1
|
Xie Y, Ella KM, Gibbs TC, Yohannan ME, Knoepp SM, Balijepalli P, Meier GP, Meier KE. Characterization of Lysophospholipase D Activity in Mammalian Cell Membranes. Cells 2024; 13:520. [PMID: 38534364 PMCID: PMC10969092 DOI: 10.3390/cells13060520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024] Open
Abstract
Lysophosphatidic acid (LPA) is a lipid mediator that binds to G-protein-coupled receptors, eliciting a wide variety of responses in mammalian cells. Lyso-phospholipids generated via phospholipase A2 (PLA2) can be converted to LPA by a lysophospholipase D (lyso-PLD). Secreted lyso-PLDs have been studied in more detail than membrane-localized lyso-PLDs. This study utilized in vitro enzyme assays with fluorescent substrates to examine LPA generation in membranes from multiple mammalian cell lines (PC12, rat pheochromocytoma; A7r5, rat vascular smooth muscle; Rat-1, rat fibroblast; PC-3, human prostate carcinoma; and SKOV-3 and OVCAR-3, human ovarian carcinoma). The results show that membranes contain a lyso-PLD activity that generates LPA from a fluorescent alkyl-lyso-phosphatidylcholine, as well as from naturally occurring acyl-linked lysophospholipids. Membrane lyso-PLD and PLD activities were distinguished by multiple criteria, including lack of effect of PLD2 over-expression on lyso-PLD activity and differential sensitivities to vanadate (PLD inhibitor) and iodate (lyso-PLD inhibitor). Based on several lines of evidence, including siRNA knockdown, membrane lyso-PLD is distinct from autotaxin, a secreted lyso-PLD. PC-3 cells express GDE4 and GDE7, recently described lyso-PLDs that localize to membranes. These findings demonstrate that membrane-associated lyso-D activity, expressed by multiple mammalian cell lines, can contribute to LPA production.
Collapse
Affiliation(s)
- Yuhuan Xie
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Krishna M. Ella
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Terra C. Gibbs
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Marianne E. Yohannan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Stewart M. Knoepp
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Pravita Balijepalli
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA;
| | - G. Patrick Meier
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kathryn E. Meier
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA;
| |
Collapse
|
2
|
Barisano D, Frohman MA. Roles for Phospholipase D1 in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1259:77-87. [PMID: 32578172 DOI: 10.1007/978-3-030-43093-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
The lipid-modifying signal transduction enzyme phospholipase D (PLD) has been proposed to have roles in oncogenic processes for well-on 30 years, with most of the early literature focused on potential functions for PLD in the biology of the tumor cells themselves. While such roles remain under investigation, evidence has also now been generated to support additional roles for PLD, in particular PLD1, in the tumor microenvironment, including effects on neoangiogenesis, the supply of nutrients, interactions of platelets with circulating cancer cells, the response of the immune system, and exosome biology. Here, we review these lines of investigation, accompanied by a discussion of the limitations of the existing studies and some cautionary notes regarding the study and interpretation of PLD function using model systems.
Collapse
Affiliation(s)
- Daniela Barisano
- Center for Developmental Genetics and the Department of Pharmacological Sciences, Stony Brook University School of Medicine, Stony Brook, NY, USA
| | - Michael A Frohman
- Center for Developmental Genetics and the Department of Pharmacological Sciences, Stony Brook University School of Medicine, Stony Brook, NY, USA.
| |
Collapse
|
3
|
Mitchell R, Robertson DN, Holland PJ, Collins D, Lutz EM, Johnson MS. ADP-ribosylation factor-dependent phospholipase D activation by the M3 muscarinic receptor. J Biol Chem 2003; 278:33818-30. [PMID: 12799371 DOI: 10.1074/jbc.m305825200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
G protein-coupled receptors can potentially activate phospholipase D (PLD) by a number of routes. We show here that the native M3 muscarinic receptor in 1321N1 cells and an epitope-tagged M3 receptor expressed in COS7 cells substantially utilize an ADP-ribosylation factor (ARF)-dependent route of PLD activation. This pathway is activated at the plasma membrane but appears to be largely independent of G, phospholipase C, Ca2+ q/11, protein kinase C, tyrosine kinases, and phosphatidyl inositol 3-kinase. We report instead that it involves physical association of ARF with the M3 receptor as demonstrated by co-immunoprecipitation and by in vitro interaction with a glutathione S-transferase fusion protein of the receptor's third intracellular loop domain. Experiments with mutant constructs of ARF1/6 and PLD1/2 indicate that the M3 receptor displays a major ARF1-dependent route of PLD1 activation with an additional ARF6-dependent pathway to PLD1 or PLD2. Examples of other G protein-coupled receptors assessed in comparison display alternative pathways of protein kinase C- or ARF6-dependent activation of PLD2.
Collapse
Affiliation(s)
- Rory Mitchell
- Medical Research Council Membrane and Adapter Proteins Co-operative Group, Membrane Biology Interdisciplinary Research Group, School of Biomedical and Clinical Laboratory Sciences, University of Edinburgh, EH8 9XD, United Kingdom.
| | | | | | | | | | | |
Collapse
|
4
|
Lee JE, Bokoch G, Liang BT. A novel cardioprotective role of RhoA: new signaling mechanism for adenosine. FASEB J 2001; 15:1886-94. [PMID: 11532968 DOI: 10.1096/fj.01-0212com] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Adenosine exerts a potent cardioprotective effect that is mediated by adenosine A1 and A3 receptors. The signaling pathways activated by the A1 and A3 receptors are distinct and involve selective coupling to phospholipases C and D, respectively. The objective of our study was to elucidate the signaling mechanism that mediates the coupling of each receptor to its respective phospholipase and to test the role of RhoA as a novel mediator leading from adenosine receptors to cardioprotection. C3 transferase and dominant negative RhoA (RhoAT19N) blocked the A3 receptor-mediated phospholipase D activation and cardioprotection but had no effect on A1 receptor-mediated phospholipase C activation or cardioprotection. In contrast, pertussis toxin treatment caused a greater inhibition of the diacylglycerol accumulation induced by the A1 agonist than by the A3 agonist, and it completely abrogated the A1 agonist-mediated cardioprotection. Thus, adenosine A1 and A3 receptors are linked to different G-proteins. The A3 receptor is coupled via RhoA to activate phospholipase D in exerting its cardioprotective effect, whereas the A1 receptor is linked via Gi to phospholipase C to produce cardioprotective responses. The present study identifies a novel role for RhoA and further suggests its importance in regulating cardiac cellular function.
Collapse
Affiliation(s)
- J E Lee
- Department of Medicine, Cardiovascular Division, University of Pennsylvania Medical Center, 421 Curie Blvd., Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
5
|
Oprins JC, van der Burg C, Meijer HP, Munnik T, Groot JA. PLD pathway involved in carbachol-induced Cl- secretion: possible role of TNF-alpha. Am J Physiol Cell Physiol 2001; 280:C789-95. [PMID: 11245595 DOI: 10.1152/ajpcell.2001.280.4.c789] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In a previous study, it was found that exposure to tumor necrosis factor-alpha (TNF-alpha) potentiated the electrophysiological response to carbachol in a time-dependent and cycloheximide-sensitive manner. It was deduced that the potentiation could be due to protein kinase C activity because of increased 1,2-diacylglycerol. It was also observed that propranolol could decrease the electrophysiological response to carbachol (Oprins JC, Meijer HP, and Groot JA. Am J Physiol Cell Physiol 278: C463-C472, 2000). The aim of the present study was to investigate whether the phospholipase D (PLD) pathway plays a role in the carbachol response and the potentiating effect of TNF-alpha. The transphosphatidylation reaction in the presence of the primary alcohol 1-butanol [leading to stable phosphatidylbutanol (Pbut) formation] was used to measure activity of PLD. The phosphatidic acid (PA) levels were also measured. Muscarinic stimulation resulted in an increased formation of Pbut and PA. TNF-alpha decreased levels of PA.
Collapse
Affiliation(s)
- J C Oprins
- Swammerdam Institute for Life Sciences, University of Amsterdam, P.O. Box 94084, 1090 GB Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
6
|
Guizzetti M, Costa LG. Possible role of protein kinase C zeta in muscarinic receptor-induced proliferation of astrocytoma cells. Biochem Pharmacol 2000; 60:1457-66. [PMID: 11020447 DOI: 10.1016/s0006-2952(00)00468-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Recent studies have shown that protein kinase C zeta (PKC zeta) is part of a pathway that plays a key role in a wide range of physiological processes including mitogenesis, cell survival, and transcriptional regulation. Most studies on PKC zeta have been done by stimulating cells with tyrosine kinase receptor agonists, or by transfecting the cells with either constitutively active PKC zeta or negative mutants of PKC zeta. Less is known about the ability of endogenous G-protein-coupled receptors to generate a mitogenic signal through activation of endogenous PKC zeta. In the present paper, we showed that in 123-1N1 human astrocytoma cells, which express the G-protein-coupled M2, M3, and M5 muscarinic receptors, PKC zeta is activated by carbachol in a concentration-dependent manner, resulting in the translocation of PKC zeta from the cytoplasm to granules in the perinuclear region. The effect of carbachol was long-lasting (up to 24 hr) and appeared to be mediated by activation of M3 muscarinic receptors. A selective PKC zeta inhibitor peptide (peptide Z) inhibited PKC zeta translocation as well as carbachol-induced DNA synthesis. Inhibition of both phosphatidylinositol 3-kinase and phospholipase D decreased carbachol-induced [(3)H]thymidine incorporation and blocked carbachol-induced PKC zeta translocation, suggesting an involvement of both pathways in these effects.
