aem.69.10.6272-6279.2003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The introduction of acellular pertussis vaccines has greatly enhanced the safety profile of vaccines to prevent whooping cough. Pertussis toxin (Ptx) is one component produced by Bordetella pertussis that is contained in all of these vaccines, either in combination with other known pertussis virulence factors or as the sole pertussis component, combined with tetanus and diphtheria toxoids. A hydrogen peroxide toxoid of Ptx has been shown to be efficacious in preventing pertussis infections in a mass vaccination trial and is presently licensed in the United States and Europe (B. Trollfors, J. Taranger, T. Lagergard, L. Lind, V. Sundh, G. Zackrisson, C. U. Lowe, W. Blackwelder, and J. B. Robbins, N. Engl. J. Med. 333:1045-1050, 1995). The industrial production of Ptx can be performed through the cultivation of B. pertussis in well-defined growth media, in which the components can be well characterized and their origins can be documented. Once the bacteria are removed from the culture, Ptx can be isolated from the supernatant and purified by using the technique described by Sekura et al. (R. D. Sekura, F. Fish, C. R. Manclark, B. Meade, and Y. L. Zhang, J. Biol. Chem. 258:14647-14651, 1983). The only drawback of this procedure, which combines two affinity chromatography steps, one with Blue Sepharose and a second with matrix-bound bovine fetuin (BF), is the source and purity of the BF. Concern about vaccine preparations that may possibly risk contamination by material associated with bovine spongioform encephalopathy has continued to increase. We thus sought a replacement for the BF affinity chromatography and, more specifically, for the glycosidic moiety on BF. We describe here the identification of a seven-amino-acid peptide that mimics the glycosidic moiety on BF to which Ptx binds. Furthermore, we have constructed an affinity column containing this peptide that can be used to replace BF in Ptx purification. Finally, we used the X-ray crystallographic structure of Ptx bound to the oligosaccharide moiety of BF as a scaffold and replaced the oligosaccharide with the peptide.
Collapse
Affiliation(s)
- John A Bogdan
- Baxter Healthcare Corporation, Columbia, Maryland 21046, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Passerini de Rossi BN, Friedman LE, Belzoni CB, Savino S, Aricò B, Rappuoli R, Masignani V, Franco MA. Vir90, a virulence-activated gene coding for a Bordetella pertussis iron-regulated outer membrane protein. Res Microbiol 2003; 154:443-50. [PMID: 12892851 DOI: 10.1016/s0923-2508(03)00115-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Bordetella pertussis undergoes phenotypic changes modulated by the bvgAS locus, which regulates the expression of many genes related to virulence and immunogenicity. We previously reported the N-terminal sequence of a 90 kDa bvg-regulated outer membrane protein (OMP) of B. pertussis (SWISS-PROT accession No. p81549), a novel potential virulence factor that we named Vir90. The open reading frames (ORFs) which potentially code for Vir90 in B. pertussis, B. parapertussis and B. bronchiseptica were identified by computer analysis of the genomic sequences available for the three Bordetella species. Nucleotide sequence analysis of the vir90 upstream region revealed the presence of a putative promoter, a BvgA binding site and a putative Fur binding site. The B. pertussis Vir90 protein showed significant homology with ferrisiderophore receptors from Gram-negative bacteria. An antiserum raised against Vir90His recombinant protein recognized the 90-kDa protein in immunoblots of OMPs from these three virulent Bordetella species. The accumulation of the Vir90 protein increased 4-fold under low iron growth conditions. Therefore, the vir90 gene is expressed in the tested species and its expression is regulated positively by the BvgAS system and negatively under high iron concentration, likely by Fur.
Collapse
Affiliation(s)
- Beatriz N Passerini de Rossi
- Cátedra de Microbiología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Yuen CT, Canthaboo C, Menzies JA, Cyr T, Whitehouse LW, Jones C, Corbel MJ, Xing D. Detection of residual pertussis toxin in vaccines using a modified ribosylation assay. Vaccine 2002; 21:44-52. [PMID: 12443661 DOI: 10.1016/s0264-410x(02)00446-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pertussis toxin (PTx) in its detoxified form is an important component of both whole cell and acellular pertussis vaccines (ACVs). For safety reasons, it is imperative to ensure that the quantity of residual PTx in vaccines does not exceed permissible levels. The majority of the toxic effects of PTx have been attributed to the consequences of PTx-catalyzed ribosylation of the alpha-subunits of signal-transducing guanine-nucleotide-binding proteins. In this report PTx ribosylation activity was determined by an improved enzymatic-high performance liquid chromatography coupled assay using a fluorescein labeled Galpha(i3)C20 peptide. The effect of aluminum salts and other vaccine components on the assay system were also studied. The enzymatic assay system was shown to be a convenient, sensitive method and correlate well with the toxicity observed in vivo by the histamine sensitization assay. This method forms the basis of a new assay which could replace the unsatisfactory animal test currently used in pertussis vaccines control.
