1
|
Wang Y, Chen Y, Wu J, Shi X. BMP1 Promotes Keloid by Inducing Fibroblast Inflammation and Fibrogenesis. J Cell Biochem 2024; 125:e30609. [PMID: 38860429 DOI: 10.1002/jcb.30609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/11/2024] [Accepted: 05/24/2024] [Indexed: 06/12/2024]
Abstract
Keloid is a typical fibrotic and inflammatory skin disease with unclear mechanisms and few therapeutic targets. In this study, we found that BMP1 was significantly increased in a collagen high-expressing subtype of fibroblast by reanalyzing a public single-cell RNA-sequence data set of keloid. The number of BMP1-positive fibroblast cells was increased in keloid fibrotic loci. Increased levels of BMP1 were further validated in the skin tissues and fibroblasts from keloid patients. Additionally, a positive correlation between BMP1 and the Keloid Area and Severity Index was found in keloid patients. In vitro analysis revealed collagen production, the phosphorylation levels of p65, and the IL-1β secretion decreased in BMP1 interfered keloid fibroblasts. Besides, the knockdown of BMP1 inhibited the growth and migration of keloid fibroblast cells. Mechanistically, BMP1 inhibition downregulated the noncanonical TGF-β pathways, including p-p38 and p-ERK1/2 signaling. Furthermore, we found the delivery of BMP1 siRNAs could significantly alleviate keloid in human keloid-bearing nude mice. Collectively, our results indicated that BMP1 exhibited various pathogenic effects on keloids as promoting cell proliferation, migration, inflammation, and ECM deposition of fibroblast cells by regulating the noncanonical TGF-β/p38 MAPK, and TGF-β/ERK pathways. BMP1-lowing strategies may appear as a potential new therapeutic target for keloid.
Collapse
Affiliation(s)
- Yi Wang
- Department of Plastic and Burns Surgery, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Yahui Chen
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Jinfeng Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiangguang Shi
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Yang Y, Liang J, Chen S, Zhang A, Li Y, Liu S, Yan Q. O-Fucosylation of BMP1 promotes endometrial decidualization by activating BMP/Smad signaling pathway. Biol Reprod 2023; 109:172-183. [PMID: 37338142 DOI: 10.1093/biolre/ioad060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 03/13/2023] [Accepted: 05/18/2023] [Indexed: 06/21/2023] Open
Abstract
Endometrial decidualization is critical to successful uterine receptivity and embryo implantation. Dysfunction of decidualization is associated with some pregnancy-related disorders, including miscarriage. Protein glycosylation is involved in many physiological and pathological processes. Protein O-fucosyltransferase 1 (poFUT1) is a key enzyme responsible for O-fucosylation biosynthesis on glycoproteins. Bone morphogenetic protein 1 (BMP1) is an essential glycoprotein in reproduction. However, the role and molecular mechanism of fucosylated BMP1 in endometrial stromal cell decidualization are still unknown. In the current study, we found that BMP1 contains a potential O-fucosylation site. Moreover, poFUT1 and BMP1 levels in the secretory phase are higher than those in the proliferative phase, and the highest level was observed in the human uterine tissues of early pregnancy, while a decrease of poFUT1 and BMP1 in the decidua was observed in miscarriage patients. Using human endometrial stromal cells (hESCs), we demonstrated that O-fucosylation of BMP1 was elevated after induced decidualization. Moreover, the increase of BMP1 O-fucosylation by poFUT1 promoted BMP1 secretion to the extracellular matrix, and more actively binds to CHRD. The binding of BMP1 and CHRD further released BMP4 originally bound to CHRD, and activated BMP/Smad signaling pathway, thereby accelerating the decidualization of human endometrial stromal cells. In summary, these results suggest that BMP1 O-fucosylation by poFUT1 could be a potential diagnostic and therapeutic target to predict miscarriage in early pregnancy examinations.
Collapse
Affiliation(s)
- Yu Yang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, China
| | - Juan Liang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, China
| | - Siyi Chen
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, China
| | - Aihui Zhang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, China
| | - Yaqi Li
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, China
| | - Shuai Liu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, China
| | - Qiu Yan
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, China
| |
Collapse
|
3
|
Kellett KAB, Fisher K, Aldworth H, Hooper NM. Proteolysis of the low-density lipoprotein receptor in hepatocytes is mediated by BMP1 but not by other astacin proteases. FEBS Lett 2023; 597:1489-1502. [PMID: 37235726 PMCID: PMC10953048 DOI: 10.1002/1873-3468.14667] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023]
Abstract
Bone morphogenetic protein 1 (BMP1), a member of the astacin family of zinc-metalloproteases, proteolytically cleaves the low-density lipoprotein receptor (LDLR) within its ligand-binding domain, reducing the binding and cellular uptake of LDL-cholesterol. Here, we aimed to determine whether astacin proteases other than BMP1 may also cleave LDLR. Although human hepatocytes express all six astacin proteases, including the meprins and mammalian tolloid, we found through pharmacological inhibition and genetic knockdown that only BMP1 contributed to the cleavage of LDLR in its ligand-binding domain. We also found that the minimum amino acid change required to render mouse LDLR susceptible to cleavage by BMP1 is mutation at the P1' and P2 positions of the cleavage site. When expressed in cells, the resulting humanised-mouse LDLR internalised LDL-cholesterol. This work provides insight into the biological mechanisms regulating LDLR function.
Collapse
Affiliation(s)
- Katherine A. B. Kellett
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterUK
- Present address:
Horizons InstituteUniversity of LeedsLeedsLS2 9JTUK
| | - Kate Fisher
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterUK
| | - Harry Aldworth
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterUK
| | - Nigel M. Hooper
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterUK
| |
Collapse
|
4
|
Muromachi K, Nakano R, Fujita-Yoshigaki J, Sugiya H, Tani-Ishii N. BMP-1-induced GBA1 nuclear accumulation provokes CCN2 mRNA expression via importin-β-mediated nucleocytoplasmic pathway. J Cell Commun Signal 2023:10.1007/s12079-023-00740-3. [DOI: 10.1007/s12079-023-00740-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
|
5
|
Jensen GS, Leon-Palmer NE, Townsend KL. Bone morphogenetic proteins (BMPs) in the central regulation of energy balance and adult neural plasticity. Metabolism 2021; 123:154837. [PMID: 34331962 DOI: 10.1016/j.metabol.2021.154837] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/28/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022]
Abstract
The current worldwide obesity pandemic highlights a need to better understand the regulation of energy balance and metabolism, including the role of the nervous system in controlling energy intake and energy expenditure. Neural plasticity in the hypothalamus of the adult brain has been implicated in full-body metabolic health, however, the mechanisms surrounding hypothalamic plasticity are incompletely understood. Bone morphogenetic proteins (BMPs) control metabolic health through actions in the brain as well as in peripheral tissues such as adipose, together regulating both energy intake and energy expenditure. BMP ligands, receptors, and inhibitors are found throughout plastic adult brain regions and have been demonstrated to modulate neurogenesis and gliogenesis, as well as synaptic and dendritic plasticity. This role for BMPs in adult neural plasticity is distinct from their roles in brain development. Existing evidence suggests that BMPs induce weight loss through hypothalamic pathways, and part of the mechanism of action may be through inducing neural plasticity. In this review, we summarize the data regarding how BMPs affect neural plasticity in the adult mammalian brain, as well as the relationship between central BMP signaling and metabolic health.
Collapse
Affiliation(s)
- Gabriel S Jensen
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States of America; Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America
| | - Noelle E Leon-Palmer
- School of Biology and Ecology, University of Maine, Orono, ME, United States of America
| | - Kristy L Townsend
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States of America; Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America; School of Biology and Ecology, University of Maine, Orono, ME, United States of America.
| |
Collapse
|
6
|
Kruppa D, Peters F, Bornert O, Maler MD, Martin SF, Becker-Pauly C, Nyström A. Distinct contributions of meprins to skin regeneration after injury - Meprin α a physiological processer of pro-collagen VII. Matrix Biol Plus 2021; 11:100065. [PMID: 34435182 PMCID: PMC8377016 DOI: 10.1016/j.mbplus.2021.100065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 02/07/2023] Open
Abstract
Meprins subtly support epidermal and dermal skin wound healing. Loss of both meprins reduces re-epithelialization and wound macrophage abundance. Meprin α is a physiological maturing proteinase of collagen VII. Meprins are reduced in recessive dystrophic epidermolysis bullosa skin.
Astacin-like proteinases (ALPs) are regulators of tissue and extracellular matrix (ECM) homeostasis. They convey this property through their ability to convert ECM protein pro-forms to functional mature proteins and by regulating the bioavailability of growth factors that stimulate ECM synthesis. The most studied ALPs in this context are the BMP-1/tolloid-like proteinases. The other subclass of ALPs in vertebrates – the meprins, comprised of meprin α and meprin β – are emerging as regulators of tissue and ECM homeostasis but have so far been only limitedly investigated. Here, we functionally assessed the roles of meprins in skin wound healing using mice genetically deficient in one or both meprins. Meprin deficiency did not change the course of macroscopic wound closure. However, subtle but distinct contributions of meprins to the healing process and dermal homeostasis were observed. Loss of both meprins delayed re-epithelialization and reduced macrophage infiltration. Abnormal dermal healing and ECM regeneration was observed in meprin deficient wounds. Our analyses also revealed meprin α as one proteinase responsible for maturation of pro-collagen VII to anchoring fibril-forming-competent collagen VII in vivo. Collectively, our study identifies meprins as subtle players in skin wound healing.
Collapse
Key Words
- ALP, astacin-like proteinase
- BSA, bovine serum albumine
- BTP, BMP-1/tolloid-like proteinase
- DAPI, 4′-,6-diamidino-2-phenylindole
- DEJ, dermal epidermal junction
- DMEM, Dulbecco’s modified Eagle’s medium
- Dystrophic epidermolysis bullosa
- ECM, extracellular matrix
- Extracellular matrix
- FA, formic acid
- FBS, fetal bovine serum
- Fibrosis
- Inflammation
- NC, non-collagenous
- PBS, phosphate-buffered saline
- TBS, tris-buffered saline
- WT, wild type
- Wound healing
- qPCR, quantitative polymerase chain reaction
- αSMA, α-smooth muscle actin
Collapse
Affiliation(s)
- Daniel Kruppa
- Department of Dermatology, Faculty of Medicine and Medical Center - University of Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Florian Peters
- Biochemical Institute, Christian-Albrechts-University Kiel, Germany.,Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Schlieren / Zurich, Schlieren, Zurich, Switzerland
| | - Olivier Bornert
- Department of Dermatology, Faculty of Medicine and Medical Center - University of Freiburg, Germany
| | - Mareike D Maler
- Department of Dermatology, Faculty of Medicine and Medical Center - University of Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Stefan F Martin
- Department of Dermatology, Faculty of Medicine and Medical Center - University of Freiburg, Germany
| | | | - Alexander Nyström
- Department of Dermatology, Faculty of Medicine and Medical Center - University of Freiburg, Germany
| |
Collapse
|
7
|
N'Diaye EN, Cook R, Wang H, Wu P, LaCanna R, Wu C, Ye Z, Seshasayee D, Hazen M, Lin W, Tyagi T, Hotzel I, Tam L, Newman R, Roose-Girma M, Wolters PJ, Ding N. Extracellular BMP1 is the major proteinase for COOH-terminal proteolysis of type I procollagen in lung fibroblasts. Am J Physiol Cell Physiol 2020; 320:C162-C174. [PMID: 33206546 DOI: 10.1152/ajpcell.00012.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proteolytic processing of procollagens is a central step during collagen fibril formation. Bone morphogenic protein 1 (BMP1) is a metalloprotease that plays an important role in the cleavage of carboxy-terminal (COOH-terminal) propeptides from procollagens. Although the removal of propeptides is required to generate mature collagen fibrils, the contribution of BMP1 to this proteolytic process and its action site remain to be fully determined. In this study, using postnatal lung fibroblasts as a model system, we showed that genetic ablation of Bmp1 in primary murine lung fibroblasts abrogated COOH-terminal cleavage from type I procollagen as measured by COOH-terminal propeptide of type I procollagen (CICP) production. We also showed that inhibition of BMP1 by siRNA-mediated knockdown or small-molecule inhibitor reduced the vast majority of CICP production and collagen deposition in primary human lung fibroblasts. Furthermore, we discovered and characterized two antibody inhibitors for BMP1. In both postnatal lung fibroblast and organoid cultures, BMP1 blockade prevented CICP production. Together, these findings reveal a nonredundant role of extracellular BMP1 to process CICP in lung fibroblasts and suggest that development of antibody inhibitors is a viable pharmacological approach to target BMP1 proteinase activity in fibrotic diseases.