Collapse
Affiliation(s)
- M Guizzetti
- Department of Environmental Health, University of Washington, Seattle, WA 98105, USA.
| | | |
Collapse
|
7
|
Zhang W, Turner DJ, Segura BJ, Cowles R, Mulholland MW. ATP induces c-fos expression in C6 glioma cells by activation of P(2Y) receptors. J Surg Res 2000; 94:49-55. [PMID: 11038302 DOI: 10.1006/jsre.2000.5984] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Extracellular ATP functions in the enteric nervous system as a neurotransmitter, and recent evidence suggests ATP may regulate development through effects on cellular proliferation. METHODS The action of ATP at purinoceptors and the role of second messenger pathways in c-fos mRNA expression in C6 glioma cells were investigated using the techniques of Northern and Western blotting. RESULTS Treatment of C6 cells with ATP caused a time- and dose-dependent increase in c-fos expression. The rank order of agonist potency was ATP = ADP > gammasATP > alphabetaATP > betagammaATP > AMP = UTP. The ATP-induced c-fos increment was inhibited by three P(2Y) receptor antagonists-suramin, reactive blue, and DIDS-by 99+/-3, 89+/-7, and 61+/-14%, respectively. The ATP-stimulated c-fos expression was attenuated by phospholipase C inhibitor (U73122), protein kinase C (PKC) down-regulation (4alpha-phorbol 12-myristate 13-acetate and chelerythrine), mitogen-activated protein (MAP) kinase inhibition (apigenin), an inhibitor of MAP kinase kinase (PD98059), down-regulation of adenylate cyclase (SQ22536), and inhibition of type II protein kinase A (8-(4-chlorophenylthio)adenosine-3',5'-cyclic monophosphorothioate), but was not affected by inhibition of type I protein kinase A (8-bromoadenosine-3',5'-cyclic monophosphorothioate) and inhibitors of calmodulin kinase (KN93 and KN62). Phosphorylated MAP kinase was increased in cells exposed to ATP. This effect was suppressed by chelerythrine. CONCLUSIONS These studies demonstrate that ATP-induced c-fos mRNA expression is under multifactorial regulation.
Collapse
Affiliation(s)
- W Zhang
- Michigan Gastrointestinal Peptide Center, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | | | | | | | | |
Collapse
|
8
|
Parsons M, Young L, Lee JE, Jacobson KA, Liang BT. Distinct cardioprotective effects of adenosine mediated by differential coupling of receptor subtypes to phospholipases C and D. FASEB J 2000. [DOI: 10.1096/fasebj.14.10.1423] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mollie Parsons
- Department of MedicineCardiovascular DivisionUniversity of Pennsylvania Medical Center Philadelphia Pennsylvania 19104 USA
| | - Laura Young
- Department of MedicineCardiovascular DivisionUniversity of Pennsylvania Medical Center Philadelphia Pennsylvania 19104 USA
| | - Jang Eun Lee
- Department of MedicineCardiovascular DivisionUniversity of Pennsylvania Medical Center Philadelphia Pennsylvania 19104 USA
| | - Kenneth A. Jacobson
- Molecular Recognition SectionLaboratory of Bioorganic ChemistryNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of Health Bethesda Maryland 20892 USA
| | - Bruce T. Liang
- Department of MedicineCardiovascular DivisionUniversity of Pennsylvania Medical Center Philadelphia Pennsylvania 19104 USA
| |
Collapse
|
9
|
Kobayashi H, Honma S, Nakahata N, Ohizumi Y. Involvement of phosphatidylcholine-specific phospholipase C in thromboxane A2-induced activation of mitogen-activated protein kinase in astrocytoma cells. J Neurochem 2000; 74:2167-73. [PMID: 10800962 DOI: 10.1046/j.1471-4159.2000.0742167.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Thromboxane A2 (TXA2) receptor-mediated signal transduction was investigated in 1321N1 human astrocytoma cells. 9,11-Epithio-11,12-methano-TXA2 (STA2), a TXA2 receptor agonist, induced Ca2+ mobilization and phosphoinositide hydrolysis in a concentration-dependent manner. These responses were inhibited by treatment with U73122, an inhibitor of phosphatidylinositol-specific phospholipase C, or by culturing in 0.5% fetal calf serum containing 0.5 mM dibutyryladenosine 3',5'-cyclic monophosphate (dbcAMP) for 2 days. However, the dbcAMP treatment augmented the TXA2 receptor-mediated phosphorylation of mitogen-activated protein kinase (MAPK). These results were confirmed by a functional MAPK assay measuring the incorporation of 32P into the MAPK substrate peptide. The TXA2 receptor-mediated MAPK activation was inhibited by SQ29548, a TXA2 receptor antagonist, and GF109203X, an inhibitor of protein kinase C. Although U73122 did not inhibit or only slightly inhibited the activation of MAPK, D-609, an inhibitor of phosphatidylcholine-specific phospholipase C, potently attenuated the activation in a concentration-dependent manner. Furthermore, STA2 accelerated the release of [3H]choline metabolites from the cells prelabeled with [3H]choline chloride. This release was inhibited by treatment with D-609. These results suggest that phosphatidylcholine-specific phospholipase C and protein kinase C, but not phosphatidylinositol-specific phospholipase C, are involved in TXA2 receptor-mediated MAPK activation in 1321N1 human astrocytoma cells.
Collapse
Affiliation(s)
- H Kobayashi
- Department of Pharmaceutical Molecular Biology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | | | | | | |
Collapse
|
10
|
Nakahata N, Takano H, Ohizumi Y. Thromboxane A2 receptor-mediated tonic contraction is attributed to an activation of phosphatidylcholine-specific phospholipase C in rabbit aortic smooth muscles. Life Sci 2000; 66:PL 71-6. [PMID: 10670835 DOI: 10.1016/s0024-3205(99)00613-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thromboxane A2 (TXA2) analogue STA2 produced a tonic contraction in rabbit aortic smooth muscles. In the present study, we examined phosphatidylcholine (PC) hydrolysis as a signaling pathway for the tonic contraction in rabbit aortic smooth muscles. In the primary cultured cells labeled with [3H]choline, STA2 caused an accumulation of [3H]phosphorylcholine, a metabolite of PC by PC-specific PLC, in a concentration-dependent manner. The accumulation of [3H]phosphorylcholine was inhibited by SQ29548, a TXA2 receptor antagonist. In the muscle strips, STA2-induced tonic contraction was potently inhibited by D609, an inhibitor of PC-specific phospholipase C in a concentration-dependent manner with the IC50 of about 10 microM. Norepinephrine-induced tonic contraction was also inhibited by D609 with a weaker potency. These results strongly suggest that stimulation of TXA2 receptor results in the activation of PC-specific phospholipase C to yield diacylglycerol that contributes to the tonic contraction.
Collapse
MESH Headings
- Animals
- Aorta
- Bridged Bicyclo Compounds, Heterocyclic
- Bridged-Ring Compounds/pharmacology
- Cells, Cultured
- Enzyme Activation/drug effects
- Fatty Acids, Unsaturated
- Female
- Hydrazines/pharmacology
- Inhibitory Concentration 50
- Isotonic Contraction/drug effects
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/physiology
- Norbornanes
- Norepinephrine/antagonists & inhibitors
- Norepinephrine/pharmacology
- Phorbol 12,13-Dibutyrate/pharmacology
- Phosphatidylcholines/metabolism
- Phosphorylcholine/metabolism
- Rabbits
- Receptors, Thromboxane/antagonists & inhibitors
- Receptors, Thromboxane/physiology
- Signal Transduction/drug effects
- Thiocarbamates
- Thiones/pharmacology
- Thromboxane A2/analogs & derivatives
- Thromboxane A2/antagonists & inhibitors
- Thromboxane A2/pharmacology
- Type C Phospholipases/antagonists & inhibitors
- Type C Phospholipases/metabolism
Collapse
Affiliation(s)
- N Nakahata
- Department of Pharmaceutical Molecular Biology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Aramaki, Sendai, Japan
| | | | | |
Collapse
|
11
|
Banfi C, Mussoni L, Risé P, Cattaneo MG, Vicentini L, Battaini F, Galli C, Tremoli E. Very low density lipoprotein-mediated signal transduction and plasminogen activator inhibitor type 1 in cultured HepG2 cells. Circ Res 1999; 85:208-17. [PMID: 10417403 DOI: 10.1161/01.res.85.2.208] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In normal subjects and in patients with cardiovascular disease, plasma triglycerides are positively correlated with plasminogen activator inhibitor type 1 (PAI-1) levels. Moreover, in vitro studies indicate that VLDLs induce PAI-1 synthesis in cultured cells, ie, endothelial and HepG2 cells. However, the signaling pathways involved in the effect of VLDL on PAI-1 synthesis have not yet been investigated. We report that VLDLs induce a signaling cascade that leads to an enhanced secretion of PAI-1 by HepG2 cells. In myo-[(3)H]inositol-labeled HepG2 cells, VLDL (100 microg/mL) caused a time-dependent increase in [(3)H]inositol phosphates, the temporal sequence being tris>bis>monophosphate. VLDL brought about a time-dependent stimulation of membrane-associated protein kinase C (PKC) activity and arachidonate release. Finally, VLDL stimulated mitogen-activated protein (MAP) kinase, and this effect was reduced by 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H7), which suggests that PKC plays a pivotal role in MAP kinase phosphorylation. VLDL-induced PAI-1 secretion was completely prevented by U73122, a specific inhibitor of phosphatidylinositol-specific phospholipase C, by H7 or by PKC downregulation, and by mepacrine (all P<0.01 versus VLDL-treated cells). 3,4,5-Trimethoxybenzoic acid 8-(diethylamino)-octyl ester, which prevents Ca2+ release from intracellular stores, inhibited VLDL-induced PAI-1 secretion by 60% (P<0.05), and the MAP kinase/extracellular signal-regulated kinase kinase (MEK) inhibitor PD98059 completely suppressed both basal and VLDL-induced PAI-1 secretion. These data demonstrate that VLDL-induced PAI-1 biosynthesis results from a principal signaling pathway involving PKC-mediated MAP kinase activation.
Collapse
Affiliation(s)
- C Banfi
- Institute of Pharmacological Sciences, University of Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Guizzetti M, Wei M, Costa LG. The role of protein kinase C alpha and epsilon isozymes in DNA synthesis induced by muscarinic receptors in a glial cell line. Eur J Pharmacol 1998; 359:223-33. [PMID: 9832394 DOI: 10.1016/s0014-2999(98)00620-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Acetylcholine has been shown to induce proliferation of human astrocytoma cells by activating muscarinic receptors, particularly the m3 subtype. In the present study the role of protein kinase C in DNA synthesis induced by carbachol has been investigated. Carbachol-induced [methyl-3H]thymidine incorporation was inhibited by the protein kinase C inhibitors GF 109203X and staurosporine. However, carbachol-induced DNA synthesis was only partially reduced by protein kinase C down-regulation by phorbol 12-myristate 13-acetate (PMA), and maximal concentrations of carbachol and PMA had an additive effect on [methyl-3H]thymidine incorporation. Exposure for 24 h to maximally effective concentrations of carbachol did not induce down-regulation of protein kinase C alpha, and caused a small but significant down-regulation of protein kinase C epsilon; cells exposed for 24 h to carbachol were still able to respond with protein kinase C translocation to PMA stimulation. Carbachol caused a significant increase of phorbol ester binding, but did not stimulate protein kinase C alpha translocation, while it caused a short-lasting translocation of protein kinase C epsilon; however, protein kinase C epsilon translocation was not correlated with the time-course of carbachol-induced increase in [methyl-3H]thymidine incorporation. On the other hand, the time-course of translocation/down-regulation of protein kinase C alpha and protein kinase C epsilon induced by PMA was in good correlation with the time-course of PMA-induced [methyl-3H]thymidine incorporation. These results suggest that protein kinase C alpha may not be involved in DNA synthesis induced by muscarinic receptors stimulation in 132-1N1 astrocytoma cells, while protein kinase C epsilon appears to play a role in the initial exit from G0/G1 phase, though it cannot be considered the major determinant for sustained proliferation.
