1
|
Investigation of Synthesis Mechanism, Optimal Hot-Pressing Conditions, and Curing Behavior of Sucrose and Ammonium Dihydrogen Phosphate Adhesive. Polymers (Basel) 2020; 12:polym12010216. [PMID: 31952357 PMCID: PMC7023516 DOI: 10.3390/polym12010216] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/09/2020] [Accepted: 01/15/2020] [Indexed: 12/21/2022] Open
Abstract
In this study, a further investigation was carried out on the synthesis mechanism, optimal manufacturing conditions, and curing behavior of a sucrose-ammonium dihydrogen phosphate (SADP) adhesive. The results of 13C nuclear magnetic resonance (NMR) spectroscopy confirmed that SADP was composed of 5-hydroxymethylfurfural (5-HMF), deoxyfructosazine (DOF), amino compounds, Schiff base, monosaccharides, and oligosaccharide. The optimal hot-pressing conditions were a hot-pressing temperature of 170 °C, a hot-pressing time of 7 min, and a spread rate of 120 g/m2. The wet shear strength of plywood bonded at optimal manufacturing conditions met the requirements of China National Standard (GB/T 9846-2015). Thermal analysis and insoluble mass proportion measurements showed that the main curing behavior of the SADP adhesive occurred at curing temperatures higher than 145 °C, and more than 50% insoluble mass was formed when the heating time was longer than 5 min. Fourier-transform infrared spectroscopy (FT-IR) indicated that cross-linking of the cured adhesive was promoted by prolonging the heating time. In addition, pyrolysis gas chromatography and mass spectrometry (Py-GC/MS) confirmed that the cured SADP adhesive was composed of furan and nitrogen-containing compounds.
Collapse
|
2
|
Sun S, Zhao Z, Umemura K. Further Exploration of Sucrose-Citric Acid Adhesive: Synthesis and Application on Plywood. Polymers (Basel) 2019; 11:polym11111875. [PMID: 31766262 PMCID: PMC6918132 DOI: 10.3390/polym11111875] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 11/20/2022] Open
Abstract
The development of eco-friendly adhesives is a major research direction in the wood-based material industry. Previous research has already demonstrated the mixture of sucrose and citric acid could be utilized as an adhesive for the manufacture of particleboard. Herein, based on the chemical characteristics of sucrose, a synthesized sucrose-citric acid (SC) adhesive was prepared, featuring suitable viscosity and high solid content. The investigation of synthesis conditions on the bond performance showed that the optimal mass proportion between sucrose and citric acid was 25/75, the synthesis temperature was 100 °C, and the synthesis time was 2 h. The wet shear strength of the plywood bonded with SC adhesive, which was synthesized at optimal conditions and satisfied the China National Standard GB/T 9846-2015. The synthesis mechanism was studied by both 13C NMR analysis and HPLC, and the chemical composition manifesting caramelization reaction occurred during the synthesis process. The results of ATR FT-IR indicated the formation of a furan ring, carbonyl, and ether groups in the cured insoluble matter of the SC adhesive, which indicated dehydration condensation as the reaction mechanism between sucrose and citric acid.
Collapse
Affiliation(s)
- Shijing Sun
- College of Material Science and Engineering, Nanjing Forestry University, Nanjing 210037, China;
| | - Zhongyuan Zhao
- College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: (Z.Z.); (K.U.); Tel.: +86-025-8542-7793 (Z.Z.); +81-0774-38-3652 (K.U.)
| | - Kenji Umemura
- Laboratory of Sustainable Materials, Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto 611-0011, Japan
- Correspondence: (Z.Z.); (K.U.); Tel.: +86-025-8542-7793 (Z.Z.); +81-0774-38-3652 (K.U.)