Collapse
Affiliation(s)
- Elsa-Noah N'Diaye
- Department of Discovery Immunology, Genentech, South San Francisco, California
| | - Ryan Cook
- Department of Biochemical and Cellular Pharmacology, Genentech, South San Francisco, California
| | - Hua Wang
- Department of Antibody Engineering, Genentech, South San Francisco, California
| | - Ping Wu
- Department of Structural Biology, Genentech, South San Francisco, California
| | - Ryan LaCanna
- Department of Discovery Immunology, Genentech, South San Francisco, California
| | - Cong Wu
- Department of Biochemical and Cellular Pharmacology, Genentech, South San Francisco, California
| | - Zhengmao Ye
- Department of Biochemical and Cellular Pharmacology, Genentech, South San Francisco, California
| | - Dhaya Seshasayee
- Department of Antibody Engineering, Genentech, South San Francisco, California
| | - Meredith Hazen
- Department of Antibody Engineering, Genentech, South San Francisco, California
| | - WeiYu Lin
- Department of Antibody Engineering, Genentech, South San Francisco, California
| | - Tulika Tyagi
- Department of Antibody Engineering, Genentech, South San Francisco, California
| | - Isidro Hotzel
- Department of Antibody Engineering, Genentech, South San Francisco, California
| | - Lucinda Tam
- Department of Molecular Biology, Genentech, South San Francisco, California
| | - Robert Newman
- Department of Molecular Biology, Genentech, South San Francisco, California
| | - Merone Roose-Girma
- Department of Molecular Biology, Genentech, South San Francisco, California
| | - Paul J Wolters
- Department of Medicine, University of California, San Francisco, California
| | - Ning Ding
- Department of Discovery Immunology, Genentech, South San Francisco, California
| |
Collapse
|
8
|
Similar sequences but dissimilar biological functions of GDF11 and myostatin. Exp Mol Med 2020; 52:1673-1693. [PMID: 33077875 PMCID: PMC8080601 DOI: 10.1038/s12276-020-00516-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 12/27/2022] Open
Abstract
Growth differentiation factor 11 (GDF11) and myostatin (MSTN) are closely related TGFβ family members that are often believed to serve similar functions due to their high homology. However, genetic studies in animals provide clear evidence that they perform distinct roles. While the loss of Mstn leads to hypermuscularity, the deletion of Gdf11 results in abnormal skeletal patterning and organ development. The perinatal lethality of Gdf11-null mice, which contrasts with the long-term viability of Mstn-null mice, has led most research to focus on utilizing recombinant GDF11 proteins to investigate the postnatal functions of GDF11. However, the reported outcomes of the exogenous application of recombinant GDF11 proteins are controversial partly because of the different sources and qualities of recombinant GDF11 used and because recombinant GDF11 and MSTN proteins are nearly indistinguishable due to their similar structural and biochemical properties. Here, we analyze the similarities and differences between GDF11 and MSTN from an evolutionary point of view and summarize the current understanding of the biological processing, signaling, and physiological functions of GDF11 and MSTN. Finally, we discuss the potential use of recombinant GDF11 as a therapeutic option for a wide range of medical conditions and the possible adverse effects of GDF11 inhibition mediated by MSTN inhibitors.
Collapse
|
9
|
Hart CG, Karimi-Abdolrezaee S. Bone morphogenetic proteins: New insights into their roles and mechanisms in CNS development, pathology and repair. Exp Neurol 2020; 334:113455. [PMID: 32877654 DOI: 10.1016/j.expneurol.2020.113455] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/18/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023]
Abstract
Bone morphogenetic proteins (BMPs) are a highly conserved and diverse family of proteins that play essential roles in various stages of development including the formation and patterning of the central nervous system (CNS). Bioavailability and function of BMPs are regulated by input from a plethora of transcription factors and signaling pathways. Intriguingly, recent literature has uncovered novel roles for BMPs in regulating homeostatic and pathological responses in the adult CNS. Basal levels of BMP ligands and receptors are widely expressed in the adult brain and spinal cord with differential expression patterns across CNS regions, cell types and subcellular locations. Recent evidence indicates that several BMP isoforms are transiently or chronically upregulated in the aged or pathological CNS. Genetic knockout and pharmacological studies have elucidated that BMPs regulate several aspects of CNS injury and repair including cell survival and differentiation, reactive astrogliosis and glial scar formation, axon regeneration, and myelin preservation and repair. Several BMP isoforms can be upregulated in the injured or diseased CNS simultaneously yet exert complementary or opposing effects on the endogenous cell responses after injury. Emerging studies also show that dysregulation of BMPs is associated with various CNS pathologies. Interestingly, modulation of BMPs can lead to beneficial or detrimental effects on CNS injury and repair mechanisms in a ligand, temporally or spatially specific manner, which reflect the complexity of BMP signaling. Given the significance of BMPs in neurodevelopment, a better understanding of their role in the context of injury may provide new therapeutic targets for the pathologic CNS. This review will provide a timely overview on the foundation and recent advancements in knowledge regarding the role and mechanisms of BMP signaling in the developing and adult CNS, and their implications in pathological responses and repair processes after injury or diseases.
Collapse
Affiliation(s)
- Christopher G Hart
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
10
|
Strøm TB, Bjune K, Leren TP. Bone morphogenetic protein 1 cleaves the linker region between ligand-binding repeats 4 and 5 of the LDL receptor and makes the LDL receptor non-functional. Hum Mol Genet 2020; 29:1229-1238. [PMID: 31600776 DOI: 10.1093/hmg/ddz238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 11/13/2022] Open
Abstract
The cell-surface low-density lipoprotein receptor (LDLR) internalizes low-density lipoprotein (LDL) by receptor-mediated endocytosis and plays a key role in the regulation of plasma cholesterol levels. The ligand-binding domain of the LDLR contains seven ligand-binding repeats of approximately 40 residues each. Between ligand-binding repeats 4 and 5, there is a 10-residue linker region that is subject to enzymatic cleavage. The cleaved LDLR is unable to bind LDL. In this study, we have screened a series of enzyme inhibitors in order to identify the enzyme that cleaves the linker region. These studies have identified bone morphogenetic protein 1 (BMP1) as being the cleavage enzyme. This conclusion is based upon the use of the specific BMP1 inhibitor UK 383367, silencing of the BMP1 gene by the use of siRNA or CRISPR/Cas9 technology and overexpression of wild-type BMP1 or the loss-of-function mutant E214A-BMP1. We have also shown that the propeptide of BMP1 has to be cleaved at RSRR120↓ by furin-like proprotein convertases for BMP1 to have an activity towards the LDLR. Targeting BMP1 could represent a novel strategy to increase the number of functioning LDLRs in order to lower plasma LDL cholesterol levels. However, a concern by using BMP1 inhibitors as cholesterol-lowering drugs could be the risk of side effects based on the important role of BMP1 in collagen assembly.
Collapse
Affiliation(s)
- Thea Bismo Strøm
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Katrine Bjune
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Trond P Leren
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
11
|
Analysis of Procollagen C-Proteinase Enhancer-1/Glycosaminoglycan Binding Sites and of the Potential Role of Calcium Ions in the Interaction. Int J Mol Sci 2019; 20:ijms20205021. [PMID: 31658765 PMCID: PMC6829435 DOI: 10.3390/ijms20205021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 12/15/2022] Open
Abstract
In this study, we characterize the interactions between the extracellular matrix protein, procollagen C-proteinase enhancer-1 (PCPE-1), and glycosaminoglycans (GAGs), which are linear anionic periodic polysaccharides. We applied molecular modeling approaches to build a structural model of full-length PCPE-1, which is not experimentally available, to predict GAG binding poses for various GAG lengths, types and sulfation patterns, and to determine the effect of calcium ions on the binding. The computational data are analyzed and discussed in the context of the experimental results previously obtained using surface plasmon resonance binding assays. We also provide experimental data on PCPE-1/GAG interactions obtained using inhibition assays with GAG oligosaccharides ranging from disaccharides to octadecasaccharides. Our results predict the localization of GAG-binding sites at the amino acid residue level onto PCPE-1 and is the first attempt to describe the effects of ions on protein-GAG binding using modeling approaches. In addition, this study allows us to get deeper insights into the in silico methodology challenges and limitations when applied to GAG-protein interactions.
Collapse
|
12
|
Functional and structural studies of tolloid-like 1 mutants associated with atrial-septal defect 6. Biosci Rep 2019; 39:BSR20180270. [PMID: 30538173 PMCID: PMC6328869 DOI: 10.1042/bsr20180270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 11/07/2018] [Accepted: 11/29/2018] [Indexed: 11/23/2022] Open
Abstract
Inactive mammalian tolloid-like 1 (tll1) and mutations detected in tolloid-like 1 (TLL1) have been linked to the lack of the heart septa formation in mice and to a similar human inborn condition called atrial-septal defect 6 (ASD6; OMIM 613087, formerly ASD II). Previously, we reported four point mutations in TLL1 found in approximately 20% of ASD6 patients. Three mutations in the coding sequence were M182L, V238A, and I629V. In this work, we present the effects of these mutations on TLL1 function. Three recombinant cDNA constructs carrying the mutations and one wild-type construct were prepared and then expressed in HT-1080 cells. Corresponding recombinant proteins were analyzed for their metalloendopeptidase activity using a native substrate, chordin. The results of these assays demonstrated that in comparison with the native TLL1, mutants cleaved chordin and procollagen I at significantly lower rates. CD analyses revealed significant structural differences between the higher order structure of wild-type and mutant variants. Moreover, biosensor-based assays of binding interactions between TLL1 variants and chordin demonstrated a significant decrease in the binding affinities of the mutated variants. The results from this work indicate that mutations detected in TLL1 of ASD6 patients altered its metalloendopeptidase activity, structure, and substrate-binding properties, thereby suggesting a possible pathomechanism of ASD6.