Collapse
Affiliation(s)
- M Guizzetti
- Department of Environmental Health, University of Washington, Seattle 98105, USA
| | | | | |
Collapse
|
13
|
Abstract
The role of the mammalian phospholipase D (PLD) in the control of key cellular responses has been recognised for a long time, but only recently have there been the reagents to properly study this very important enzyme in the signalling pathways, linking cell agonists with intracellular targets. With the recent cloning of PLD isoenzymes, their association with low-molecular-weight G proteins, protein kinase C and tyrosine kinases, the availability of antibodies and an understanding of the role of PLD product, phosphatidic acid (PA), in cell physiology, the field is gaining momentum. In this review, we will explore the molecular properties of mammalian PLD and its gene(s), the complexity of this enzyme regulation and the myriad physiological roles for PLD and PA and related metabolic products, with particular emphasis on a role in the activation of NADPH oxidase, or respiratory burst, leading to the generation of oxygen radicals.
Collapse
Affiliation(s)
- J Gomez-Cambronero
- Department of Physiology and Biophysics, Wright State University School of Medicine, Dayton, OH 45435, USA
| | | |
Collapse
|
14
|
Bacon KB, Schall TJ, Dairaghi DJ. RANTES Activation of Phospholipase D in Jurkat T Cells: Requirement of GTP-Binding Proteins ARF and RhoA. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.4.1894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
The chemokine RANTES is a potent agonist of T cell activation. In an investigation of signal-transduction events activated by this chemokine, we have shown that RANTES stimulates dose-dependent phospholipase D (PLD) activity in Jurkat cells. Equilibrium-binding analyses using 125I-labeled RANTES indicated the presence of a receptor for RANTES on these cells, which has a Kd of 0.1 nM, is expressed at approximately 600 sites per cell, and a binding specificity that was not comparable with that of any of the known chemokine receptors, since 125I-labeled RANTES was displaced by macrophage-inflammatory protein-1β (but not macrophage-inflammatory protein-1α), monocyte-chemotactic protein-1 (MCP-1), MCP-3, MCP-4, and eotaxin. RANTES-induced PLD activation was augmented by GTPγS, but not GDPβS, and inhibited by the protein kinase C inhibitor bisindolylmaleimide, as well as the fungal metabolite brefeldin A, and C3 exoenzyme (Clostridium botulinum), implicating the activation of RhoA. RANTES also induced GTP-GDP exchange of immunoprecipitated RhoA. RANTES-stimulated PLD activity was dependent on an ADP-ribosylation factor(s), as assessed by inhibition studies using a synthetic inhibitory peptide of the N-terminal 16 amino acids of ADP-ribosylation factor 1. These studies indicate the potential existence of a novel receptor-mediated mechanism for activation of T cells by the chemokine RANTES.
Collapse
Affiliation(s)
- Kevin B. Bacon
- Department of Immunobiology, DNAX Research Institute, Palo Alto, CA 94304
| | - Thomas J. Schall
- Department of Immunobiology, DNAX Research Institute, Palo Alto, CA 94304
| | - Daniel J. Dairaghi
- Department of Immunobiology, DNAX Research Institute, Palo Alto, CA 94304
| |
Collapse
|
15
|
Hernández M, Burillo SL, Crespo MS, Nieto ML. Secretory phospholipase A2 activates the cascade of mitogen-activated protein kinases and cytosolic phospholipase A2 in the human astrocytoma cell line 1321N1. J Biol Chem 1998; 273:606-12. [PMID: 9417122 DOI: 10.1074/jbc.273.1.606] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The biological effects of type IIA 14-kDa phospholipase A2 (sPLA2) on 1321N1 astrocytoma cells were studied. sPLA2 induced a release of [3H]arachidonic acid ([3H]AA) similar to that elicited by lysophosphatidic acid (LPA), a messenger acting via a G-protein-coupled receptor and a product of sPLA2 on lipid microvesicles. In contrast, no release of [1-14C]oleate could be detected in cells labeled with this fatty acid. As these findings pointed to a selective mechanism of [3H]AA release, it was hypothesized that sPLA2 could act by a signaling mechanism involving the activation of cytosolic PLA2 (cPLA2), i.e. the type of PLA2 involved in the release of [3H]AA elicited by agonists. In keeping with this view, stimulation of 1321N1 cells with sPLA2 elicited the decrease in electrophoretic mobility that is characteristic of the phosphorylation of cPLA2, as well as activation of p42 mitogen-activated protein (MAP) kinase, c-Jun kinase, and p38 MAP kinase. Incubation with sPLA2 of quiescent 1321N1 cells elicited a mitogenic response as judged from an increased incorporation of [3H]thymidine. Attempts to correlate the effect of extracellular PLA2 with the generation of LPA were negative. Incubation with pertussis toxin prior to the addition of either sPLA2 or LPA only showed abrogation of the response to LPA, thus suggesting the involvement of pertussis-sensitive Gi-proteins in the case of LPA. Treatments with inhibitors of the catalytic effect of sPLA2 such as p-bromophenacyl bromide and dithiothreitol did not prevent the effect on cPLA2 activation. In contrast, preincubation of 1321N1 cells with the antagonist of the sPLA2 receptor p-aminophenyl-alpha-D-mannopyranoside-bovine serum albumin, blocked cPLA2 activation with a EC50 similar to that described for the inhibition of binding of sPLA2 to its receptor. Moreover, treatment of 1321N1 cells with the MAP kinase kinase inhibitor PD-98059 inhibited the activation of both cPLA2 and p42 MAP kinase produced by sPLA2. In summary, these data indicate the existence in astrocytoma cells of a signaling pathway triggered by engagement of a sPLA2-binding structure, that produces the release of [3H]AA by activating the MAP kinase cascade and cPLA2, and leads to a mitogenic response after longer periods of incubation.
Collapse
Affiliation(s)
- M Hernández
- Instituto de Biología y Genética Molecular, Universidad de Valladolid-Consejo Superior de Investigaciones Científicas, 47005 Valladolid, Spain
| | | | | | | |
Collapse
|
16
|
Ella KM, Qi C, McNair AF, Park JH, Wisehart-Johnson AE, Meier KE. Phospholipase D activity in PC12 cells. Effects of overexpression of alpha2A-adrenergic receptors. J Biol Chem 1997; 272:12909-12. [PMID: 9148895 DOI: 10.1074/jbc.272.20.12909] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
PC12 neuronal cells express a membrane phospholipase D (PLD) activity that is detected at similar levels in undifferentiated or differentiated cells. The regulation of this activity by agonists was explored. Membrane phospholipase D activity was increased by treatment of cells with the phorbol ester phorbol 12-myristate 13-acetate (PMA) or with nerve growth factor. The ability of PMA to activate PLD was confirmed in intact PC12 cells. Basal activity of PLD in membranes was reduced in RG20, a PC12 cell line overexpressing the human alpha2A-adrenergic receptor. PMA did not increase PLD activity in RG20 cells, as assessed both in membrane preparations and in intact cells. Cyclic AMP levels did not regulate phospholipase D activity in either cell type. However, incubation of RG20 cells with the alpha2-adrenergic antagonist rauwolscine or with pertussis toxin increased membrane PLD activity and restored activation of PLD by PMA. These data suggest that the effects of the overexpressed alpha2A-adrenergic receptor on PLD activity are mediated by precoupling of the receptor to the heterotrimeric GTP-binding protein, Gi, but are independent of adenylate cyclase regulation. The results of this study suggest that membrane phospholipase D activity can be negatively regulated via Gi in PC12 cells.
Collapse
Affiliation(s)
- K M Ella
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | |
Collapse
|
17
|
Boyano-Adánez MC, Lundqvist C, Larsson C, Gustavsson L. Characterization of phospholipase D activation by muscarinic receptors in human neuroblastoma SH-SY5Y cells. Neuropharmacology 1997; 36:295-304. [PMID: 9175607 DOI: 10.1016/s0028-3908(96)00178-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The cholinergic regulation of phospholipase D activity was studied in SH-SY5Y human neuroblastoma cells with phosphatidylethanol formation as a specific marker for the enzyme activity. The muscarinic antagonists, hexahydrosiladifenidol and pirenzepine, inhibited carbachol-induced phosphatidylethanol formation in a concentration-dependent manner and the inhibitory constants indicated that muscarinic M1 receptors are responsible for the major part of the phospholipase D activation. The mechanism of receptor-mediated phospholipase D activation varies between different cell types and receptors. In SH-SY5Y cells, the carbachol-induced phospholipase D activity was inhibited by protein kinase C inhibitors. Since both phospholipases D and C are activated by muscarinic stimulation in SH-SY5Y cells, most of the phospholipase D activation is probably secondary to the protein kinase C activation that follows phospholipase C-mediated increase in diacylglycerols. Other kinases may be involved in the regulation since also a tyrosine kinase inhibitor decreased the phosphatidylethanol formation. Stimulation of G-protein(s) and increase in the intracellular Ca2+ concentration activated phospholipase D and may be additional mechanisms for the muscarinic regulation of phospholipase D in SH-SY5Y cells. Propranolol, an inhibitor of phosphatidic acid phosphohydrolase, increased the carbachol-induced formation of phosphatidic acid at the expense of 1,2-diacylglycerol. This indicates that phospholipase D contributes to the formation of 1,2-diacylglycerol after carbachol stimulation in SH-SY5Y cells.
