1
|
Qiu B, Lawan A, Xirouchaki CE, Yi JS, Robert M, Zhang L, Brown W, Fernández-Hernando C, Yang X, Tiganis T, Bennett AM. MKP1 promotes nonalcoholic steatohepatitis by suppressing AMPK activity through LKB1 nuclear retention. Nat Commun 2023; 14:5405. [PMID: 37669951 PMCID: PMC10480499 DOI: 10.1038/s41467-023-41145-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is triggered by hepatocyte death through activation of caspase 6, as a result of decreased adenosine monophosphate (AMP)-activated protein kinase-alpha (AMPKα) activity. Increased hepatocellular death promotes inflammation which drives hepatic fibrosis. We show that the nuclear-localized mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP1) is upregulated in NASH patients and in NASH diet fed male mice. The focus of this work is to investigate whether and how MKP1 is involved in the development of NASH. Under NASH conditions increased oxidative stress, induces MKP1 expression leading to nuclear p38 MAPK dephosphorylation and decreases liver kinase B1 (LKB1) phosphorylation at a site required to promote LKB1 nuclear exit. Hepatic deletion of MKP1 in NASH diet fed male mice releases nuclear LKB1 into the cytoplasm to activate AMPKα and prevents hepatocellular death, inflammation and NASH. Hence, nuclear-localized MKP1-p38 MAPK-LKB1 signaling is required to suppress AMPKα which triggers hepatocyte death and the development of NASH.
Collapse
Affiliation(s)
- Bin Qiu
- Yale University School of Medicine, Department of Pharmacology, 333 Cedar Street, New Haven, CT, 06520, USA
- Yale University School of Medicine, Yale Center of Molecular and Systems Metabolism, New Haven, CT, 06520, USA
| | - Ahmed Lawan
- University of Alabama, Department of Biological Sciences, 301 Sparkman Drive, Huntsville, AL, 35899, USA
| | - Chrysovalantou E Xirouchaki
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Jae-Sung Yi
- Yale University School of Medicine, Department of Pharmacology, 333 Cedar Street, New Haven, CT, 06520, USA
- Yale University School of Medicine, Yale Center of Molecular and Systems Metabolism, New Haven, CT, 06520, USA
| | - Marie Robert
- Yale University School of Medicine, Department of Pathology, 300 Cedar Street, New Haven, CT, 06520, USA
| | - Lei Zhang
- Yale University School of Medicine, Department of Pharmacology, 333 Cedar Street, New Haven, CT, 06520, USA
- Yale University School of Medicine, Yale Center of Molecular and Systems Metabolism, New Haven, CT, 06520, USA
| | - Wendy Brown
- Monash University Department of Surgery, Alfred Hospital, Melbourne, Victoria, 3004, Australia
| | - Carlos Fernández-Hernando
- Yale University School of Medicine, Yale Center of Molecular and Systems Metabolism, New Haven, CT, 06520, USA
- Yale University School of Medicine, Department of Pathology, 300 Cedar Street, New Haven, CT, 06520, USA
- Yale University School of Medicine, Vascular Biology and Therapeutics Program, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Xiaoyong Yang
- Yale University School of Medicine, Yale Center of Molecular and Systems Metabolism, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Tony Tiganis
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Anton M Bennett
- Yale University School of Medicine, Department of Pharmacology, 333 Cedar Street, New Haven, CT, 06520, USA.
- Yale University School of Medicine, Yale Center of Molecular and Systems Metabolism, New Haven, CT, 06520, USA.
- Yale University School of Medicine, Vascular Biology and Therapeutics Program, New Haven, CT, 06520, USA.
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
2
|
Qiu B, Lawan A, Xirouchaki CE, Yi JS, Robert M, Zhang L, Brown W, Fernández-Hernando C, Yang X, Tiganis T, Bennett AM. MKP1 promotes nonalcoholic steatohepatitis by suppressing AMPK activity through LKB1 nuclear retention. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.10.548263. [PMID: 37502892 PMCID: PMC10369865 DOI: 10.1101/2023.07.10.548263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is triggered by hepatocyte death through activation of caspase 6, as a result of decreased adenosine monophosphate (AMP)-activated protein kinase-alpha (AMPKα) activity. Increased hepatocellular death promotes inflammation which drives hepatic fibrosis. We show that the nuclear-localized mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP1) is upregulated in NASH patients and in NASH diet fed mice. The focus of this work was to investigate whether and how MKP1 is involved in the development of NASH. Under NASH conditions increased oxidative stress, induces MKP1 expression leading to nuclear p38 MAPK dephosphorylation and decreased liver kinase B1 (LKB1) phosphorylation at a site required to promote LKB1 nuclear exit. Hepatic deletion of MKP1 in NASH diet fed mice released nuclear LKB1 into the cytoplasm to activate AMPKα and prevent hepatocellular death, inflammation and NASH. Hence, nuclear-localized MKP1-p38 MAPK-LKB1 signaling is required to suppress AMPKα which triggers hepatocyte death and the development of NASH.
Collapse
|
3
|
Gene 33/Mig6/ERRFI1, an Adapter Protein with Complex Functions in Cell Biology and Human Diseases. Cells 2021; 10:cells10071574. [PMID: 34206547 PMCID: PMC8306081 DOI: 10.3390/cells10071574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/12/2021] [Accepted: 06/17/2021] [Indexed: 12/13/2022] Open
Abstract
Gene 33 (also named Mig6, RALT, and ERRFI1) is an adapter/scaffold protein with a calculated molecular weight of about 50 kD. It contains multiple domains known to mediate protein–protein interaction, suggesting that it has the potential to interact with many cellular partners and have multiple cellular functions. The research over the last two decades has confirmed that it indeed regulates multiple cell signaling pathways and is involved in many pathophysiological processes. Gene 33 has long been viewed as an exclusively cytosolic protein. However, recent evidence suggests that it also has nuclear and chromatin-associated functions. These new findings highlight a significantly broader functional spectrum of this protein. In this review, we will discuss the function and regulation of Gene 33, as well as its association with human pathophysiological conditions in light of the recent research progress on this protein.
Collapse
|
4
|
Jishage M, Roeder RG. Regulation of hepatocyte cell cycle re-entry by RNA polymerase II-associated Gdown1. Cell Cycle 2020; 19:3222-3230. [PMID: 33238793 PMCID: PMC7751663 DOI: 10.1080/15384101.2020.1843776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 09/27/2020] [Indexed: 02/06/2023] Open
Abstract
Liver is the central organ responsible for whole-body metabolism, and its constituent hepatocytes are the major players that carry out liver functions. Although they are highly differentiated and rarely divide, hepatocytes re-enter the cell cycle following hepatic loss due to liver damage or injury. However, the exact molecular mechanisms underlying cell cycle re-entry remain undefined. Gdown1 is an RNA polymerase II (Pol II)-associated protein that has been linked to the function of the Mediator transcriptional coactivator complex. We recently found that Gdown1 ablation in mouse liver leads to down-regulation of highly expressed liver-specific genes and a concomitant cell cycle re-entry associated with the induction of cell cycle-related genes. Unexpectedly, in view of a previously documented inhibitory effect on transcription initiation by Pol II in vitro, we found that Gdown1 is associated with elongating Pol II on the highly expressed genes and that its ablation leads to a reduced Pol II occupancy that correlates with the reduced expression of these genes. Based on these observations, we discuss the in vitro and in vivo functions of Gdown1 and consider mechanisms by which the dysregulated Pol II recruitment associated with Gdown1 loss might induce quiescent cell re-entry into the cell cycle.
Collapse
Affiliation(s)
- Miki Jishage
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Robert G. Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
5
|
Jishage M, Ito K, Chu CS, Wang X, Yamaji M, Roeder RG. Transcriptional down-regulation of metabolic genes by Gdown1 ablation induces quiescent cell re-entry into the cell cycle. Genes Dev 2020; 34:767-784. [PMID: 32381628 PMCID: PMC7263145 DOI: 10.1101/gad.337683.120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022]
Abstract
Here, Jishage et al. show that hepatocyte-specific ablation of RNA polymerase II (Pol II)-associated Gdown1 leads to down-regulation of highly expressed genes involved in plasma protein synthesis and metabolism, a concomitant cell cycle re-entry associated with induction of cell cycle-related genes (including cyclin D1). Their findings establish an important physiological function for a Pol II regulatory factor (Gdown1) in the maintenance of normal liver cell transcription through constraints on cell cycle re-entry of quiescent hepatocytes. Liver regeneration and metabolism are highly interconnected. Here, we show that hepatocyte-specific ablation of RNA polymerase II (Pol II)-associated Gdown1 leads to down-regulation of highly expressed genes involved in plasma protein synthesis and metabolism, a concomitant cell cycle re-entry associated with induction of cell cycle-related genes (including cyclin D1), and up-regulation of p21 through activation of p53 signaling. In the absence of p53, Gdown1-deficient hepatocytes show a severe dysregulation of cell cycle progression, with incomplete mitoses, and a premalignant-like transformation. Mechanistically, Gdown1 is associated with elongating Pol II on the highly expressed genes and its ablation leads to reduced Pol II recruitment to these genes, suggesting that Pol II redistribution may facilitate hepatocyte re-entry into the cell cycle. These results establish an important physiological function for a Pol II regulatory factor (Gdown1) in the maintenance of normal liver cell transcription through constraints on cell cycle re-entry of quiescent hepatocytes.
