1
|
Licini C, Montalbano G, Ciapetti G, Cerqueni G, Vitale-Brovarone C, Mattioli-Belmonte M. Analysis of multiple protein detection methods in human osteoporotic bone extracellular matrix: From literature to practice. Bone 2020; 137:115363. [PMID: 32298836 DOI: 10.1016/j.bone.2020.115363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/02/2020] [Accepted: 04/07/2020] [Indexed: 11/15/2022]
Abstract
The punctual analysis of bone Extracellular Matrix (ECM) proteins represents a pivotal point for medical research in bone diseases like osteoporosis. Studies in this field, historically done to appreciate bone biology, were mainly conducted on animal samples and, up to today, only a few studies on protein detection in human bone are present. The challenges in bone ECM protein extraction and quantitation protocols are related to both the separation of proteins from the mineral content (i.e. hydroxyapatite) and the difficulty of avoiding protein denaturation during the extraction processes. The aim of the present work was to define appropriate protocol(s) for bone ECM protein extraction that could be applied to investigate both normal and pathological conditions. We compared and optimised some of the most used protocols present in the literature, modifying the protein precipitation method, the buffer used for resuspension and/or the volume of reagent used. Bradford and BCA assays and Western Blotting were used to evaluate the variations in the total protein recovery and the amount of selected proteins (Type I Collagen, TGF-β, IGF-1, Decorin, Osteopontin, Bone Sialoprotein-2 and Osteocalcin). Collectively, we were capable to draw-up two single-extract protocols with optimal recovery and ideal protein content, that can be used for a detailed analysis of ECM proteins in pathological bone samples. Time-consuming multi-extract procedures, optimised in their precipitation methods, are however crucial for a precise detection of specific proteins, like osteocalcin. As the matter of fact, also the demineralization processes, commonly suggested and performed in several protocols, could hinder an accurate protein detection, thus inherently affecting the study of a pathological bone ECM. This study represents a starting point for the definition of appropriate strategies in the study of bone extracellular matrix proteins involved in the onset and maintenance of bone diseases, as well as a tool for the development of customized scaffolds capable to modulate a proper feedback loop in bone remodelling, altered in case of diseases like osteoporosis.
Collapse
Affiliation(s)
- Caterina Licini
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy
| | - Giorgia Montalbano
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Gabriela Ciapetti
- Laboratorio di Fisiopatologia Ortopedica e Medicina Rigenerativa, Istituto Ortopedico Rizzoli, IRCCS, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Giorgia Cerqueni
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy
| | - Chiara Vitale-Brovarone
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Monica Mattioli-Belmonte
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy
| |
Collapse
|
2
|
Bell PA, Solis N, Kizhakkedathu JN, Matthew I, Overall CM. Proteomic and N-Terminomic TAILS Analyses of Human Alveolar Bone Proteins: Improved Protein Extraction Methodology and LysargiNase Digestion Strategies Increase Proteome Coverage and Missing Protein Identification. J Proteome Res 2019; 18:4167-4179. [DOI: 10.1021/acs.jproteome.9b00445] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
3
|
Mansour A, Abu-Nada L, Al-Waeli H, Mezour MA, Abdallah MN, Kinsella JM, Kort-Mascort J, Henderson JE, Ramirez-Garcialuna JL, Tran SD, Elkashty OA, Mousa A, El-Hadad AA, Taqi D, Al-Hamad F, Alageel O, Kaartinen MT, Tamimi F. Bone extracts immunomodulate and enhance the regenerative performance of dicalcium phosphates bioceramics. Acta Biomater 2019; 89:343-358. [PMID: 30853609 DOI: 10.1016/j.actbio.2019.03.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/28/2019] [Accepted: 03/06/2019] [Indexed: 12/27/2022]
Abstract
Immunomodulation strategies are believed to improve the integration and clinical performance of synthetic bone substitutes. One potential approach is the modification of biomaterial surface chemistry to mimic bone extracellular matrix (ECM). In this sense, we hypothesized that coating synthetic dicalcium phosphate (DCP) bioceramics with bone ECM proteins would modulate the host immune reactions and improve their regenerative performance. To test this, we evaluated the in vitro proteomic surface interactions and the in vivo performance of ECM-coated bioceramic scaffolds. Our results demonstrated that coating DCP scaffolds with bone extracts, specifically those containing calcium-binding proteins, dramatically modulated their interaction with plasma proteins in vitro, especially those relating to the innate immune response. In vivo, we observed an attenuated inflammatory response against the bioceramic scaffolds and enhanced peri-scaffold new bone formation supported by the increased osteoblastogenesis and reduced osteoclastogenesis. Furthermore, the bone extract rich in calcium-binding proteins can be 3D-printed to produce customized hydrogels with improved regeneration capabilities. In summary, bone extracts containing calcium-binding proteins can enhance the integration of synthetic biomaterials and improve their ability to regenerate bone probably by modulating the host immune reaction. This finding helps understand how bone allografts regenerate bone and opens the door for new advances in tissue engineering and bone regeneration. STATEMENT OF SIGNIFICANCE: Foreign-body reaction is an important determinant of in vivo biomaterial integration, as an undesired host immune response can compromise the performance of an implanted biomaterial. For this reason, applying immunomodulation strategies to enhance biomaterial engraftment is of great interest in the field of regenerative medicine. In this article, we illustrated that coating dicalcium phosphate bioceramic scaffolds with bone-ECM extracts, especially those rich in calcium-binding proteins, is a promising approach to improve their surface proteomic interactions and modulate the immune responses towards such biomaterials in a way that improves their bone regeneration performance. Collectively, the results of this study may provide a conceivable explanation for the mechanisms involved in presenting the excellent regenerative efficacy of natural bone grafts.
Collapse
Affiliation(s)
- Alaa Mansour
- Faculty of Dentistry, McGill University, Montreal, QC, Canada.
| | - Lina Abu-Nada
- Faculty of Dentistry, McGill University, Montreal, QC, Canada.
| | - Haider Al-Waeli
- Faculty of Dentistry, McGill University, Montreal, QC, Canada.
| | | | | | - Joseph M Kinsella
- Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, QC, Canada.
| | - Jacqueline Kort-Mascort
- Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, QC, Canada.
| | - Janet E Henderson
- Faculty of Medicine, McGill University, Montreal, QC, Canada; The Bone Engineering Labs, Research Institute McGill University Health Center, Montreal, QC, Canada.
| | - Jose Luis Ramirez-Garcialuna
- Faculty of Medicine, McGill University, Montreal, QC, Canada; The Bone Engineering Labs, Research Institute McGill University Health Center, Montreal, QC, Canada.
| | - Simon D Tran
- Faculty of Dentistry, McGill University, Montreal, QC, Canada.
| | - Osama A Elkashty
- Faculty of Medicine, McGill University, Montreal, QC, Canada; Faculty of Dentistry, Mansoura University, Mansoura, Egypt.
| | - Aisha Mousa
- Faculty of Dentistry, McGill University, Montreal, QC, Canada.
| | - Amir A El-Hadad
- Faculty of Dentistry, McGill University, Montreal, QC, Canada.
| | - Doaa Taqi
- Faculty of Dentistry, McGill University, Montreal, QC, Canada.
| | - Faez Al-Hamad
- Faculty of Dentistry, McGill University, Montreal, QC, Canada.
| | - Omar Alageel
- Faculty of Dentistry, McGill University, Montreal, QC, Canada; College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| | | | - Faleh Tamimi
- Faculty of Dentistry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
4
|
Kaartinen MT, Sun W, Kaipatur N, McKee MD. Transglutaminase Crosslinking of SIBLING Proteins in Teeth. J Dent Res 2016; 84:607-12. [PMID: 15972587 DOI: 10.1177/154405910508400705] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Transglutaminase 2 (TG2), a protein-crosslinking enzyme, participates in extracellular matrix maturation and cell adhesion in cartilage and bone. We hypothesized that TG2 has similar roles in teeth. A TG activity assay and immunoblotting of rat tooth extracts showed TG activity and the presence of high-molecular-weight forms of the SIBLING (Small Integrin-Binding LIgand N-linked Glycoprotein) proteins: dentin matrix protein 1 (DMP1), dentin phosphoprotein (DPP), and bone sialoprotein (BSP). DMP1 and BSP, each containing both glutamine and lysine residues critical for crosslink formation, readily formed polymers in vitro when incubated with TG2. The ability of glutamine-lacking DPP to form polymers in vitro and in vivo demonstrates that it could act as a lysine donor for crosslinking, potentially having protein crosslinking partner(s) in teeth. Consistent with a role in cell adhesion, the TG2 isoform was co-localized by immunohistochemistry with its substrates at cell-matrix adhesion sites, including along odontoblast tubules (DMP1 and DPP), in the pericellular matrix of cementocytes (DMP1), and in predentin (BSP).