Collapse
|
13
|
Golob MJ, Massoudi D, Tabima DM, Johnston JL, Wolf GD, Hacker TA, Greenspan DS, Chesler NC. Cardiovascular function and structure are preserved despite induced ablation of BMP1-related proteinases. Cell Mol Bioeng 2018; 11:255-266. [PMID: 30123369 DOI: 10.1007/s12195-018-0534-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Introduction Bone morphogenetic protein 1 (BMP1) is part of an extracellular metalloproteinase family that biosynthetically processes procollagen molecules. BMP1- and tolloid-like (TLL1) proteinases mediate the cleavage of carboxyl peptides from procollagen molecules, which is a crucial step in fibrillar collagen synthesis. Ablating the genes that encode BMP1-related proteinases (Bmp1 and Tll1) post-natally results in brittle bones, periodontal defects, and thin skin in conditional knockout (BTKO) mice. Despite the importance of collagen to cardiovascular tissues and the adverse effects of Bmp1 and Tll1 ablation in other tissues, the impact of Bmp1 and Tll1 ablation on cardiovascular performance is unknown. Here, we investigated the role of Bmp1- and Tll1-ablation in cardiovascular tissues by examining ventricular and vascular structure and function in BTKO mice. Methods Ventricular and vascular structure and function were comprehensively quantified in BTKO mice (n=9) and in age- and sex-matched controls (n=9). Echocardiography, cardiac catheterization, and biaxial ex vivo arterial mechanical testing were performed to assess tissue function, and histological staining was used to measure collagen protein content. Results Bmp1- and Tll1-ablation resulted in maintained hemodynamics and cardiovascular function, preserved biaxial arterial compliance, and comparable ventricular and vascular collagen protein content. Conclusions Maintained ventricular and vascular structure and function despite post-natal ablation of Bmp1 and Tll1 suggests that there is an as-yet unidentified compensatory mechanism in cardiovascular tissues. In addition, these findings suggest that proteinases derived from Bmp1 and Tll1 post-natally have less of an impact on cardiovascular tissues compared to skeletal, periodontal, and dermal tissues.
Collapse
Affiliation(s)
- Mark J Golob
- Department of Biomedical Engineering, University of Wisconsin-Madison College of Engineering, Madison, WI 53706 USA
| | - Dawiyat Massoudi
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53706 USA
| | - Diana M Tabima
- Department of Biomedical Engineering, University of Wisconsin-Madison College of Engineering, Madison, WI 53706 USA
| | - James L Johnston
- Department of Biomedical Engineering, University of Wisconsin-Madison College of Engineering, Madison, WI 53706 USA
| | - Gregory D Wolf
- Department of Biomedical Engineering, University of Wisconsin-Madison College of Engineering, Madison, WI 53706 USA
| | - Timothy A Hacker
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706 USA
| | - Daniel S Greenspan
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53706 USA
| | - Naomi C Chesler
- Department of Biomedical Engineering, University of Wisconsin-Madison College of Engineering, Madison, WI 53706 USA.,Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706 USA
| |
Collapse
|
14
|
Vascular aspects of the Ehlers-Danlos Syndromes. Matrix Biol 2018; 71-72:380-395. [PMID: 29709596 DOI: 10.1016/j.matbio.2018.04.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 12/19/2022]
Abstract
The Ehlers-Danlos Syndromes comprise a heterogeneous group of rare monogenic conditions that are characterized by joint hypermobility, skin and vascular fragility and generalized connective tissue friability. The latest classification recognizes 13 clinical subtypes, with mutations identified in 19 different genes. Besides defects in fibrillar collagens (collagen types I, III and V), their modifying enzymes (ADAMTS-2, lysylhydroxylase 1 (LH1)), and molecules involved in collagen folding (FKBP22), defects have recently been identified in other constituents of the extracellular matrix (e.g. Tenascin-X, collagen type XII), enzymes involved in glycosaminoglycan biosynthesis (β4GalT7 and β3GalT6), dermatan 4-O-sulfotransferase-1 (D4ST1), dermatan sulfate epimerase (DSE)), (putative) transcription factors (ZNF469, PRDM5), components of the complement pathway (C1r, C1s) and an intracellular Zinc transporter (ZIP13). Easy bruising is, to a variable degree, present in all subtypes of EDS. A variable bleeding tendency, manifesting e.g. as gum bleeding, menometrorraghia, postnatal or peri-operative hemorrhage is observed in many EDS-patients of varying EDS subtypes. Life-threatening arterial aneurysms, dissections and ruptures of medium-sized and large arteries are a hallmark of the vascular subtype of EDS, caused by a molecular defect in collagen type III, an important constituent of blood vessel walls and hollow organs. They may however also occur in other EDS subtypes, especially in classical EDS, caused by defects in type V collagen or, rarely, type I collagen, and in kyphoscoliotic EDS, caused by defects in LH1 or FKBP22. These manifestations of vascular fragility and bleeding are usually attributed to fragility of the blood vessel walls and the perivascular connective tissues, but the molecular pathomechanisms underlying these complications are poorly studied. This review summarizes current knowledge on manifestations of vascular fragility in the different EDS subtypes.
Collapse
|
15
|
Liu X, Ji C, Xu L, Yu T, Dong C, Luo J. Hmox1 promotes osteogenic differentiation at the expense of reduced adipogenic differentiation induced by BMP9 in C3H10T1/2 cells. J Cell Biochem 2018; 119:5503-5516. [PMID: 29377252 DOI: 10.1002/jcb.26714] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 01/24/2018] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent progenitors that can differentiate into a variety of cell types under proper stimuli. Bone morphogenetic protein 9 (BMP9) is able to simultaneously induce both adipogenic and osteogenic differentiation of MSCs although the regulatory molecules involved remain to be fully identified and characterized. Heme oxygenase 1 (Hmox1) plays an essential role not only in fat metabolism, but also in bone development. In the present study, we investigated the functional role of Hmox1 in BMP9-induced osteogenic/adipogenic differentiation in MSCs line C3H10T1/2 and probed the possible mechanism involved. We found that BMP9 promoted the endogenous expression of Hmox1 in C3H10T1/2 cells. Overexpression of Hmox1 or cobalt protoporphyrin (CoPP), an inducer of Hmox1, increased BMP9-induced osteogenic differentiation in vitro. Subcutaneous stem cell implantation in nude mice further confirmed that Hmox1 potentiated BMP9-induced ectopic bone formation in vivo. In contrast, Hmox1 reduced BMP9-induced adipogenic differentiation in C3H10T1/2 cells. Although had no obvious effect on BMP9-induced Smad1/5/8 phosphorylation, Hmox1 enhanced phosphorylation of p38, and AKT, while decreased phosphorylation of ERK1/2. Furthermore, Hmox1 increased total β-catenin protein level, and promoted the nuclear translocation of β-catenin in C3H10T1/2 cells. Taken together, our study strongly suggests that Hmox1 is likely to potentiate osteogenic differentiation and yet decrease adipogenic differentiation induced by BMP9 possibly through regulation of multiple signaling pathways.
Collapse
Affiliation(s)
- Xiaohua Liu
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, P.R. China
| | - Caixia Ji
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, P.R. China
| | - Li Xu
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, P.R. China
| | - TingTing Yu
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, P.R. China
| | - Chaoqun Dong
- Department of Orthorpedic, Children Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Jinyong Luo
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, P.R. China
| |
Collapse
|
16
|
Longmate WM, Lyons SP, DeFreest L, Van De Water L, DiPersio CM. Opposing Roles of Epidermal Integrins α3β1 and α9β1 in Regulation of mTLD/BMP-1-Mediated Laminin-γ2 Processing during Wound Healing. J Invest Dermatol 2018; 138:444-451. [PMID: 28923241 PMCID: PMC5794664 DOI: 10.1016/j.jid.2017.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/25/2017] [Accepted: 09/01/2017] [Indexed: 11/27/2022]
Abstract
Proteolytic processing of the laminin-γ2 chain is a hallmark of basement membrane maturation in the skin. Integrin α3β1, a major receptor for epidermal adhesion to laminin-332, is critical for proper basement membrane organization during skin development and wound healing. Previously, we identified a role for α3β1 in promoting the processing of laminin-γ2 in cultured keratinocytes in vitro and in wound epidermis in vivo. In this study we identify the Bmp1 gene, which encodes variants of the mTLD/BMP-1 metalloproteases, as a critical regulator of α3β1-dependent laminin-γ2 processing, thereby expanding the role of this integrin in controlling the secretion by the epidermis of factors that modulate the tissue microenvironment. Because our previous studies identified another epidermal integrin, α9β1, as a suppressive regulator of α3β1-dependent wound angiogenesis, we investigated whether α9β1 has a similar cross-suppressive effect on the ability of α3β1 to promote basement membrane organization. Here, we show that, rather than a cross-suppressive role, α9β1 has an opposing role in basement membrane assembly/maturation through reduced laminin-γ2 processing via mTLD/BMP-1. Although α3β1 promotes this process during wound healing, α9β1 has an inhibitory role, suggesting that regulation of basement membrane assembly requires a complex interplay between these distinct epidermal integrins.
Collapse
Affiliation(s)
- Whitney M Longmate
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA
| | - Scott P Lyons
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA
| | - Lori DeFreest
- Department of Surgery, Albany Medical College, Albany, New York, USA
| | - Livingston Van De Water
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA; Department of Surgery, Albany Medical College, Albany, New York, USA
| | - C Michael DiPersio
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA; Department of Surgery, Albany Medical College, Albany, New York, USA.
| |
Collapse
|
17
|
Grgurevic L, Erjavec I, Grgurevic I, Dumic-Cule I, Brkljacic J, Verbanac D, Matijasic M, Paljetak HC, Novak R, Plecko M, Bubic-Spoljar J, Rogic D, Kufner V, Pauk M, Bordukalo-Niksic T, Vukicevic S. Systemic inhibition of BMP1-3 decreases progression of CCl 4-induced liver fibrosis in rats. Growth Factors 2017; 35:201-215. [PMID: 29482391 DOI: 10.1080/08977194.2018.1428966] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Liver fibrosis is a progressive pathological process resulting in an accumulation of excess extracellular matrix proteins. We discovered that bone morphogenetic protein 1-3 (BMP1-3), an isoform of the metalloproteinase Bmp1 gene, circulates in the plasma of healthy volunteers and its neutralization decreases the progression of chronic kidney disease in 5/6 nephrectomized rats. Here, we investigated the potential role of BMP1-3 in a chronic liver disease. Rats with carbon tetrachloride (CCl4)-induced liver fibrosis were treated with monoclonal anti-BMP1-3 antibodies. Treatment with anti-BMP1-3 antibodies dose-dependently lowered the amount of collagen type I, downregulated the expression of Tgfb1, Itgb6, Col1a1, and Acta2 and upregulated the expression of Ctgf, Itgb1, and Dcn. Mehanistically, BMP1-3 inhibition decreased the plasma levels of transforming growth factor beta 1(TGFβ1) by prevention of its activation and lowered the prodecorin production further suppressing the TGFβ1 profibrotic effect. Our results suggest that BMP1-3 inhibitors have significant potential for decreasing the progression of fibrosis in liver cirrhosis.