Collapse
Affiliation(s)
- Chun-Ting Yuen
- Laboratory for Molecular Structure, National Institute for Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Watanabe M, Komatsu E, Sato T, Nagai M. Evaluation of efficacy in terms of antibody levels and cell-mediated immunity of acellular pertussis vaccines in a murine model of respiratory infection. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2002; 33:219-25. [PMID: 12110485 DOI: 10.1111/j.1574-695x.2002.tb00594.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The efficacy of six acellular pertussis vaccines, prepared by various manufacturers in Japan, was investigated in a murine model of respiratory infection (aerosol challenge model) and a murine intracerebral (i.c.) challenge model. There was a good correlation between bacterial clearance from the lungs after aerosol challenge and the potency of vaccines as determined by i.c. challenge. The levels of antibodies against filamentous hemagglutinin were higher after immunizations with all tested vaccines than the levels of antibodies against pertussis toxin and pertactin. Spleen cells from mice immunized with each individual vaccine secreted interferon gamma (IFN-gamma) in response to stimulation by pertussis toxin, filamentous hemagglutinin and fimbriae. The production of interleukin-4 in response to each of the antigens tested was detected but was lower than that of IFN-gamma. However, antibody levels and cell-mediated immune responses were not correlated with the protective effects of the vaccines after aerosol challenge and after i.c. challenge.
Collapse
Affiliation(s)
- Mineo Watanabe
- Department of Microbiology and Biologics, Daiichi College of Pharmaceutical Sciences, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan.
| | | | | | | |
Collapse
|
42
|
Mäkinen J, Mertsola J, Viljanen MK, Arvilommi H, He Q. Rapid typing of Bordetella pertussis pertussis toxin gene variants by LightCycler real-time PCR and fluorescence resonance energy transfer hybridization probe melting curve analysis. J Clin Microbiol 2002; 40:2213-6. [PMID: 12037089 PMCID: PMC130802 DOI: 10.1128/jcm.40.6.2213-2216.2002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A LightCycler real-time PCR hybridization probe assay was developed for rapid typing of gene variants of the Bordetella pertussis virulence factor pertussis toxin. The assay correctly identified the ptxS1 alleles of all strains tested, comprising 57 Finnish clinical isolates and 2 vaccine strains. The method is simple, reliable, and suitable for large-scale screening of B. pertussis strains.
Collapse
Affiliation(s)
- Johanna Mäkinen
- National Public Health Institute, Department in Turku, Finland.
| | | | | | | | | |
Collapse
|
43
|
Menozzi FD, Debrie AS, Tissier JP, Locht C, Pethe K, Raze D. Interaction of human Tamm-Horsfall glycoprotein with Bordetella pertussis toxin. MICROBIOLOGY (READING, ENGLAND) 2002; 148:1193-1201. [PMID: 11932463 DOI: 10.1099/00221287-148-4-1193] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Tamm-Horsfall glycoprotein (THP), which is synthesized by renal tubular cells, is the most abundant protein in normal human urine. Although its physiological function remains unclear, it has been proposed that THP may act as a defence factor against urinary tract infections by inhibiting the binding of S- and P-fimbriated Escherichia coli to renal epithelial cells. Because THP-related proteins are also found in the superficial layers of the oral mucosa, the authors investigated the ability of THP to interfere with the cytoadherence of pathogenic bacteria that colonize mucosal surfaces other than those of the urogenital tract. In this report, it is shown that THP binds to virulent Bordetella pertussis and reduces its adherence to both renal and pulmonary epithelial cells. This cytoadherence inhibitory effect was not observed with a B. pertussis mutant lacking the pertussis toxin (PTX) operon, and was dependent on the direct interaction of THP with the S2 subunit within the PTX B oligomer. The authors also show that the glycosylation moiety of THP is crucial for its binding to PTX. The THP-PTX interaction was exploited to develop an affinity chromatography method that allows a one-step purification of active PTX. These observations suggest that besides its anti-adherence activity, THP may also trap toxins produced by pathogenic bacteria that colonize mucosal surfaces.