Collapse
Affiliation(s)
- M T Kaartinen
- Division of Oral Biology, Faculty of Dentistry, McGill University, Strathcona Bldg.-Room M34, 3640 University Street, Montreal, Quebec, Canada H3A 2B2.
| | | | | | | |
Collapse
|
5
|
McDonald E, Goldberg H, Tabbara N, Mendes F, Siqueira W. Histatin 1 Resists Proteolytic Degradation when Adsorbed to Hydroxyapatite. J Dent Res 2010; 90:268-72. [DOI: 10.1177/0022034510388653] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Histatins are salivary proteins that exhibit a high affinity for hydroxyapatite and contribute to the acquired enamel pellicle. Previous studies have observed that, despite the high proteolytic activity in saliva, significant numbers of histatin molecules in acquired enamel pellicle are intact. Our working hypothesis was that histatins are less susceptible to proteinases present in saliva when adsorbed on the hydroxyapatite. To test this premise, we incubated histatin 1 with hydroxyapatite and human whole saliva. Proteolytic products of this incubation were then characterized by PAGE, HPLC, and mass spectrometry. This study shows for the first time that binding to hydroxyapatite confers intact histatin 1 with resistance to proteolytic degradation.
Collapse
Affiliation(s)
- E.E. McDonald
- School of Dentistry, Dental Sciences Building—DSB0071, Schulich School of Medicine & Dentistry, The University of Western Ontario, London N6A 5C1, ON, Canada
| | - H.A. Goldberg
- School of Dentistry, Dental Sciences Building—DSB0071, Schulich School of Medicine & Dentistry, The University of Western Ontario, London N6A 5C1, ON, Canada
- Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - N. Tabbara
- Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - F.M. Mendes
- Department of Pediatric Dentistry, Faculty of Dentistry, University of São Paulo, Brazil
| | - W.L. Siqueira
- School of Dentistry, Dental Sciences Building—DSB0071, Schulich School of Medicine & Dentistry, The University of Western Ontario, London N6A 5C1, ON, Canada
- Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
6
|
Abstract
BACKGROUND AND OBJECTIVE Bone sialoprotein is a mineralized tissue-specific noncollagenous protein that is glycosylated, phosphorylated and sulfated. The temporo-spatial deposition of bone sialoprotein into the extracellular matrix of bone, and the ability of bone sialoprotein to nucleate hydroxyapatite crystal formation, indicates a potential role for bone sialoprotein in the initial mineralization of bone, dentin and cementum. Bone sialoprotein is also expressed in breast, lung, thyroid and prostate cancers. MATERIAL AND METHODS We used osteoblast-like cells (rat osteosarcoma cell lines ROS17/2.8 and UMR106, rat stromal bone marrow RBMC-D8 cells and human osteosarcoma Saos2 cells), and breast and prostate cancer cells to investigate the transcriptional regulation of bone sialoprotein. To determine the molecular basis of the transcriptional regulation of the bone sialoprotein gene, we conducted northern hybridization, transient transfection analyses with chimeric constructs of the bone sialoprotein gene promoter linked to a luciferase reporter gene and gel mobility shift assays. RESULTS Bone sialoprotein transcription is regulated by hormones, growth factors and cytokines through tyrosine kinase, mitogen-activated protein kinase and cAMP-dependent pathways. Microcalcifications are often associated with human mammary lesions, particularly with breast carcinomas. Expression of bone sialoprotein by cancer cells could play a major role in the mineral deposition and in preferred bone homing of breast cancer cells. CONCLUSION Bone sialoprotein protects cells from complement-mediated cellular lysis, activates matrix metalloproteinase 2 and has an angiogenic capacity. Therefore, regulation of the bone sialoprotein gene is potentially important in the differentiation of osteoblasts, bone matrix mineralization and tumor metastasis. This review highlights the function and transcriptional regulation of bone sialoprotein.
Collapse
Affiliation(s)
- Y Ogata
- Department of Periodontology and Research Institute of Oral Science, Nihon Unievrsity School of Dentistry at Matusudo, Chiba, Japan.
| |
Collapse
|
7
|
Kaartinen MT, Murshed M, Karsenty G, McKee MD. Osteopontin upregulation and polymerization by transglutaminase 2 in calcified arteries of Matrix Gla protein-deficient mice. J Histochem Cytochem 2007; 55:375-86. [PMID: 17189522 DOI: 10.1369/jhc.6a7087.2006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Matrix Gla protein (MGP) is a potent inhibitor of soft tissue calcification, and Mgp gene deletion in mice results in arterial calcification. Our aim was to examine osteopontin (OPN) expression and localization, and posttranslational processing of OPN by the crosslinking enzyme transglutaminase 2 (TG2), in the calcified aorta of Mgp-deficient (Mgp(-/-)) mice. Using immunohistochemistry and light and electron microscopy, we report that following mineralization occurring in the arterial media of Mgp(-/-) aortas, OPN is upregulated and accumulates at the surface of the calcified elastic lamellae. Macrophages were observed in direct contact with this OPN-rich layer. Western blot analysis of extracted Mgp(-/-) aortas revealed that the majority of the OPN was in high molecular mass protein complexes, indicating modification by a crosslinking enzyme. Consistent with this observation, TG2 expression and gamma-glutamyl-epsilon-lysyl crosslink levels were also increased in Mgp(-/-) aortas. In addition to the mineral-inhibiting actions of OPN, and based on data linking OPN and TG2 with cell adhesion in various cell types including monocytes and macrophages, we propose that TG2 interactions with OPN lead to protein polymerization that facilitates macrophage adhesion to the calcified elastic lamellae to promote clearance of the ectopic mineral deposits.
Collapse
Affiliation(s)
- Mari T Kaartinen
- Faculty of Dentistry, McGill University, Strathcona Bldg. Room M-72, 3640 University Street, Montreal, QC, Canada H3A 2B2.
| | | | | | | |
Collapse
|
8
|
Nakano Y, Al-Jallad HF, Mousa A, Kaartinen MT. Expression and localization of plasma transglutaminase factor XIIIA in bone. J Histochem Cytochem 2007; 55:675-85. [PMID: 17341477 DOI: 10.1369/jhc.6a7091.2007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transglutaminases (TGs) are protein crosslinking enzymes involved in cell adhesion and signaling and matrix stabilization and maturation, in many cell types and tissues. We previously described that in addition to transglutaminase 2 (TG2), cultured MC3T3-E1 osteoblasts also express the plasma TG Factor XIIIA (FXIIIA). Here we report on the expression and localization of FXIIIA in bone in vivo and provide confirmatory in vitro data. Immunohistochemistry and in situ hybridization demonstrated that FXIIIA is expressed by osteoblasts and osteocytes in long bones formed by endochondral ossification (femur) and flat bones formed primarily by intramembranous ossification (calvaria and mandible). FXIIIA immunoreactivity was localized to osteoblasts, osteocytes, and the osteoid. RT-PCR analysis revealed FXIIIA expression by both primary osteoblasts and by the MC3T3-E1 osteoblast cell line. Western blot analysis of bone and MC3T3-E1 culture extracts demonstrated that FXIIIA is produced mainly as a small, 37-kDa form. Sequential RT-PCR analysis using overlapping PCR primers spanning the full FXIIIA gene showed that the entire FXIIIA gene is expressed, thus indicating that the 37-kDa FXIIIA is not a splice variant but a product of posttranslational proteolytic processing. Forskolin inhibition of osteoblast differentiation revealed that FXIIIA processing is regulated by the protein kinase A pathway.