Collapse
Affiliation(s)
- M C Boyano-Adánez
- Department of Medical Neurochemistry, Institute of Laboratory Medicine, Lund University Hospital, Sweden
| | | | | | | |
Collapse
|
18
|
Heller Brown J, Sah V, Moskowitz S, Ramirez T, Collins L, Post G, Goldstein D. Pathways and roadblocks in muscarinic receptor-mediated growth regulation. Life Sci 1997. [DOI: 10.1016/s0024-3205(97)00050-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Bradshaw CD, Ella KM, Qi C, Sansbury HM, Wisehart-Johnson AE, Meier KE. Effects of phorbol ester on phospholipase D and mitogen-activated protein kinase activities in T-lymphocyte cell lines. Immunol Lett 1996; 53:69-76. [PMID: 9024981 DOI: 10.1016/s0165-2478(96)02614-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The effects of phorbol 12-myristate 13-acetate (PMA) on the activities of phospholipase D (PLD3), mitogen-activated protein kinase (ERK), and c-Jun N-terminal kinase (JNK) were studied in Jurkat, a human T cell line, and EL4, a murine T-cell line. PMA treatment rapidly activated PLD in Jurkat, as detected either in intact or broken cells. In contrast, PMA did not stimulate PLD activity in EL4 cells. PLD activity was not detected in membranes prepared from EL4 cells. Jurkat, but not EL4, expresses a 120-kDa protein recognized by an anti-PLD antibody. In both Jurkat and EL4 cells, PMA caused activation of ERKs. Incubation of EL4 cells with bacterial PLD increased phosphatidic acid levels, but did not activate ERK. In both EL4 and Jurkat cells, co-stimulation with PMA and ionomycin stimulated JNK activity. These results show that activation of PLD is not required for activation of ERKs or JNKs by PMA in T-cell lines. Thus, while PLD activity is expressed in some T-cell lines, the role of this enzyme and its products in T-cell activation remain to be elucidated.
Collapse
Affiliation(s)
- C D Bradshaw
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston 29425, USA
| | | | | | | | | | | |
Collapse
|
20
|
Gustavsson L, Boyano-Adánez MC, Larsson C, Aradottir S, Lundqvist C. Regulation of phospholipase D activity in neuroblastoma cells. JOURNAL OF LIPID MEDIATORS AND CELL SIGNALLING 1996; 14:229-35. [PMID: 8906567 DOI: 10.1016/0929-7855(96)00530-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The regulation of phospholipase D was studied in human neuroblastoma cells using phosphatidylethanol as a marker of the enzyme activity. Carbachol induced phospholipase D activity in SH-SY5Y cells. Muscarinic antagonists inhibited the response with potencies suggesting that muscarinic M1 receptors are responsible for the activation. In permeabilized SH-SY5Y cells, both the carbachol- and GTP gamma S-induced Peth formation was inhibited by GDP beta S, indicating that both responses are mediated via a G-protein. The protein kinase C inhibitors, bisindolylmaleimide and staurosporine significantly inhibited the carbachol-induced Peth formation whereas H7 had no effect. Thus, the cholinergic activation of phospholipase D in SH-SY5Y cells is probably mediated via a direct receptor-G-protein coupling but an involvement of protein kinase C cannot be excluded. Calmidazolium, a calmodulin antagonist, induced an increase in phosphatidylethanol formation in both SH-SY5Y and IMR-32 cells. This effect was inhibited by genistein and tyrphostin, indicating a tyrosine kinase dependent pathway for phospholipase D activation in neuroblastoma cells.
Collapse
Affiliation(s)
- L Gustavsson
- Department of Medical Neurochemistry, Lund University Hospital, Sweden
| | | | | | | | | |
Collapse
|
21
|
Abstract
Growth factors activate phospholipases, causing the generation of diverse lipid metabolites with second messenger function. Among them, the phosphatidylcholine-preferring phospholipase D (PLD) has attracted great interest, since in addition to the transient activation by growth factors stimulation, it is constitutively activated in some of the src- and ras-transformed cells investigated. To establish further the functional relationship of ras oncogenes with PLD, we have investigated its mechanism of regulation. Growth factors such as PDGF or FGF activate the PC-PLD enzyme by a common, PKC-dependent mechanism. By contrast, ras oncogenes activate the PC-PLD enzyme by a PKC-independent mechanism. These results suggest that existence of at least two mechanisms for PLD activation, and ras oncogenes contribute to one of them.
Collapse
Affiliation(s)
- L del Peso
- Instituto de Investigaciones Biomédicas, Madrid, Spain
| | | | | | | |
Collapse
|
22
|
Sciorra VA, Daniel LW. Phospholipase D-derived products in the regulation of 12-O-tetradecanoylphorbol-13-acetate-stimulated prostaglandin synthesis in madin-darby canine kidney cells. J Biol Chem 1996; 271:14226-32. [PMID: 8663019 DOI: 10.1074/jbc.271.24.14226] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Madin-Darby canine kidney (MDCK) cells stimulated with 12-O-tetradecanoylphorbol-13-acetate (TPA) in the presence of ethanol synthesize phosphatidylethanol (PEt) instead of phosphatidic acid (PA) and diglyceride (DG). We have used ethanol to block the production of phospholipase D (PLD)-derived PA and DG (from PA hydrolysis) to study their role in signal transduction. In MDCK cells, TPA-stimulated prostaglandin E2 (PGE2) synthesis was inhibited by ethanol at concentrations which inhibit PA and DG formation. In addition, TPA elicited a prolonged increase in PGE2 synthesis that is dependent upon continuous activation of PLD. The TPA-stimulated translocation of protein kinase Calpha (PKCalpha) from cytosol to membrane was unaffected by ethanol. This suggests that PLD-derived products act downstream of PKC in TPA-stimulated prostaglandin synthesis. The calcium ionophore, A23187, did not activate PLD, and PGE2 synthesis in response to A23187 was unaffected by ethanol. TPA increased prostaglandin endoperoxide H synthase (PGHS) activity and increased the amount of immunodetectable prostaglandin endoperoxide H synthase 2 (PGHS-2). A23187 did not induce PGHS-2 and A23187-stimulated PGE2 synthesis appears to be due to the constitutively expressed PGHS-1. Blocking the formation of PLD-derived products, PA and DG, inhibited the induction of PGHS-2 by TPA. These results indicate that prolonged PGE2 synthesis in response to TPA is due to the continuous induction of PGHS-2, which is dependent upon PLD activation. In contrast, induction of PGHS-2 by epidermal growth factor was not affected by ethanol. Epidermal growth factor did not induce PKCalpha translocation nor activate PLD. Taken together, these data suggest that PLD-derived PA or DG act as second messengers in the induction of PGHS-2 by PKC-dependent pathways. The demonstration that inhibition of TPA-induced PA formation inhibits Raf-1 translocation in MDCK cells (Ghosh, S., Strum, J. C., Sciorra, V. A., Daniel, L. W. , and Bell, R. M. (1996) J. Biol. Chem. 271, 8472-8480) suggests that PA is the active PLD metabolite in TPA-stimulated signaling.
Collapse
Affiliation(s)
- V A Sciorra
- Department of Biochemistry, Bowman Gray School of Medicine, Wake Forest University, Winston-Salem, North Carolina 27157-1016, USA
| | | |
Collapse
|
23
|
Anastasiadis PZ, Kuhn DM, Blitz J, Imerman BA, Louie MC, Levine RA. Regulation of tyrosine hydroxylase and tetrahydrobiopterin biosynthetic enzymes in PC12 cells by NGF, EGF and IFN-gamma. Brain Res 1996; 713:125-33. [PMID: 8724983 DOI: 10.1016/0006-8993(95)01494-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The regulation of catecholamine and tetrahydrobiopterin synthesis was investigated in cultured rat pheochromocytoma PC12 cells following treatments with nerve growth factor (NGF), epidermal growth factor (EGF) and interferon-gamma (IFN-gamma). NGF and EGF, but not IFN-gamma, caused an increase after 24 h in the levels of BH4 and catecholamines, and the activities of tyrosine hydroxylase and GTP cyclohydrolase, the rate-limiting enzymes in catecholamine and BH4 synthesis, respectively. Actinomycin D, a transcriptional inhibitor, blocked treatment-induced elevations in tyrosine hydroxylase and GTP cyclohydrolase activities. NGF, EGF or IFN-gamma did not affect the activity of sepiapterin reductase, the final enzyme in BH4 biosynthesis. Rp-cAMP, an inhibitor of cAMP-mediated responses, blocked the induction of tyrosine hydroxylase by NGF or EGF; inhibition of protein kinase C partially blocked the EGF effect, but not the NGF effect, NGF also induced GTP cyclohydrolase in a cAMP-dependent manner, while the EGF effect was not blocked by Rp-cAMP or protein kinase C inhibitors. Sphingosine induced GTP cyclohydrolase in a protein kinase C-independent manner without affecting tyrosine hydroxylase activity. Our results suggest that both tyrosine hydroxylase and GTP cyclohydrolase are induced in a coordinate and transcription-dependent manner by NGF and EGF, while conditions exist where the induction of tyrosine hydroxylase and GTP cyclohydrolase is not coordinately regulated.
Collapse
Affiliation(s)
- P Z Anastasiadis
- William T. Gossett Neurology Laboratories, Henry Ford Health Sciences Center, Detroit, MI 48202, USA
| | | | | | | | | | | |
Collapse
|
24
|
Klein J, Lindmar R, Löffelholz K. Muscarinic activation of phosphatidylcholine hydrolysis. PROGRESS IN BRAIN RESEARCH 1996; 109:201-8. [PMID: 9009708 DOI: 10.1016/s0079-6123(08)62103-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- J Klein
- Department of Pharmacology, University of Mainz, Germany
| | | | | |
Collapse
|
25
|
Mizuno K, Nakahata N, Ohizumi Y. Mastoparan-induced phosphatidylcholine hydrolysis by phospholipase D activation in human astrocytoma cells. Br J Pharmacol 1995; 116:2090-6. [PMID: 8640350 PMCID: PMC1908954 DOI: 10.1111/j.1476-5381.1995.tb16416.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
1. The effect of mastoparan on phosphatidylcholine hydrolysis was examined in 1321N1 human astrocytoma cells. Mastoparan (3-30 microM) caused an accumulation of diacylglycerol (DG) and phosphatidic acd (PA) accompanied by choline release in a concentration- and time-dependent manner. 2. In the presence of 2% n-butanol, mastoparan (3-100 microM) induced phosphatidylbutanol (PBut) accumulation in a concentration- and time-dependent manner, suggesting that mastoparan activates phospholipase D (PLD). Propranolol (30-300 microM), a phosphatidate phosphohydrolase inhibitor, inhibited DG accumulation induced by mastoparan, supporting this idea. 3. Depletion of extracellular free calcium ion did not alter the effect of mastoparan on PLD activity. 4. A protein kinase C (PKC) inhibitor, calphostin C (1 microM), did not inhibit mastoparan-induce PLD activation but the ability of mastoparan to stimulate phospholipase D activity was decreased in the PKC down regulated cells. 5. PLD activity stimulated by mastoparan was not prevented by pretreatment of the cells with pertussis toxin (PT) or C3 ADP-ribosyltransferase. Furthermore, guanine nucleotides did not affect PLD activity stimulation by mastoparan in membrane preparations. 6. Mastoparan stimulated PLD in several cell lines such as RBL-2H3, RBL-1, HL-60, P388, endothelial cells, as well as 1321N1 human astrocytoma cells. 7. These results suggest that mastoparan induces phosphatidylcholine (PC) hydrolysis by activation of PLD, not by activation of phosphatidylcholine-specific phospholipase C (PC-PLC); mastoparan-induced PLD activation is not mediated by G proteins.