Collapse
Affiliation(s)
- Miki Jishage
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10065, USA
| | - Keiichi Ito
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10065, USA
| | - Chi-Shuen Chu
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10065, USA
| | - Xiaoling Wang
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10065, USA
| | - Masashi Yamaji
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, 49267, USA
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
6
|
MicroRNA 27a Is a Key Modulator of Cholesterol Biosynthesis. Mol Cell Biol 2020; 40:MCB.00470-19. [PMID: 32071155 DOI: 10.1128/mcb.00470-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/10/2020] [Indexed: 12/25/2022] Open
Abstract
Hypercholesterolemia is a strong predictor of cardiovascular diseases. The 3-hydroxy-3-methylglutaryl coenzyme A reductase gene (Hmgcr) coding for the rate-limiting enzyme in the cholesterol biosynthesis pathway is a crucial regulator of plasma cholesterol levels. However, the posttranscriptional regulation of Hmgcr remains poorly understood. The main objective of this study was to explore the role of microRNAs (miRNAs) in the regulation of Hmgcr expression. Systematic in silico predictions and experimental analyses reveal that miRNA 27a (miR-27a) specifically interacts with the Hmgcr 3' untranslated region in murine and human hepatocytes. Moreover, our data show that Hmgcr expression is inversely correlated with miR-27a levels in various cultured cell lines and in human and rodent tissues. Actinomycin D chase assays and relevant experiments demonstrate that miR-27a regulates Hmgcr by translational attenuation followed by mRNA degradation. Early growth response 1 (Egr1) regulates miR-27a expression under basal and cholesterol-modulated conditions. miR-27a augmentation via tail vein injection of miR-27a mimic in high-cholesterol-diet-fed Apoe -/- mice shows downregulation of hepatic Hmgcr and plasma cholesterol levels. Pathway and gene expression analyses show that miR-27a also targets several other genes (apart from Hmgcr) in the cholesterol biosynthesis pathway. Taken together, miR-27a emerges as a key regulator of cholesterol biosynthesis and has therapeutic potential for the clinical management of hypercholesterolemia.
Collapse
|
7
|
de Jonge J, Olthoff KM. Liver regeneration. BLUMGART'S SURGERY OF THE LIVER, BILIARY TRACT AND PANCREAS, 2-VOLUME SET 2017:93-109.e7. [DOI: 10.1016/b978-0-323-34062-5.00006-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
8
|
Franklin JL, Amsler MO, Messina JL. Prenylation differentially inhibits insulin-dependent immediate early gene mRNA expression. Biochem Biophys Res Commun 2016; 474:594-598. [PMID: 27086854 DOI: 10.1016/j.bbrc.2016.04.067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 04/13/2016] [Indexed: 12/15/2022]
Abstract
Increased activity of prenyl transferases is observed in pathological states of insulin resistance, diabetes, and obesity. Thus, functional inhibitors of farnesyl transferase (FTase) and geranylgeranyl transferase (GGTase) may be promising therapeutic treatments. We previously identified insulin responsive genes from a rat H4IIE hepatoma cell cDNA library, including β-actin, EGR1, Pip92, c-fos, and Hsp60. In the present study, we investigated whether acute treatment with FTase and GGTase inhibitors would alter insulin responsive gene initiation and/or elongation rates. We observed differential regulation of insulin responsive gene expression, suggesting a differential sensitivity of these genes to one or both of the specific protein prenylation inhibitors.
Collapse
Affiliation(s)
- J Lee Franklin
- University of Alabama at Birmingham, Department of Pathology, Division of Molecular and Cellular Pathology, Birmingham, AL 35294, USA
| | - Maggie O Amsler
- University of Alabama at Birmingham, Department of Biology, Birmingham, AL 35294, USA
| | - Joseph L Messina
- University of Alabama at Birmingham, Department of Pathology, Division of Molecular and Cellular Pathology, Birmingham, AL 35294, USA; Veterans Administration Medical Center, Birmingham, AL 35294, USA.
| |
Collapse
|
9
|
Abstract
Liver regeneration after partial hepatectomy is the only example of a regenerative process in mammals in which the organ/body weight ratio returns to 100% of the original when the process is complete. The adjustment of liver weight to the needs of the body suggests a complicated set of control points, a 'hepatostat'. There has been much progress in elucidation of mechanisms involved in initiation of liver regeneration. More recent studies have focused on termination pathways, because these may be the underlying controls of the hepatostat and their elimination may be relevant to hepatic neoplasia. When the standard regenerative process is thwarted due to failure of either hepatocytes or biliary epithelial cells to proliferate, each of the two epithelial compartments can function as a source of facultative stem cells for the other.
Collapse
Affiliation(s)
- George K Michalopoulos
- Department of Pathology, University of Pittsburgh School of Medicine, Bioscience Tower South, Pittsburgh, PA 15261, USA
| |
Collapse
|
10
|
Chen YC, Colvin ES, Griffin KE, Maier BF, Fueger PT. Mig6 haploinsufficiency protects mice against streptozotocin-induced diabetes. Diabetologia 2014; 57:2066-75. [PMID: 24989997 PMCID: PMC4156529 DOI: 10.1007/s00125-014-3311-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 06/02/2014] [Indexed: 11/30/2022]
Abstract
AIMS/HYPOTHESIS EGF and gastrin co-administration reverses type 1 diabetes in rodent models. However, the failure of this to translate into a clinical treatment suggests that EGF-mediated tissue repair is a complicated process and warrants further investigation. Thus, we aimed to determine whether EGF receptor (EGFR) feedback inhibition by mitogen-inducible gene 6 protein (MIG6) limits the effectiveness of EGF therapy and promotes type 1 diabetes development. METHODS We treated Mig6 (also known as Errfi1) haploinsufficient mice (Mig6 (+/-)) and their wild-type littermates (Mig6 (+/+)) with multiple low doses of streptozotocin (STZ), and monitored diabetes development via glucose homeostasis tests and histological analyses. We also investigated MIG6-mediated cytokine-induced desensitisation of EGFR signalling and the DNA damage repair response in 832/13 INS-1 beta cells. RESULTS Whereas STZ-treated Mig6 (+/+) mice became diabetic, STZ-treated Mig6 (+/-) mice remained glucose tolerant. In addition, STZ-treated Mig6 (+/-) mice exhibited preserved circulating insulin levels following a glucose challenge. As insulin sensitivity was similar between Mig6 (+/-) and Mig6 (+/+) mice, the preserved glucose tolerance in STZ-treated Mig6 (+/-) mice probably results from preserved beta cell function. This is supported by elevated Pdx1 and Irs2 mRNA levels in islets isolated from STZ-treated Mig6 (+/-) mice. Conversely, MIG6 overexpression in isolated islets compromises glucose-stimulated insulin secretion. Studies in 832/13 cells suggested that cytokine-induced MIG6 hinders EGFR activation and inhibits DNA damage repair. STZ-treated Mig6 (+/-) mice also have increased beta cell mass recovery. CONCLUSIONS/INTERPRETATION Reducing Mig6 expression promotes beta cell repair and abates the development of experimental diabetes, suggesting that MIG6 may be a novel therapeutic target for preserving beta cells.
Collapse
Affiliation(s)
- Yi-Chun Chen
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - E. Scott Colvin
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 635 Barnhill Drive, MS 2031, Indianapolis, IN 46202, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Katherine E. Griffin
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 635 Barnhill Drive, MS 2031, Indianapolis, IN 46202, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Bernhard F. Maier
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 635 Barnhill Drive, MS 2031, Indianapolis, IN 46202, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Patrick T. Fueger
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 635 Barnhill Drive, MS 2031, Indianapolis, IN 46202, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| |
Collapse
|
11
|
Abstract
Liver regeneration is perhaps the most studied example of compensatory growth aimed to replace loss of tissue in an organ. Hepatocytes, the main functional cells of the liver, manage to proliferate to restore mass and to simultaneously deliver all functions hepatic functions necessary to maintain body homeostasis. They are the first cells to respond to regenerative stimuli triggered by mitogenic growth factor receptors MET (the hepatocyte growth factor receptor] and epidermal growth factor receptor and complemented by auxiliary mitogenic signals induced by other cytokines. Termination of liver regeneration is a complex process affected by integrin mediated signaling and it restores the organ to its original mass as determined by the needs of the body (hepatostat function). When hepatocytes cannot proliferate, progenitor cells derived from the biliary epithelium transdifferentiate to restore the hepatocyte compartment. In a reverse situation, hepatocytes can also transdifferentiate to restore the biliary compartment. Several hormones and xenobiotics alter the hepatostat directly and induce an increase in liver to body weight ratio (augmentative hepatomegaly). The complex challenges of the liver toward body homeostasis are thus always preserved by complex but unfailing responses involving orchestrated signaling and affecting growth and differentiation of all hepatic cell types.
Collapse
Affiliation(s)
- George K Michalopoulos
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
12
|
Kang LI, Mars WM, Michalopoulos GK. Signals and cells involved in regulating liver regeneration. Cells 2012; 1:1261-92. [PMID: 24710554 PMCID: PMC3901148 DOI: 10.3390/cells1041261] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/27/2012] [Accepted: 12/07/2012] [Indexed: 12/11/2022] Open
Abstract
Liver regeneration is a complex phenomenon aimed at maintaining a constant liver mass in the event of injury resulting in loss of hepatic parenchyma. Partial hepatectomy is followed by a series of events involving multiple signaling pathways controlled by mitogenic growth factors (HGF, EGF) and their receptors (MET and EGFR). In addition multiple cytokines and other signaling molecules contribute to the orchestration of a signal which drives hepatocytes into DNA synthesis. The other cell types of the liver receive and transmit to hepatocytes complex signals so that, in the end of the regenerative process, complete hepatic tissue is assembled and regeneration is terminated at the proper time and at the right liver size. If hepatocytes fail to participate in this process, the biliary compartment is mobilized to generate populations of progenitor cells which transdifferentiate into hepatocytes and restore liver size.