Collapse
Affiliation(s)
- Lovorka Grgurevic
- a Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine , University of Zagreb, Scientific Center of Excellence for Reproductive and Regenerative Medicine , Zagreb , Croatia
- b Center for Translational and Clinical Research, School of Medicine , University of Zagreb , Zagreb , Croatia
| | - Igor Erjavec
- a Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine , University of Zagreb, Scientific Center of Excellence for Reproductive and Regenerative Medicine , Zagreb , Croatia
| | - Ivica Grgurevic
- c Department of Gastroenterology , University Hospital Dubrava, Center for Scientific Excellence for Reproductive and Regenerative Medicine , Zagreb , Croatia
| | - Ivo Dumic-Cule
- a Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine , University of Zagreb, Scientific Center of Excellence for Reproductive and Regenerative Medicine , Zagreb , Croatia
| | - Jelena Brkljacic
- a Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine , University of Zagreb, Scientific Center of Excellence for Reproductive and Regenerative Medicine , Zagreb , Croatia
| | - Donatella Verbanac
- b Center for Translational and Clinical Research, School of Medicine , University of Zagreb , Zagreb , Croatia
| | - Mario Matijasic
- b Center for Translational and Clinical Research, School of Medicine , University of Zagreb , Zagreb , Croatia
| | - Hana Cipcic Paljetak
- b Center for Translational and Clinical Research, School of Medicine , University of Zagreb , Zagreb , Croatia
| | - Rudjer Novak
- b Center for Translational and Clinical Research, School of Medicine , University of Zagreb , Zagreb , Croatia
| | - Mihovil Plecko
- a Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine , University of Zagreb, Scientific Center of Excellence for Reproductive and Regenerative Medicine , Zagreb , Croatia
| | - Jadranka Bubic-Spoljar
- b Center for Translational and Clinical Research, School of Medicine , University of Zagreb , Zagreb , Croatia
| | - Dunja Rogic
- d Department of Laboratory Diagnosis , University Hospital Centre , Zagreb , Croatia
| | - Vera Kufner
- a Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine , University of Zagreb, Scientific Center of Excellence for Reproductive and Regenerative Medicine , Zagreb , Croatia
| | - Martina Pauk
- a Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine , University of Zagreb, Scientific Center of Excellence for Reproductive and Regenerative Medicine , Zagreb , Croatia
| | - Tatjana Bordukalo-Niksic
- a Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine , University of Zagreb, Scientific Center of Excellence for Reproductive and Regenerative Medicine , Zagreb , Croatia
| | - Slobodan Vukicevic
- a Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine , University of Zagreb, Scientific Center of Excellence for Reproductive and Regenerative Medicine , Zagreb , Croatia
- c Department of Gastroenterology , University Hospital Dubrava, Center for Scientific Excellence for Reproductive and Regenerative Medicine , Zagreb , Croatia
| |
Collapse
|
18
|
Inactivation of bone morphogenetic protein 1 (Bmp1) and tolloid-like 1 (Tll1) in cells expressing type I collagen leads to dental and periodontal defects in mice. J Mol Histol 2016; 48:83-98. [PMID: 28000152 DOI: 10.1007/s10735-016-9708-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/08/2016] [Indexed: 12/17/2022]
Abstract
Bone morphogenetic protein 1 (BMP1) and tolloid-like 1 (TLL1) belong to the BMP1/tolloid-like proteinase family, which cleaves secretory proteins. The constitutive deletion of the Bmp1 or Tll1 genes causes perinatal or embryonic lethality in mice. In this study, we first studied the β-galactosidase activity in mice in which an IRES-lacZ-Neo cassette was inserted in the intron of either the Bmp1 or the Tll1 gene; the β-galactosidase activities were used to reflect the expression of endogenous Bmp1 and Tll1, respectively. Our X-gal staining results showed that the odontoblasts in the tooth and cells in the periodontal ligament express both Bmp1 and Tll1. We then created Bmp1 flox/flox and Tll1 flox/flox mice by removing the IRES-lacZ-Neo cassette. By breeding 2.3 kb Col1a1-Cre mice with the Bmp1 flox/flox and Tll1 flox/flox mice, we further generated Col1a1-Cre;Bmp1 flox/flox ;Tll1 flox/flox mice in which both Bmp1 and Tll1 were inactivated in the Type I collagen-expressing cells. We employed X-ray radiography, histology and immunohistochemistry approaches to characterize the Col1a1-Cre;Bmp1 flox/flox ;Tll1 flox/flox mice. Our results showed that the molars of the Col1a1-Cre;Bmp1 flox/flox ;Tll1 flox/flox mice had wider predentin, thinner dentin and larger pulp chambers than those of the normal controls. The dentinal tubules of the molars in the Col1a1-Cre;Bmp1 flox/flox ;Tll1 flox/flox mice appeared disorganized. The level of dentin sialophosphoprotein in the molars of the 6-week-old Col1a1-Cre;Bmp1 flox/flox ;Tll1 flox/flox mice was lower than in the normal controls. The periodontal ligaments of the Col1a1-Cre;Bmp1 flox/flox ;Tll1 flox/flox mice were disorganized and had less fibrillin-1. Our findings indicate that the proteinases encoded by Bmp1 and Tll1 genes play essential roles in the development and maintenance of mouse dentin and periodontal ligaments.
Collapse
|
19
|
Troilo H, Bayley CP, Barrett AL, Lockhart-Cairns MP, Jowitt TA, Baldock C. Mammalian tolloid proteinases: role in growth factor signalling. FEBS Lett 2016; 590:2398-407. [PMID: 27391803 PMCID: PMC4988381 DOI: 10.1002/1873-3468.12287] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 06/30/2016] [Accepted: 07/06/2016] [Indexed: 12/11/2022]
Abstract
Tolloid proteinases are essential for tissue patterning and extracellular matrix assembly. The members of the family differ in their substrate specificity and activity, despite sharing similar domain organization. The mechanisms underlying substrate specificity and activity are complex, with variation between family members, and depend on both multimerization and substrate interaction. In addition, enhancers, such as Twisted gastrulation (Tsg), promote cleavage of tolloid substrate, chordin, to regulate growth factor signalling. Although Tsg and mammalian tolloid (mTLD) are involved in chordin cleavage, no interaction has been detected between them, suggesting Tsg induces a change in chordin to increase susceptibility to cleavage. All members of the tolloid family bind the N terminus of latent TGFβ‐binding protein‐1, providing support for their role in TGFβ signalling.
Collapse
Affiliation(s)
- Helen Troilo
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, UK
| | - Christopher P Bayley
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, UK
| | - Anne L Barrett
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, UK
| | - Michael P Lockhart-Cairns
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, UK.,Beamline B21, Diamond Light Source, Harwell Science & Innovation Campus, Didcot, Oxfordshire, UK
| | - Thomas A Jowitt
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, UK
| | - Clair Baldock
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, UK
| |
Collapse
|
20
|
Muir AM, Massoudi D, Nguyen N, Keene DR, Lee SJ, Birk DE, Davidson JM, Marinkovich MP, Greenspan DS. BMP1-like proteinases are essential to the structure and wound healing of skin. Matrix Biol 2016; 56:114-131. [PMID: 27363389 DOI: 10.1016/j.matbio.2016.06.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/12/2016] [Accepted: 06/21/2016] [Indexed: 01/10/2023]
Abstract
Closely related extracellular metalloproteinases bone morphogenetic protein 1 (BMP1) and mammalian Tolloid-like 1 (mTLL1) are co-expressed in various tissues and have been suggested to have overlapping roles in the biosynthetic processing of extracellular matrix components. Early lethality of mice null for the BMP1 gene Bmp1 or the mTLL1 gene Tll1 has impaired in vivo studies of these proteinases. To overcome issues of early lethality and functional redundancy we developed the novel BTKO mouse strain, with floxed Bmp1 and Tll1 alleles, for induction of postnatal, simultaneous ablation of the two genes. We previously showed these mice to have a skeletal phenotype that includes elements of osteogenesis imperfecta (OI), osteomalacia, and deficient osteocyte maturation, observations validated by the finding of BMP1 mutations in a subset of human patients with OI-like phenotypes. However, the roles of BMP1-like proteinase in non-skeletal tissues have yet to be explored, despite the supposed importance of putative substrates of these proteinases in such tissues. Here, we employ BTKO mice to investigate potential roles for these proteinases in skin. Loss of BMP1-like proteinase activity is shown to result in markedly thinned and fragile skin with unusually densely packed collagen fibrils and delayed wound healing. We demonstrate deficits in the processing of collagens I and III, decorin, biglycan, and laminin 332 in skin, which indicate mechanisms whereby BMP1-like proteinases affect the biology of this tissue. In contrast, lack of effects on collagen VII processing or deposition indicates this putative substrate to be biosynthetically processed by non-BMP1-like proteinases.
Collapse
Affiliation(s)
- Alison M Muir
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Dawiyat Massoudi
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Ngon Nguyen
- Program in Epithelial Biology and Department of Dermatology, Stanford University School of Medicine, Stanford, CA, 94305, USA; Dermatology, VA Medical Center, Palo Alto, CA 94304, USA
| | - Douglas R Keene
- Microimaging Center, Shriners Hospitals for Children, Portland, OR 97239, USA
| | - Se-Jin Lee
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David E Birk
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Jeffrey M Davidson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37232, USA; Research Service, Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - M Peter Marinkovich
- Program in Epithelial Biology and Department of Dermatology, Stanford University School of Medicine, Stanford, CA, 94305, USA; Dermatology, VA Medical Center, Palo Alto, CA 94304, USA
| | - Daniel S Greenspan
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.
| |
Collapse
|
21
|
Hung CW, Koudelka T, Anastasi C, Becker A, Moali C, Tholey A. Characterization of post-translational modifications in full-length human BMP-1 confirms the presence of a rare vicinal disulfide linkage in the catalytic domain and highlights novel features of the EGF domain. J Proteomics 2016; 138:136-45. [DOI: 10.1016/j.jprot.2016.02.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/12/2016] [Accepted: 02/24/2016] [Indexed: 12/29/2022]
|
22
|
Bayley CP, Ruiz Nivia HD, Dajani R, Jowitt TA, Collins RF, Rada H, Bird LE, Baldock C. Diversity between mammalian tolloid proteinases: Oligomerisation and non-catalytic domains influence activity and specificity. Sci Rep 2016; 6:21456. [PMID: 26902455 PMCID: PMC4763255 DOI: 10.1038/srep21456] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/25/2016] [Indexed: 11/17/2022] Open
Abstract
The mammalian tolloid family of metalloproteinases is essential for tissue patterning and extracellular matrix assembly. The four members of the family: bone morphogenetic protein-1 (BMP-1), mammalian tolloid (mTLD), tolloid-like (TLL)-1 and TLL-2 differ in their substrate specificity and activity levels, despite sharing similar domain organization. We have previously described a model of substrate exclusion by dimerisation to explain differences in the activities of monomeric BMP-1 and dimers of mTLD and TLL-1. Here we show that TLL-2, the least active member of the tolloid family, is predominantly monomeric in solution, therefore it appears unlikely that substrate exclusion via dimerisation is a mechanism for regulating TLL-2 activity. X-ray scattering and electron microscopy structural and biophysical analyses reveal an elongated shape for the monomer and flexibility in the absence of calcium. Furthermore, we show that TLL-2 can cleave chordin in vitro, similar to other mammalian tolloids, but truncated forms of TLL-2 mimicking BMP-1 are unable to cleave chordin. However, both the N- and C-terminal non-catalytic domains from all mammalian tolloids bind chordin with high affinity. The mechanisms underlying substrate specificity and activity in the tolloid family are complex with variation between family members and depend on both multimerisation and substrate interaction.