Collapse
Affiliation(s)
- K Mizuno
- Department of Pharmaceutical Molecular Biology, Faculty of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | | | | |
Collapse
|
26
|
Waggoner DW, Martin A, Dewald J, Gómez-Muñoz A, Brindley DN. Purification and characterization of novel plasma membrane phosphatidate phosphohydrolase from rat liver. J Biol Chem 1995; 270:19422-9. [PMID: 7642624 DOI: 10.1074/jbc.270.33.19422] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
An N-ethylmaleimide-insensitive phosphatidate phosphohydrolase, which also hydrolyzes lysophosphatidate, was isolated from the plasma membranes of rat liver. The specific activity of an anionic form of the enzyme (53 kDa, pI < 4) was increased 2700-fold. A cationic form of enzyme (51 kDa, pI = 9) was purified to homogeneity, but the -fold purification was low because the activity of the highly purified enzyme was unstable. Immunoprecipitating antibodies raised against the homogeneous protein confirmed the identity of the cationic protein as the phosphohydrolase and were used to identify the anionic enzyme. Both forms are integral membrane glycoproteins that were converted to 28-kDa proteins upon treatment with N-glycanase F. Treatment of the anionic form with neuraminidase allowed it to be purified in the same manner as the cationic enzyme and yielded an immunoreactive protein with a molecular mass identical to the cationic protein. Thus, the two ionic forms most likely represent different sialated states of protein. An immunoreactive 51-53-kDa protein was detected in rat liver, heart, kidney, skeletal muscle, testis, and brain. Little immunoreactive 51-53-kDa protein was detected in rat thymus, spleen, adipose, or lung tissue. This work provides the tools for determining the regulation and function of the phosphatidate phosphohydrolase in signal transduction and cell activation.
Collapse
Affiliation(s)
- D W Waggoner
- Signal Transduction Laboratory, University of Alberta, Edmonton, Canada
| | | | | | | | | |
Collapse
|
27
|
Tessitore L, Sesca E, Pani P, Dianzani MU. Sexual dimorphism in the regulation of cell turnover during liver hyperplasia. Chem Biol Interact 1995; 97:1-10. [PMID: 7767937 DOI: 10.1016/0009-2797(94)03602-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A sexual dimorphism occurs in liver cell proliferation following partial hepatectomy, female liver regenerating faster than male, while a continuous excess of choline to females shifts their growth pattern toward that of males (L. Tessitore, P. Pani and M.U. Dianzani, Carcinogenesis, 13 (1992) 1929). In this study we have investigated (a) if the same sexual modulation occurs in a different type of liver growth, hyperplasia induced by a direct mitogen and (b) if the pre-administration of choline to females is able to modulate this dimorphism. Liver hyperplasia induced by lead nitrate, a potent mitogen, has also shown a peculiar sexual dimorphism in all phases of the proliferative process. In contrast with liver regeneration after partial hepatectomy, the mitogenic action of lead nitrate was less effective and was delayed in females as compared with males, by evaluating liver weight, protein accumulation, DNA synthesis and mitotic index. These results were also confirmed by the trend of liver regression by apoptosis. The apoptotic index was higher in males than in females. A prolonged administration of an excess of choline has partially filled these sexual differences, since choline has moved, in females, all the observed parameters (liver weight, protein accumulation, DNA synthesis, mitotic and apoptotic indexes) to values closer to those observed in males.
Collapse
Affiliation(s)
- L Tessitore
- Dipartimento di Medicina ed Oncologia Sperimentale, Università degli Studi, Torino, Italy
| | | | | | | |
Collapse
|
28
|
Mangoura D, Sogos V, Pelletiere C, Dawson G. Differential regulation of phospholipases C and D by phorbol esters and the physiological activators carbachol and glutamate in astrocytes from chicken embryo cerebrum and cerebellum. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1995; 87:12-21. [PMID: 7554228 DOI: 10.1016/0165-3806(95)00047-h] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Primary astrocytic cultures derived from day-15 chick embryo (E15) cerebral hemispheres (CH) or cerebellum (CB) express a calcium/phospholipid-dependent isoform as the major protein kinase C (PKC-alpha/beta). PKC was activated (translocation of activity from cytosol to membrane) following stimulation with carbachol, so we tested for activation of phospholipase C (PLC) as the source of diacylglycerol released from polyphosphoinositide (PIP2) hydrolysis. Carbachol activated PLC (inositol phosphate release) 4-fold in a time- and dose-dependent manner in cortical (CH) astrocytes, but there was no activation of PLC in astrocytes from cerebellum (CB). Pirenzepine, but not gallamine, attenuated both carbachol-induced PKC translocation and PIP2 hydrolysis in E15CH astrocytes, arguing for contribution of M1 subtype. The phorbol ester TPA completely inhibited PIP2 hydrolysis, both basal and carbachol-stimulated, and elicited a stronger, but shorter (10 min) activation of PKC than that observed with carbachol. We investigated phospholipase D (PLD) activation as an alternate source of diacylglycerol in astrocytes, since the ratio of PLC to PKC activation by carbachol was lower in astrocytes than observed in neurons. We observed a dramatic (10-fold) time- and dose-dependent activation of PLD by TPA in CH and a 3-fold increase in CB. The duration of TPA-dependent PLD activation correlated well with increased cell proliferation and changes in astrocytic phenotype markers. Carbachol-stimulated PLD activation was observed in CH but not in CB astrocytes, being mostly dependent on the M3 receptor subtype in the former. In contrast, glutamate elicited a greater PLD activation in CB astrocytes, than in CH astrocytes. TPA activation of PLD was totally blocked by staurosporine (PKC inhibitor) and genistein (a tyrosine kinase inhibitor) in cerebellar (CB) astrocytes; however, total inhibition of TPA-dependent PLD activation was only achieved in cortical (CH) astrocytes after addition of EGTA. Thapsigargin activated PLD in both populations, further emphasizing the PLD activation dependency on [Ca2+]i. Taken together with our previous observations that TPA induces proliferation, cytoskeleton changes, and decreases of glutamine synthetase activity, these data suggest that phospholipase D is a differential but important participant in the regulation of the signalling of mitosis and differentiation in astrocytes during their development.
Collapse
Affiliation(s)
- D Mangoura
- Department of Pediatrics MC5058, University of Chicago Medical School, IL 60637, USA
| | | | | | | |
Collapse
|
29
|
Schmidt M, Hüwe SM, Fasselt B, Homann D, Rümenapp U, Sandmann J, Jakobs KH. Mechanisms of phospholipase D stimulation by m3 muscarinic acetylcholine receptors. Evidence for involvement of tyrosine phosphorylation. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 225:667-75. [PMID: 7957182 DOI: 10.1111/j.1432-1033.1994.00667.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In human embryonic kidney cells stably expressing the human m3 muscarinic acetylcholine receptor (mAChR) subtype, agonist (carbachol) activation stimulated phospholipase C, increased cytoplasmic calcium concentration, induced tyrosine phosphorylation of various cellular proteins and activated phospholipase D. Bypassing membrane receptors, phospholipase D was activated in these cells by direct activation of protein kinase C by phorbol esters, by direct activation of GTP-binding proteins by A1F4- and a stable GTP analogue (in permeabilized cells), by increasing cytoplasmic calcium concentration with the calcium ionophore A23187 and also apparently by tyrosine phosphorylation. In order to identify possible mechanisms by which the m3 mAChR couples to phospholipase D, various inhibitors of protein kinase C, tyrosine kinases and calcium-dependent events were studied. Prevention of an agonist-induced increase in cytoplasmic calcium concentration did not alter the mAChR-induced phospholipase D stimulation. The protein kinase C inhibitors, calphostin C and staurosporine, efficiently prevented phospholipase D activation by phorbol 12-myristate 13-acetate but only partially inhibited the activation induced by the mAChR agonist. Additionally, down-regulation of protein kinase C by prolonged exposure to phorbol 12-myristate 13-acetate abrogated phospholipase D activation by this effector but had only minor or no effects on the response to the mAChR agonist and direct activators of GTP-binding proteins. In contrast, the tyrosine kinase inhibitor genistein abolished the carbachol-induced and A1F4(-)-induced phospholipase D activation but had no effect on enzyme activation by phorbol 12-myristate 13-acetate. The data indicate that phospholipase D in m3 mAChR-expressing human embryonic kidney cells can be activated by various different mechanisms, i.e. receptor agonists, GTP-binding proteins, protein kinase C-dependent and calcium-dependent events and tyrosine phosphorylation. The coupling of m3 mAChR to phospholipase D appears to be largely independent of concomitant phospholipase C activation with subsequent increase in cytoplasmic calcium concentration and protein kinase C activity. The data instead suggest the involvement of an essential protein tyrosine phosphorylation mechanism in phopsholipase D activation by the m3 mAChR and heterotrimeric GTP-binding proteins.
Collapse
Affiliation(s)
- M Schmidt
- Institut für Pharmakologie, Universität GH Essen, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Major C, Wolf BA. Quantitation of the fatty acid composition of phosphatidic acid by capillary gas chromatography electron-capture detection with picomole sensitivity. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL APPLICATIONS 1994; 658:233-40. [PMID: 7820251 DOI: 10.1016/0378-4347(94)00254-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We describe a relatively simple and sensitive method to measure femtomole amounts of phosphatidic acid in cells. Phosphatidic acid was extracted from cells in the presence of 1-heptadecanoyl-2-heptadecanoyl-sn-glycero-3-phosphate as an internal standard, purified by two-dimensional thin-layer chromatography, and hydrolyzed to its constituent free fatty acids which were then derivatized to the corresponding pentafluorobenzyl esters. Pentafluorobenzyl esters of fatty acids were analyzed by gas chromatography with electron-capture detection. Long-chain fatty acids were resolved with excellent signal-to-noise ratios. Using heptadecanoic acid as an internal standard for quantitation, as little as 1 fmol of pentafluorobenzyl ester of stearic acid was detected with a linear response up to 10 pmol. Linear detector responses were obtained for all major classes of fatty acids. For phosphatidic acid measurement, the detection limit was at least 50 fmol thus achieving a 1000-fold increase in sensitivity compared to the most sensitive of the previously described methods. An example is provided of quantitating phosphatidic acid from minute amounts of biological samples such as islets of Langerhans.