Collapse
Affiliation(s)
- Liang-I Kang
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Wendy M Mars
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | |
Collapse
|
13
|
Seki T, Yokoyama Y, Nagasaki H, Kokuryo T, Nagino M. Adipose tissue-derived mesenchymal stem cell transplantation promotes hepatic regeneration after hepatic ischemia-reperfusion and subsequent hepatectomy in rats. J Surg Res 2012; 178:63-70. [PMID: 22482751 DOI: 10.1016/j.jss.2012.02.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 01/13/2012] [Accepted: 02/07/2012] [Indexed: 01/11/2023]
Abstract
BACKGROUND Adipose tissue-derived mesenchymal stem cells (ADSCs) are an attractive source for regenerative medicine because they are easily accessible through minimally invasive methods. We investigated the efficacy of ADSC transplantation on outcome after hepatic ischemia-reperfusion and subsequent hepatectomy in rats. METHODS ADSCs were isolated from subcutaneous adipose tissue of rats. After clamping the hepatoduodenal ligament for 15 min, the rats were subjected to a 70% partial hepatectomy. After releasing the clamp, 2 × 10(6) ADSCs per rat were injected through the penile vein. Phosphate buffered saline was injected as a control. The parameters of hepatic regeneration, such as hepatic regeneration rate, mitotic index, and anti-proliferating cell nuclear antigen levels, were examined. Furthermore, the expression of hepatic regeneration-associated proteins and genes in the regenerating liver was determined. RESULTS The hepatic regeneration rate 2 d after hepatectomy was significantly greater in the ADSC transplanted group compared with the sham group. Mitotic index, anti-proliferating cell nuclear antigen levels, and other regeneration-associated proteins in the liver were significantly higher in the ADSC transplanted group than the sham group on 1 d after hepatectomy. A number of hepatic regeneration-associated genes also were significantly upregulated in the ADSC transplanted group. CONCLUSIONS These results indicate that ADSC transplantation may provide beneficial effects in the process of liver regeneration after hepatic ischemia-reperfusion and subsequent hepatectomy.
Collapse
Affiliation(s)
- Takashi Seki
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | |
Collapse
|
14
|
Jonge JD, Olthoff KM. Liver regeneration. BLUMGART'S SURGERY OF THE LIVER, PANCREAS AND BILIARY TRACT 2012:87-101.e6. [DOI: 10.1016/b978-1-4377-1454-8.00005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
15
|
Roth Flach RJ, Bennett AM. Mitogen-activated protein kinase phosphatase-1 - a potential therapeutic target in metabolic disease. Expert Opin Ther Targets 2011; 14:1323-32. [PMID: 21058921 DOI: 10.1517/14728222.2010.528395] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
IMPORTANCE OF THE FIELD Metabolic disease, which is associated with obesity and cardiovascular disease, is a worldwide epidemic. There continues to be a tremendous effort towards the development of therapies to curtail obesity and its associated pathophysiological sequelae. MAPKs have been implicated in metabolic disease suggesting that these enzymes, and those that regulate them, can potentially serve as therapeutic targets to combat this disease. The MAPK phosphatase-1 (MKP-1) mediates the dephosphorylation and inactivation of MAPKs in insulin-responsive tissues. Therefore, the actions of MKP-1 may play an important role in the maintenance of metabolic homeostasis. AREAS COVERED IN THIS REVIEW The functional effects of MKP-1 in MAPK regulation with emphasis on its role in physiological and pathophysiological signaling functions that have been elucidated through the use of mouse genetics. WHAT THE READER WILL GAIN The reader will learn that MAPK inactivation through the effects of MKP-1 is essential for the maintenance of metabolic homeostasis. We will convey the idea that MKP-1 acts as a critical signaling node in MAPK-mediated regulation of cell signaling and metabolism. TAKE HOME MESSAGE Pharmacological inactivation of MKP-1 may be of therapeutic value in the treatment of obesity and possibly other metabolic disorders.
Collapse
Affiliation(s)
- Rachel J Roth Flach
- Yale University School of Medicine, Department of Pharmacology and Program in Integrative Cell Signaling and Neurobiology of Metabolism, New Haven, CT 06520-8066, USA
| | | |
Collapse
|
16
|
|
17
|
Abstract
While hepatocytes rarely undergo proliferation in normal livers, they quickly induce proliferation in response to loss of liver mass by toxin or inflammation-induced hepatocyte injury, trauma, or surgical resection, leading to a restoration of liver mass to its original size. Recent studies suggest that Toll-like receptor (TLR) signaling participates in this regenerative response. Myeloid differentiation factor (MyD88), a common adaptor molecule in the TLR, IL-1 and IL-18 receptor signaling, plays a key role, at least, in the early phase of liver regeneration. Currently, definite ligands which bind to TLRs and initiate this process are still unclear. TLRs stimulated by their corresponding ligands, as well as tumor necrosis factor (TNF) receptors (TNFRs), can activate downstream signal molecules, including transcription factor nuclear factor (NF)-κB and c-Jun N-terminal kinase (JNK). Previous studies have revealed the important role of TNF receptor signaling, NF-κB, and JNK in liver regeneration by using hepatocyte-specific gene-modified animals. This review will summarize the current knowledge of TLR signaling and their related molecules in liver regeneration. We will also discuss whether modulating these factors may become new therapeutic strategies to promote liver regeneration in various clinical situations.
Collapse
|
18
|
Sparna T, Rétey J, Schmich K, Albrecht U, Naumann K, Gretz N, Fischer HP, Bode JG, Merfort I. Genome-wide comparison between IL-17 and combined TNF-alpha/IL-17 induced genes in primary murine hepatocytes. BMC Genomics 2010; 11:226. [PMID: 20374638 PMCID: PMC2858152 DOI: 10.1186/1471-2164-11-226] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 04/07/2010] [Indexed: 12/16/2022] Open
Abstract
Background Cytokines such as TNF-alpha and IL-1beta are known for their contribution to inflammatory processes in liver. In contrast, the cytokine IL-17 has not yet been assigned a role in liver diseases. IL-17 can cooperate with TNF-alpha to induce a synergistic response on several target genes in different cell lines, but no data exist for primary hepatocytes. To enhance our knowledge on the impact of IL-17 alone and combined with TNF-alpha in primary murine hepatocytes a comprehensive microarray study was designed. IL-1beta was included as this cytokine is suggested to act in a similar manner as the combination of TNF-alpha and IL-17, especially with respect to its role in mRNA stabilization. Results The present microarray analysis demonstrates that primary murine hepatocytes responded to IL-17 stimulation by upregulation of chemokines and genes, which are functionally responsible to increase and sustain inflammation. Cxcl2, Nfkbiz and Zc3h12a were strongly induced, whereas the majority of the genes were only very moderately up-regulated. Promoter analysis revealed involvement of NF-kappaB in the activation of many genes. Combined stimulation of TNF-alpha/IL-17 resulted in enhanced induction of gene expression, but significantly synergistic effects could be applied only to a few genes, such as Nfkbiz, Cxcl2, Zc3h12 and Steap4. Comparison of the gene expression profile obtained after stimulation of TNF-alpha/IL-17 versus IL-1beta proposed an "IL-1beta-like effect" of the latter cytokine combination. Moreover, evidence was provided that modulation of mRNA stability may be a major mechanism by which IL-17 regulates gene expression in primary hepatocytes. This assumption was exemplarily proven for Nfkbiz mRNA for the first time in hepatocytes. Our studies also suggest that RNA stability can partially be correlated to the existence of AU rich elements, but further mechanisms like the RNase activity of the up-regulated Zc3h12a have to be considered. Conclusions Our microarray analysis gives new insights in IL-17 induced gene expression in primary hepatocytes highlighting the crosstalk with the NF-kappaB signaling pathway. Gene expression profile suggests IL-17 alone and in concert with TNF-alpha a role in sustaining liver inflammatory processes. IL-17 might exceed this function by RNA stabilization.
Collapse
Affiliation(s)
- Titus Sparna
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Reschke M, Ferby I, Stepniak E, Seitzer N, Horst D, Wagner EF, Ullrich A. Mitogen-inducible gene-6 is a negative regulator of epidermal growth factor receptor signaling in hepatocytes and human hepatocellular carcinoma. Hepatology 2010; 51:1383-90. [PMID: 20044804 DOI: 10.1002/hep.23428] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
UNLABELLED The mitogen-inducible gene-6 (mig-6) is a multi-adaptor protein implicated in the regulation of the HER family of receptor tyrosine kinases. We have reported recently that mig-6 is a negative regulator of epidermal growth factor receptor (EGFR)-dependent skin morphogenesis and tumor formation in vivo. In the liver, ablation of mig-6 leads to an increase in EGFR protein levels, suggesting that mig-6 is a negative regulator of EGFR function. In line with this observation, primary hepatocytes isolated from mig-6 knockout and wild-type control mice display sustained mitogenic signaling in response to EGF. In order to explore the role of mig-6 in the liver in vivo, we analyzed liver regeneration in mig-6 knockout and wild-type control mice. Interestingly, mig-6 knockout mice display enhanced hepatocyte proliferation in the initial phases after partial hepatectomy. This phenotype correlates with activation of endogenous EGFR signaling, predominantly through the protein kinase B pathway. In addition, mig-6 is an endogenous inhibitor of EGFR signaling and EGF-induced tumor cell migration in human liver cancer cell lines. Moreover, mig-6 is down-regulated in human hepatocellular carcinoma and this correlates with increased EGFR expression. CONCLUSION Our data implicate mig-6 as a regulator of EGFR activity in hepatocytes and as a suppressor of EGFR signaling in human liver cancer.
Collapse
Affiliation(s)
- Markus Reschke
- Max-Planck Institute of Biochemistry, Department of Molecular Biology, Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
20
|
Nielsen C, Lippke H, Didier A, Dietrich R, Märtlbauer E. Potential of deoxynivalenol to induce transcription factors in human hepatoma cells. Mol Nutr Food Res 2009; 53:479-91. [PMID: 19360757 DOI: 10.1002/mnfr.200800475] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
To assess the hepatotoxicity of deoxynivalenol (DON), human hepatoma cells (Hep-G2) were used as an in vitro model. After exposing Hep-G2 cells to low (1 mciroM) and high dose (10 mciroM), gene expression profiles were analysed by microarray. More than 5% of genes were up-regulated, most of them being involved in transcriptional regulation. By real-time RT-PCR, elevated expression of transcription factors, commonly induced by activation of MAPK-pathway, was demonstrated for Hep-G2 cells on mRNA and protein level. Further studies, involving U937 human monocytes, showed that effects of DON treatment on mRNA and protein level were concentration-dependent and cell-specific. An inverse relation was noticed for the level of DON induced expression of transcription factors (JUN, FOS, EGR1 and ATF3) and the susceptibility of the cell lines towards the mycotoxin. This is the first report giving evidence that on a molecular level the mild hepatotoxic effects of DON are probably caused by the induction of transcription factors which are known to be associated with injury-induced liver regeneration processes. With ATF3, a novel downstream target gene was identified in DON-related cell signalling suggesting a potential linkage between molecular action and biological effects like reduction of glycogen storage in liver tissue.