Collapse
Affiliation(s)
- Christopher P. Bayley
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, M13 9PT, UK
| | - Hilda D. Ruiz Nivia
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, M13 9PT, UK
| | - Rana Dajani
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, M13 9PT, UK
| | - Thomas A. Jowitt
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, M13 9PT, UK
| | - Richard F. Collins
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Heather Rada
- OPPF-UK, Research Complex at Harwell, Rutherford Appleton Laboratory, Oxford, OX11 0FA, UK
| | - Louise E. Bird
- OPPF-UK, Research Complex at Harwell, Rutherford Appleton Laboratory, Oxford, OX11 0FA, UK
| | - Clair Baldock
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
23
|
Lei X, Cui K, Li Z, Su J, Jiang J, Zhang H, Liu Q, Shi D. BMP-1 participates in the selection and dominance of buffalo follicles by regulating the proliferation and apoptosis of granulosa cells. Theriogenology 2015; 85:999-1012. [PMID: 26778140 DOI: 10.1016/j.theriogenology.2015.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 11/10/2015] [Accepted: 11/14/2015] [Indexed: 11/30/2022]
Abstract
BMP1/TLD-related metalloproteinases play a key role in morphogenesis via the proteolytic maturation of a number of extracellular matrix proteins and the activation of a subset of growth factors of the transforming growth factor beta superfamily. Recent data indicated that BMP1 is expressed in sheep ovarian follicles and showed a protease activity. The aim of the present study was to characterize the function of the buffalo BMP1 gene in folliculogenesis. A 3195-bp buffalo BMP1 mRNA fragment was firstly cloned and sequenced, which contained a whole 2967-bp codon sequence. The multialigned results suggested that BMP1 is highly conserved among different species both at the nucleic acid and the amino acid level. BMP1 is located in the oogonium of the fetal buffalo ovary and in the granulosa cells (GCs) and the oocytes of adult ovary from the primordial to the large antral follicles. Further study showed that BMP1 promoted cell cycle and proliferation and inhibited apoptosis in IVC GCs. Adding BMP1 recombinant protein to the culture medium of the GCs increased the expression of the key cell cycle regulators such as cyclin D1 and cyclin D2 and downregulated the expression of cell apoptosis pathway genes such as Cytochrome C, Fas, FasL, and Chop, both at the mRNA and at the protein levels. It also upregulated the expression of PAPP-A, IGF system, and VEGF, and so forth, which play important roles in the selection and dominance of growth follicles. The opposite results were observed by adding BMP1 antibody to the investigation groups. This study suggests that BMP1 regulates the proliferation and apoptosis of IVC GCs by changing the expression pattern of related genes and may potentially promote the selection and dominance of the buffalo follicles.
Collapse
Affiliation(s)
- Xiaocan Lei
- Animal Science Department, Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Kuiqing Cui
- Animal Science Department, Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Zhipeng Li
- Animal Science Department, Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Jie Su
- Animal Science Department, Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Jianrong Jiang
- Animal Science Department, Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Haihang Zhang
- Animal Science Department, Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Qingyou Liu
- Animal Science Department, Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China.
| | - Deshun Shi
- Animal Science Department, Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| |
Collapse
|
24
|
Syx D, Guillemyn B, Symoens S, Sousa AB, Medeira A, Whiteford M, Hermanns-Lê T, Coucke PJ, De Paepe A, Malfait F. Defective Proteolytic Processing of Fibrillar Procollagens and Prodecorin Due to Biallelic BMP1 Mutations Results in a Severe, Progressive Form of Osteogenesis Imperfecta. J Bone Miner Res 2015; 30:1445-56. [PMID: 25656619 DOI: 10.1002/jbmr.2473] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 01/25/2015] [Accepted: 01/31/2015] [Indexed: 11/10/2022]
Abstract
Whereas the vast majority of osteogenesis imperfecta (OI) is caused by autosomal dominant defects in the genes encoding type I procollagen, mutations in a myriad of genes affecting type I procollagen biosynthesis or bone formation and homeostasis have now been associated with rare autosomal recessive OI forms. Recently, homozygous or compound heterozygous mutations in BMP1, encoding the metalloproteases bone morphogenetic protein-1 (BMP1) and its longer isoform mammalian Tolloid (mTLD), were identified in 5 children with a severe autosomal recessive form of OI and in 4 individuals with mild to moderate bone fragility. BMP1/mTLD functions as the procollagen carboxy-(C)-proteinase for types I to III procollagen but was also suggested to participate in amino-(N)-propeptide cleavage of types V and XI procollagens and in proteolytic trimming of other extracellular matrix (ECM) substrates. We report the phenotypic characteristics and natural history of 4 adults with severe, progressive OI characterized by numerous fractures, short stature with rhizomelic shortening, and deformity of the limbs and variable kyphoscoliosis, in whom we identified novel biallelic missense and frameshift mutations in BMP1. We show that BMP1/mTLD-deficiency in humans not only results in delayed cleavage of the type I procollagen C-propeptide but also hampers the processing of the small leucine-rich proteoglycan prodecorin, a regulator of collagen fibrillogenesis. Immunofluorescent staining of types I and V collagen and transmission electron microscopy of the dermis show impaired assembly of heterotypic type I/V collagen fibrils in the ECM. Our study thus highlights the severe and progressive nature of BMP1-associated OI in adults and broadens insights into the functional consequences of BMP1/mTLD-deficiency on ECM organization.
Collapse
Affiliation(s)
- Delfien Syx
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Brecht Guillemyn
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Sofie Symoens
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Ana Berta Sousa
- Department of Genetics, Hospital de Santa Maria de Lisboa, Lisbon, Portugal
| | - Ana Medeira
- Department of Genetics, Hospital de Santa Maria de Lisboa, Lisbon, Portugal
| | - Margo Whiteford
- Department of Clinical Genetics, Southern General Hospital, Glasgow, United Kingdom
| | - Trinh Hermanns-Lê
- Department of Dermatopathology, Liège University Hospital, Liège, Belgium
| | - Paul J Coucke
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Anne De Paepe
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Fransiska Malfait
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
25
|
BMP-1/tolloid-like proteinases synchronize matrix assembly with growth factor activation to promote morphogenesis and tissue remodeling. Matrix Biol 2015; 44-46:14-23. [DOI: 10.1016/j.matbio.2015.02.006] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 02/10/2015] [Accepted: 02/10/2015] [Indexed: 11/20/2022]
|
26
|
Van Damme T, Syx D, Coucke P, Symoens S, De Paepe A, Malfait F. Genetics of the Ehlers–Danlos syndrome: more than collagen disorders. Expert Opin Orphan Drugs 2015. [DOI: 10.1517/21678707.2015.1022528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
27
|
Muir AM, Ren Y, Butz DH, Davis NA, Blank RD, Birk DE, Lee SJ, Rowe D, Feng JQ, Greenspan DS. Induced ablation of Bmp1 and Tll1 produces osteogenesis imperfecta in mice. Hum Mol Genet 2014; 23:3085-101. [PMID: 24419319 DOI: 10.1093/hmg/ddu013] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Osteogenesis imperfecta (OI), or brittle bone disease, is most often caused by dominant mutations in the collagen I genes COL1A1/COL1A2, whereas rarer recessive OI is often caused by mutations in genes encoding collagen I-interacting proteins. Recently, mutations in the gene for the proteinase bone morphogenetic 1 (BMP1) were reported in two recessive OI families. BMP1 and the closely related proteinase mammalian tolloid-like 1 (mTLL1) are co-expressed in various tissues, including bone, and have overlapping activities that include biosynthetic processing of procollagen precursors into mature collagen monomers. However, early lethality of Bmp1- and Tll1-null mice has precluded use of such models for careful study of in vivo roles of their protein products. Here we employ novel mouse strains with floxed Bmp1 and Tll1 alleles to induce postnatal, simultaneous ablation of the two genes, thus avoiding barriers of Bmp1(-/-) and Tll1(-/-) lethality and issues of functional redundancy. Bones of the conditionally null mice are dramatically weakened and brittle, with spontaneous fractures-defining features of OI. Additional skeletal features include osteomalacia, thinned/porous cortical bone, reduced processing of procollagen and dentin matrix protein 1, remarkably high bone turnover and defective osteocyte maturation that is accompanied by decreased expression of the osteocyte marker and Wnt-signaling inhibitor sclerostin, and by marked induction of canonical Wnt signaling. The novel animal model presented here provides new opportunities for in-depth analyses of in vivo roles of BMP1-like proteinases in bone and other tissues, and for their roles, and for possible therapeutic interventions, in OI.
Collapse
Affiliation(s)
- Alison M Muir
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA, Laboratory of Genetics, University of Wisconsin, Madison, WI, USA
| | - Yinshi Ren
- Department of Biomedical Sciences, Baylor College of Dentistry Texas A&M Health Science Center, Dallas, TX, USA
| | - Delana Hopkins Butz
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Nicholas A Davis
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Robert D Blank
- Geriatrics Research, Education, and Clinical Center, William S. Middleton Veterans Hospital, Madison, WI, USA, Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - David E Birk
- Department of Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Se-Jin Lee
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA and
| | - David Rowe
- Department of Reconstructive Sciences, Biomaterials and Skeletal Development, School of Dental Medicine, University of Connecticut, Farmington, CT, USA
| | - Jian Q Feng
- Department of Biomedical Sciences, Baylor College of Dentistry Texas A&M Health Science Center, Dallas, TX, USA
| | - Daniel S Greenspan
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA,
| |
Collapse
|
28
|
Genome-wide association study identifies new susceptibility loci for posttraumatic stress disorder. Biol Psychiatry 2013; 74:656-63. [PMID: 23726511 PMCID: PMC3810148 DOI: 10.1016/j.biopsych.2013.04.013] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 04/11/2013] [Accepted: 04/15/2013] [Indexed: 11/22/2022]
Abstract
BACKGROUND Genetic factors influence the risk for posttraumatic stress disorder (PTSD), a potentially chronic and disabling psychiatric disorder that can arise after exposure to trauma. Candidate gene association studies have identified few genetic variants that contribute to PTSD risk. METHODS We conducted genome-wide association analyses in 1578 European Americans (EAs), including 300 PTSD cases, and 2766 African Americans, including 444 PTSD cases, to find novel common risk alleles for PTSD. We used the Illumina Omni1-Quad microarray, which yielded approximately 870,000 single nucleotide polymorphisms (SNPs) suitable for analysis. RESULTS In EAs, we observed that one SNP on chromosome 7p12, rs406001, exceeded genome-wide significance (p = 3.97 × 10(-8)). A SNP that maps to the first intron of the Tolloid-Like 1 gene (TLL1) showed the second strongest evidence of association, although no SNPs at this locus reached genome-wide significance. We then tested six SNPs in an independent sample of nearly 2000 EAs and successfully replicated the association findings for two SNPs in the first intron of TLL1, rs6812849 and rs7691872, with p values of 6.3 × 10(-6) and 2.3 × 10(-4), respectively. In the combined sample, rs6812849 had a p value of 3.1×10(-9). No significant signals were observed in the African American part of the sample. Genome-wide association study analyses restricted to trauma-exposed individuals yielded very similar results. CONCLUSIONS This study identified TLL1 as a new susceptibility gene for PTSD.