Collapse
Affiliation(s)
- C Major
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia 19104
| | | |
Collapse
|
31
|
Larsson C, Gustavsson L, Simonsson P, Bergman O, Alling C. Mechanisms of muscarinic receptor-stimulated expression of c-fos in SH-SY5Y cells. Eur J Pharmacol 1994; 268:19-28. [PMID: 7925609 DOI: 10.1016/0922-4106(94)90116-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In this study, the signal cascade transducing carbachol stimulation into c-fos expression in SH-SY5Y neuroblastoma cells was investigated. 1,2-Diacylglycerol formation and c-fos expression were mediated via stimulation of muscarinic M1 receptors and the first 5 min of receptor stimulation were critical for these events. Application of 1,2-dioctanoylglycerol induced c-fos expression and this, as well as carbachol-stimulated c-fos expression, was inhibited by protein kinase C inhibitors. Increasing the intracellular Ca2+ concentration had only small effects on c-fos expression. There was a dependency on extracellular Ca2+ for maximal c-fos expression and 1,2-diacylglycerol formation. The carbachol-stimulated c-fos expression was potentiated by application of the protein phosphatase inhibitor okadaic acid. These results demonstrate the importance of 1,2-diacylglycerol formation for muscarinic receptor-stimulated, protein kinase C-mediated c-fos expression in the SH-SY5Y cells and that this cascade is counteracted by an okadaic acid-sensitive protein phosphatase.
Collapse
Affiliation(s)
- C Larsson
- Department of Psychiatry and Neurochemistry, Lund University, Sweden
| | | | | | | | | |
Collapse
|
32
|
Kiss Z. Sphingosine-like stimulatory effects of propranolol on phospholipase D activity in NIH 3T3 fibroblasts. Biochem Pharmacol 1994; 47:1581-6. [PMID: 8185671 DOI: 10.1016/0006-2952(94)90535-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Propranolol and sphingosine exhibit several common biochemical effects, including inhibition of phosphatidic acid phosphohydrolase and protein kinase C (PKC) activities. In NIH 3T3 fibroblasts, sphingosine has also been shown to stimulate phospholipase D (PLD)-mediated hydrolysis of both phosphatidylcholine (PtdCho) and phosphatidylethanolamine (PtdEtn) (Kiss Z and Anderson WB, J Biol Chem 265: 7345-7350, 1990). The present study demonstrates that in [14C]palmitic acid-labeled NIH 3T3 fibroblasts, propranolol (50-100 microM) and sphingosine had similar stimulatory effects on PLD-mediated synthesis of phosphatidylethanol in the presence of ethanol. In [14C]choline- and [14C]-ethanolamine-labeled fibroblasts, both compounds also stimulated the hydrolysis of both [14C]PtdCho and [14C]PtdEtn. However, while sphingosine preferentially stimulated PtdEtn hydrolysis, propranolol had greater effects on PtdCho hydrolysis. At each time point examined (15-45 min), lower concentrations (25-50 microM) of propranolol and 100 nM phorbol 12-myristate 13-acetate (PMA) synergistically enhanced PtdEtn hydrolysis; a higher concentration (100 microM) of propranolol inhibited this PMA effect only when the incubation time was 45 min. On the other hand, propranolol (10-100 microM) had either no effect or it inhibited PMA-induced PtdCho hydrolysis after treatments for 15 or 45 min, respectively. These potentiating and inhibitory actions of propranolol on the hydrolysis of PtdCho and PtdEtn were similarly elicited by sphingosine. The present study identified the PLD system as another common target for the pharmacological actions of sphingosine and propranolol.
Collapse
Affiliation(s)
- Z Kiss
- Hormel Institute, University of Minnesota, Austin 55912
| |
Collapse
|
33
|
Abstract
PC hydrolysis by PLA2, PLC or PLD is a widespread response elicited by most growth factors, cytokines, neurotransmitters, hormones and other extracellular signals. The mechanisms can involve G-proteins, PKC, Ca2+ and tyrosine kinase activities. Although an agonist-responsive cytosolic PLA2 has been purified, cloned and sequenced, the agonist-responsive form(s) of PC-PLC has not been identified and no form of PC-PLD has been purified or cloned. Regulation of PLA2 by Ca2+ and MAPK is well established and involves membrane translocation and phosphorylation, respectively. PKC regulation of the enzyme in intact cells is probably mediated by MAPK. The question of G-protein control of PLA2 remains controversial since the nature of the G-protein is unknown and it is not established that its interaction with the enzyme is direct or not. Growth factor regulation of PLA2 involves tyrosine kinase activity, but not necessarily PKC. It may be mediated by MAPK. The physiological significance of PLA2 activation is undoubtedly related to the release of AA for eicosanoid production, but the LPC formed may have actions also. There is much evidence that PKC regulates PC-PLC and PC-PLD and this is probably a major mechanism by which agonists that promote PI hydrolysis secondarily activate PC hydrolysis. Since no agonist-responsive forms of either phospholipase have been isolated, it is not clear that PKC exerts its effects directly on the enzymes. Although it is assumed that a phosphorylation mechanism is involved, this may not be the case, and regulation may be by protein-protein interactions. G-protein control of PC-PLD is well-established, although, again, it has not been demonstrated that this is direct, and the nature of the G-protein(s) involved is unknown. In some cell types, there is evidence of the participation of a soluble protein, which may be a low Mr GTP-binding protein. What role this plays in the activation of PC-PLD is obscure. Agonist activation of PC hydrolysis in cells is usually Ca(2+)-dependent, but the step at which Ca2+ is involved is unclear, since PC-PLD and PC-PLC per se are not influenced by physiological concentrations of the ion. Most growth factors promote PC hydrolysis and this is mainly due to activation of PKC as a result of PI breakdown. However, in some cases, PC breakdown occurs in the absence of PI hydrolysis, implying another mechanism that does not involve PI-derived DAG.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J H Exton
- Howard Hughes Medical Institute, Nashville, TN
| |
Collapse
|
34
|
Protein kinase C alpha mediates phospholipase D activation by nucleotides and phorbol ester in Madin-Darby canine kidney cells. Stimulation of phospholipase D is independent of activation of polyphosphoinositide-specific phospholipase C and phospholipase A2. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)34089-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
35
|
Guillemain I, Rossignol B. Receptor- and phorbol ester-mediated phospholipase D activation in rat parotid involves two different pathways. THE AMERICAN JOURNAL OF PHYSIOLOGY 1994; 266:C692-9. [PMID: 7909406 DOI: 10.1152/ajpcell.1994.266.3.c692] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have investigated phospholipase D (PLD) activation in rat parotid acini prelabeled with [14C]stearic acid. In the presence of 2% ethanol, muscarinic and alpha-adrenergic agonists stimulated the formation of [14C]phosphatidylethanol as a result of a PLD activity. The calcium ionophore, ionomycin, and the phorbol esters, 4 beta-phorbol 12-myristate 13-acetate (PMA) and phorbol 12,13-dibutyrate (PDBu), also stimulated phosphatidylethanol accumulation, but 1-oleyl-2-acetyl-sn-glycerol (OAG), a permeant analogue of diacylglycerol did not. Chelerythrine and staurosporine, two inhibitors of protein kinase C, failed to affect any response. These results suggest that protein kinase C was not involved in the regulation of PLD activity. A difference between PLD regulation by PMA and receptor-mediated agonists was observed with regard to the extracellular calcium requirement. Our results strongly suggest that PLD activation in parotid acini involved different pathways: a calcium-dependent pathway activated by receptor-mediated agonists and a calcium-independent pathway activated by phorbol esters. Moreover, we observed that PLD activation did not result in any change in phosphatidic acid level. We propose that the phosphatidyl transferase activity of PLD reflected a metabolic pathway which may allow a base-exchange reaction in parotid gland.
Collapse
Affiliation(s)
- I Guillemain
- Laboratoire de Biochimie des Transports Cellulaires, Centre National de la Recherche Scientifique, Unité de Recherche Associée 1116, Université Paris-Sud, Orsay, France
| | | |
Collapse
|
36
|
Abstract
How do growth factors that act on G protein-coupled cell-surface receptors communicate with the nucleus? These receptors commonly activate phospholipase C, and it has been assumed that the consequent rise in cytosolic Ca2+ concentrations and activation of protein kinase C mediates the mitogenic response. Recent evidence has demonstrated that phospholipase D (PLD) might be capable of eliciting mitogenesis. This enzyme is stimulated by a variety of growth factors, including those that act on receptors that possess intrinsic tyrosine kinase activity as well as those acting on G protein-coupled receptors. In this review, Michael Boarder considers the evidence that PLD, activated downstream of tyrosine protein kinases by both classes of cell-surface growth factor receptor, is implicated in the mitogenic response. This evidence is related to the possibility of PLD involvement in the regulation of vascular smooth muscle cell proliferation by endothelin-1 and platelet-derived growth factor.
Collapse
Affiliation(s)
- M R Boarder
- Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, UK
| |
Collapse
|
37
|
Gustavsson L, Moehren G, Torres-Marquez M, Benistant C, Rubin R, Hoek J. The role of cytosolic Ca2+, protein kinase C, and protein kinase A in hormonal stimulation of phospholipase D in rat hepatocytes. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42190-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
38
|
Dunlop M, Clark S. Activation of phospholipase D in CHO cells transfected with the human epidermal growth factor (EGF) receptor: differential effects of protein kinase C activation and EGF. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1220:43-8. [PMID: 8268243 DOI: 10.1016/0167-4889(93)90095-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Multiple intracellular signal transduction pathways, including phospholipases A2 and D, can be activated by epidermal growth factor (EGF) in both a protein kinase C (PKC)-dependent and -independent manner. We investigated the activation of phospholipase D (PLD) by a PKC activator, phorbol myristate acetate (PMA) and by EGF in CHO cells transfected with the full-length EGF receptor. In cells labelled with arachidonic acid or linoleic acid, PMA activated a PLD, determined by formation of the transphosphatidylation product phosphatidylethanol in the presence of ethanol. A basal PLD activity was seen in linoleic acid-labelled cells but not in cells labelled with arachidonic acid. This basal activity was augmented by the protein phosphotyrosine phosphatase inhibitor vanadate and reduced by tyrosine kinase inhibition and was contributed to by PKC, as activity could not be elicited following prolonged exposure to phorbol ester, known to down-regulate some PKC isoforms. By contrast, EGF failed to stimulate formation of phosphatidylethanol in cells labelled with either fatty acid species. It is proposed that in the basal condition PKC-dependent PLD activation and protein tyrosine kinase phosphorylation are linked (possibly by a phospholipase C (PLC)-mediated formation of diacylglycerol); EGF which activated a phospholipase A2 (PLA2) but which failed to elicit PLC activation in these cells is without further effect on PLD.