Collapse
Affiliation(s)
- Carina Nielsen
- Central Institute of the Bundeswehr Medical Service, Department of Food Chemistry and Environmental Chemistry, Garching-Hochbrück, Germany.
| | | | | | | | | |
Collapse
|
21
|
|
22
|
Mounier C, Posner BI. Transcriptional regulation by insulin: from the receptor to the gene. Can J Physiol Pharmacol 2007; 84:713-24. [PMID: 16998535 DOI: 10.1139/y05-152] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Insulin, after binding to its receptor, regulates many cellular processes and the expression of several genes. For a subset of genes, insulin exerts a negative effect on transcription; for others, the effect is positive. Insulin controls gene transcription by modifying the binding of transcription factors on insulin-response elements or by regulating their transcriptional activities. Different insulin-signaling cascades have been characterized as mediating the insulin effect on gene transcription. In this review, we analyze recent data on the molecular mechanisms, mostly in the liver, through which insulin exerts its effect. We first focus on the key transcription factors (viz. Foxo, sterol-response-element-binding protein family (SREBP), and Sp1) involved in the regulation of gene transcription by insulin. We then present current information on the way insulin downregulates and upregulates gene transcription, using as examples of downregulation phosphoenolpyruvate carboxykinase (PEPCK) and insulin-like growth factor binding protein 1 (IGFBP-1) genes and of upregulation the fatty acid synthase and malic enzyme genes. The last part of the paper focuses on the signaling cascades activated by insulin in the liver, leading to the modulation of gene transcription.
Collapse
Affiliation(s)
- Catherine Mounier
- BioMed, Department of Biological Science, University of Quebec in Montreal, 141 President Kennedy, Montreal, QC H2X 3Y7, Canada
| | | |
Collapse
|
23
|
Kawai T, Yokoyama Y, Kawai S, Yokoyama S, Oda K, Nagasaka T, Nagino M, Chaudry IH, Nimura Y. Does estrogen contribute to the hepatic regeneration following portal branch ligation in rats? Am J Physiol Gastrointest Liver Physiol 2007; 292:G582-9. [PMID: 17053157 DOI: 10.1152/ajpgi.00374.2006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The aim of this study was to determine whether estrogen plays any role in the hepatic regeneration of nonligated lobe following portal branch ligation (PBL). Male rats were subjected to PBL on the left and middle lobes. Two and 7 days after PBL, the rats were killed and blood and liver samples were analyzed. Sham animals underwent only laparotomy. The serum estradiol levels were significantly elevated on day 2 following PBL and returned to normal levels on day 7. The expression of estrogen receptors (ER) in the liver evaluated by Western blotting did not show any change in the nonligated lobe compared with shams. Immunohistochemical study for ER showed a predominant ER expression in the hepatocyte nucleus in periportal area (zone 1), although there was no apparent difference in the amount and expression pattern between sham and PBL. However, chronic inhibition of ER by an ER antagonist (ICI 182,780) showed a significantly lower regeneration rate of the nonligated lobe compared with vehicle treatment. Liver regeneration-associated genes also were less activated in the ICI group. Moreover, portal venous flow, determined by fluorescent microsphere injection, was significantly lower in the ICI group compared with vehicle group. These changes correlated with the attenuated expression of endothelial nitric oxide synthase mRNA in both superior mesenteric arteries and veins. In conclusion, these results indicate that the estrogen's contribution on hepatic regeneration following PBL is at least partly mediated through maintaining mesenteric blood flow by mesenteric endothelial nitric oxide synthase upregulation rather than directly activating liver regeneration in the liver.
Collapse
Affiliation(s)
- Toru Kawai
- Division of Surgical Oncology, Dept of Surgery, Nagoya Univ Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kawai T, Yokoyama Y, Nagino M, Kitagawa T, Nimura Y. Is there any effect of renal failure on the hepatic regeneration capacity following partial hepatectomy in rats? Biochem Biophys Res Commun 2007; 352:311-6. [PMID: 17126297 DOI: 10.1016/j.bbrc.2006.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Accepted: 11/03/2006] [Indexed: 10/23/2022]
Abstract
The effects of renal dysfunction on liver regeneration capacity have not been fully elucidated before, although many patients with renal failure are subjected to hepatectomy due to hepatobiliary diseases. In this study, we sought to determine the effects of renal dysfunction on the hepatic regeneration capacity using rat chronic renal failure model. After establishing chronic renal failure (CRF group) by semi-total renal resection, the rats were subjected to 70% partial hepatectomy (PHx). Rats without renal failure were used as control (Sham group). The hepatic regeneration rate, histology of the liver, clearance of indocyanine green into the bile, and the expression of hepatic regeneration-associated genes in the liver were evaluated. The hepatic regeneration rate was lower in CRF group as compared to Sham group on day 1 after PHx. Mitotic index evaluated by histologic examination on day 1 after PHx was also significantly lower in CRF group. However, no difference in these indices was observed on day 2 and 7 between Sham and CRF. Indocyanine green clearance rate was almost identical between Sham and CRF on day 7 following PHx. The baseline expressions of the hepatic regeneration-associated genes, such as IL-6, TNF-alpha, HGF, c-fos, and c-jun, in the liver of CRF were significantly lower than those of Sham. However, the rate of upregulation of these genes was not significantly different between Sham and CRF. These results clearly demonstrate that the renal dysfunction, although initially delays the onset, does not suppress the total hepatic regeneration capacity following partial hepatectomy. The function of the regenerated liver on day 7 after PHx also was not different. Our results provide a possibility that the hepatectomy can be indicated even for the patient with a chronic renal failure.
Collapse
Affiliation(s)
- Toru Kawai
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | | | | | | | | |
Collapse
|
25
|
Hanson RW, Patel YM. Phosphoenolpyruvate carboxykinase (GTP): the gene and the enzyme. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 69:203-81. [PMID: 7817869 DOI: 10.1002/9780470123157.ch6] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- R W Hanson
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH
| | | |
Collapse
|
26
|
Buggs C, Weinberg F, Kim E, Wolfe A, Radovick S, Wondisford F. Insulin augments GnRH-stimulated LHbeta gene expression by Egr-1. Mol Cell Endocrinol 2006; 249:99-106. [PMID: 16530935 PMCID: PMC3464308 DOI: 10.1016/j.mce.2006.02.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Revised: 02/01/2006] [Accepted: 02/01/2006] [Indexed: 11/29/2022]
Abstract
Previous studies have shown that insulin augments GnRH-stimulated LH synthesis and release from primary gonadotrophs. In this study, regulation of LHbeta gene expression by GnRH and insulin was examined in LbetaT2 cells. Endogenous LHbeta mRNA is stimulated 2.4-fold by insulin alone, 2.6-fold by GnRH alone, and 4.7-fold by insulin together with GnRH. This effect of insulin, like GnRH, mapped to sequences -140 to +1 in the mouse LHbeta gene. Insulin together with GnRH stimulates activity of an LHbeta-reporter gene 7.1-fold; whereas, GnRH alone or insulin alone stimulates the reporter activity 2.8- and 3.1-fold, respectively. Blocking the binding of Egr-1 to sequences -51 to -42 in the LHbeta gene inhibits effects of insulin and GnRH. Insulin together with GnRH increases Egr-1 mRNA levels and total Egr-1 binding to LHbeta DNA. These findings indicate that insulin may impact regulation of the reproductive axis at the level of the pituitary.
Collapse
Affiliation(s)
- Colleen Buggs
- Department of Pediatrics, Section of Pediatric Endocrinology, University of Chicago Children's Hospital, Chicago, IL 60637, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Hansen ME, Pessah IN, Matsumura F. Heptachlor epoxide induces a non-capacitative type of Ca2+ entry and immediate early gene expression in mouse hepatoma cells. Toxicology 2006; 220:218-31. [PMID: 16469423 DOI: 10.1016/j.tox.2006.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Revised: 01/02/2006] [Accepted: 01/05/2006] [Indexed: 10/25/2022]
Abstract
The effects of the organochlorine (OC) liver tumor promoter heptachlor epoxide (HE) and a related non-tumor promoting OC, delta-hexachlorocyclohexane (delta-HCH), on the dynamics of intracellular calcium (Ca2+) were investigated in mouse 1c1c7 hepatoma cells. HE induced a non-capacitative, Ca2+ entry-like phenomenon, which was transient and concentration-dependent with 10 and 50 microM HE. The plasma membrane Ca2+ channel blocker SKF-96365 antagonized this HE-induced Ca2+ entry. delta-HCH failed to induce Ca2+ entry, rather it antagonized the HE-induced Ca2+ entry. Both HE and delta-HCH induced Ca2+ release from endoplasmic reticulum (ER) at treatment concentrations as low as 10 microM; at 50 microM, the former induced 5x as much Ca2+ release as the latter. The HE-induced Ca2+ release from the ER was antagonized using the IP3 receptor/channel blocker xestospongin C, suggesting that HE induces ER Ca2+ release through the IP3 receptor/channel pore. These results show that the effect of HE on cellular Ca2+ mimics that of mitogens such as epidermal and hepatocyte growth factors. They also provide insight into the similarities and differences between tumorigenic and non-tumorigenic OCs, in terms of the mechanisms and the extent of the [Ca2+]i increased by these agents.