Collapse
Affiliation(s)
- Yukiko Nakano
- Faculty of Dentistry, McGill University, Strathcona Bldg. Room M-72, 3640 University Street, Montreal, QC, Canada H3A
| | | | | | | |
Collapse
|
9
|
Moriguchi M, Yamada M, Yanagisawa T. Immunocytochemistry of keratan sulfate proteoglycan and dermatan sulfate proteoglycan in porcine tooth-germ dentin. Anat Sci Int 2004; 79:145-51. [PMID: 15453615 DOI: 10.1111/j.1447-073x.2004.00078.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Keratan sulfate proteoglycan and dermatan sulfate proteoglycan have been reported to inhibit collagen fibrillogenesis. We investigated their distribution in order to evaluate the role of proteoglycan in dentinogenesis. Specimens of porcine tooth-germ dentin and erupted teeth were the materials on which antibodies to keratin sulfate and dermatan sulfate proteoglycan were used. Predentin was found to be positive for both antibodies and the reaction ceased in the calcification front. Uniformly thick collagen fibrils (30-70 nm in diameter) were distributed in the predentin matrix, which would become intertubular dentin in the future. Both antibodies reacted positively along these fibrils. In contrast, along the surface layer of dentin in the tooth germ and that in erupted teeth, collagen fibrils of 10-300 nm in diameter were noted occasionally in dentinal tubules whose odontoblastic processes had disappeared and these heterogeneous fibrils were negative for both antibodies. Our findings suggest that keratan sulfate proteoglycan and dermatan sulfate proteoglycan distributed in the predentin inhibit calcification of collagen fibrils in the uncalcified matrix and disappear in the calcification front. It is further suggested that keratan sulfate proteoglycan and dermatan sulfate proteoglycan distributed along collagen fibrils in the predentin matrix maintain uniform thickness, whereas collagen fibrils in dentinal tubules varied in thickness because of the absence of involvement of both proteoglycans. Therefore, keratan sulfate proteoglycan and dermatan sulfate proteoglycan were thought to be involved in both calcification and matrix formation.
Collapse
Affiliation(s)
- Mitsuko Moriguchi
- Department of Ultrastructural Science, Tokyo Dental College, Chiba, Chiba Prefecture, Japan.
| | | | | |
Collapse
|
10
|
Abstract
Tissue transglutaminase (tTG) is an intra- and extracellular, protein-cross-linking enzyme that has been implicated in apoptosis, matrix stabilization, and cell attachment in a variety of tissues. This study provides in vivo evidence in bone of TG activity, its tissue localization, and identification of its substrates. In microplate- and blotting-based activity assays using biotinylated primary amine as a probe, we show TG activity in protein extracts from the mineralized compartment of intramembranous rat bone. Avidin affinity purification of bone extract labeled with biotinylated primary amine in the presence of tTG, in conjunction with Western blotting, permitted identification of three major noncollagenous TG substrates in bone: osteopontin (OPN), bone sialoprotein (BSP), and alpha2 HS-glycoprotein (AHSG), of which the latter two are novel substrates. Cross-linking and labeling of purified proteins confirmed their ability to serve as TG substrates, because they readily incorporated biotinylated primary amine and formed large protein aggregates in the presence of tTG. All three proteins were also identified in the high molecular weight complexes extractable from the mineralized compartment of bone. Two-dimensional (2D) gel electrophoretic analysis combined with Western blotting indicated that the proteins are not cross-linked to each other, but form distinct homotypic polymers. In the extracellular matrix of bone, tTG and isopeptide bonds were localized by immunohistochemistry in the osteoid and in the pericellular matrix surrounding osteocytes. At the cellular level, osteoblasts and osteocytes were immunostained for tTG. Collectively, these data suggest a role for tTG and its covalently cross-linked substrates in cell adhesion and possibly also in bone matrix maturation and calcification.
Collapse
Affiliation(s)
- Mari T Kaartinen
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
11
|
Zhu XL, Ganss B, Goldberg HA, Sodek J. Synthesis and processing of bone sialoproteins during de novo bone formation in vitro. Biochem Cell Biol 2001. [DOI: 10.1139/o01-146] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bone sialoprotein (BSP) and osteopontin (OPN) are sulphated and phosphorylated sialoglycoproteins that regulate the formation of hydroxyapatite crystals during de novo bone formation. To gain insights into the relationship between the synthesis and posttranslational modification of BSP and OPN and the mineralization of bone, pulsechase studies were conducted on cultures of newly forming bone nodules produced by fetal rat calvarial cells in vitro. Cultures were pulse labelled with 35SO4, or with either 32PO4 or [γ-32P]ATP to study intracellular and extracellular phosphorylation, respectively, and chased in isotope-free medium for various times up to 24 h. The presence of radiolabelled BSP and OPN was determined in the cells, in culture medium, and in various tissue compartments obtained by dissociative extraction with 4 M GuHCl (G1), 0.5 M EDTA (E), and again with 4 M GuHCl (G2) and a bacterial collagenase digestion of the demineralized collagenous tissue residue. With each isotope employed, radiolabelled BSP and OPN were detected in the E extract within the 1-h chase period and increased in amount with time. Similarly, 35SO4- and 32PO4-labelled BSP increased in the G2 extract, but OPN was not detected. In the G1 extract the 35SO4-labelled BSP decreased with chase time, whereas the 32PO4-labelled BSP increased. No differences were evident in the profiles of BSP labelled with 32PO4 or [γ-32P]ATP. In the absence of β-glycerophosphate, which is required for optimal mineralization of the bone nodules, 35SO4-labelled BSP was increased in the medium and G1 extract and decreased in the E extract and G2 extract after 3 h. In addition to differences in the tissue compartmentalization of BSP and OPN, these studies indicate that 35SO4 is lost from BSP during mineralization and that isoforms of BSP exist with a selective affinity for the organic and mineral phases. Moreover, the additional phosphorylation of BSP and OPN catalyzed by ectokinase activity does not appear to alter the distribution of these sialoproteins.Key words: biosynthesis, bone, bone sialoprotein, osteopontin, mineralization, posttranslational modification.
Collapse
|
12
|
Kotha SP, Guzelsu N. The effects of interphase and bonding on the elastic modulus of bone: changes with age-related osteoporosis. Med Eng Phys 2000; 22:575-85. [PMID: 11182582 DOI: 10.1016/s1350-4533(00)00075-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A simple shear lag model is developed to analyze the physics of the stress transfer between the organic and mineral constituents of bone tissue in the presence of an interphase and changes in bonding. The analytical model is developed assuming interactions between overlapped bone mineral platelets. The platelets are assumed to carry the axial stresses while the organic matrix transfers the stresses from one platelet to another by shear. A decrease in the interphase mechanical properties decreases the elastic modulus due to increased shear between the overlapped platelets. A decrease in bonding decreases the elastic modulus due to an increase in the axial stress transferred from the ends of the platelet. The implications of the changes in parameters on the age-related disorders of bone (osteoporois) are discussed. It is suggested that the aspect ratio and volume fraction of the mineral in the remaining bone tissue would increase due to a reduction in the density of the bone. The mechanical properties of the organic are hypothesized to increase due to a reduction in the density of bone leading to an increased tendency for damage within the organic.