Collapse
|
29
|
Bijakowski C, Vadon-Le Goff S, Delolme F, Bourhis JM, Lécorché P, Ruggiero F, Becker-Pauly C, Yiallouros I, Stöcker W, Dive V, Hulmes DJS, Moali C. Sizzled is unique among secreted frizzled-related proteins for its ability to specifically inhibit bone morphogenetic protein-1 (BMP-1)/tolloid-like proteinases. J Biol Chem 2012; 287:33581-93. [PMID: 22825851 DOI: 10.1074/jbc.m112.380816] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BMP-1/tolloid-like proteinases (BTPs) are major enzymes involved in extracellular matrix assembly and activation of bioactive molecules, both growth factors and anti-angiogenic molecules. Although the control of BTP activity by several enhancing molecules is well established, the possibility that regulation also occurs through endogenous inhibitors is still debated. Secreted frizzled-related proteins (sFRPs) have been studied as possible candidates, with highly contradictory results, after the demonstration that sizzled, a sFRP found in Xenopus and zebrafish, was a potent inhibitor of Xenopus and zebrafish tolloid-like proteases. In this study, we demonstrate that mammalian sFRP-1, -2, and -4 do not modify human BMP-1 activity on several of its known substrates including procollagen I, procollagen III, pN-collagen V, and prolysyl oxidase. In contrast, Xenopus sizzled appears as a tight binding inhibitor of human BMP-1, with a K(i) of 1.5 ± 0.5 nM, and is shown to strongly inhibit other human tolloid isoforms mTLD and mTLL-1. Because sizzled is the most potent inhibitor of human tolloid-like proteinases known to date, we have studied its mechanism of action in detail and shown that the frizzled domain of sizzled is both necessary and sufficient for inhibitory activity and that it acts directly on the catalytic domain of BMP-1. Residues in sizzled required for inhibition include Asp-92, which is shared by sFRP-1 and -2, and also Phe-94, Ser-43, and Glu-44, which are specific to sizzled, thereby providing a rational basis for the absence of inhibitory activity of human sFRPs.
Collapse
Affiliation(s)
- Cécile Bijakowski
- Institut de Biologie et Chimie des Protéines, CNRS/Université de Lyon FRE3310/FR3302, 69367 Lyon cedex 7, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Martínez-Glez V, Valencia M, Caparrós-Martín JA, Aglan M, Temtamy S, Tenorio J, Pulido V, Lindert U, Rohrbach M, Eyre D, Giunta C, Lapunzina P, Ruiz-Perez VL. Identification of a mutation causing deficient BMP1/mTLD proteolytic activity in autosomal recessive osteogenesis imperfecta. Hum Mutat 2011; 33:343-50. [PMID: 22052668 DOI: 10.1002/humu.21647] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 10/27/2011] [Indexed: 11/11/2022]
Abstract
Herein, we have studied a consanguineous Egyptian family with two children diagnosed with severe autosomal recessive osteogenesis imperfecta (AR-OI) and a large umbilical hernia. Homozygosity mapping in this family showed lack of linkage to any of the previously known AR-OI genes, but revealed a 10.27 MB homozygous region on chromosome 8p in the two affected sibs, which comprised the procollagen I C-terminal propeptide (PICP) endopeptidase gene BMP1. Mutation analysis identified both patients with a Phe249Leu homozygous missense change within the BMP1 protease domain involving a residue, which is conserved in all members of the astacin group of metalloproteases. Type I procollagen analysis in supernatants from cultured fibroblasts demonstrated abnormal PICP processing in patient-derived cells consistent with the mutation causing decreased BMP1 function. This was further confirmed by overexpressing wild type and mutant BMP1 longer isoform (mammalian Tolloid protein [mTLD]) in NIH3T3 fibroblasts and human primary fibroblasts. While overproduction of normal mTLD resulted in a large proportion of proα1(I) in the culture media being C-terminally processed, proα1(I) cleavage was not enhanced by an excess of the mutant protein, proving that the Phe249Leu mutation leads to a BMP1/mTLD protein with deficient PICP proteolytic activity. We conclude that BMP1 is an additional gene mutated in AR-OI.
Collapse
Affiliation(s)
- Víctor Martínez-Glez
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Muir A, Greenspan DS. Metalloproteinases in Drosophila to humans that are central players in developmental processes. J Biol Chem 2011; 286:41905-41911. [PMID: 22027825 DOI: 10.1074/jbc.r111.299768] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Many secreted proteins are synthesized as precursors with propeptides that must be cleaved to yield the mature functional form of the molecule. In addition, various growth factors occur in extracellular latent complexes with protein antagonists and are activated upon cleavage of such antagonists. Research in the separate fields of embryonic patterning and extracellular matrix formation has identified members of the BMP1/Tolloid-like family of metalloproteinases as key players in these types of biosynthetic processing events in species ranging from Drosophila to humans.
Collapse
Affiliation(s)
- Alison Muir
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792
| | - Daniel S Greenspan
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792.
| |
Collapse
|
32
|
Bortolini MAT, Shynlova O, Drutz HP, Girão MJBC, Castro RA, Lye S, Alarab M. Expression of Bone Morphogenetic Protein-1 in vaginal tissue of women with severe pelvic organ prolapse. Am J Obstet Gynecol 2011; 204:544.e1-8. [PMID: 21397208 DOI: 10.1016/j.ajog.2011.01.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 12/30/2010] [Accepted: 01/14/2011] [Indexed: 01/04/2023]
Abstract
OBJECTIVES To analyze the differential gene and protein expression of Bone Morphogenetic Protein-1 in vaginal tissue of women with advanced pelvic organ prolapse and controls. STUDY DESIGN We sampled the anterior vaginal wall of 39 premenopausal (23 patients and 16 controls), and 18 postmenopausal women (13 patients and 5 controls) during hysterectomy. Total mRNAs and proteins were quantified by real-time RT-PCR and immunoblotting. RESULTS Bone Morphogenetic Protein-1 gene expression was decreased in pre- and postmenopausal pelvic organ prolapse patients compared with asymptomatic women (P = .01). The expression of 130 kDa, 92.5 kDa, and 82.5 kDa isoforms of Bone Morphogenetic Protein-1 were down-regulated in postmenopausal patients (P = .01), whereas the 130 kDa isoform expression was up-regulated in premenopausal patients (P = .009), when compared with respective controls. CONCLUSION The Bone Morphogenetic Protein-1 expression in human vagina was altered in patients with severe pelvic organ prolapse and influenced by menopausal status. Dysregulation of Bone Morphogenetic Protein-1 may contribute for a deficient vaginal connective tissue and support.
Collapse
Affiliation(s)
- Maria A T Bortolini
- Division of Urogynecology and Reconstructive Pelvic Surgery, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Canada.
| | | | | | | | | | | | | |
Collapse
|
33
|
Lysyl oxidase: a potential target for cancer therapy. Inflammopharmacology 2010; 19:117-29. [DOI: 10.1007/s10787-010-0073-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 11/02/2010] [Indexed: 12/20/2022]
|
34
|
Allen DL, Greybeck BJ, Greyback BJ, Hanson AM, Cleary AS, Lindsay SF. Skeletal muscle expression of bone morphogenetic protein-1 and tolloid-like-1 extracellular proteases in different fiber types and in response to unloading, food deprivation and differentiation. J Physiol Sci 2010; 60:343-52. [PMID: 20658214 PMCID: PMC10717363 DOI: 10.1007/s12576-010-0104-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 07/05/2010] [Indexed: 12/14/2022]
Abstract
Members of the bone morphogenetic protein-1/mammalian tolloid (BMP-1/mTLD) family of proteases cleave diverse extracellular proteins, including the growth inhibitor myostatin. The purpose of this work was to examine the expression of BMP-1/mTLD, tolloid-like-1 and -2 (TLL1 and TLL2) in hindlimb muscles of the mouse in vivo and in C(2)C(12) muscle cells in vitro. Quantitative real-time polymerase chain reaction revealed that neither BMP-1/mTLD nor TLL1 mRNA levels differed between the predominantly fast-twitch tibialis anterior (TA) and gastrocnemius (GAST) muscles and the more slow-twitch soleus (SOL) muscle; TLL2 mRNA levels were not detectable in any of the muscles examined. Interestingly, however, immunohistochemical analysis revealed that BMP-1 protein was expressed in type I and IIa but not in IIb fibers. TLL1 mRNA levels significantly increased in the TA but not the SOL with 3 days of hindlimb suspension and significantly decreased in both TA and SOL in response to 2 days of food deprivation. In contrast, BMP-1/mTLD mRNA levels were unaffected in either muscle by either condition. In addition, BMP-1/mTLD and TLL1 mRNA levels significantly decreased during C(2)C(12) myoblast differentiation in vitro, and activity of a 1,200-bp mouse TLL1 promoter construct was significantly decreased in C(2)C(12) myotubes by differentiation, by mutation of an nuclear factor kappa-beta (NF-kappaB) site, or deletion of a sma/mothers against decapentaplegic (SMAD) site. Together, these data demonstrate that TLL1 mRNA levels are altered by loading, energy status, and differentiation, and thus its expression may be regulated so as to modulate activity of myostatin or other extracellular substrates during these adaptive states.
Collapse
Affiliation(s)
- David L Allen
- Department of Integrative Physiology, University of Colorado, Campus Box 354, Boulder, CO 80309, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Zeng S, Chen J, Shen H. Controlling of bone morphogenetic protein signaling. Cell Signal 2010; 22:888-93. [DOI: 10.1016/j.cellsig.2009.12.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 12/31/2009] [Indexed: 01/13/2023]
|
36
|
Canty-Laird E, Carré GA, Mandon-Pépin B, Kadler KE, Fabre S. First evidence of bone morphogenetic protein 1 expression and activity in sheep ovarian follicles. Biol Reprod 2010; 83:138-46. [PMID: 20357269 DOI: 10.1095/biolreprod.109.082115] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Bone morphogenetic protein (BMP) 1 is a vertebrate metalloproteinase of the astacin family. BMP1 plays a key role in regulating the formation of the extracellular matrix (ECM), particularly by processing the C-propeptide of fibrillar procollagens. BMP1 also promotes BMP signaling by releasing BMP signaling molecules from complexes with the BMP-antagonist chordin. As a result of BMP1's dual role in both ECM formation and BMP signaling, we hypothesized that BMP1 could play a role in ovarian physiology. Using the sheep ovary as a model system, we showed that BMP1 was expressed in the ovary throughout early fetal stages to adulthood. Furthermore, in adult ovaries, BMP1 was expressed along with chordin, BMP4, and twisted gastrulation, which together form an extracellular regulatory complex for BMP signaling. Within ovine ovaries, immunohistochemical localization demonstrated that BMP1 was present in granulosa cells at all stages of follicular development, from primordial to large antral follicles, and that the levels of BMP1 were not affected by the final follicle selection mechanism. In cultured granulosa cells, BMP1 expression was not affected by gonadotropins, but BMP4 and activin A had opposing effects on the levels of BMP1 mRNA. BMP1 appeared to be secreted into the follicular fluid of antral follicles, where it is able to exert procollagen C-proteinase and chordinase activities. Interestingly, BMP1 activity in follicular fluid decreased with follicular growth.