Collapse
Affiliation(s)
- Mark E Hansen
- Department of Environmental Toxicology, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
28
|
Abstract
Gene33 is a cytoplasmic protein expressed in many cell types, including those of renal and hepatic origin. Its expression is regulated by a large number of mitogenic and stressful stimuli, both in cultured cells and in vivo. Gene33 protein possesses binding domains for ErbB receptors, 14-3-3 proteins, SH-3 domains, and GTP bound Cdc42, suggesting that it may play a role in signal transduction. Indeed, these regions of Gene33 have been reported to modulate signaling through the ERK, JNK, and NFkappaB pathways. In the present work, epitope-tagged full-length and truncation mutants, as well as wild-type Gene33, were overexpressed in 293 cells. The expression of these proteins was compared to the level of endogenous Gene33 by Western blot using a newly developed polyclonal antibody. As proxies for activity of the ERK and JNK pathways, Elk- and c-Jun-dependent transcription were measured by a luciferase reporter gene. Moderate expression levels of full-length Gene33 caused a twofold increase in Elk-dependent transcription, while at higher levels, c-Jun-dependent transcription was partially inhibited. The C-terminal half of Gene33 significantly increased both Elk- and c-Jun-dependent transcription when expressed at approximately threefold above control levels. This effect on Elk-dependent transcription was lost at higher levels of Gene33 expression. In contrast, higher levels of the C-terminal half of Gene33 caused a progressively greater effect on c-Jun-dependent transcription. These findings suggest that Gene33 may increase ERK activity, and that the C-terminal half of Gene33 may act less specifically in the absence of the N-terminal half, inducing JNK activity.
Collapse
Affiliation(s)
- Adam B Keeton
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama, 35294-0019
| | | |
Collapse
|
29
|
Xu D, Makkinje A, Kyriakis JM. Gene 33 is an endogenous inhibitor of epidermal growth factor (EGF) receptor signaling and mediates dexamethasone-induced suppression of EGF function. J Biol Chem 2004; 280:2924-33. [PMID: 15556944 DOI: 10.1074/jbc.m408907200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report a mechanism by which the adapter protein Gene 33 (also called RALT and MIG6) regulates epidermal growth factor receptor (EGFR) signaling. We find that Gene 33 inhibits EGFR autophosphorylation and specifically blunts epidermal growth factor (EGF)-induced activation and/or phosphorylation of Ras, ERK, JNK, Akt/PKB, and retinoblastoma protein. The Ack homology domain of Gene 33, which contains the previously identified EGFR binding domain, is both necessary and sufficient for this inhibition of EGFR autophosphorylation. The endogenous Gene 33 polypeptide is induced by EGF, platelet-derived growth factor, serum, and dexamethasone (Dex) in Rat 2 rat fibroblasts. Dex induces Gene 33 expression and inhibits EGFR phosphorylation and EGF signaling. RNA interference-mediated silencing of Gene 33 significantly reverses this effect. Overexpression of Gene 33 completely blocks EGF-induced protein and DNA synthesis in Rat 2 cells, whereas gene 33 RNA interference substantially enhances EGF-induced protein and DNA synthesis in Rat 2 cells. Our results indicate that Gene 33 is a physiological feedback inhibitor of the EGFR, functioning to inhibit EGFR phosphorylation and all events induced by EGFR activation. Our results also indicate a role for Gene 33 in the suppression, by Dex, of EGF signaling pathways. We propose that Gene 33 may function in the cross-talk between EGF signaling and other mitogenic and/or stress signaling pathways.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/physiology
- Adenoviridae/genetics
- Amino Acid Sequence
- Animals
- Blotting, Northern
- Blotting, Western
- Carrier Proteins/genetics
- Carrier Proteins/physiology
- Cell Line
- DNA, Complementary/metabolism
- Dexamethasone/pharmacology
- Electrophoresis, Polyacrylamide Gel
- Epidermal Growth Factor/metabolism
- ErbB Receptors/metabolism
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Glucocorticoids/pharmacology
- Glutathione Transferase/metabolism
- Guanosine Triphosphate/chemistry
- Humans
- Immunoprecipitation
- Intracellular Signaling Peptides and Proteins
- Models, Genetic
- Molecular Sequence Data
- Oligonucleotides/chemistry
- Phosphorylation
- Platelet-Derived Growth Factor/metabolism
- Protein Binding
- Protein Structure, Tertiary
- RNA Interference
- RNA, Double-Stranded/chemistry
- Rats
- Sequence Homology, Amino Acid
- Serine/chemistry
- Signal Transduction
- Time Factors
- Transfection
- Tumor Suppressor Proteins
Collapse
Affiliation(s)
- Dazhong Xu
- Molecular Cardiology Research Institute, Tufts-New England Medical Center and Department of Medicine, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
30
|
Keeton AB, Xu J, Franklin JL, Messina JL. Regulation of Gene33 expression by insulin requires MEK–ERK activation. ACTA ACUST UNITED AC 2004; 1679:248-55. [PMID: 15358516 DOI: 10.1016/j.bbaexp.2004.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Revised: 07/07/2004] [Accepted: 07/19/2004] [Indexed: 11/30/2022]
Abstract
Gene33 and its human homologue, mitogen inducible gene-6/receptor-associated late transducer (mig-6, RALT), is a 53-kDa soluble protein that was identified as a hepatic gene regulated by glucocorticoids and insulin. Its mRNA is expressed in numerous tissues in addition to the liver. Mitogen inducibility of Gene33 mRNA has been described in several experimental systems. Recent reports have suggested a role for Gene33 in inhibition of proliferation induced by factors that bind to members of the ErbB family of receptors. In the present work, we examine the regulation of Gene33 protein by insulin in hepatoma cells of rat (H4IIE) and human (HepG2/Hep3B) origin. Inhibition of MEK1 significantly inhibited extracellularly regulated kinase (ERK)1/2 activation and insulin-regulated Gene33 transcription and protein levels in H4IIE cells. Inhibition of phosphatidylinositol 3-kinase (PI3-K) activity alone did not significantly alter transcription of Gene33. In Hep3B and HepG2 cells, insulin did not significantly induce either ERK1/2 activation or Gene33 expression. This work suggests that the MEK-ERK, but not the phosphatidylinositol 3-kinase (PI3-K), pathway plays a direct role in insulin regulation of Gene33 transcription and protein expression.
Collapse
Affiliation(s)
- Adam B Keeton
- Department of Pathology, Division of Molecular and Cellular Pathology, Volker Hall, G019, 1670 University Blvd., University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | | | | | | |
Collapse
|
31
|
Friedman JR, Larris B, Le PP, Peiris TH, Arsenlis A, Schug J, Tobias JW, Kaestner KH, Greenbaum LE. Orthogonal analysis of C/EBPbeta targets in vivo during liver proliferation. Proc Natl Acad Sci U S A 2004; 101:12986-91. [PMID: 15317935 PMCID: PMC516505 DOI: 10.1073/pnas.0402875101] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
CCAAT enhancer-binding protein beta (C/EBPbeta), a basic-leucine zipper transcription factor, is an important effector of signals in physiologic growth and cancer. The identification of direct C/EBPbeta targets in vivo has been limited by functional compensation by other C/EBP family proteins and the low stringency of the consensus sequence. Here we use the combined power of expression profiling and high-throughput chromatin immunoprecipitation to identify direct and biologically relevant targets of C/EBPbeta. We identified 25 potential C/EBPbeta targets, of which 88% of those tested were confirmed as in vivo C/EBPbeta-binding sites. Six of these genes also displayed differential expression in C/EBPbeta-/- livers. Computational analysis revealed that bona fide C/EBPbeta target genes can be distinguished by the presence of binding motifs for specific additional transcription factors in the vicinity of the C/EBPbeta site. This approach is generally applicable to the discovery of direct, biologically relevant targets of mammalian transcription factors.
Collapse
Affiliation(s)
- Joshua R Friedman
- Department of Genetics, Bioinformatics Core, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Li YC, Xu CS, Zhu WL, Li WQ. Isolation and analysis of a novel gene over-expressed during liver regeneration. World J Gastroenterol 2003; 9:1282-6. [PMID: 12800241 PMCID: PMC4611801 DOI: 10.3748/wjg.v9.i6.1282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To isolate and analyze a novel gene over-expressed during liver regeneration.
METHODS: Total RNA of regenerating liver was extracted from liver tissue after 0-4-36-36-36 hr short interval successive partial hepatectomy (SISPH). Reverse transcription-polymerase chain reaction was used to synthesize double strand cDNA, after the tissue was digested by proteinase K and Sfi A/B. The double-strand cDNA was ligated to λTriplEx2. λphage packaging reaction was performed and E. coli XL1-Blue was infected for titering and amplifying. One expressed sequence tag was probed by Dig and phage in situ hybridization was carried out to isolate positive clones. Positive recombinant λTriplEx2 was converted to the corresponding pTriplEx2, and bioinformatics was used to analyze full-length cDNA.
RESULTS: We isolated a novel full-length cDNA during liver regeneration following SISPH.
CONCLUSION: We have succeeded in cloning a novel gene, based on bioinformatics. We postulate that this gene may function in complicated network in liver regeneration. On the one hand, it may exert initiation of liver regeneration via regulating nitric oxide synthesis. On the other hand, it may protect damaged residue lobus following SISPH.
Collapse
Affiliation(s)
- Yu-Chang Li
- College of Life Science, Henan Normal University, Xinxiang 453002, Henan Province, China.
| | | | | | | |
Collapse
|
33
|
Pawelczyk T, Sakowicz M, Podgorska M, Szczepanska-Konkel M. Insulin induces expression of adenosine kinase gene in rat lymphocytes by signaling through the mitogen-activated protein kinase pathway. Exp Cell Res 2003; 286:152-63. [PMID: 12729803 DOI: 10.1016/s0014-4827(03)00090-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The activity of adenosine kinase (AK) was significantly impaired in splenocytes isolated from diabetic rats. Administration of insulin to diabetic animals restored AK activity, protein, and mRNA levels in diabetic splenocytes. Experiments performed on cultured rat lymphocytes demonstrated that insulin did not change the stability of AK mRNA. Insulin induced AK gene expression in a dose- and time-dependent manner. Maximal increases in AK mRNA (3.9-fold) and activity level (3.7-fold) were observed at the fourth and fifth hours of cell incubation with 10 nM insulin, respectively. The insulin effect on AK expression was not influenced by dibutyryl cAMP (dcAMP). On the other hand dcAMP weakly increased (1.7-fold) basal expression of AK. Exposure of rat lymphocytes to wortmannin, an inhibitor of phosphatidylinositol 3-kinase (PI3K), or rapamycin, an inhibitor of mTOR, did not affect the ability of insulin to stimulate expression of AK. Prior treatment of the cells with 10 microM PD98059, an inhibitor of mitogen-activated protein kinase (MAPK) kinase (MEK) completely blocked insulin-stimulated expression of AK gene. Insulin produced a significant transient increase in the tyrosine phosphorylation of ERK1/2, and PD98059 inhibited this phosphorylation. Furthermore exposure of cells to insulin has resulted in transient phosphorylation of Elk-1 on Ser-383 and sustained elevation of c-Jun and c-Fos protein. The maximal phosphorylation of Elk-1 was observed at 15 min, and was blocked by PD98059. We concluded that insulin stimulates AK gene expression through a series of events occurring sequentially. This includes activation of the MAPK cascade and subsequent phosphorylation of Elk-1 followed by increased expression of c-fos and c-jun genes.