Collapse
Affiliation(s)
- M Dunlop
- University of Melbourne Department of Medicine, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | | |
Collapse
|
39
|
Martin A, Gomez-Muñoz A, Waggoner D, Stone J, Brindley D. Decreased activities of phosphatidate phosphohydrolase and phospholipase D in ras and tyrosine kinase (fps) transformed fibroblasts. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(20)80473-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
40
|
Sakurai J, Ochi S, Tanaka H. Evidence for coupling of Clostridium perfringens alpha-toxin-induced hemolysis to stimulated phosphatidic acid formation in rabbit erythrocytes. Infect Immun 1993; 61:3711-8. [PMID: 8395469 PMCID: PMC281068 DOI: 10.1128/iai.61.9.3711-3718.1993] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
When rabbit erythrocytes were exposed to low concentrations of Clostridium perfringens alpha-toxin, hot-cold hemolysis was observed. The toxin induced production of phosphatidic acid (PA) in a dose-dependent manner when incubated with erythrocytes at 37 degrees C. When erythrocyte membranes were incubated with the toxin and [gamma-32P]ATP in the presence or absence of ethanol, [32P]PA formation was maximal within 30 s, then sharply decreased, and began again after 5 min of incubation. Ethanol had no effect on the early appearance (at approximately 5 min) of PA formation induced by the toxin but significantly inhibited formation of PA over 10 min of incubation. Treatment of erythrocyte membranes with alpha-toxin resulted in the biphasic formation of 1,2-diacylglycerol and PA as well as an increase of inositol-1,4,5-trisphosphate (IP3) and decrease of phosphatidylinositol-4,5-bisphosphate (PIP2) within 30 s. Neomycin inhibited the toxin-induced increase in turbidity of egg yolk suspensions but did not inhibit the toxin-induced hemolysis of intact erythrocytes. On the other hand, neomycin inhibited the toxin-induced hemolysis of saponin-treated erythrocytes. In addition, neomycin inhibited PA formation induced by the toxin in erythrocyte membranes. IP3 was released by incubation of PIP2 with erythrocyte membranes but not by incubation of PIP2 with the toxin. The toxin stimulated the membrane-induced release of IP3 from PIP2. These data suggest that the toxin-induced hemolysis is dependent on the action of phospholipase C in erythrocyte membranes.
Collapse
Affiliation(s)
- J Sakurai
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Japan
| | | | | |
Collapse
|
41
|
Sadoshima J, Izumo S. Signal transduction pathways of angiotensin II--induced c-fos gene expression in cardiac myocytes in vitro. Roles of phospholipid-derived second messengers. Circ Res 1993; 73:424-38. [PMID: 8348687 DOI: 10.1161/01.res.73.3.424] [Citation(s) in RCA: 256] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Angiotensin II (Ang II) causes a rapid induction of immediate-early genes and hypertrophy in the cardiac myocyte. However, the signaling mechanism of Ang II-induced immediate-early gene expression in cardiac myocytes has not been characterized. Therefore, we examined signal transduction of Ang II in neonatal rat cardiac myocytes, using c-fos gene expression as a model system. Transient transfection of c-fos reporter gene constructs indicated that the serum response element is not only required but also sufficient for Ang II-induced activation of the c-fos promoter. Ang II is known to cause an increase in [Ca2+]i. We found that Ang II also causes a small increase in cAMP in cardiac myocytes. However, the Ca2+/cAMP response element of the c-fos gene was not sufficient to confer Ang II responsiveness to the c-fos promoter, and inhibitors of protein kinase A had no effects on Ang II-induced c-fos expression. On the other hand, chelating intracellular Ca2+ with BAPTA-AM inhibited Ang II-induced c-fos expression in a dose-dependent manner, suggesting that Ca2+ is required for Ang II-induced signaling. Measurements of phospholipid-derived second messengers revealed that Ang II increased production of inositol trisphosphate, diacylglycerol, phosphatidic acid, and arachidonic acids, resulting in a sustained increase in protein kinase C activity. This and other evidence suggest that Ang II activates phospholipase C, phospholipase D, and possibly phospholipase A2. All of these second-messenger systems are activated through the AT1 receptor. Pharmacological inhibition of phospholipase C or downregulation of protein kinase C significantly suppressed Ang II-induced c-fos expression. In conclusion, Ang II activates multiple phospholipid-derived second-messenger systems via the AT1 receptor in cardiac myocytes. Among these second-messenger systems, phospholipase C and protein kinase C seem essential for Ang II-induced c-fos gene expression, whereas Ca2+ may play a permissive role. Finally, the "Ang II response element" of the c-fos gene maps to the protein kinase C-dependent portion of the serum response element.
Collapse
Affiliation(s)
- J Sadoshima
- Molecular Medicine Division, Beth Israel Hospital, Boston, Mass. 02215
| | | |
Collapse
|
42
|
Gustavsson L, Lundqvist C, Hansson E. Receptor-mediated phospholipase D activity in primary astroglial cultures. Glia 1993; 8:249-55. [PMID: 8406682 DOI: 10.1002/glia.440080405] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Phospholipase D, an enzyme involved in signal transduction cascades, catalyses the formation of phosphatidic acid and, when ethanol is present, the formation of phosphatidylethanol. In the present study we demonstrate that stimulation of muscarinic acetylcholine receptors as well as P2-purinergic receptors induces activation of phospholipase D in primary cultures of astroglial cells. Both the hydrolysis and the transphosphatidylation reactions were stimulated by receptor agonists. Carbachol and ATP induced a rapid increase in the amount of [3H]phosphatidic acid in astroglial cells prelabelled with [3H]oleic acid. When ethanol (150 mM) was present, phosphatidylethanol was formed. Furthermore, the receptor-mediated increase in the concentration of phosphatidic acid was inhibited by ethanol, indicating that the phosphatidic acid production was indeed mediated by phospholipase D. The formation of phosphatidylethanol was concentration dependent, with a half-maximal effective concentration of 5 x 10(-5) M for carbachol and 10(-5) M for ATP. The carbachol-induced response was almost completely inhibited by atropine, indicating activation of phospholipase D via muscarinic receptors. The purinergic response is most probably mediated via P2-receptors since ADP was almost as efficient as ATP in inducing phosphatidylethanol formation, whereas AMP was significantly less potent. We conclude that astroglial cells in primary culture display muscarinic and purinergic receptors coupled to phospholipase D. The relationship to cell function needs to be further investigated.
Collapse
Affiliation(s)
- L Gustavsson
- Department of Psychiatry and Neurochemistry, University of Lund, Göteborg, Sweden
| | | | | |
Collapse
|
43
|
Ben-Av P, Eli Y, Schmidt US, Tobias KE, Liscovitch M. Distinct mechanisms of phospholipase D activation and attenuation utilized by different mitogens in NIH-3T3 fibroblasts. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 215:455-63. [PMID: 8344313 DOI: 10.1111/j.1432-1033.1993.tb18054.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The activation of phospholipase D (PLD) by platelet-derived growth factor (PDGF), prostaglandin F2 alpha and 12-O-tetradecanoylphorbol 13-acetate (TPA) was studied in NIH-3T3 fibroblasts. PLD activation was determined by measuring the production of both [3H]phosphatidic acid and [3H]phosphatidylpropanol (products of the PLD-catalyzed hydrolysis and transphosphatidylation reactions, respectively), in cells that were metabolically pre-labeled with [3H]oleic acid. All mitogens caused a rapid (within 2 min) activation of PLD. Activation of PLD by prostaglandin F2 alpha and PDGF was transient and declined to near basal levels by 15 min and 55 min, respectively. In contrast, TPA-induced activation of PLD was sustained for at least 60 min of incubation. A combination of maximally effective concentrations of PDGF and TPA stimulated PLD activity in a non-additive manner, while the effect of prostaglandin F2 alpha was additional to that of either PDGF or TPA. The protein kinase inhibitor staurosporine inhibited PLD activation by PDGF or TPA with almost identical dose/response curves. In contrast, staurosporine potentiated prostaglandin-F2 alpha-induced PLD activation. The specific protein kinase C inhibitor GF109203X (a bisindolylmaleimide) inhibited PLD activation by prostaglandin F2 alpha and PDGF at concentrations higher than those required for inhibition of PLD activation induced by TPA. Depletion of cellular protein kinase C abolished PLD activation by all three mitogens without affecting in vitro activity of membrane-bound PLD. The distinct kinetics of PLD activation and its differential susceptibility to protein kinase inhibitors suggest the existence of agonist-specific activation and/or inactivation mechanisms. The results indicate also that protein kinase C participates in the mechanism of PLD activation via PDGF, while the effect of prostaglandin F2 alpha involves a pathway independent of protein kinase C.