Collapse
Affiliation(s)
- Elizabeth Canty-Laird
- Physiologie de la Reproduction et des Comportements, UMR 85 /INRA-UMR 6175, CNRS-Université de Tours-Haras Nationaux, Nouzilly, France
| | | | | | | | | |
Collapse
|
37
|
Hardmeier R, Redl H, Marlovits S. Effects of mechanical loading on collagen propeptides processing in cartilage repair. J Tissue Eng Regen Med 2010; 4:1-11. [PMID: 19842116 DOI: 10.1002/term.211] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Injured articular cartilage has poor reparative capabilities and if left untreated may develop into osteoarthritis. Unsatisfactory results with conventional treatment methods have brought as an alternative treatment the development of matrix autologous chondrocyte transplants (MACTs). Recent evidence proposes that the maintenance of the original phenotype by isolated chondrocytes grown in a scaffold transplant is linked to mechanical compression, because macromolecules, particularly collagen, of the extracellular matrix have the ability to 'self-assemble'. In load-bearing tissues, collagen is abundantly present and mechanical properties depend on the collagen fibre architecture. Study of the active changes in collagen architecture is the focus of diverse fields of research, including developmental biology, biomechanics and tissue engineering. In this review, the structural model of collagen assembly is presented in order to understand how scaffold geometry plays a critical role in collagen propeptide processing and chondrocyte development. When physical forces are applied to different cell-based scaffolds, the resulting specific twist of the scaffolds might be accompanied by changes in the fibril pattern synthesis of the new collagen. The alteration in the scaffolds due to mechanical stress is associated with cellular signalling communication and the preservation of N-terminus procollagen moieties, which would regulate both the collagen synthesis and the diameter of the fibre. The structural difference would also affect actin stabilization, cytoskeleton remodelling and proteoglycan assembly. These effects seemed to be dependent on the magnitude and duration of the physical stress. This review will contribute to the understanding of mechanisms for collagen assembly in both a natural and an artificial environment.
Collapse
|
38
|
Dentin sialophosphoprotein (DSPP) is cleaved into its two natural dentin matrix products by three isoforms of bone morphogenetic protein-1 (BMP1). Matrix Biol 2010; 29:295-303. [PMID: 20079836 DOI: 10.1016/j.matbio.2010.01.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 12/23/2009] [Accepted: 01/07/2010] [Indexed: 11/20/2022]
Abstract
The protease that cleaves the most abundant non-collagenous protein of dentin matrix, dentin sialophosphoprotein (DSPP), into its two final dentin matrix products, dentin sialoprotein (DSP) and dentin phosphoprotein (DPP), has not been directly identified. In this study, full-length recombinant mouse DSPP was made for the first time in furin-deficient mammalian LoVo cells and used to test the ability of three different isoforms of one candidate protease, bone morphogenetic protein-1 (BMP1) to cleave DSPP at the appropriate site. Furthermore, two reported enhancers of BMP1/mTLD activity (procollagen C-endopeptidase enhancer-1, PCPE-1, and secreted frizzled-related protein-2, sFRP2) were tested for their abilities to modulate BMP1-mediated processing of both DSPP and another SIBLING family member with a similar cleavage motif, dentin matrix protein-1 (DMP1). Three splice variants of BMP1 (classic BMP1, the full-length mTolloid (mTLD), and the shorter isoform lacking the CUB3 domain, BMP1-5) were all shown to cleave the recombinant DSPP in vitro although mTLD was relatively inefficient at processing both DSPP and DMP1. Mutation of the MQGDD peptide motif to IEGDD completely eliminated the ability of all three recombinant isoforms to process full-length recombinant DSPP in vitro thereby verifying the single predicted cleavage site. Furthermore when human bone marrow stromal cells (which naturally express furin-activated BMP1) were transduced with the adenovirus-encoding either wild-type or mutant DSPP, they were observed to fully cleave wild-type DSPP but failed to process the mutant DSPP(MQDeltaIE) during biogenesis. All three BMP1 isoforms were shown to process type I procollagen as well as DSPP and DMP1 much more efficiently in low-salt buffer (< or = 50 mM NaCl) compared to commonly used normal saline buffers (150 mM NaCl). Neither PCPE-1 nor sFRP2 were able to enhance any of the three BMP1 isoforms in cleaving either DSPP or DMP1 under either low or normal saline conditions. Interestingly, we were unable to reproduce sFRP2's reported ability to enhance the processing of type I procollagen by BMP1/mTLD. In summary, three isoforms of BMP1 process both DSPP and DMP1 at the MQX/DDP motif, but the identity of a protein that can enhance the cleavage of the two SIBLING proteins remains elusive.
Collapse
|
39
|
Sabirzhanova IB, Sabirzhanov BE, Keifer J, Clark TG. Activation of mammalian Tolloid-like 1 expression by hypoxia in human neuroblastoma SH-SY5Y cells. Biochem Biophys Res Commun 2009; 389:338-42. [PMID: 19723501 DOI: 10.1016/j.bbrc.2009.08.146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 08/24/2009] [Indexed: 12/20/2022]
Abstract
Mammalian Tolloid-like 1 (mTll-1) is an astacin metalloprotease that is a member of the Tolloid family of proteins. mTll-1 cleaves chordin, an inhibitor of bone morphogenetic proteins (BMPs) and potentiates activity of the BMPs. Prenatal stress and glucocorticoids decrease mTll-1 expression whereas voluntary exercise increase mTll-1 gene expression in the mouse hippocampus. Here, we studied the underlying molecular mechanisms by which hypoxia regulates human mTll-1 gene expression. When cells were subjected to hypoxia, the expression of endogenous mTll-1 was upregulated in SH-SY5Y human neuroblastoma cells. Dual-luciferase assay and site-directed mutagenesis showed the presence of hypoxia responsive elements (HREs) at position 625 that was essential for activation of mTll-1 expression under hypoxic conditions. The binding of hypoxia-inducible factor (HIF-1) protein to the HREs was confirmed by gel shift assay. These results indicate that the HRE motif is directly involved in the activation of the mTll-1 transcription under hypoxic conditions.
Collapse
Affiliation(s)
- Inna B Sabirzhanova
- Division of Basic Biomedical Sciences, University of South Dakota School of Medicine, Vermillion, SD 57069, USA.
| | | | | | | |
Collapse
|
40
|
Berry R, Jowitt TA, Ferrand J, Roessle M, Grossmann JG, Canty-Laird EG, Kammerer RA, Kadler KE, Baldock C. Role of dimerization and substrate exclusion in the regulation of bone morphogenetic protein-1 and mammalian tolloid. Proc Natl Acad Sci U S A 2009; 106:8561-6. [PMID: 19429706 PMCID: PMC2689009 DOI: 10.1073/pnas.0812178106] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Indexed: 11/18/2022] Open
Abstract
The bone morphogenetic protein (BMP)-1/tolloid metalloproteinases are evolutionarily conserved enzymes that are fundamental to dorsal-ventral patterning and tissue morphogenesis. The lack of knowledge regarding how these proteinases recognize and cleave their substrates represents a major hurdle to understanding tissue assembly and embryonic patterning. Although BMP-1 and mammalian tolloid (mTLD) are splice variants, it is puzzling why BMP-1, which lacks 3 of the 7 noncatalytic domains present in all other family members, is the most effective proteinase. Using a combination of single-particle electron microscopy, small-angle X-ray scattering, and other biophysical measurements in solution, we show that mTLD, but not BMP-1, forms a calcium-ion-dependent dimer under physiological conditions. Using a domain deletion approach, we provide evidence that EGF2, which is absent in BMP-1, is critical to the formation of the dimer. Based on a combination of structural and functional data, we propose that mTLD activity is regulated by a substrate exclusion mechanism. These results provide a mechanistic insight into how alternative splicing of the Bmp1 gene produces 2 proteinases with differing biological activities and have broad implications for regulation of BMP-1/mTLD and related proteinases during BMP signaling and tissue assembly.
Collapse
Affiliation(s)
- Richard Berry
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Thomas A. Jowitt
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Johanna Ferrand
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Manfred Roessle
- European Molecular Biology Laboratory-Hamburg Outstation, c/o Deutsches Elektronen Synchrotron, 22603 Hamburg, Germany; and
| | - J. Günter Grossmann
- Synchrotron Radiation Department, Council for Central Laboratory of the Research Councils, Daresbury Laboratory, Warrington WA4 4AD, United Kingdom
| | - Elizabeth G. Canty-Laird
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Richard A. Kammerer
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Karl E. Kadler
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Clair Baldock
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
41
|
Structural Basis for the Substrate Specificity of Bone Morphogenetic Protein 1/Tolloid-like Metalloproteases. J Mol Biol 2008; 384:228-39. [DOI: 10.1016/j.jmb.2008.09.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 08/22/2008] [Accepted: 09/10/2008] [Indexed: 11/15/2022]
|
42
|
Cho HK, Nam BH, Kong HJ, Han HS, Hur YB, Choi TJ, Choi YH, Kim WJ, Cheong J. Identification of softness syndrome-associated candidate genes and DNA sequence variation in the sea squirt, Halocynthia roretzi. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2008; 10:447-456. [PMID: 18347870 DOI: 10.1007/s10126-008-9084-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 12/31/2007] [Accepted: 01/03/2008] [Indexed: 05/26/2023]
Abstract
The mortality of sea squirts, Halocynthia roretzi, with softness syndrome threatens the sea squirt aquaculture industry in Asian countries. The molecular approach to understanding the pathogenesis of softness syndrome began with differential gene expression analysis of tissues from normal and dying organisms. In the present study, we show that the expression of Halocynthia roretzi metalloproteinase (HrMMP) was significantly upregulated in the tissues of dying organisms through screening of differentially expressed genes, reverse transcription-polymerase chain reaction (RT-PCR), and real-time PCR. HrMMP is composed of 482 amino acids, contains a conserved domain found in the astacin family, and has typical metalloproteinase activity. To discriminate between the differential expression of the HrMMP gene in normal and dying organisms, we cloned the HrMMP gene promoter and identified a polymorphism in the HrMMP promoter region that resulted in distinct polymorphisms (G/T) at position - 308 bp. These results suggest that organisms with the GT genotype may have more resistance to softness syndrome than those with the TT genotype. These findings suggest that the HrMMP promoter polymorphism may be associated with an increased risk of softness syndrome in cultivated sea squirts and should be evaluated as a candidate molecular marker for the selective breeding of softness syndrome-resistant sea squirts.
Collapse
Affiliation(s)
- Hyun Kook Cho
- Department of Molecular Biology, Pusan National University, Busan, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Huang B, Maciejewska I, Sun Y, Peng T, Qin D, Lu Y, Bonewald L, Butler WT, Feng J, Qin C. Identification of full-length dentin matrix protein 1 in dentin and bone. Calcif Tissue Int 2008; 82:401-10. [PMID: 18488132 PMCID: PMC2666980 DOI: 10.1007/s00223-008-9140-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Accepted: 04/22/2008] [Indexed: 10/22/2022]
Abstract
Dentin matrix protein 1 (DMP1) has been identified in the extracellular matrix (ECM) of dentin and bone as the processed NH(2)-terminal and COOH-terminal fragment. However, the full-length form of DMP1 has not been identified in these tissues. The focus of this investigation was to search for the intact full-length DMP1 in dentin and bone. We used two types of anti-DMP1 antibodies to identify DMP1: one type specifically recognizes the NH(2)-terminal region and the other type is only reactive to the COOH-terminal region of the DMP1 amino acid sequence. An approximately 105-kDa protein, extracted from the ECM of rat dentin and bone, was recognized by both types of antibodies; and the migration rate of this protein was identical to the recombinant mouse full-length DMP1 made in eukaryotic cells. We concluded that this approximately 105-kDa protein is the full-length form of DMP1, which is considerably less abundant than its processed fragments in the ECM of dentin and bone. We also detected the full-length form of DMP1 and its processed fragments in the extract of dental pulp/odontoblast complex dissected from rat teeth. In addition, immunofluorescence analysis showed that in MC3T3-E1 cells the NH(2)-terminal and COOH-terminal fragments of DMP1 are distributed differently. Our findings indicate that the majority of DMP1 must be cleaved within the cells that synthesize it and that minor amounts of uncleaved DMP1 molecules are secreted into the ECM of dentin and bone.