Collapse
Affiliation(s)
- Tadeusz Pawelczyk
- Department of Molecular Medicine, Medical University of Gdansk, ul. Debinki 7, paw. 29, 80-211 Gdansk, Poland.
| | | | | | | |
Collapse
|
34
|
Culbert AA, Tavaré JM. Multiple signalling pathways mediate insulin-stimulated gene expression in 3T3-L1 adipocytes. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1578:43-50. [PMID: 12393186 DOI: 10.1016/s0167-4781(02)00481-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In differentiated 3T3-L1 adipocytes, insulin stimulated the expression of the mRNA for the genes encoding Fra-1 (>100-fold), which is a component of the AP-1 transcriptional complex, beta-actin (6.0-fold) and hexokinase II (2.4-fold). We have examined the signalling pathways involved in these effects of insulin. Rapamycin, which binds to FRAP/mTOR and completely suppressed the activation of p70S6 kinase by insulin, almost completely blocked the induction of the hexokinase II gene, and caused an approximately 50% inhibition of the induction of the Fra-1 gene. PD98059, which completely blocks MAP kinase activation by insulin, inhibited insulin-induced Fra-1 and beta-actin gene expression by approximately 70% and 40%, respectively. These findings suggest that a FRAP/mTOR-dependent pathway is responsible for the induction of hexokinase II expression, and that MAP kinase is required, at least in part, for the stimulation of beta-actin gene expression. However, the induction of Fra-1 gene expression by insulin requires both the FRAP/mTOR and MAP kinase pathways.
Collapse
Affiliation(s)
- Ainsley A Culbert
- Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | | |
Collapse
|
35
|
Ayala JE, Streeper RS, Svitek CA, Goldman JK, Oeser JK, O'Brien RM. Accessory elements, flanking DNA sequence, and promoter context play key roles in determining the efficacy of insulin and phorbol ester signaling through the malic enzyme and collagenase-1 AP-1 motifs. J Biol Chem 2002; 277:27935-44. [PMID: 12032154 DOI: 10.1074/jbc.m203682200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Insulin stimulates malic enzyme (ME)-chloramphenicol acetyltransferase (CAT) and collagenase-1-CAT fusion gene expression in H4IIE cells through identical activator protein-1 (AP-1) motifs. In contrast, insulin and phorbol esters only stimulate collagenase-1-CAT and not ME-CAT fusion gene expression in HeLa cells. The experiments in this article were designed to explore the molecular basis for this differential cell type- and gene-specific regulation. The results highlight the influence of three variables, namely promoter context, AP-1 flanking sequence, and accessory elements that modulate insulin and phorbol ester signaling through the AP-1 motif. Thus, fusion gene transfection and proteolytic clipping gel retardation assays suggest that the AP-1 flanking sequence affects the conformation of AP-1 binding to the collagenase-1 and ME AP-1 motifs such that it selectively binds the latter in a fully activated state. However, this influence of ME AP-1 flanking sequence is dependent on promoter context. Thus, the ME AP-1 motif will mediate both an insulin and phorbol ester response in HeLa cells when introduced into either the collagenase-1 promoter or a specific heterologous promoter. But even in the context of the collagenase-1 promoter, the effects of both insulin and phorbol esters, mediated through the ME AP-1 motif are dependent on accessory factors.
Collapse
Affiliation(s)
- Julio E Ayala
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
36
|
Zeitouni N, Eubank DW, Lee AQ, Oxford MG, Freeman TL, Mailliard ME, Beale EG. Phosphoenolpyruvate carboxykinase is induced in growth-arrested hepatoma cells. Biochem Biophys Res Commun 2002; 290:1513-20. [PMID: 11820793 DOI: 10.1006/bbrc.2002.6374] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK) mRNA is elevated in H4IIEC3 rat hepatoma cells cultured at high density, suggesting that PEPCK expression and growth arrest may be coordinately regulated. Induction of growth arrest either by contact inhibition (high culture density) or by serum deprivation correlated with significant increases in PEPCK protein and its mRNA. The observation that PEPCK mRNA was induced by contact inhibition in the presence of serum indicates that the effect of high density is independent of insulin or any other serum component. The magnitudes of the changes in PEPCK expression during growth arrest were greatly enhanced in KRC-7 cells, an H4IIEC3 subclone that is much more sensitive to growth arrest than its parental cell line. Restimulation of proliferation in growth-arrested KRC-7 cells, either by addition of serum or insulin to serum-deprived cells or by replating contact-inhibited cells at low density, caused a rapid decrease in PEPCK expression. However, PEPCK mRNA is not always reduced in proliferating cells since treatment of serum-starved cells with epidermal growth factor stimulated entry into the cell cycle but did not affect PEPCK mRNA levels. Finally, dexamethasone induction of PEPCK mRNA was blunted in cells cultured at high density but was unaffected by the presence or absence of serum. Collectively, these data suggest the possibility of cross-talk between the control of PEPCK expression and growth arrest in KRC-7 cells.
Collapse
Affiliation(s)
- Nawal Zeitouni
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
van der Vliet HN, Sammels MG, Leegwater AC, Levels JH, Reitsma PH, Boers W, Chamuleau RA. Apolipoprotein A-V: a novel apolipoprotein associated with an early phase of liver regeneration. J Biol Chem 2001; 276:44512-20. [PMID: 11577099 DOI: 10.1074/jbc.m106888200] [Citation(s) in RCA: 207] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Liver regeneration in response to various forms of liver injury is a complex process, which ultimately results in restoration of the original liver mass and function. Because the underlying mechanisms that initiate this response are still incompletely defined, this study was aimed to identify novel factors. Liver genes that were up-regulated 6 h after 70% hepatectomy (PHx) in the rat were selected by cDNA subtractive hybridization. Besides known genes associated with cell proliferation, several novel genes were isolated. The novel gene that was most up-regulated was further studied. Its mRNA showed a liver-specific expression and encoded a protein comprising 367 amino acids. The mouse and human cDNA analogues were also isolated and appeared to be highly homologous. The human gene analogue was located at an apolipoprotein gene cluster on chromosome 11q23. The protein encoded by this gene had appreciable homology with apolipoproteins A-I and A-IV. Maximal expression of the gene in the rat liver and its gene product in rat plasma was observed 6 h after PHx. The protein was present in plasma fractions containing high density lipoprotein particles. Therefore, we have identified a novel apolipoprotein, designated apolipoprotein A-V, that is associated with an early phase of liver regeneration.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acids/chemistry
- Animals
- Apolipoprotein A-V
- Apolipoproteins
- Apolipoproteins A/biosynthesis
- Apolipoproteins A/blood
- Apolipoproteins A/chemistry
- Apolipoproteins A/genetics
- Apolipoproteins A/metabolism
- Base Sequence
- Blotting, Northern
- Blotting, Western
- Chromatography, Gel
- Chromosomes, Human, Pair 11
- DNA, Complementary/metabolism
- Humans
- Liver/physiology
- Male
- Mice
- Models, Genetic
- Molecular Sequence Data
- Nucleic Acid Hybridization
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Regeneration
- Sequence Homology, Amino Acid
- Time Factors
- Tissue Distribution
- Up-Regulation
Collapse
Affiliation(s)
- H N van der Vliet
- Department of Experimental Hepatology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
38
|
Gousseva N, Kugathasan K, Chesterman CN, Khachigian LM. Early growth response factor-1 mediates insulin-inducible vascular endothelial cell proliferation and regrowth after injury. J Cell Biochem 2001; 81:523-34. [PMID: 11255235 DOI: 10.1002/1097-4644(20010601)81:3<523::aid-jcb1066>3.0.co;2-e] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hyperinsulinemia in diabetes mellitus is a significant risk factor in the development of atherosclerosis and early restenosis after balloon angioplasty. These manifestations could be mediated by the ability of insulin to potentiate the cellular proliferative and reparative response of vascular cell types to local stimuli. Here we demonstrate that insulin stimulates DNA synthesis in aortic endothelial cells. Reverse transcription-polymerase chain reaction and Northern blotting revealed that insulin induces the expression and transcriptional activity of the immediate early gene and zinc finger transcription protein, early growth response factor-1 (Egr-1). Western immunoblot analysis revealed that insulin-inducible Egr-1 expression was inhibited using phosphorothioate-specific antisense oligonucleotides targeting Egr-1 mRNA. These agents blocked endothelial cell DNA synthesis stimulated by insulin in a dose-dependent manner and inhibited the capacity of insulin to potentiate the reparative response of endothelial cells to mechanical injury in vitro. These oligonucleotides also attenuated wound repair in smooth muscle cells. DNA synthesis induced by insulin was suppressed by inhibitors of two upstream activators of Egr-1, extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3-phosphate (PI 3-K), whereas p38 kinase inhibitors had no effect. These present findings demonstrate that insulin-inducible DNA synthesis and repair after injury are processes critically dependent upon the activation of Egr-1. Additionally, they implicate this transcription factor as a potential target for the inhibition of restenosis in diabetics.