Collapse
Affiliation(s)
- S P Kotha
- University of Medicine and Dentistry of New Jersey - SOM-Biomechanics, Biomedical Engineering Program, Tr. #4, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | |
Collapse
|
13
|
Sodek KL, Tupy JH, Sodek J, Grynpas MD. Relationships between bone protein and mineral in developing porcine long bone and calvaria. Bone 2000; 26:189-98. [PMID: 10678415 DOI: 10.1016/s8756-3282(99)00251-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Several proteins in the bone matrix have been implicated in the regulation of mineral crystal formation and growth. To investigate the relationships between these proteins and the mineral phase at various stages of mineral maturation, fetal porcine calvariae and long bones were fragmented and the particles (20 microm) separated by density gradient sedimentation into fractions of increasing density (1.8 to >2.2 g/cm3). Samples from each fraction were analyzed by X-ray diffraction to obtain the average crystal size/strain and chemical composition. Other samples were sequentially extracted, first with 4.0 mol/L guanidium hydrochloride (GuHCl) (G1), then with 0.5 mol/L ethylene-diamine tetraacetic acid (EDTA) (E), and again with 4.0 mol/L Gu-HCI (G2), for analysis of proteins in different tissue compartments. Based on the mineral density distribution and crystal size, fetal porcine bone protein content was determined for tissue residue and each extract and the protein composition analyzed by sodium dodecyl-polyacrylamide gel electrophoresis (SDS-PAGE). Although the insoluble organic matrix decreased with mineral density the collagen and protein content remained fairly constant, representing approximately 10% of the tissue weight, except in the highest density fraction. Whereas the total extractable protein, representing predominantly noncollagenous proteins, did not show density-related differences, differences were observed for individual proteins on SDS-PAGE. Consistent with their presence in osteoid, the content of bone sialoprotein (BSP), tyrosine-rich acidic matrix protein (TRAMP), and a series of small proteins with cell attachment properties in the G1 extract decreased with mineral density, whereas TRAMP and BSP were increased in G2 extracts. Mineral-associated proteins, including alpha2HS-glycoprotein, BSP, osteopontin (OPN), and osteocalcin, increased with mineral density, whereas secreted protein acidic and rich in cysteine (SPARC)/osteonectin, and some minor proteins, appeared to decrease. Differences of individual proteins within and between the calvarial and long bones could be related to the role of these proteins in the formation and maturation of hydroxyapatite crystals. Collectively, these studies demonstrate mineral density-associated changes in protein composition that reflect a rapid maturation of mineral crystals in embryonic porcine bones.
Collapse
Affiliation(s)
- K L Sodek
- Connective Tissue Group and Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
14
|
Domenicucci C, Goldberg HA, Sodek J. Identification of lysyl oxidase and TRAMP as the major proteins in dissociative extracts of the demineralized collagen matrix of porcine dentine. Connect Tissue Res 1998; 36:151-63. [PMID: 9512885 DOI: 10.3109/03008209709160217] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Carbonated apatite (dahllite) is formed within and between collagen fibrils in the mineralization of connective tissues. However, the mechanism of crystal nucleation at these sites has not been resolved. To identify non-collagenous proteins that may be involved in the nucleation process we have utilized a dissociative extraction procedure to isolate proteins associated non-covalently with the de-mineralized collagen matrix of dentine isolated from tooth roots of adult porcine incisors. Following extraction of dentine fragments with 4M GuHCl (G1-extract) and 0.5M EDTA (E-extract), de-mineralized collagen matrix-associated proteins were isolated with a second series of extractions with 4M GuHCl (G2-extract). Analysis of the G2-extracts on SDS-PAGE revealed two major 32 kDa and 24 kDa protein bands, comprising > 80% of the extracted non-collagenous proteins. The 32 kDa protein was purified by FPLC on hydroxyapatite and Mono Q resins, followed by HPLC reverse-phase chromatography. Small amounts of 26 kDa and 6 kDa proteins, which appear to represent proteolytically processed, disulphide-linked fragments of the 32 kDa protein, co-eluted with the major protein. The 32 kDa protein was identified as lysyl oxidase from amino acid sequence analysis of a 13 kDa CNBr peptide obtained from protein purified by preparative electrophoresis on SDS-PAGE. Fractionation of the 24 kDa protein on FPLC Mono Q resin generated < 5 closely eluting protein peaks. The proteins from these peaks were similar in size, staining properties, amino acid composition and CNBr digestion patterns. Each protein was immunoreactive with antibodies raised against a tyrosine-rich acidic matrix protein (TRAMP), reported previously to co-purify with lysyl oxidase. These studies, therefore, show that lysyl oxidase, which is important in collagen cross-link formation, and proteins with properties of TRAMP, a protein that can modulate collagen fibrillogenesis, are the major proteins in dissociative extracts of de-mineralized porcine dentine.
Collapse
Affiliation(s)
- C Domenicucci
- Medical Research Council Group in Periodontal Physiology, Faculty of Dentistry, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
15
|
D'Souza RN, Cavender A, Sunavala G, Alvarez J, Ohshima T, Kulkarni AB, MacDougall M. Gene expression patterns of murine dentin matrix protein 1 (Dmp1) and dentin sialophosphoprotein (DSPP) suggest distinct developmental functions in vivo. J Bone Miner Res 1997; 12:2040-9. [PMID: 9421236 DOI: 10.1359/jbmr.1997.12.12.2040] [Citation(s) in RCA: 265] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Although the precise mechanisms of the conversion of predentin to dentin are not well understood, several lines of evidence implicate the noncollagenous proteins (NCPs) as important regulators of dentin biomineralization. Here we compared the in vivo temporospatial expression patterns of two dentin NCP genes, dentin matrix protein 1 (Dmp1), and dentin sialophosphoprotein (DSPP) in developing molars. Reverse transcription-polymerase chain reaction was performed on embryonic day 13 to 1-day-old first molars using Dmp1- and DSPP-specific primer sets. Dmp1 transcripts appeared at the late bud stage, while DSPP mRNA was seen at the cap stage. Expression of both genes was sustained throughout odontogenesis. In situ hybridization analysis revealed interesting differences in the expression patterns of these genes. While Dmp1 and DSPP showed coexpression in young odontoblasts before the start of mineralization, the expression of these genes was notably distinct at later stages. Dmp1 expression decreased in secretory odontoblasts after the appearance of mineral, while high levels of DSPP were sustained in odontoblasts. In early secretory ameloblasts, DSPP expression was transient and down-regulated with the appearance ofdentin matrix. Interestingly, Dmp1 expression became evident in ameloblasts during the maturative phase of amelogenesis. In contrast to Dspp expression that was tooth-specific, Dmp1 was expressed by osteoblasts throughout ossification in the skeleton. Probes directed to the "DSP" and "DPP" regions of the DSPP gene showed identical patterns of mRNA expression. These data show that the developmental expression patterns of Dmp1 and DSPP are distinct, implying that these molecules serve different biological functions in vivo.