| |
Collapse
|
3
|
Cadmium chloride inhibits lactate gluconeogenesis in mouse renal proximal tubules: An in vitro metabolomic approach with 13C NMR. Toxicol Lett 2015; 238:45-52. [DOI: 10.1016/j.toxlet.2015.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/26/2015] [Accepted: 07/26/2015] [Indexed: 01/22/2023]
|
4
|
El Hage M, Baverel G, Conjard-Duplany A, Martin G. Effect of glucose on glutamine metabolism in rat brain slices: a cellular metabolomic study with Effect of glucose ¹³C NMR. Neuroscience 2013; 248:243-51. [PMID: 23769890 DOI: 10.1016/j.neuroscience.2013.05.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/27/2013] [Accepted: 05/29/2013] [Indexed: 11/30/2022]
Abstract
To examine the effect of glucose on the cerebral metabolism of glutamine, rat brain slices were incubated with 5mM [3-(13)C]glutamine without and with 5mM unlabeled glucose. Tissue plus medium extracts were analyzed by using enzymatic and (13)C NMR techniques and fluxes through the enzymatic steps involved were calculated with a mathematical model. We demonstrate that glucose increased alanine, pyruvate and glutamate accumulations and decreased ammonium ions accumulation, aspartate accumulation and labeling, and GABA labeling. In order to determine the participation of glutamine synthetase when glucose was added to the incubation medium, we incubated rat brain slices with 5mM [3-(13)C]glutamine plus 5mM unlabeled glucose without and with 2mM methionine sulfoximine (MSO). The results indicate that 77% of the newly appeared glutamine was formed via glutamine synthetase and 23% from endogenous sources; the stimulation of [3-(13)C]glutamine removal by MSO also strongly suggests the existence of a cycle between [3-(13)C]glutamine and [3-(13)C]glutamate. This work also demonstrates that glucose increased fluxes through hexokinase, pyruvate kinase, lactate dehydrogenase, alanine aminotransferase, pyruvate carboxylase, pyruvate dehydrogenase, citrate synthase, flux from α-ketoglutarate to glutamate and flux through glutamine synthetase whereas it inhibited fluxes through aspartate aminotransferase, glutamic acid decarboxylase and GABA aminotransferase.
Collapse
Affiliation(s)
- M El Hage
- Metabolys Inc., Laennec Faculty of Medicine, 69372 Lyon Cedex 08, France.
| | - G Baverel
- Metabolys Inc., Laennec Faculty of Medicine, 69372 Lyon Cedex 08, France
| | - A Conjard-Duplany
- EA 4611, Biochimie et Physiopathologie Métaboliques, Laennec Faculty of Medicine, 69372 Lyon Cedex 08, France
| | - G Martin
- EA 4611, Biochimie et Physiopathologie Métaboliques, Laennec Faculty of Medicine, 69372 Lyon Cedex 08, France
| |
Collapse
|
5
|
El Hage M, Masson J, Conjard-Duplany A, Ferrier B, Baverel G, Martin G. Brain slices from glutaminase-deficient mice metabolize less glutamine: a cellular metabolomic study with carbon 13 NMR. J Cereb Blood Flow Metab 2012; 32:816-24. [PMID: 22373647 PMCID: PMC3345920 DOI: 10.1038/jcbfm.2012.22] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In the brain, glutaminase is considered to have a key role in the provision of glutamate, a major excitatory neurotransmitter. Brain slices obtained from wild-type (control) and glutaminase-deficient (GLS1+/-) mice were incubated without glucose and with 5 or 1 mmol/L [3-(13)C]glutamine as substrate. At the end of the incubation, substrate removal and product formation were measured by both enzymatic and carbon 13 nuclear magnetic resonance ((13)C-NMR) techniques. Slices from GLS1+/- mice consumed less [3-(13)C]glutamine and accumulated less [3-(13)C]glutamate. They also produced less (13)CO(2) but accumulated amounts of (13)C-aspartate and (13)C-gamma-aminobutyric acid (GABA) that were similar to those found with brain slices from control mice. The newly formed glutamine observed in slices from control mice remained unchanged in slices from GLS1+/- mice. As expected, flux through glutaminase in slices from GLS1+/- mice was found diminished. Fluxes through all enzymes of the tricarboxylic acid cycle were also reduced in brain slices from GLS1+/- mice except through malate dehydrogenase with 5 mmol/L [3-(13)C]glutamine. The latter diminutions are consistent with the decreases in the production of (13)CO(2) also observed in the slices from these mice. It is concluded that the genetic approach used in this study confirms the key role of glutaminase for the provision of glutamate.
Collapse
Affiliation(s)
- Maha El Hage
- Metabolys, Faculté de Médecine R.T.H. Laennec, 7–11 rue G. Paradin, Lyon Cedex 08, France.