Collapse
Affiliation(s)
- Bingzhen Huang
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A & M University System Health Science Center, 3302 Gaston Avenue, Dallas, TX 75246, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kanzawa N, Ogawa T, Asakura M, Okiyama K, Honda M, Tsuchiya T. Comparative Expression and Tissue Distribution Analyses of Astacin-Like Squid Metalloprotease in Squid and Cuttlefish. Zoolog Sci 2008; 25:14-21. [DOI: 10.2108/zsj.25.14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Accepted: 08/30/2007] [Indexed: 11/17/2022]
|
45
|
Wermter C, Höwel M, Hintze V, Bombosch B, Aufenvenne K, Yiallouros I, Stöcker W. The protease domain of procollagen C-proteinase (BMP1) lacks substrate selectivity, which is conferred by non-proteolytic domains. Biol Chem 2007; 388:513-21. [PMID: 17516847 DOI: 10.1515/bc.2007.054] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Procollagen C-proteinase (PCP) removes the C-terminal pro-peptides of procollagens and also processes other matrix proteins. The major splice form of the PCP is termed BMP1 (bone morphogenetic protein 1). Active BMP1 is composed of an astacin-like protease domain, three CUB (complement, sea urchin Uegf, BMP1) domains and one EGF-like domain. Here we compare the recombinant human full-length BMP1 with its isolated proteolytic domain to further unravel the functional influence of the CUB and EGF domains. We show that the protease domain alone cleaves truncated procollagen VII within the short telopeptide region into fragments of similar size as the full-length enzyme does. However, unlike full-length BMP1, the protease domain does not stop at this point, but degrades its substrate completely. Moreover, the protease domain cleaves other matrix proteins such as fibronectin, collagen I and collagen IV, which are left intact by the full-length enzyme. In addition, we show for the first time that thrombospondin-1 is differently cleaved by both BMP1 and its catalytic domain. In summary, our data support the concept that the C-terminal domains of BMP1 are important for substrate recognition and for controlling and restricting its proteolytic activity via exosite binding.
Collapse
Affiliation(s)
- Carsten Wermter
- Institute of Zoology, Department I, Cell and Matrix Biology, Johannes Gutenberg University, Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Ge G, Fernández CA, Moses MA, Greenspan DS. Bone morphogenetic protein 1 processes prolactin to a 17-kDa antiangiogenic factor. Proc Natl Acad Sci U S A 2007; 104:10010-5. [PMID: 17548836 PMCID: PMC1891225 DOI: 10.1073/pnas.0704179104] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In addition to classical expression patterns in pituitary and placenta and functions in growth and reproduction, members of the small family of hormones that includes prolactin (PRL), growth hormone (GH), and placental lactogen are expressed by endothelia and have angiogenic effects. In contrast, 16- to 17-kDa proteolytic fragments of these hormones have antiangiogenic effects. Here we show that PRL and GH are bound and processed by members of the bone morphogenetic protein 1 (BMP1) subgroup of extracellular metalloproteinases, previously shown to play key roles in forming extracellular matrix and in activating certain TGFbeta superfamily members. BMP1 has previously been suggested to play roles in angiogenesis, as high throughput screens have found its mRNA to be one of those induced to highest levels in tumor-associated endothelia compared with resting endothelia. PRL and GH cleavage is shown to occur in each hormone at a single site typical of sites previously characterized in known substrates of BMP1-like proteinases, and the approximately 17-kDa PRL N-terminal fragment so produced is demonstrated to have potent antiangiogenic activity. Mouse embryo fibroblasts are shown to produce both PRL and GH and to process them to approximately 17-kDa forms, whereas GH and PRL processing activity is lost in mouse embryo fibroblasts doubly null for two genes encoding BMP1-like proteinases.
Collapse
Affiliation(s)
- Gaoxiang Ge
- *Department of Pathology and Laboratory Medicine and
| | - Cecilia A. Fernández
- Vascular Biology Program and Department of Surgery, Children's Hospital and Department of Surgery, Harvard Medical School, Boston, MA 02115
| | - Marsha A. Moses
- Vascular Biology Program and Department of Surgery, Children's Hospital and Department of Surgery, Harvard Medical School, Boston, MA 02115
| | - Daniel S. Greenspan
- *Department of Pathology and Laboratory Medicine and
- Department of Pharmacology, University of Wisconsin, Madison, WI 53706; and
- To whom correspondence should be addressed at:
Department of Pathology and Laboratory Medicine, University of Wisconsin, 1300 University Avenue, Madison, WI 53706. E-mail:
| |
Collapse
|
47
|
Herpin A, Lelong C, Becker T, Favrel P, Cunningham C. A tolloid homologue from the Pacific oyster Crassostrea gigas. Gene Expr Patterns 2007; 7:700-8. [PMID: 17433792 DOI: 10.1016/j.modgep.2007.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 02/23/2007] [Accepted: 03/01/2007] [Indexed: 10/23/2022]
Abstract
The genes governing mesoderm specification have been extensively studied in vertebrates, arthropods and nematodes. The latter two phyla belong to the Ecdysozoan clade but little is understood of the role that these genes might play in the development of the other major protostomal clade, the Lophotrochozoa. As part of a wider project to analyze the functions associated with transforming growth factor beta superfamily members in Lophotrochozoa, we have cloned a gene encoding a tolloid homologue from the bivalve mollusc Crassostrea gigas. Tolloid is a key developmental protein that regulates the activity of bone morphogenetic proteins (BMPs). We have determined the intron-exon structure of the gene encoding C. gigas tolloid and have compared it with those of homologous genes from both protostomes and deuterostomes. In order to analyze the functionality of oyster tolloid the zebrafish embryo has been employed as a reporter organism and we show that over-expression of this protein results in the ventralization of zebrafish embryos at 24h post fertilization. The expression of the C. gigas tolloid gene during embryonic and larval development as well as in adult tissues is also explored.
Collapse
Affiliation(s)
- Amaury Herpin
- Sars International Centre for Marine Molecular Biology, High Technology Centre, Bergen, Norway
| | | | | | | | | |
Collapse
|
48
|
Sabirzhanov BE, Keifer J, Clark TG. Characterization of a novel reptilian tolloid-like gene in the pond turtle, Pseudemys scripta elegans. Brain Res 2007; 1154:22-30. [PMID: 17493594 PMCID: PMC2020847 DOI: 10.1016/j.brainres.2007.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 03/23/2007] [Accepted: 04/03/2007] [Indexed: 11/22/2022]
Abstract
The Tolloid metalloproteases are pleiotropic enzymes that are important for many developmental processes. This study describes the isolation and characterization of a novel Tolloid family member from the pond turtle Pseudemys scripta elegans. The turtle Tolloid, designated tTll, is found in two forms. The first, tTlls, contains a signal sequence which may provide a mechanism for secretion. The second, tTllc, does not contain a signal sequence and is likely cytoplasmic. Sequence analysis of tTll revealed that it is most closely related to chicken Tll-2 although tTll domain structure is different. We examined the expression of tTll mRNA by real-time RT-PCR and found the highest expression in the cerebellum with lower levels in the brain stem and cortex. This expression pattern is similar to the expression of the Tolloid mouse orthologues Tll-1 and Tll-2 with highest levels of expression in the cerebellum and lower levels in the brain stem and cortex.
Collapse
Affiliation(s)
- Boris E Sabirzhanov
- Neuroscience Group, Division of Basic Biomedical Sciences, University of South Dakota School of Medicine, 414 E. Clark St., Vermillion, SD 57069, USA
| | | | | |
Collapse
|
49
|
Meyer F, Aberle H. At the next stop sign turn right: the metalloprotease Tolloid-related 1 controls defasciculation of motor axons in Drosophila. Development 2006; 133:4035-44. [PMID: 16971470 DOI: 10.1242/dev.02580] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Navigation of motoneuronal growth cones toward the somatic musculature in Drosophila serves as a model system to unravel the molecular mechanisms of axon guidance and target selection. In a large-scale mutagenesis screen, we identified piranha, a motor axon guidance mutant that shows strong defects in the neuromuscular connectivity pattern. In piranha mutant embryos, permanent defasciculation errors occur at specific choice points in all motor pathways. Positional cloning of piranha revealed point mutations in tolloid-related 1 (tlr1), an evolutionarily conserved gene encoding a secreted metalloprotease. Ectopic expression of Tlr1 in several tissues of piranha mutants, including hemocytes, completely restores the wild-type innervation pattern, indicating that Tlr1 functions cell non-autonomously. We further show that loss-of-function mutants of related metalloproteases do not have motor axon guidance defects and that the respective proteins cannot functionally replace Tlr1. tlr1, however, interacts with sidestep, a muscle-derived attractant. Double mutant larvae of tlr1 and sidestep show an additive phenotype and lack almost all neuromuscular junctions on ventral muscles, suggesting that Tlr1 functions together with Sidestep in the defasciculation process.
Collapse
Affiliation(s)
- Frauke Meyer
- Max-Planck-Institute for Developmental Biology, Department III/Genetics, Spemannstrasse 35, 72076 Tübingen, Germany
| | | |
Collapse
|
50
|
Angerer L, Hussain S, Wei Z, Livingston BT. Sea urchin metalloproteases: a genomic survey of the BMP-1/tolloid-like, MMP and ADAM families. Dev Biol 2006; 300:267-81. [PMID: 17059814 DOI: 10.1016/j.ydbio.2006.07.046] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Revised: 07/25/2006] [Accepted: 07/26/2006] [Indexed: 10/24/2022]
Abstract
Analysis of the Strongylocentrotus purpuratus genome has revealed approximately 240 metalloprotease genes, and they represent all 23 families expressed in vertebrates. EST/cDNA sequencing and microarray analysis show that nearly 70% are represented in embryo RNA. Among them are many metalloproteases with demonstrated developmental roles in other systems-BMP-1/TLD (tolloid) (astacins), MMPs (matrix metalloproteases) and the ADAMs (disintegrin/metalloproteases). The developmental functions of these kinds of metalloproteases include modifying the extracellular matrix, regulating signaling pathways or modulating cellular adhesive properties. The unexpectedly large number of BMP-1/TLD-like protease genes (23) results primarily from expansion of a set encoding an unusual domain conserved in structure and primary sequence only in nematode astacins. Such proteases may have interesting developmental functions because the expression patterns of several are highly regulated along the primary axis at times when cell differentiation and morphogenesis begin. The size of the sea urchin MMP family and the clustered arrangement of many of its members are similar to vertebrates, but phylogenetic analyses suggest that different ancestral genes were independently amplified in sea urchins and vertebrates. One expansion appears to be genes encoding MMPs that have putative transmembrane domains and may be membrane-tethered (MT). Interestingly, the genes encoding TIMPs, inhibitors of MMPs, have also been amplified and the 10 genes are tandemly arranged in a single cluster. In contrast, there are fewer ADAM and ADAMTS genes in sea urchins, but they represent all but one of the chordate-specific groups. The genome sequence now opens the door to experimental manipulations designed to understand how modulation of the extracellular environment affects development.
Collapse
Affiliation(s)
- Lynne Angerer
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20815, USA.
| | | | | | | |
Collapse
|