Collapse
Affiliation(s)
- R N D'Souza
- Department of Basic Sciences, Dental Branch, University of Texas Houston Health Science Center 77030, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Goldberg HA, Warner KJ. The staining of acidic proteins on polyacrylamide gels: enhanced sensitivity and stability of "Stains-all" staining in combination with silver nitrate. Anal Biochem 1997; 251:227-33. [PMID: 9299020 DOI: 10.1006/abio.1997.2252] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A number of acidic proteins, such as those found in bone and dentin, are poorly resolved on acrylamide gels using Coomassie blue or silver nitrate staining. The cationic dye Stains-all allows visualization and identification of these proteins due to their differential staining: highly acidic proteins stain blue and intact proteoglycans stain purple, whereas less acidic proteins stain pink. However, the use of Stains-all is limited due to relatively poor staining sensitivity and lack of stability to light. A procedure which addresses these deficiencies has been developed utilizing established protocols for Stains-all staining followed by silver nitrate incubation and development. In this way, phosphoproteins such as osteopontin, bone sialoprotein, dentin phosphophoryn, and other acidic glycoproteins are visualized at higher sensitivity (greater than fivefold) and staining stability than normally achieved with just Stains-all. The protocol stains a greater variety of proteins than a combined alcian blue/silver staining procedure previously described. Utilizing the Stains-all/silver protocol, porcine bone osteopontin, a protein not visualized by standard silver staining, can be observed in amounts as little as 0.25 ng on polyacrylamide gels. Furthermore, densitometric scans demonstrate that the staining intensity is proportional to osteopontin amount and can be used for quantification over a range from 0.25 to 50 ng.
Collapse
Affiliation(s)
- H A Goldberg
- Skeletal Biology Group, The University of Western Ontario, London, Ontario, N6A 5C1, Canada.
| | | |
Collapse
|
17
|
Damjanovski S, Karp X, Funk S, Sage EH, Ringuette MJ. Ectopic expression of SPARC in Xenopus embryos interferes with tissue morphogenesis: identification of a bioactive sequence in the C-terminal EF hand. J Histochem Cytochem 1997; 45:643-55. [PMID: 9154151 DOI: 10.1177/002215549704500502] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
SPARC is a matricellular Ca(2+)-binding glycoprotein that exhibits both counteradhesive and antiproliferative effects on cultured cells. It is secreted by cells of various tissues as a consequence of morphogenesis, response to injury, and cyclic renewal and/or repair. In an earlier study with Xenopus embryos we had shown a highly specific and regulated pattern of SPARC expression. We now show that ectopic expression of SPARC before its normal embryonic activation produces severe anomalies, some of which are consistent with the functions of SPARC proposed from studies in vitro. Microinjection of SPARC RNA, protein, and peptides into Xenopus embryos before endogenous embryonic expression generated different but overlapping phenotypes. (a) Injection of SPARC RNA into one cell of a two-cell embryo resulted in a range of unilateral defects. (b) Precocious exposure of embryos to SPARC by microinjection of protein into the blastocoel cavity was associated with certain axial defects comparable to those obtained with SPARC RNA. (c) SPARC peptides containing follistatin-like and copper-binding sequences were without obvious effect, whereas SPARC peptide 4.2, corresponding to a disulfide-bonded, Ca(2+)-binding domain, was associated with a reduction in axial structures that led eventually to complete ventralization of the embryos. Histological analysis of ventralized embryos indicated that the morphogenetic events associated with gastrulation might have been inhibited. Microinjection of other Ca(2+)-binding glycoproteins, such as osteopontin and bone sialoprotein, resulted in phenotypes that were unique. We probed further the structural correlates of this region of SPARC in the context of tissue development. Co-injection of peptide 4.2 with Ca2+ or EGTA, and injection of peptide 4.2K (containing a mutated consensus Ca(2+)-binding sequence), demonstrated that the developmental defects associated with peptide 4.2 were independent of Ca2+. However, the disulfide bridge in this region of SPARC was found to be critical, as injection of peptide 4.2AA, a mutant lacking the cystine, generated no axial defects. We have therefore shown for the first time in vivo that the temporally inappropriate presence of SPARC is associated with perturbations in tissue morphogenesis. Moreover, we have identified at least one bioactive region of SPARC as the C-terminal disulfide-bonded, Ca(2+)-binding loop that was previously shown to be both counteradhesive and growth-inhibitory.
Collapse
Affiliation(s)
- S Damjanovski
- Department of Zoology, University of Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
18
|
Takagi M, Maeno M, Yamada T, Miyashita K, Otsuka K. Nature and distribution of chondroitin sulphate and dermatan sulphate proteoglycans in rabbit alveolar bone. THE HISTOCHEMICAL JOURNAL 1996; 28:341-51. [PMID: 8818681 DOI: 10.1007/bf02331397] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The type and distribution of mineral binding and collagenous matrix-associated chondroitin sulphate and dermatan sulphate proteoglycans in rabbit alveolar bone were studied biochemically and immunocytochemically, using three monoclonal antibodies (mAb 2B6, 3B3, and 1B5). The antibodies specifically recognize oligosaccharide stubs that remain attached to the core protein after enzymatic digestion of proteoglycans and identify epitopes in chondroitin 4-sulphate and dermatan sulphate; chondroitin 6-sulphate and unsulphated chondroitin; and unsulphated chondroitin, respectively. In addition, mAb 2B6 detects chondroitin 4-sulphate with chondroitinase ACII pre-treatment, and dermatan sulphate with chondroitinase B pre-treatment. Bone proteins were extracted from fresh specimens with a three-step extraction procedure: 4 M guanidine HCl (G-1 extract), 0.4 M EDTA (E-extract), followed by guanidine HCl (G-2 extract), to characterize mineral binding and collagenous matrix associated proteoglycans in E- and G2-extracts, respectively. Biochemical results using Western blot analysis of SDS-polyacrylamide gel electrophoresis of E- and G2-extracts demonstrated that mineral binding proteoglycans contain chondroitin 4-sulphate, chondroitin 6-sulphate, and dermatan sulphate, whereas collagenous matrix associated proteoglycans showed a predominance of dermatan sulphate with a trace of chondroitin 4-sulphate and no detectable chondroitin 6-sulphate or unsulphated chondroitin. Immunocytochemistry showed that staining associated with the mineral phase was limited to the walls of osteocytic lacunae and bone canaliculi, whereas staining associated with the matrix phase was seen on and between collagen fibrils in the remainder of the bone matrix. These results indicate that mineral binding proteoglycans having chondroitin 4-sulphate, dermatan sulphate, and chondroitin 6-sulphate were localized preferentially in the walls of the lacunocanalicular system, whereas collagenous associated dermatan sulphate proteoglycans were distributed over the remainder of the bone matrix.
Collapse
Affiliation(s)
- M Takagi
- Department of Anatomy, Nihon University School of Dentistry, Tokyo, Japan
| | | | | | | | | |
Collapse
|
19
|
Abstract
A calcium ion precipitable, trypsin-generated proteoglycan fragment has been isolated from the demineralized, EDTA-insoluble matrices of bone. The demineralized matrix was completely digested with trypsin, increasing concentrations of CaCl2 were added to the supernatant, and the resulting precipitates were analyzed. The amount of precipitate gradually increased with higher concentrations of calcium and was reversibly solubilized by EDTA. After molecular sieve and anion exchange chromatography, a proteoglycan-containing peak was obtained. Immunochemical analysis showed that this peak contained chondroitin 4-sulfate and possibly keratan sulfate. Amino acid analysis showed that this proteoglycan contained high amounts of aspartic acid/asparagine (Asx), serine (Ser), glutamic acid/glutamine (Glx), proline (Pro), and glycine (Gly); however, it contained little leucine (Leu) which suggests that it is not a member of the leucine-rich small proteoglycan family. In addition, significant amounts of phosphoserine (P-Ser) and hydroxyproline (Hyp) were identified in hydrolysates of this fraction. A single band (M(r) 59 kDa) was obtained on SDS-PAGE that stained with Stains-all but not with Coomassie Brilliant Blue R-250. If bone powder was trypsinized prior to demineralization, this proteoglycan-containing fraction was not liberated. Collectively, these results indicate that a proteoglycan occurs in the demineralized matrix that is precipitated with CaCl2 and is closely associated with both mineral and collagen matrices. Such a molecule might facilitate the structural network for the induction of mineralization in bone.