Collapse
Affiliation(s)
- Franco D Menozzi
- Institut Pasteur de Lille, INSERM U447, Mécanismes moléculaires de la pathogénie microbienne, 1 Rue du Professeur Calmette, 59019 Lille Cedex, France1
| | - Anne-Sophie Debrie
- Institut Pasteur de Lille, INSERM U447, Mécanismes moléculaires de la pathogénie microbienne, 1 Rue du Professeur Calmette, 59019 Lille Cedex, France1
| | - Jean-Pierre Tissier
- Institut National de la Recherche Agronomique, Laboratoire de Génie des Procédés et Technologie Alimentaires, 369 Rue Jules Guesde, 59651 Villeneuve d'Ascq, France2
| | - Camille Locht
- Institut Pasteur de Lille, INSERM U447, Mécanismes moléculaires de la pathogénie microbienne, 1 Rue du Professeur Calmette, 59019 Lille Cedex, France1
| | - Kevin Pethe
- Institut Pasteur de Lille, INSERM U447, Mécanismes moléculaires de la pathogénie microbienne, 1 Rue du Professeur Calmette, 59019 Lille Cedex, France1
| | - Dominique Raze
- Institut Pasteur de Lille, INSERM U447, Mécanismes moléculaires de la pathogénie microbienne, 1 Rue du Professeur Calmette, 59019 Lille Cedex, France1
| |
Collapse
|
44
|
Watanabe M, Komatsu E, Abe K, Iyama S, Sato T, Nagai M. Efficacy of pertussis components in an acellular vaccine, as assessed in a murine model of respiratory infection and a murine intracerebral challenge model. Vaccine 2002; 20:1429-34. [PMID: 11818163 DOI: 10.1016/s0264-410x(01)00460-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The efficacy of 10 pertussis vaccines prepared from various concentrations of pertussis toxin (PT) and filamentous hemagglutinin (FHA) was investigated in a murine model of respiratory infection (aerosol challenge model) and a murine intracerebral (ic) challenge model. PT was necessary as a vaccine component for protection against an ic challenge with Bordetella pertussis. FHA appeared to play an important role as a vaccine component in protection against an aerosol challenge with B. pertussis. Vaccines containing a small amount of FHA with a large amount of PT (FHA:PT=1:11 or 2:10, w/w) were strongly protective in both the aerosol challenge and the ic challenge models. Ratios of FHA:PT of 1:11 or 2:10 (w/w) might be suitable for future formulations.
Collapse
Affiliation(s)
- Mineo Watanabe
- Research Center for Biologicals, The Kitasato Institute, 6-111 Arai, Kitamoto, 364-0026, Saitama, Japan
| | | | | | | | | | | |
Collapse
|
45
|
Bogdan JA, Nazario-Larrieu J, Sarwar J, Alexander P, Blake MS. Bordetella pertussis autoregulates pertussis toxin production through the metabolism of cysteine. Infect Immun 2001; 69:6823-30. [PMID: 11598055 PMCID: PMC100060 DOI: 10.1128/iai.69.11.6823-6830.2001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pertussis toxin (Ptx) expression and secretion in Bordetella pertussis are regulated by a two-component signal transduction system encoded by the bvg regulatory locus. However, it is not known whether the metabolic pathways and growth state of the bacterium influence synthesis and secretion of Ptx and other virulence factors. We have observed a reduction in the concentration of Ptx per optical density unit midway in fermentation. Studies were conducted to identify possible factors causing this reduction and to develop culture conditions that optimize Ptx expression. Medium reconstitution experiments demonstrated that spent medium and a fraction of this medium containing components with a molecular weight of <3,000 inhibited the production of Ptx. A complete flux analysis of the intermediate metabolism of B. pertussis revealed that the sulfur-containing amino acids methionine and cysteine and the organic acid pyruvate accumulated in the media. In fermentation, a large amount of internal sulfate (SO4(2-)) was observed in early stage growth, followed by a rapid decrease as the cells entered into logarithmic growth. This loss was later followed by the accumulation of large quantities of SO4(2-) into the media in late-stage fermentation. Release of SO4(2-) into the media by the cells signaled the decoupling of cell growth and Ptx production. Under conditions that limited cysteine, a fivefold increase in Ptx production was observed. Addition of barium chloride (BaCl2) to the culture further increased Ptx yield. Our results suggest that B. pertussis is capable of autoregulating the activity of the bvg regulon through its metabolism of cysteine. Reduction of the amount of cysteine in the media results in prolonged vir expression due to the absence of the negative inhibitor SO4(2-). Therefore, the combined presence and metabolism of cysteine may be an important mechanism in the pathogenesis of B. pertussis.