| | | | | | | | | | | |
Collapse
|
6
|
El Hage M, Baverel G, Martin G. Effects of valproate on glutamate metabolism in rat brain slices: A 13C NMR study. Epilepsy Res 2012; 99:94-100. [DOI: 10.1016/j.eplepsyres.2011.10.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/18/2011] [Accepted: 10/18/2011] [Indexed: 11/27/2022]
|
7
|
Rat brain slices oxidize glucose at high rates: a (13)C NMR study. Neurochem Int 2011; 59:1145-54. [PMID: 22067134 DOI: 10.1016/j.neuint.2011.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 10/11/2011] [Accepted: 10/21/2011] [Indexed: 11/24/2022]
Abstract
Since glucose is the main cerebral substrate, we have characterized the metabolism of various (13)C glucose isotopomers in rat brain slices. For this, we have used our cellular metabolomic approach that combines enzymatic and carbon 13 NMR techniques with mathematical models of metabolic pathways. We identified the fate and the pathways of the conversion of glucose carbons into various products (pyruvate, lactate, alanine, aspartate, glutamate, GABA, glutamine and CO(2)) and determined absolute fluxes through pathways of glucose metabolism. After 60 min of incubation, lactate and CO(2) were the main end-products of the metabolism of glucose which was avidly metabolized by the slices. Lactate was also used at high rates by the slices and mainly converted into CO(2). High values of flux through pyruvate carboxylase, which were similar with glucose and lactate as substrate, were observed. The addition of glutamine, but not of acetate, stimulated pyruvate carboxylation, the conversion of glutamate into succinate and fluxes through succinate dehydrogenase, malic enzyme, glutamine synthetase and aspartate aminotransferase. It is concluded that, unlike brain cells in culture, and consistent with high fluxes through PDH and enzymes of the tricarboxylic acid cycle, rat brain slices oxidized both glucose and lactate at high rates.
Collapse
|
8
|
El Hage M, Conjard-Duplany A, Baverel G, Martin G. Metabolic fate of a high concentration of glutamine and glutamate in rat brain slices: a ¹³C NMR study. Neurochem Int 2011; 58:896-903. [PMID: 21338644 DOI: 10.1016/j.neuint.2011.02.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 02/02/2011] [Accepted: 02/15/2011] [Indexed: 10/18/2022]
Abstract
This study was performed to analyze the metabolic fate of a high concentration (5 mM) of glutamine and glutamate in rat brain slices and the participation of these amino acids in the glutamine-glutamate cycle. For this, brain slices were incubated for 60 min with [3-¹³C]glutamine or [3-¹³C]glutamate. Tissue plus medium extracts were analyzed by enzymatic and ¹³C NMR measurements and fluxes through pathways of glutamine and glutamate metabolism were calculated. We demonstrate that both substrates were utilized and oxidized at high rates by rat brain slices and served as precursors of neurotransmitters, tricarboxylic acid (TCA) cycle intermediates and alanine. In order to determine the participation of glutamine synthetase in the appearance of new glutamine molecules with glutamine as substrate, brain slices were incubated with [3-¹³C]glutamine in the presence of methionine sulfoximine, a specific inhibitor of glutamine synthetase. Our results indicate that 36.5% of the new glutamine appeared was glutamine synthetase-dependent and 63.5% was formed from endogenous substrates. Flux through glutamic acid decarboxylase was higher with glutamine than with glutamate as substrate whereas fluxes from α-ketoglutarate to glutamate and through glutamine synthetase, malic enzyme, pyruvate dehydrogenase, pyruvate carboxylase and citrate synthase were in the same range with both substrates.
Collapse
Affiliation(s)
- Maha El Hage
- Institut National de la Santé et de la Recherche Médicale, Unit # 820 (Métabolomique et Maladies Métaboliques), 69372 Lyon Cedex 08, France.
| | | | | | | |
Collapse
|
9
|
Faiz H, Conjard-Duplany A, Boghossian M, Martin G, Baverel G, Ferrier B. Cadmium chloride inhibits lactate gluconeogenesis in isolated human renal proximal tubules: a cellular metabolomic approach with 13C-NMR. Arch Toxicol 2010; 85:1067-77. [DOI: 10.1007/s00204-010-0633-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 11/24/2010] [Indexed: 01/18/2023]
|
10
|
Nguyen NHT, Gonzalez SV, Hassel B. Formation of glycerol from glucose in rat brain and cultured brain cells. Augmentation with kainate or ischemia. J Neurochem 2007; 101:1694-700. [PMID: 17286586 DOI: 10.1111/j.1471-4159.2006.04433.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An increase in the concentration of glycerol in the ischemic brain is assumed to reflect degradation of phospholipids of plasma membranes. However, glycerol could, theoretically, be formed from glucose, which after glycolytic conversion to dihydroxyacetone phosphate, could be converted to glycerol-3-phosphate and hence to glycerol. We show here that (13)C-labeled glycerol accumulate in incubation media of cultured cerebellar granule cells and astrocytes incubated with [(13)C]glucose, 3 mmol/L, demonstrating the formation of glycerol from glucose. Co-incubation of cerebellar granule cells with kainate, 50 micromol/L, led to increased glucose metabolism and increased accumulation of [(13)C]glycerol. Accumulation of [(13)C]glycerol and its precursor, [(13)C]glycerol-3-phosphate, was evident in brain, but not in serum, of kainate-treated rats that received [U-(13)C]glucose, 5 micromol/g bodyweight, intravenously and survived for 5 min. Global ischemia induced by decapitation also caused accumulation of [(13)C]glycerol and [(13)C]glycerol-3-phosphate. These results show that glycerol can be formed from glucose in brain; they also demonstrate the existence of a cerebral glycerol-3-phosphatase activity. Ischemia-induced increases in brain glycerol may, in part, reflect an altered metabolism of glucose, in which glycerol formation, like lactate formation, acts as a redox sink.