Collapse
Affiliation(s)
- Y Hashimoto
- Department of Biochemistry, School of Dentistry, Aichi-gakuin University, Nagoya, Japan
| | | | | | | |
Collapse
|
20
|
George A, Silberstein R, Veis A. In situ hybridization shows Dmp1 (AG1) to be a developmentally regulated dentin-specific protein produced by mature odontoblasts. Connect Tissue Res 1995; 33:67-72. [PMID: 7554964 DOI: 10.3109/03008209509016984] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Acidic phosphorylated proteins are prominent constituents of the extracellular matrix of bone and dentin. It has been postulated that they may have important structural and regulatory roles in the process of tissue mineralization. Studies of a cDNA library, prepared from cells of the rat incisor odontoblast-pulp complex of 3 week old Sprague-Dawley rats, led to the identification of a serine-rich acidic protein, designated AG1, which appeared to be a dentin matrix component. In order to determine which cells of the odontoblast-pulp complex were responsible for the making of AG1, in situ hybridization was carried out using digoxigenin-labeled probes. The full length AG1 cDNA was subcloned into the pBluescript vector, which contains two strong promoters, T3 and T7. The sense and antisense complementary RNA (cRNA) hybridization probes were prepared by in vitro transcription using T3 and T7 polymerases in the presence of 11-dUTP. Incisor sections were obtained from rat embryos at days 16, and 20, and newborns at days 2 and 5. No AG1 mRNA was detected in the embryonic sections, but digoxigenin labeling was evident in odontoblasts secreting mineralizing dentin at postnatal days 2 and 5. Sense probes showed no hybridization. Pulp cells, Meckel's cartilage, and alveolar bone were free of hybridization with the antisense probe. Unexpectedly, a low level of digoxigenin staining was seen in the cytoplasm of secretory ameloblasts, but not in the preameloblasts, stratum intermedium or stellate reticulum of the enamel organ. These data show that AG1 expression is regulated developmentally and is restricted to secretory stage mature odontoblasts.
Collapse
Affiliation(s)
- A George
- Division of Oral Biology, Northwestern University, Chicago, IL 60611, USA
| | | | | |
Collapse
|
21
|
Steinfort J, van de Stadt R, Beertsen W. Identification of new rat dentin proteoglycans utilizing C18 chromatography. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31803-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
22
|
Abstract
Purification of a protein typically involves development of a quantitative assay to track protein integrity (e.g. enzyme activity) during subsequent isolation steps. The generalized procedure involves choosing the source of the protein, defining extraction conditions, developing bulk purification methods followed by refined, more selective methods. The purification of proteoglycans is often complicated by a) limited source quantities, b) necessity of chaotrophic solvents for efficient extraction, c) their large molecular size and d) lack of defined functions to enable purity (i.e. activity, conformation) to be assessed. Because the usual goal of proteoglycan purification is physical characterization (intact molecular weight, core protein and glycosaminoglycan class and size), the problems of a suitable assay and/or native conformation are avoided. The 'assay' for tracking proteoglycan isolation typically utilizes uronic acid content or radiolabel incorporation as a marker. Once extracted from their cellular/extracellular environment, proteoglycans can be isolated by density gradient centrifugation and/or column chromatography techniques. Recent advances in the composition of chromatographic supports have enabled the application of ion-exchange, gel permeation, hydrophobic interaction and affinity chromatography resins using efficient high-pressure liquid chromatography to proteoglycan purification.
Collapse
Affiliation(s)
- N S Fedarko
- Bone Research Branch, National Institute of Dental Reearch, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
23
|
Abstract
Purification of a protein typically involves development of a quantitative assay to track protein integrity (e.g. enzyme activity) during subsequent isolation steps. The generalized procedure involves choosing the source of the protein, defining extraction conditions, developing bulk purification methods followed by refined, more selective methods. The purification of proteoglycans is often complicated by a) limited source quantities, b) necessity of chaotropic solvents for efficient extraction, c) their large molecular size and d) lack of defined functions to enable purity (i.e. activity, conformation) to be assessed. Because the usual goal of proteoglycan purification is physical characterization (intact molecular weight, core protein and glycosaminoglycan class and size), the problems of a suitable assay and/or native conformation are avoided. The 'assay' for tracking proteoglycan isolation typically utilizes uronic acid content or radiolabel incorporation as a marker. Once extracted from their cellular/extracellular environment, proteoglycans can be isolated by density gradient centrifugation and/or column chromatography techniques. Recent advances in the composition of chromatographic supports have enabled the application of ion-exchange, gel permeation, hydrophobic interaction and affinity chromatography resins using efficient high-pressure liquid chromatography to proteoglycan purification.
Collapse
Affiliation(s)
- N S Fedarko
- Bone Research Branch, National Institute of Dental Research, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
24
|
Takagi M, Maeno M, Takahashi Y, Otsuka K. Biochemical and immuno- and lectin-histochemical studies of solubility and retention of bone matrix proteins during EDTA demineralization. THE HISTOCHEMICAL JOURNAL 1992; 24:78-85. [PMID: 1577625 DOI: 10.1007/bf01082443] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The present study utilized biochemical and immuno- and lectin-histochemical methods to demonstrate solubility and retention of mineral-binding non-collagenous proteins in rat midshaft subperiosteal bone during EDTA demineralization. A monoclonal antibody (9-A-2) specific for chondroitin 4-sulphate and dermatan sulphate and wheat germ agglutinin (WGA) specific for N-acetyl-D-glucosamine, N-acetylneuraminic acid, and N-acetyl-D-galactosamine were used. Bone proteins were extracted from fresh unfixed or aldehyde-fixed specimens with a three step extraction procedure, 4 M guanidine HCl (GdnCl), aqueous EDTA without GdnCl, followed by GdnCl. For comparison with the second extraction step, ethanolic trimethylammonium EDTA (ethanolic EDTA) was substituted for aqueous EDTA. Based on protein staining and Western blot analysis of SDS-polyacrylamide gel electrophoresis of each extract using 9-A-2 and WGA, retention of mineral-binding proteins extractable from fresh specimens with aqueous EDTA was greatly increased in tissue when ethanolic EDTA was used. Their retention was even greater with prior aldehyde fixation. Maximum retention with no detectable solubility of 9-A-2 and WGA reactive proteins was obtained after ethanolic EDTA extraction of aldehyde-fixed specimens, which concomitantly provided the strongest immuno- and lectin staining. These results indicate that this combined method dramatically improves retention of PGs and glycoproteins during demineralization of bone tissues and provides the best method for localizing these glycoconjugates.
Collapse
Affiliation(s)
- M Takagi
- Department of Anatomy, Nihon University School of Dentistry, Tokyo, Japan
| | | | | | | |
Collapse
|
25
|
Boskey AL. The role of extracellular matrix components in dentin mineralization. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 1991; 2:369-87. [PMID: 1654141 DOI: 10.1177/10454411910020030501] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The extracellular matrix of dentin consists of mineral (hydroxyapatite), collagen, and several noncollagenous matrix proteins. These noncollagenous matrix proteins may be mediators of cell-matrix interactions, matrix maturation, and mineralization. This review describes the current knowledge of the chemistry of mineral crystal formation in dentin with special emphasis on the roles of the dentin matrix proteins. The functions of some of these matrix proteins in the mineralization process have been deduced based on in vitro studies. Functions for others have been postulated based on analogy with some of the bone matrix proteins. Evidence suggests that several of these matrix proteins may have multiple effects on nucleation, crystal growth, and orientation of dentin hydroxyapatite.