Collapse
Affiliation(s)
- P Ben-Av
- Department of Hormone Research, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | |
Collapse
|
44
|
Zhou HL, Chabot-Fletcher M, Foley JJ, Sarau HM, Tzimas MN, Winkler JD, Torphy TJ. Association between leukotriene B4-induced phospholipase D activation and degranulation of human neutrophils. Biochem Pharmacol 1993; 46:139-48. [PMID: 8394074 DOI: 10.1016/0006-2952(93)90358-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have explored the role of phospholipase D (PLD) activation in leukotriene B4 (LTB4)-induced Ca2+ mobilization and degranulation of human neutrophils. Stimulation of [3H]alkyl-acyl-phosphatidylcholine-labeled neutrophils with LTB4 resulted in a rapid accumulation of [3H]alkyl-phosphatidic acid (PA) as well as a somewhat slower accumulation of [3H]alkyl-diglyceride (DG). In the presence of ethanol, PLD catalyzed a transphosphatidylation reaction in which LTB4 increased [3H]alkyl-phosphatidylethanol formation and simultaneously decreased LTB4-induced PA and DG accumulation. This pattern of lipid metabolism is consistent with the conclusion that LTB4 stimulates PLD activity in human neutrophils. Additional studies in which the extracellular and intracellular concentrations of Ca2+ were varied indicated that maximal LTB4-induced PLD activation was dependent upon Ca2+ and potentiated by inhibitors of protein kinase C. The time-course and concentration-response curves for LTB4-induced PLD activation were different from those for LTB4-induced Ca2+ mobilization, as measured by fura-2 fluorescence. On the other hand, the concentration-response curve for LTB4-induced PLD activation was similar to that for LTB4-induced degranulation. Preincubation of the cells with ethanol inhibited LTB4-induced PA and DG accumulation, as well as degranulation, suggesting that one or both of these metabolites were important for this response. In contrast, ethanol had no effect on LTB4-induced Ca2+ mobilization. Propranolol, an inhibitor of phosphatidate phosphohydrolase, abolished DG accumulation in response to LTB4 but had no effect on degranulation, suggesting that PA is more important than DG as a mediator of degranulation. Taken collectively, these data indicate that LTB4-induced activation of PLD in human neutrophils is mediated by a Ca(2+)-dependent mechanism, but not by protein kinase C. In addition, PLD activation in these cells may induce degranulation, but not Ca2+ mobilization.
Collapse
Affiliation(s)
- H L Zhou
- Department of Inflammation and Respiratory Pharmacology, SmithKline Beecham Pharmaceuticals, King of Prussia, PA 19406-0939
| | | | | | | | | | | | | |
Collapse
|
45
|
Merrall NW, Wakelam MJ, Plevin R, Gould GW. Insulin and platelet-derived growth factor acutely stimulate glucose transport in 3T3-L1 fibroblasts independently of protein kinase C. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1177:191-8. [PMID: 8499489 DOI: 10.1016/0167-4889(93)90040-v] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Insulin and platelet-derived growth factor (PDGF) are mitogenic for murine 3T3-L1 fibroblasts. Both these mitogens acutely stimulate glucose transport by 2-4-fold in these cells, evident within minutes of agonist exposure. The tumour promoter and protein kinase C activator, phorbol 12-myristate 13-acetate (PMA) also stimulates glucose transport by 2-3-fold over a similar time frame, suggesting that protein kinase C may be involved in the mitogenic action of insulin and PDGF in this cell line. In an attempt to address this, we have measured intracellular sn-1,2-diacylglycerol (DAG) levels in response to insulin, PDGF and PMA. We show that PDGF and PMA induce a rapid elevation in intracellular diacylglycerol levels, but insulin was without effect. In addition, we have shown that PMA and PDGF, but not insulin, stimulate protein kinase C activity. However, depletion of protein kinase C by overnight exposure to PMA, abolished PMA-stimulated glucose transport but had no effect on insulin- and PDGF-stimulated glucose transport, suggesting that the stimulation of glucose transport by these mitogens does not involve protein kinase C. The use of the selective protein kinase C inhibitor, Roche 31-8220, which inhibited PMA-stimulated glucose transport, but was without effect on insulin- and PDGF-stimulated glucose transport further supports this conclusion. Taken together, these data argue against a role for protein kinase C in the stimulation of glucose transport in 3T3-L1 fibroblasts caused by acute exposure to insulin or PDGF.
Collapse
Affiliation(s)
- N W Merrall
- Department of Biochemistry, University of Glasgow, UK
| | | | | | | |
Collapse
|
46
|
Geer BW, Heinstra PW, McKechnie SW. The biological basis of ethanol tolerance in Drosophila. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1993; 105:203-29. [PMID: 8359013 DOI: 10.1016/0305-0491(93)90221-p] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- B W Geer
- Department of Biology, Knox College, Galesburg, IL 61401
| | | | | |
Collapse
|
47
|
Takuwa Y, Matsui T, Abe Y, Nagafuji T, Yamashita K, Asano T. Alterations in protein kinase C activity and membrane lipid metabolism in cerebral vasospasm after subarachnoid hemorrhage. J Cereb Blood Flow Metab 1993; 13:409-15. [PMID: 8478399 DOI: 10.1038/jcbfm.1993.55] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Changes in protein kinase C (PKC) activity, membrane lipid metabolism, and the extent of 20-kDa myosin light chain (MLC) phosphorylation in spastic cerebral basilar arteries were examined by using the beagle "two-hemorrhage" model of subarachnoid hemorrhage. In spastic arteries at days 4 and 7, cytosolic PKC activity showed a decrease of 40-45% with no significant changes in membrane PKC activity as compared with nonspastic control arteries. Cytosolic PKC activity of the day 14 arteries returned toward the normal control level with the remission of vasospasm. Western blot analysis of the PKC isoforms revealed that the amounts of PKC alpha and PKC epsilon but not PKC zeta were decreased in spastic arteries. As compared with nonspastic arteries, spastic arteries showed higher rates of incorporation of [3H]choline into phosphatidylcholine (PC) and [14C]ethanolamine into phosphatidylethanolamine (PE), but not of [3H]myoinositol into phosphoinositides, suggesting the stimulated turn-over of PC and PE. The extent of 20-kDa MLC phosphorylation was not increased in the spastic arteries at days 4 or 7 as compared with that in the nonspastic control arteries. These results demonstrate that PKC activity and related membrane lipid metabolism are altered in spastic basilar arteries after subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Y Takuwa
- Department of Cardiovascular Biology, Faculty of Medicine, University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Purkiss JR, Wilkinson GF, Boarder MR. Evidence for a nucleotide receptor on adrenal medullary endothelial cells linked to phospholipase C and phospholipase D. Br J Pharmacol 1993; 108:1031-7. [PMID: 8485616 PMCID: PMC1908149 DOI: 10.1111/j.1476-5381.1993.tb13501.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
1. We have investigated whether the 'atypical' P2-purinoceptor previously described on adrenal microvasculature endothelial cells is a nucleotide receptor (responds to pyrimidines and purines) and is linked to phospholipase D as well as phospholipase C. 2. Cultured bovine adrenal medullary endothelial (BAME) cells responded to the pyrimidine UTP, as well as the purines. The total [3H]-inositol phosphate responses were with a rank order of UTP > ATP- = adenosine 5'-O-(3-thio-triphosphate) (ATP gamma S) >> 2MeSATP. The selective P2x agonist beta, gamma-methylene ATP was inactive. 3. Construction of dose-response curves to ATP, ATP gamma S and UTP in the presence and absence of additional agonists showed that responses to ATP gamma S and UTP were not additive, nor were those to UTP and ATP. This suggests that purines and pyrmidines acted via a common nucleotide receptor. 4. 32P-labelled BAME cells, in the presence of butanol, produced [32P]-phosphatidylbutanol (PBut) when stimulated with ATP gamma S or the protein kinase C activator, tetradecanoyl phorbol acetate (TPA). 5. Cells labelled with [3H]-palmitate and stimulated in the presence of butanol generated [3H]-PBut with the same order of agonist potencies seen for inositol phosphate responses. 6. The protein kinase C inhibitor, Ro 31-8220, abolished TPA and agonist stimulation of [3H]-PBut production. 7. These observations, and our related studies on bovine aortic endothelial cells, provide the first demonstration of a phospholipase C linked nucleotide receptor on vascular endothelial cells. It is concluded that BAME cells express a nucleotide receptor linked to phospholipase C and phospholipase D, but that activation of phospholipase D is probably down-stream of phospholipase C.
Collapse
Affiliation(s)
- J R Purkiss
- Department of Pharmacology and Therapeutics, University of Leicester
| | | | | |
Collapse
|
49
|
Dyer CA. Novel oligodendrocyte transmembrane signaling systems. Investigations utilizing antibodies as ligands. Mol Neurobiol 1993; 7:1-22. [PMID: 8391270 DOI: 10.1007/bf02780606] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Antibodies are increasingly being used as tools to study the function of cell surface markers. Several types of responses may occur upon the selective binding of an antibody to an epitope on a receptor. Antibody binding may trigger signals that are normally transduced by endogenous ligands. Moreover, antibody binding may activate normal signals in a manner that disrupts a sequence of events that coordinates either differentiation, mitogenesis, or morphogenesis. Alternately, it is possible that binding elicits either a modified signal or no signal. This article focuses on the cascade of events that occur following specific antibody binding to myelin markers expressed by cultured murine oligodendrocytes. Binding of specific antibodies to the oligodendrocyte membrane surface markers myelin/oligodendrocyte glycoprotein (MOG), myelin/oligodendrocyte specific protein (MOSP), galactocerebroside (GalC), and sulfatide on cultured murine oligodendrocytes results in different effects with regard to phospholipid turnover, Ca2+ influxes, and antibody:marker distribution. The consequence of each antibody-elicited cascade of events appears to be the regulation of the cytoskeleton within the oligodendroglial membrane sheets. The antibody binding studies described in this article demonstrate that these myelin surface markers are capable of transducing signals. Since endogenous ligands for these myelin markers have yet to be identified, it is not known if these signals are normally transduced or are a modification of normally transduced signals.
Collapse
Affiliation(s)
- C A Dyer
- Department of Biomedical Sciences, E. K. Shriver Center, Waltham, MA 02254
| |
Collapse
|
50
|
Meats JE, Steele L, Bowen JG. Identification of phospholipase D (PLD) activity in mouse peritoneal macrophages. AGENTS AND ACTIONS 1993; 39 Spec No:C14-6. [PMID: 8273553 DOI: 10.1007/bf01972706] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
It is now believed that PLD may contribute to the sustained generation of diacylglycerol (DAG) within activated cells. DAG can be formed from phosphatidylcholine by the sequential actions of PLD and phosphatidic acid phosphohydrolase. Phorbal myristate acetate (PMA, 1 microM), A23187 (10 microM) or platelet-activating factor (PAF, 100 nM) caused significant enhancement of intracellular 14C-phosphatidic acid levels 2-5 min after the addition of stimulus, in cultures of peritoneal macrophages pre-labelled with 14C-palmitate. Bacterial lipopolysaccharide (LPS) (5 micrograms/ml) or zymosan (375 micrograms/ml) also stimulated the production of 14C-phosphatidic acid, but over a longer time course (15-60 min). In the presence of 1% ethanol each stimulus caused significant production of 4C-phosphatidylethanol at the expense of 14C-phosphatidic acid, thus confirming a contribution of PLD in these reactions. This is the first report of PLD activity in this cell type.
Collapse
Affiliation(s)
- J E Meats
- Boots Pharmaceuticals Research Department, Nottingham, UK
| | | | | |
Collapse
|