Collapse
Affiliation(s)
- N Gousseva
- Centre for Thrombosis and Vascular Research, The University of New South Wales, Sydney NSW, Australia
| | | | | | | |
Collapse
|
39
|
Wang G, Wang S, Xu W, Yang X. Rapid induction of mRNAs forPC3 by partial hepatectomy and epidermal growth factor. CHINESE SCIENCE BULLETIN-CHINESE 2001. [DOI: 10.1007/bf02900412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
40
|
Leu JI, Crissey MA, Leu JP, Ciliberto G, Taub R. Interleukin-6-induced STAT3 and AP-1 amplify hepatocyte nuclear factor 1-mediated transactivation of hepatic genes, an adaptive response to liver injury. Mol Cell Biol 2001; 21:414-24. [PMID: 11134330 PMCID: PMC86585 DOI: 10.1128/mcb.21.2.414-424.2001] [Citation(s) in RCA: 284] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Following hepatic injury or stress, gluconeogenic and acute-phase response genes are rapidly upregulated to restore metabolic homeostasis and limit tissue damage. Regulation of the liver-restricted insulin-like growth factor binding protein 1 (IGFBP-1) gene is dramatically altered by changes in the metabolic state and hepatectomy, and thus it provided an appropriate reporter to assess the transcriptional milieu in the liver during repair and regeneration. The cytokine interleukin-6 (IL-6) is required for liver regeneration and repair, and it transcriptionally upregulates a vast array of genes during liver growth by unknown mechanisms. Evidence for a biologic role of IL-6 in IGFBP-1 upregulation was demonstrated by increased expression of hepatic IGFBP-1 in IL-6 transgenic and following injection of IL-6 into nonfasting animals and its reduced expression in IL-6(-/-) livers posthepatectomy. In both hepatic and nonhepatic cells, IL-6 -mediated IGFBP-1 promoter activation was via an intact hepatocyte nuclear factor 1 (HNF-1) site and was dependent on the presence of endogenous liver factor HNF-1 and induced factors STAT3 and AP-1 (c-Fos/c-Jun). IL-6 acted through the STAT3 pathway, as dominant negative STAT3 completely blocked IL-6-mediated stimulation of the IGFBP-1 promoter via the HNF-1 site. HNF-1/c-Fos and HNF-1/STAT3 protein complexes were detected in mouse livers and in hepatic and nonhepatic cell lines overexpressing STAT3/c-Fos/HNF-1. Similar regulation was demonstrated using glucose-6-phosphatase and alpha-fibrinogen promoters, indicating that HNF-1/IL-6/STAT3/AP-1-mediated transactivation of hepatic gene expression is a general phenomenon after liver injury. These results demonstrate that the two classes of transcription factors, growth induced (STAT3 and AP-1) and tissue specific (HNF-1), can interact as an adaptive response to liver injury to amplify expression of hepatic genes important for the homeostatic response during organ repair.
Collapse
Affiliation(s)
- J I Leu
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
41
|
Fiorentino L, Pertica C, Fiorini M, Talora C, Crescenzi M, Castellani L, Alemà S, Benedetti P, Segatto O. Inhibition of ErbB-2 mitogenic and transforming activity by RALT, a mitogen-induced signal transducer which binds to the ErbB-2 kinase domain. Mol Cell Biol 2000; 20:7735-50. [PMID: 11003669 PMCID: PMC86354 DOI: 10.1128/mcb.20.20.7735-7750.2000] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The product of rat gene 33 was identified as an ErbB-2-interacting protein in a two-hybrid screen employing the ErbB-2 juxtamembrane and kinase domains as bait. This interaction was reproduced in vitro with a glutathione S-transferase fusion protein spanning positions 282 to 395 of the 459-residue gene 33 protein. Activation of ErbB-2 catalytic function was required for ErbB-2-gene 33 physical interaction in living cells, whereas ErbB-2 autophosphorylation was dispensable. Expression of gene 33 protein was absent in growth-arrested NIH 3T3 fibroblasts but was induced within 60 to 90 min of serum stimulation or activation of the ErbB-2 kinase and decreased sharply upon entry into S phase. New differentiation factor stimulation of mitogen-deprived mammary epithelial cells also caused accumulation of gene 33 protein, which could be found in a complex with ErbB-2. Overexpression of gene 33 protein in mouse fibroblasts inhibited (i) cell proliferation driven by ErbB-2 but not by serum, (ii) cell transformation induced by ErbB-2 but not by Ras or Src, and (iii) sustained activation of ERK 1 and 2 by ErbB-2 but not by serum. The gene 33 protein may convey inhibitory signals downstream to ErbB-2 by virtue of its association with SH3-containing proteins, including GRB-2, which was found to associate with gene 33 protein in living cells. These data indicate that the gene 33 protein is a feedback inhibitor of ErbB-2 mitogenic function and a suppressor of ErbB-2 oncogenic activity. We propose that the gene 33 protein be renamed with the acronym RALT (receptor-associated late transducer).
Collapse
Affiliation(s)
- L Fiorentino
- Laboratories of Immunology, Regina Elena Cancer Institute, 00158 Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Mel�ndez PA, Longo N, Jimenez BD, Cadilla CL. Insulin-induced gene 33 mRNA expression in Chinese hamster ovary cells is insulin receptor dependent. J Cell Biochem 2000. [DOI: 10.1002/(sici)1097-4644(20000601)77:3<432::aid-jcb8>3.0.co;2-b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
Roques M, Vidal H. A phosphatidylinositol 3-Kinase/p70 ribosomal S6 protein kinase pathway is required for the regulation by insulin of the p85alpha regulatory subunit of phosphatidylinositol 3-kinase gene expression in human muscle cells. J Biol Chem 1999; 274:34005-10. [PMID: 10567366 DOI: 10.1074/jbc.274.48.34005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Insulin acutely up-regulates p85alpha phosphatidylinositol 3-kinase (p85alphaPI 3-K) mRNA levels in human skeletal muscle (Laville, M., Auboeuf, D., Khalfallah, Y., Vega, N., Riou, J. P., and Vidal, H. (1996) J. Clin. Invest. 98, 43-49). In the present work, we attempted to elucidate the mechanism of action of insulin in primary cultures of human muscle cells. Insulin (10(-7) M, 6 h of incubation) induced a 2-fold increase in p85alphaPI 3-K mRNA abundances (118 +/- 12 versus 233 +/- 35 amol/microgram total RNA, n = 5, p < 0.01) without changing the expression levels of insulin receptor, IRS-1, glycogen synthase, and Glut 4 mRNAs in differentiated myotubes from healthy subjects. The effect is most probably due to a transcriptional activation of the p85alphaPI 3-K gene because the half-life of the mRNA was not affected by insulin treatment (4.0 +/- 0.8 versus 3.1 +/- 0.4 h). PD98059 (50 microM) did not modify the insulin response but increased p85alphaPI 3-K mRNA levels in the absence of insulin, suggesting that the mitogen-activated protein kinase pathway exerts a negative effect on p85alphaPI 3-K mRNA expression in the absence of the hormone. On the other hand, the insulin effect was totally abolished by LY294002 (10 microM) and rapamycin (50 nM). In addition, overexpression of a constitutively active protein kinase B increased p85alphaPI 3-K mRNA levels. These results indicate that the phosphatidylinositol 3-kinase/PKB/p70S6 kinase pathway is required for the stimulation by insulin of p85alphaPI 3-K gene expression in human muscle cells.
Collapse
MESH Headings
- Adult
- Cells, Cultured
- Chromones/pharmacology
- Dactinomycin/pharmacology
- Dose-Response Relationship, Drug
- Enzyme Inhibitors/pharmacology
- Flavonoids/pharmacology
- Gene Expression Regulation, Enzymologic/drug effects
- Glycogen Synthase/genetics
- Humans
- Insulin/pharmacology
- Insulin Receptor Substrate Proteins
- Middle Aged
- Morpholines/pharmacology
- Muscle, Skeletal/cytology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/enzymology
- Phosphatidylinositol 3-Kinases/genetics
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphoproteins/genetics
- Protein Serine-Threonine Kinases
- Protein Synthesis Inhibitors/pharmacology
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/physiology
- Proto-Oncogene Proteins c-akt
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, Insulin/genetics
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/physiology
- Regulatory Sequences, Nucleic Acid
- Ribosomal Protein S6 Kinases/genetics
- Ribosomal Protein S6 Kinases/metabolism
- Signal Transduction
- Sirolimus/pharmacology
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
- M Roques
- INSERM U449, Faculté de Médecine René Laënnec, Université Claude Bernard Lyon-1, F-69372, Lyon, France.
| | | |
Collapse
|
44
|
Barroso I, Santisteban P. Insulin-induced early growth response gene (Egr-1) mediates a short term repression of rat malic enzyme gene transcription. J Biol Chem 1999; 274:17997-8004. [PMID: 10364249 DOI: 10.1074/jbc.274.25.17997] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this report we have studied insulin regulation of malic enzyme (ME) gene transcription in rat H-35 hepatoma cells and localized the insulin-responsive region of the ME promoter between positions -177 and -102. This region contains a putative insulin response element (IRE-II). When nuclear extracts from untreated or insulin-treated H-35 cells were incubated with IRE-II, transcription factors Sp1 and Sp3 were observed to bind constitutively to this element, whereas insulin induces the quick and transient binding of an insulin response factor. This induction requires de novo protein synthesis. Competition and supershift assays demonstrated that the insulin response factor is the immediate-early gene Egr-1. In vitro assays revealed that Egr-1 displaces Sp1 from its binding site in IRE-II. Insulin induces Egr-1 mRNA, with a time course pattern that corresponds perfectly to the Egr-1 binding to IRE-II. This induction depends on the activation of mitogen-activated protein (MAP) kinase, and it is phosphatidylinositol 3-kinase-independent, as demonstrated with specific inhibitors for both pathways. By cotransfecting the wild-type or a dominant negative Ras, an upstream regulator of MAP kinase, we show that Ras inhibits ME promoter activity. Furthermore, overexpression of Egr-1 in H-35 cells represses the ME gene promoter in a dose-dependent manner. These results suggest that insulin induces a quick, transient, and Ras/MAP kinase-dependent activation of Egr-1 which leads to a transient repression of ME gene transcription. On a late phase, insulin would activate a different, Egr-1-independent pathway, which would result in activation of the ME gene.