Collapse
Affiliation(s)
- A L Boskey
- Laboratory for Ultrastructural Biochemistry, Hospital for Special Surgery, New York, New York
| |
Collapse
|
26
|
Chen J, Zhang Q, McCulloch CA, Sodek J. Immunohistochemical localization of bone sialoprotein in foetal porcine bone tissues: comparisons with secreted phosphoprotein 1 (SPP-1, osteopontin) and SPARC (osteonectin). THE HISTOCHEMICAL JOURNAL 1991; 23:281-9. [PMID: 1938474 DOI: 10.1007/bf01045047] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bone sialoprotein (BSP) is a prominent component of bone tissues that is expressed by differentiated osteoblastic cells. Affinity-purified antibodies to BSP were prepared and used in combination with biotin-conjugated peroxidase-labeled second antibodies to demonstrate the distribution of this protein in sections of demineralized foetal porcine tibia and calvarial bone. Staining for BSP was observed in the matrix of mineralized bone and also in the mineralized cartilage and associated cells of the epiphysis, but was not observed in the hypertrophic zone nor in any of the soft tissues including the periosteum. In comparison, SPP-1 (osteopontin) and SPARC (osteonectin), which are also major proteins in porcine bone, were observed in the cartilage as well as in the mineralized bone matrix. In addition, SPARC was also present in soft connective tissues. Although SPP-1 distribution was more restricted than SPARC, hypertrophic chondrocytes, periosteal cells and some stromal cells in the bone marrow spaces were stained in addition to osteoblastic cells. The variations in the distribution and cellular expression of BSP, SPARC and SPP-1 in bone and mineralizing cartilage indicate these proteins perform different functions in the formation and remodelling of mineralized connective tissues.
Collapse
Affiliation(s)
- J Chen
- Medical Research Council Group in Periodontal Physiology, Faculty of Dentistry, University of Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
27
|
Kasugai S, Todescan R, Nagata T, Yao KL, Butler WT, Sodek J. Expression of bone matrix proteins associated with mineralized tissue formation by adult rat bone marrow cells in vitro: inductive effects of dexamethasone on the osteoblastic phenotype. J Cell Physiol 1991; 147:111-20. [PMID: 2037618 DOI: 10.1002/jcp.1041470115] [Citation(s) in RCA: 187] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The nature and tissue distribution of non-collagenous bone proteins synthesized by adult rat bone marrow cells, induced to differentiate in the presence of dexamethasone (DEX) and beta-glycerophosphate (beta-GP), was studied in vitro to determine the potential role of these proteins in bone formation. Northern hybridization analysis revealed a strong induction of bone sialoprotein (BSP) and osteocalcin in DEX-treated cultures, whereas the constitutive expression of secreted phosphoprotein I (SPP-1), type I collagen, SPARC, and alkaline phosphatase was stimulated 6-, 5-, 3-, and 2.5-told, respectively. Metabolic labeling of proteins showed that the sialoproteins (SPP-1 and BSP) were mostly secreted into the culture medium in the non-mineralizing (-beta-GP) cultures, but were the predominant non-collagenous proteins associated with the hydroxyapatite of the bone nodules in mineralizing cultures (+ beta-GP). Extraction of the tissue matrix with 4 M GuHCl and digestion of the demineralized tissue matrix with bacterial collagenase revealed that some BSP was also associated non-covalently and covalently with the collagenous matrix. SPP-1 was present in two distinct, 44 kDa and 55 kDa, forms in the conditioned medium of all cultures and was preferentially associated with the hydroxyapatite in the mineralizing cultures. In comparison, SPARC was abundant in culture media but could not be detected in de-mineralizing extracts of the mineralized tissue. Radiolabeling with [35SO4] demonstrated that both SPP-1 and BSP synthesized by bone cells are sulfated, and that a 35 kDa protein and some proteoglycan were covalently associated with the collagenous matrix in +DEX cultures. Labeling with [32PO4] was essentially confined to the sialoproteins; the 44 kDa SPP-1 incorporating significantly more [32PO4] than the 55 kDa SPP-1 and the BSP. These studies demonstrate that BSP and osteocalcin are only expressed in differentiated osteoblasts and that most of the major non-collagenous bone proteins associate with the bone mineral. However, some novel proteins together with some of the BSP are associated with the collagenous matrix where they can influence hydroxyapatite formation.
Collapse
Affiliation(s)
- S Kasugai
- Medical Research Council Group in Periodontal Physiology, Faculty of Dentistry, University of Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
28
|
Nagata T, Goldberg HA, Zhang Q, Domenicucci C, Sodek J. Biosynthesis of bone proteins by fetal porcine calvariae in vitro. Rapid association of sulfated sialoproteins (secreted phosphoprotein-1 and bone sialoprotein) and chondroitin sulfate proteoglycan (CS-PGIII) with bone mineral. MATRIX (STUTTGART, GERMANY) 1991; 11:86-100. [PMID: 1649377 DOI: 10.1016/s0934-8832(11)80212-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To study the biosynthesis of bone proteins, fragments of fetal porcine calvariae were cultured in the presence of 50 micrograms/ml ascorbate and 10 mM beta-glycerophosphate and individual cultures labeled for either 4 h or 48 h with [35S]-methionine, Na2[35SO4], Na3[32PO4] or [14C]-glycine plus [14C]-proline. The radiolabeled proteins in tissue extracts were obtained by sequential extraction with 4 M GuHCl (G1-extract), 0.5 M EDTA (E-extract), and again with 4 M GuHCl (G2-extract) and analyzed together with the radiolabeled proteins secreted into the medium. SPP-1 (secreted phosphoprotein 1, osteopontin) was the major non-collagenous protein deposited into the bone matrix, with lesser amounts of BSP (bone sialoprotein), osteocalcin and chondroitin sulfate proteoglycans (CS-PG II and CS-PG III). SPP-1 was also the major phosphorylated protein and was recovered, together with several fragmented forms, almost entirely in the demineralizing extracts. Moreover, approximately one-half of the [35SO4] incorporated into E-extract proteins was present in SPP-1, the remainder being incorporated into PGs with smaller amounts associated with BSP. Over 65% of the [35SO4] in the proteoglycans of the demineralizing extracts was recovered in the small CS-PG III with less than 35% in CS-PG II, the bone homologue of DS-PG II (decorin). In contrast, CS-PG II was the predominant small proteoglycan in culture media and in guanidine extracts. Some sulfated BSP was also observed in guanidine extracts and small amounts appeared to bind to collagen. Radiolabeled SPARC (osteonectin), a prominent protein of fetal porcine bone, was not detected in the mineralized bone tissues but was prominent in the culture medium. These results demonstrate that following secretion, the major proteins expressed by osteoblastic cells are initially incorporated into different tissue compartments, with most of the sulfated sialoproteins and CS-PG III associating rapidly with the hydroxyapatite crystals. The initial distribution of these proteins is of importance in the evaluation of their role in bone formation and mineralization.
Collapse
Affiliation(s)
- T Nagata
- Medical Research Council Group in Periodontal Physiology, University of Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
29
|
Chen JK, Shapiro HS, Wrana JL, Reimers S, Heersche JN, Sodek J. Localization of bone sialoprotein (BSP) expression to sites of mineralized tissue formation in fetal rat tissues by in situ hybridization. MATRIX (STUTTGART, GERMANY) 1991; 11:133-43. [PMID: 2072878 DOI: 10.1016/s0934-8832(11)80217-9] [Citation(s) in RCA: 189] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bone sialoprotein (BSP) is a major protein in the mineralized matrix of bone and dentine. To study the relationship between the expression of BSP and the formation of mineralized connective tissues, a cDNA probe to rat BSP was prepared for in situ hybridization analysis of developing fetal rat bones and teeth. When used for Northern hybridization analysis of rat bone marrow cells induced to differentiate into osteogenic cells by dexamethasone, the BSP cDNA revealed a specific induction of 1.6- and 2.0-kb mRNA species of BSP. In tissue sections a strong hybridization signal associated with osteoblasts was observed in areas of endochondral bone formation in the long bone metaphysis and condylar cartilage, and in the intramembranous bone of the calvaria and mandible. Hybridization reflecting a lower degree of expression was evident in cells of the transitional zone of mineralizing cartilage and in odontoblasts forming incisor dentine. Expression of BSP was also demonstrated in the hypertrophic cartilage cells in the long bone and condylar process. In contrast, expression of BSP could not be detected in the reserve or proliferative chondrocytes, fibroblasts and muscle cells. These studies demonstrate that the expression of BSP in bones and teeth is essentially restricted to cells directly involved in the formation of mineralizing connective tissue matrices, indicating that BSP has a specific role in biological mineralization and that it is a useful marker of bone formation.