Collapse
Affiliation(s)
- J A Bogdan
- Baxter Healthcare Corporation, Columbia, Maryland 21046-2358, USA.
| | | | | | | | | |
Collapse
|
46
|
Watanabe M, Nagai M. Reciprocal protective immunity against Bordetella pertussis and Bordetella parapertussis in a murine model of respiratory infection. Infect Immun 2001; 69:6981-6. [PMID: 11598073 PMCID: PMC100078 DOI: 10.1128/iai.69.11.6981-6986.2001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protective immunity induced by infection with Bordetella pertussis and with Bordetella parapertussis was examined in a murine model of respiratory infection. Convalescent mice that had been infected by aerosol with B. pertussis or with B. parapertussis exhibited a protective immune response against B. pertussis and also against B. parapertussis. Anti-filamentous hemagglutinin (anti-FHA) serum immunoglobulin G (IgG) and anti-FHA lung IgA antibodies were detected in both mice infected with B. pertussis and those infected with B. parapertussis. Antibodies against pertussis toxin (anti-PT) and against killed B. pertussis cells were detected in mice infected with B. pertussis. Pertactin-specific antibodies and antibodies against killed B. parapertussis cells were detected in mice infected with B. parapertussis. Spleen cells from mice infected with B. pertussis secreted interferon-gamma (IFN-gamma) in response to stimulation by FHA or PT. Spleen cells from mice infected with B. parapertussis also secreted IFN-gamma in response to FHA. Interleukin-4 was not produced in response to any of the antigens tested. The profiles of cytokine secretion in vitro revealed induction of a Th1-biased immune response during convalescence from infection by B. pertussis and by B. parapertussis. It is possible that Th1 and Th2 responses against FHA might be related to the reciprocal protection achieved in our murine model.
Collapse
Affiliation(s)
- M Watanabe
- Department of Microbiology and Biologics, Daiichi College of Pharmaceutical Sciences, Fukuoka 815-8511, Japan.
| | | |
Collapse
|
47
|
Vázquez-Prado J, Medina LC, Romero-Avila MT, González-Espinosa C, García-Sáinz JA. Norepinephrine- and phorbol ester-induced phosphorylation of alpha(1a)-adrenergic receptors. Functional aspects. J Biol Chem 2000; 275:6553-9. [PMID: 10692461 DOI: 10.1074/jbc.275.9.6553] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Maximal adrenergic responses in Rat-1 fibroblasts expressing alpha(1a)-adrenergic receptors are not blocked by activation of protein kinase C. In contrast, activation of protein kinase C induces the phosphorylation of alpha(1b)-adrenoreceptors and blocks their actions. The effect of norepinephrine and phorbol esters on alpha(1a)-adrenoreceptor phosphorylation and coupling to G proteins were studied. Both stimuli lead to dose-dependent receptor phosphorylation. Interestingly, protein kinase C activation affected to a much lesser extent the actions of alpha(1a)-adrenergic receptors than those of the alpha(1b) subtype (norepinephrine elicited increases in calcium in whole cells and [(35)S]GTPgammaS binding to membranes). Basal phosphorylation of alpha(1a)-adrenergic receptors was much less than that observed with the alpha(1b) subtype. The carboxyl terminus seems to be the main domain for receptor phosphorylation. Therefore, chimeric receptors, where the carboxyl-terminal tails of alpha(1a) and alpha(1b) adrenergic receptors were exchanged, were constructed and expressed. alpha(1a)-Adrenoreceptors wearing the carboxyl tail of the alpha(1b) subtype had a high basal phosphorylation and displayed a strong phosphorylation in response to norepinephrine and phorbol esters. Our results demonstrate that stimulation of alpha(1a)-adrenergic receptor, or activation of protein kinase C, leads to alpha(1a)-adrenergic receptor phosphorylation. alpha(1a)-Adrenoreceptors are affected to a much lesser extent than alpha(1b)-adrenoreceptors by protein kinase C activation.
Collapse
Affiliation(s)
- J Vázquez-Prado
- Departamento de Biología Celular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-248, México City 04510, México
| | | | | | | | | |
Collapse
|
48
|
Heron I, Chen FM, Fusco J. DTaP vaccines from north american vaccine (NAVA): composition and critical parameters. Biologicals 1999; 27:91-6. [PMID: 10600191 DOI: 10.1006/biol.1999.0187] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
NAVA's acellular pertussis vaccine is based on highly purified pertussis toxin (PT) inactivated with H(2)O(2). PT was analysed using advanced biochemical methodology including mass spectroscopy (LC/MS), yielding mass and peptide mapping information on the subunits. Pertactin, adenylate cyclase, and Fim 1, 2 were below detection levels and only trace amounts of filamentous haemagglutinin (FHA) have been identified as a minor impurity. The vaccine does not induce anti-FHA antibodies during the course of a 3-dose primary immunization series in infants. B and T cell epitopes are preserved to a higher extent after H(2)O(2)detoxification when compared with chemical inactivation with formaldehyde, thus providing new information explaining why vaccines employing formaldehyde detoxified PT may need additional pertussis components added to induce high levels of protection. Anti-PT antibodies generated by NAVA diphtheria, tetanus, and acellular pertussis vaccine (DTaP) showed a positive correlation with protection against WHO-defined pertussis. The safety profiles for these vaccines showed low reactogenicity with no serious adverse events due to the vaccines.