Collapse
Affiliation(s)
- I Barroso
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Arturo Duperier 4, Madrid E-28029, Spain
| | | |
Collapse
|
45
|
Potter JJ, Rennie-Tankersley L, Anania FA, Mezey E. A transient increase in c-myc precedes the transdifferentiation of hepatic stellate cells to myofibroblast-like cells. LIVER 1999; 19:135-44. [PMID: 10220744 DOI: 10.1111/j.1478-3231.1999.tb00023.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
AIMS/BACKGROUND Liver stellate cells are transdifferentiated to collagen-producing myofibroblast-like cells in vivo during liver injury or when placed in culture. The purpose of this study was to determine the presence of retinoids and the expression of the immediate early genes as they relate to the transdifferentiation of liver stellate cells in culture. METHODS Rat liver stellate cells were studied immediately after isolation or sequentially after culture for varying periods of time. RNA was isolated and specific messages were determined by RT-PCR. Cells were also isolated for determination of retinoid autofluorescence and immunofluorescent staining with specific antibodies by laser confocal microscopy. RESULTS c-fos message and immunoprotein were high in the freshly isolated cells prior to culture, while c-myc expression increased markedly after one day of culture. Both c-fos and c-myc gene expression decreased prior to the transdifferentiation of the cells to myofibroblast-like cells and to the increase in alpha 1(I) and alpha 2(I) collagen messages and collagen production. The presence of retinoid autofluorescence and retinoic acid receptor (RAR-alpha and RAR-beta) messages and RAR-beta immunoprotein persisted during initial transdifferentiation of the stellate cells. CONCLUSIONS This study shows a high initial level of c-fos expression and a transient increase in c-myc expression followed by a decrease to lower levels prior to transdifferentiation and collagen production by stellate cells. A total loss of retinoid autofluorescence or a decrease in RAR-alpha or RAR-beta are not required for initial transdifferentiation of stellate cells or collagen production.
Collapse
Affiliation(s)
- J J Potter
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2195, USA
| | | | | | | |
Collapse
|
46
|
Lee FY, Li Y, Zhu H, Yang S, Lin HZ, Trush M, Diehl AM. Tumor necrosis factor increases mitochondrial oxidant production and induces expression of uncoupling protein-2 in the regenerating mice [correction of rat] liver. Hepatology 1999; 29:677-87. [PMID: 10051468 DOI: 10.1002/hep.510290320] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
The growth-stimulatory actions of tumor necrosis factor alpha (TNF-alpha) after partial hepatectomy (PH) are difficult to reconcile with its well-established role in the genesis of liver injury. The lethal actions of TNF are thought to involve the induction of oxidant production by mitochondria. It is not known if TNF initiates mitochondrial oxidant production after PH. Furthermore, if this potentially toxic response follows PH, it is not clear how hepatocytes defend themselves sufficiently so that replication, rather than death, occurs. These studies test the hypothesis that TNF does increase mitochondrial oxidant production after PH but that these oxidants primarily promote the induction of antioxidant defenses in regenerating hepatocytes. Consistent with this concept, H2O2 production by liver mitochondria increases from 5 minutes to 3 hours after PH, beginning before the transient inductions of hepatic NF kB activity (which peaks at 30 minutes post-PH) and uncoupling protein-2 (UCP-2) (which begins around 30 minutes and peaks from 6-24 hours post-PH). Pretreatment with neutralizing anti-TNF antibodies, which inhibits hepatocyte DNA synthesis after PH, also reduces post-PH hepatic mitochondrial oxidant production by 80% and inhibits NF kappaB activation and UCP-2 induction by 50% and 80%, respectively. In contrast, pretreatment with D609, an agent that inhibits phosphatidylcholine-specific phospholipase C, neither inhibits regenerative induction of mitochondrial oxidant production, UCP-2 expression, nor hepatocyte DNA synthesis, although it inhibits NF kappaB activation by 50%. Given published evidence that NF kappaB is antiapoptotic and that UCP-2 may decrease mitochondrial oxidant production in some cells, these results suggest that TNF-dependent increases in oxidant production by liver mitochondria promote the induction of antioxidant defenses in the regenerating liver.
Collapse
Affiliation(s)
- F Y Lee
- Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Thottassery JV, Sun D, Zambetti GP, Troutman A, Sukhatme VP, Schuetz EG, Schuetz JD. Sp1 and egr-1 have opposing effects on the regulation of the rat Pgp2/mdr1b gene. J Biol Chem 1999; 274:3199-206. [PMID: 9915860 DOI: 10.1074/jbc.274.5.3199] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The promoter of the rat pgp2/mdr1b gene has a GC-rich region (pgp2GC) that is highly conserved in mdr genes and contains an consensus Sp1 site. Sp1's role in transactivation of the pgp2/mdr1b promoter was tested in Drosophila Schneider cells. The pgp2/mdr1b promoter was strongly activated by co-transfected wild type Sp1 but not mutant Sp1 and mutation of the Sp1 site abrogated Sp1-dependent transactivation. In gel shift assays, the same mutations abolished Sp1-DNA complex formation. Moreover, basal activity of the pgp2/mdr1b Sp1 mutant promoter was dramatically lower. Enforced ectopic overexpression of Sp1 in H35 rat hepatoma cells revealed that cell lines overexpressing Sp1 had increased endogenous pgp2/mdr1b mRNA, demonstrating that Sp1 activates the endogenous pgp2/mdr1b gene. Pgp2GC oligonucleotide also bound Egr-1 in gel shift assays and Egr-1 competitively displaced bound Sp1. In transient transfections of H35 cells (and human LS180 and HepG2 cells) Egr-1 potently and specifically suppressed pgp2/mdr1b promoter activity and mutations in the Egr-1 site decreased Egr-1 binding and correlated with pgp2/mdr1b up-regulation. Ectopic overexpression of Egr-1 in H35 cells decreased Pgp expression and selectively increased vinblastine sensitivity. In conclusion, Sp1 positively regulates while Egr-1 negatively regulates the rat pgp2/mdr1b gene. Moreover, competitive interactions between Sp1 and Egr-1 in all likelihood determine the constitutive expression of the pgp2/mdr1b gene in H35 cells.
Collapse
Affiliation(s)
- J V Thottassery
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Varley CL, Armitage S, Dickson AJ. Activation of stress-activated protein kinases by hepatocyte isolation induces gene 33 expression. Biochem Biophys Res Commun 1999; 254:728-33. [PMID: 9920809 DOI: 10.1006/bbrc.1998.0117] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gene 33 is a putative immediate early gene and we have shown that mRNA encoding for gene 33 exhibits a transient increase as a result of the procedures used for hepatocyte isolation. The stress-activated protein kinases p46 JNK, p54 JNK, and p38 SAPK are activated by hepatocyte isolation and precede changes in gene 33 mRNA content. Although each SAPK isoform shows a distinctive profile of activity during isolation and subsequent hepatocyte culture, in each case the activation is transient and is largely reversed within 3 h of hepatocyte isolation. SB 203580, a p38 SAPK inhibitor, prevents the change to gene 33 expression in response to hepatocyte isolation. Given the possible role of gene 33 as an immediate early gene, the data presented here have general implications for control of hepatocyte proliferation and differentiation.
Collapse
Affiliation(s)
- C L Varley
- School of Biological Sciences, 2.205 Stopford Building, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | | | | |
Collapse
|
49
|
Servillo G, Della Fazia MA, Sassone-Corsi P. Transcription factor CREM coordinates the timing of hepatocyte proliferation in the regenerating liver. Genes Dev 1998; 12:3639-43. [PMID: 9851970 PMCID: PMC317249 DOI: 10.1101/gad.12.23.3639] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The liver regenerates upon partial hepatectomy (PH) as terminally differentiated hepatocytes undergo a tremendous proliferative process. CREM gene expression is powerfully induced during liver regeneration. We show that cell proliferation is significantly reduced upon PH in CREM-/- mice. There is a reduction in DNA synthesis, in the number of mitosis and of phosphorylated histone H3-positive cells. The post-PH proliferation peak is delayed by 10 hr, indicating an altered hepatocyte cell cycle. Expression of cyclins A, B, D1, E, and cdc2, of c-fos and tyrosine aminotransferase is deregulated. CREM mutation results in delayed S-phase entry, impairing the synchronization of proliferation.
Collapse
Affiliation(s)
- G Servillo
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique-Institut National de la Santé et de la Recherche Médicale-Université Louis Pasteur (CNRS-INSERM-ULP), 67404 Illkirch, Strasbourg
| | | | | |
Collapse
|
50
|
Imai K, Mine T, Tagami M, Hanaoka K, Fujita T. Zonal differences in effects of HGF/SF and EGF on DNA synthesis in hepatocytes under fed or starved conditions. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:G1394-401. [PMID: 9843777 DOI: 10.1152/ajpgi.1998.275.6.g1394] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Zonal differences of DNA synthesis in hepatocytes induced by hepatocyte growth factor and/or scatter factor (HGF/SF) and epidermal growth factor (EGF) were investigated using male Wistar rats under fed or starved conditions. Overall, DNA synthesis was greater in fed rats than in starved rats. The predominance of EGF in periportal hepatocytes (PPH) on zonal DNA synthesis was reversed by starved conditions, but the predominance of HGF/SF on zonal DNA synthesis in perivenous hepatocytes (PVH) was not influenced by nutritional conditions. 125I-labeled EGF and 125I-labeled HGF/SF-receptor binding studies revealed no significant difference between PPH and PVH in starved or fed rats. To investigate the mechanism of the signal transduction pathway, we used genistein, an inhibitor of tyrosine kinase. Genistein had different effects on zonal difference in EGF and HGF/SF. In EGF, 1 microgram/ml genistein abolished zonal differences, but in HGF/SF 1 microgram/ml genistein did not abolish zonal differences. These data suggest that, in contrast to HGF/SF, zonal difference of DNA synthesis by EGF was dependent on nutritional conditions and DNA synthesis induced by HGF/SF and EGF might be related to tyrosine kinase, but the influence of tyrosine kinase on DNA synthesis was different between HGF/SF and EGF.
Collapse
Affiliation(s)
- K Imai
- Departments of Anesthesiology and Internal Medicine IV, University of Tokyo School of Medicine, Bunkyo-ku, Tokyo 112, Japan
| | | | | | | | | |
Collapse
|