Collapse
Affiliation(s)
- J K Chen
- Medical Research Council Group in Periodontal Physiology, Faculty of Dentistry, University of Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
30
|
Bouvier M, Couble ML, Hartmann DJ, Gauthier JP, Magloire H. Ultrastructural and immunocytochemical study of bone-derived cells cultured in three-dimensional matrices: influence of chondroitin-4 sulfate on mineralization. Differentiation 1990; 45:128-37. [PMID: 2129117 DOI: 10.1111/j.1432-0436.1990.tb00466.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bone-derived cells were cultured in three-dimensional reconstituted matrices made of type I collagen or type I collagen chondroitin-4-sulfate. As observed by microscope, their characteristics were as follows: The cells deposited a faint extracellular matrix mainly composed of type I collagen. In the collagen-chondroitin-sulfate sponge fibers, a calcification process, which involved the deposition of hydroxyapatite crystals, was demonstrated. Mineralization occurred only in collagen chondroitin sulfate sponge fibers when seeded with bone-derived cells and was not seen with nonosteogenic cells, such as gingival fibroblasts. Gla protein was intracellularly visualized in both types of sponges seeded with bone-derived cells while an extracellular secretion was seen only in the collagen chondroitin sulfate sponge fibers where calcification occurred. These results suggest that collagen chondroitin sulfate promotes in vitro mineralization of three-dimensional collagen matrices when seeded with bone-derived cells.
Collapse
Affiliation(s)
- M Bouvier
- Laboratoire d'Histophysiologie et Pathologie des Tissus Dentaires, Faculté d'Odontologie U.P.R. C.N.R.S. 412, Lyon, France
| | | | | | | | | |
Collapse
|
31
|
Characterization of fetal porcine bone sialoproteins, secreted phosphoprotein I (SPPI, osteopontin), bone sialoprotein, and a 23-kDa glycoprotein. Demonstration that the 23-kDa glycoprotein is derived from the carboxyl terminus of SPPI. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39154-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
32
|
Bartold PM, Reinboth B, Nakae H, Narayanan AS, Page RC. Proteoglycans of bovine cementum: isolation and characterization. MATRIX (STUTTGART, GERMANY) 1990; 10:10-9. [PMID: 2112681 DOI: 10.1016/s0934-8832(11)80132-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The proteoglycans associated with the mineralized matrix of bovine cementum have been studied biochemically and their distribution within this tissue localized immunohistochemically. Both hyaluronate and proteoglycans were fractionated by DEAE-Sephacel ion-exchange chromatography. The proteoglycans eluted in three separate peaks of which two contained alkali labile protein associated with glycosaminoglycans, and one appeared as free glycosaminoglycan chains. Analysis of the glycosaminoglycans identified chondroitin sulfate as the predominant species, although minor quantities of dermatan sulfate and heparan sulfate were also identified. Agarose-acrylamide gel electrophoresis and Sepharose CL-6B molecular sieve chromatography of the proteoglycans indicated them to be smaller in size with respect to periodontal ligament and gingival proteoglycans, but similar to bone and dentine proteoglycans. Amino acid analyses indicated subtle differences between cementum and bone proteoglycans. Using a monoclonal antibody (9-A-2) which recognizes the unsaturated disaccharide of chondroitinase ACII-digested glycosaminoglycans, chondroitin sulfate was identified in the pericellular environment within the lacunae housing the cementoblasts as well as in the extracellular matrix of cementum.
Collapse
Affiliation(s)
- P M Bartold
- Department of Pathology, University of Adelaide, South Australia
| | | | | | | | | |
Collapse
|
33
|
Abstract
The purpose of this investigation was to study the proteoglycans in alveolar bone of three animal species. Alveolar bone was obtained from humans, pigs, and rabbits. Portions were fixed, sectioned, and stained with monoclonal antibodies against keratan sulfate and chondroitin sulfate. In other samples, biochemical analyses were performed. After removal of the organic matrix by 4 mol/L guanidinium HCl extraction in the presence of proteinase inhibitors, proteoglycans in the mineralized matrix were extracted with 4 mol/L guanidinium HCl/0.5 mol/L EDTA/proteinase inhibitors, and characterized on the basis of their glycosaminoglycan content (cellulose acetate membrane electrophoresis), charge (DEAE-Sephacel and hydroxylapatite chromatography), size (Sepharose CL-6B chromatography and agarose/polyacrylamide gel electrophoresis), and amino acid content. The results indicated that keratan sulfate could be detected immunohistochemically and biochemically in rabbit bone only. The predominant glycosaminoglycan in pig and human alveolar bone was chondroitin sulfate, although some hyaluronate, dermatan sulfate, and heparan sulfate were also detected. The proteoglycans were found to be slightly smaller than gingival proteoglycans, but similar to those in cementum, dentin, and other bones. In addition to intact proteoglycans, some free glycosaminoglycan chains were also extracted from the mineralized matrix. Amino acid analyses showed some subtle differences between alveolar bone proteoglycan and those of the soft tissues of the periodontium.
Collapse
Affiliation(s)
- P M Bartold
- Department of Pathology, University of Adelaide, South Australia
| |
Collapse
|
34
|
Gallagher JT. The extended family of proteoglycans: social residents of the pericellular zone. Curr Opin Cell Biol 1989; 1:1201-18. [PMID: 2517581 DOI: 10.1016/s0955-0674(89)80072-9] [Citation(s) in RCA: 243] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- J T Gallagher
- CRC Department of Medical Oncology, Christie Hospital and Holt Radium Institute, Manchester, UK
| |
Collapse
|
35
|
|
36
|
Sodek J, Goldberg HA, Domenicucci C, Zhang Q, Kwon B, Maeno M, Kuwata F. Characterization of multiple forms of small collagenous apatite-binding proteins in bone. Connect Tissue Res 1989; 20:233-40. [PMID: 2612156 DOI: 10.3109/03008208909023892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A number of small (Mrs 25-28 kDa) collagenous apatite-binding (SCAB) proteins that stain blue with 'Stains-All' have been isolated from fetal porcine bone by sequential extractions with 4M GuHCl (G1), followed by 0.5M EDTA (E), and again with 4M GuHCl (G2). Following purification under dissociative conditions, two types of SCAB proteins both with approximately one-third of their structure being collagenous, were identified in the EDTA extract. One type, which appears to be a novel protein, was revealed in two forms (SCABs 1 and 2, Mrs 25 and 28 kDa) that were recognized by a monoclonal antibody (MBP-322). The second type, SCAB 3, was also present in two forms; one form (SCAB 3a) having a lower affinity for hydroxyapatite than the other (SCAB 3b). These proteins were resistant to CNBr and displayed the chemical and immunochemical properties of the alpha 1 pN-propeptide of type I collagen. A third form of the propeptide (G2-28K) was a prominent component of the second 4M GuHCl extract. The chromatographic properties of serum alpha 1 (I) pN-propeptide were similar to SCAB 3a, indicating that SCAB 3b and G2-28K are post-translationally modified forms of the propeptide produced by bone cells. These propeptides may provide a link between the hydroxyapatite and collagen fibrils, and also have the potential to suppress collagen synthesis during bone resorption.
Collapse
Affiliation(s)
- J Sodek
- Medical Research Council Group in Periodontal Physiology, Faculty of Dentistry, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|