Collapse
Affiliation(s)
- Nga H T Nguyen
- Norwegian Defence Research Establishment, Kjeller, Norway
| | | | | |
Collapse
|
11
|
Martin G, Ferrier B, Conjard A, Martin M, Nazaret R, Boghossian M, Saadé F, Mancuso C, Durozard D, Baverel G. Glutamine gluconeogenesis in the small intestine of 72 h-fasted adult rats is undetectable. Biochem J 2007; 401:465-73. [PMID: 17002601 PMCID: PMC1820798 DOI: 10.1042/bj20061148] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Recent reports have indicated that 48-72 h of fasting, Type 1 diabetes and high-protein feeding induce gluconeogenesis in the small intestine of adult rats in vivo. Since this would (i) represent a dramatic revision of the prevailing view that only the liver and the kidneys are gluconeogenic and (ii) have major consequences in the metabolism, nutrition and diabetes fields, we have thoroughly re-examined this question in the situation reported to induce the highest rate of gluconeogenesis. For this, metabolically viable small intestinal segments from 72 h-fasted adult rats were incubated with [3-13C]glutamine as substrate. After incubation, substrate utilization and product accumulation were measured by enzymatic and NMR spectroscopic methods. Although the segments utilized [13C]glutamine at high rates and accumulated 13C-labelled products linearly for 30 min in vitro, no substantial glucose synthesis could be detected. This was not due to the re-utilization of [13C]glucose initially synthesized from [13C]glutamine. Arteriovenous metabolite concentration difference measurements across the portal vein-drained viscera of 72 h-fasted Wistar and Sprague-Dawley rats clearly indicated that glutamine, the main if not the only gluconeogenic precursor taken up, could not give rise to detectable glucose production in vivo. Therefore we challenge the view that the small intestine of the adult rat is a gluconeogenic organ.
Collapse
Affiliation(s)
- Guy Martin
- Institut National de la Santé et de la Recherche Médicale, UMR 499, Animet, Faculté de Médecine RTH Laennec, Université Lyon 1, Rue G. Paradin, 69372 Lyon Cedex 08, France
| | - Bernard Ferrier
- Institut National de la Santé et de la Recherche Médicale, UMR 499, Animet, Faculté de Médecine RTH Laennec, Université Lyon 1, Rue G. Paradin, 69372 Lyon Cedex 08, France
| | - Agnès Conjard
- Institut National de la Santé et de la Recherche Médicale, UMR 499, Animet, Faculté de Médecine RTH Laennec, Université Lyon 1, Rue G. Paradin, 69372 Lyon Cedex 08, France
| | - Mireille Martin
- Institut National de la Santé et de la Recherche Médicale, UMR 499, Animet, Faculté de Médecine RTH Laennec, Université Lyon 1, Rue G. Paradin, 69372 Lyon Cedex 08, France
| | - Rémi Nazaret
- Institut National de la Santé et de la Recherche Médicale, UMR 499, Animet, Faculté de Médecine RTH Laennec, Université Lyon 1, Rue G. Paradin, 69372 Lyon Cedex 08, France
| | - Michelle Boghossian
- Institut National de la Santé et de la Recherche Médicale, UMR 499, Animet, Faculté de Médecine RTH Laennec, Université Lyon 1, Rue G. Paradin, 69372 Lyon Cedex 08, France
| | - Fadi Saadé
- Institut National de la Santé et de la Recherche Médicale, UMR 499, Animet, Faculté de Médecine RTH Laennec, Université Lyon 1, Rue G. Paradin, 69372 Lyon Cedex 08, France
| | - Claire Mancuso
- Institut National de la Santé et de la Recherche Médicale, UMR 499, Animet, Faculté de Médecine RTH Laennec, Université Lyon 1, Rue G. Paradin, 69372 Lyon Cedex 08, France
| | - Daniel Durozard
- Institut National de la Santé et de la Recherche Médicale, UMR 499, Animet, Faculté de Médecine RTH Laennec, Université Lyon 1, Rue G. Paradin, 69372 Lyon Cedex 08, France
| | - Gabriel Baverel