Collapse
Affiliation(s)
- I Heron
- North American Vaccine Inc., Columbia, MD, USA
| | | | | |
Collapse
|
49
|
García-Sáinz JA, García-Caballero A, González-Espinosa C. Angiotensin AT1 receptors in Clone 9 rat liver cells: Ca2+ signaling and c-fos expression. Eur J Pharmacol 1998; 362:235-43. [PMID: 9874176 DOI: 10.1016/s0014-2999(98)00770-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In C9 (Clone 9) liver cells, angiotensin 11 increased the intracellular Ca2+ content, inositol phosphate production and c-fos mRNA expression. Other angiotensins were also active with the order of potency being angiotensin II = angiotensin III >> angiotensin I > angiotensin IV. Losartan, but not PD 123177 (1-(4-amino-3-methyl)-5-diphenylacetyl-4,5,6,7-tetrahydro-1H-imida zo [4,5c]pyridine-6-carboxylic acid), blocked the effects of angiotensin II. Pertussis toxin did not alter these actions of angiotensin II. These data indicate that the effects were mediated through angiotensin AT1 receptors involving pertussis toxin-insensitive G-proteins. Phorbol myristate acetate was also able to increase c-fos mRNA expression. The action of angiotensin II was consistently greater than that of the active phorbol ester. Staurosporine but not genistein inhibited this effect of angiotensin II. Angiotensin II- and phorbol myristate acetate-induced proto-oncogene mRNA expression was attenuated in cells incubated overnight with the active phorbol ester, which suggests a major role of protein kinase C.
Collapse
Affiliation(s)
- J A García-Sáinz
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico DF.
| | | | | |
Collapse
|
50
|
Vázquez-Prado J, Medina LC, García-Sáinz JA. Activation of endothelin ETA receptors induces phosphorylation of alpha1b-adrenoreceptors in Rat-1 fibroblasts. J Biol Chem 1997; 272:27330-7. [PMID: 9341183 DOI: 10.1074/jbc.272.43.27330] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The effect of endothelin-1 on the phosphorylation of alpha1b-adrenoreceptors, transfected into rat-1 fibroblasts, was studied. Basal alpha1b-adrenoreceptor phosphorylation was markedly increased by endothelin-1, norepinephrine, and phorbol esters. The effect of endothelin-1 was dose dependent (EC50 approximately 1 nM), reached its maximum 5 min after stimulation, and was inhibited by BQ-123, an antagonist selective for ETA receptors. Endothelin-1-induced alpha1b-adrenoreceptor phosphorylation was attenuated by staurosporine or genistein and essentially abolished when both inhibitors were used together. The effect of norepinephrine was not modified by either staurosporine or genistein alone, and it was only partially inhibited when both were used together. These data suggest the participation of protein kinase C and tyrosine kinase(s) in endothelin-1-induced receptor phosphorylation. However, phosphoaminoacid analysis revealed the presence of phosphoserine and traces of phosphothreonine, but not of phosphotyrosine, suggesting that the putative tyrosine kinase(s), activated by endothelin, could act in a step previous to receptor phosphorylation. The effect of endothelin-1 on alpha1b-adrenoreceptor phosphorylation was not mediated through pertussis toxin-sensitive G proteins. Calcium mobilization induced by norepinephrine was diminished by endothelin-1. Norepinephrine and endothelin-1 increased [35S]GTPgammaS binding to control membranes. The effect of norepinephrine was abolished in membranes obtained from cells pretreated with endothelin-1. Interestingly, genistein plus staurosporine inhibited this effect of the endothelial peptide. Endothelin-1 did not induce alpha1b-adrenoreceptor internalization. Our data indicate that activation of ETA receptors by endothelin-1 induces alpha1b-adrenoreceptor phosphorylation and alters G protein coupling.
Collapse
Affiliation(s)
- J Vázquez-Prado
- Department of Cell Biology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-248, México, D. F. 04510
| | | | | |
Collapse
|