- Institut National de la Santé et de la Recherche Médicale, UMR 499, Animet, Faculté de Médecine RTH Laennec, Université Lyon 1, Rue G. Paradin, 69372 Lyon Cedex 08, France
- To whom correspondence should be addressed (email )
| |
Collapse
|
12
|
Vittorelli A, Gauthier C, Michoudet C, Martin G, Baverel G. Characteristics of glutamine metabolism in human precision-cut kidney slices: a 13C-NMR study. Biochem J 2005; 387:825-34. [PMID: 15579133 PMCID: PMC1135014 DOI: 10.1042/bj20041309] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Revised: 11/17/2004] [Accepted: 12/03/2004] [Indexed: 11/17/2022]
Abstract
The metabolism of glutamine, a physiological substrate of the human kidney, plays a major role in systemic acid-base homoeostasis. Not only because of the limited availability of human renal tissue but also in part due to the lack of adequate cellular models, the mechanisms regulating the renal metabolism of this amino acid in humans have been poorly characterized. Therefore given the renewed interest in their use, human precision-cut renal cortical slices were incubated in Krebs-Henseleit medium (118 mM NaCl, 4.7 mM KCl, 1.18 mM KH2PO4, 1.18 mM MgSO4*7H2O, 24.9 mM NaHCO3 and 2.5 mM CaCl2*2H2O) with 2 mM unlabelled or 13C-labelled glutamine residues. After incubation, substrate utilization and product formation were measured by enzymatic and NMR spectroscopic methods. Glutamate accumulation tended to plateau but glutamine removal and ammonia, alanine and lactate production as well as flux through GLDH (glutamate dehydrogenase) increased to various extents with time for up to 4 h of incubation indicating the metabolic viability of the slices. Valproate, a stimulator of renal glutamine metabolism, markedly and in a dose-dependent fashion increased ammonia production. With [3-13C]glutamine as a substrate, and in the absence and presence of valproate, [13C]glutamate, [13C]alanine and [13C]lactate accounted for 81 and 96%, 34 and 63%, 30 and 46% of the glutamate, alanine and lactate accumulations measured enzymatically respectively. The slices also metabolized glutamine and retained their reactivity to valproate during incubations lasting for up to 48 h. These results demonstrate that, although endogenous metabolism substantially operates in the presence of glutamine, human precision-cut renal cortical slices are metabolically viable and strongly respond to the ammoniagenic effect of valproate. Thus, this experimental model is suitable for metabolic and pharmaco-toxicological studies.
Collapse
Affiliation(s)
- Anne Vittorelli
- Laboratoire de Physiopathologie Métabolique et Rénale, Institut National de la Santé et de la Recherche Médicale, U 499, Faculté de Médecine R.T.H. Laennec, 69372 Lyon Cedex 08, France
| | - Catherine Gauthier
- Laboratoire de Physiopathologie Métabolique et Rénale, Institut National de la Santé et de la Recherche Médicale, U 499, Faculté de Médecine R.T.H. Laennec, 69372 Lyon Cedex 08, France
| | - Christian Michoudet
- Laboratoire de Physiopathologie Métabolique et Rénale, Institut National de la Santé et de la Recherche Médicale, U 499, Faculté de Médecine R.T.H. Laennec, 69372 Lyon Cedex 08, France
| | - Guy Martin
- Laboratoire de Physiopathologie Métabolique et Rénale, Institut National de la Santé et de la Recherche Médicale, U 499, Faculté de Médecine R.T.H. Laennec, 69372 Lyon Cedex 08, France
| | - Gabriel Baverel
- Laboratoire de Physiopathologie Métabolique et Rénale, Institut National de la Santé et de la Recherche Médicale, U 499, Faculté de Médecine R.T.H. Laennec, 69372 Lyon Cedex 08, France
| |
Collapse
|
13
|
Conjard A, Dugelay S, Chauvin MF, Durozard D, Baverel G, Martin G. The anaplerotic substrate alanine stimulates acetate incorporation into glutamate and glutamine in rabbit kidney tubules. A (13)C NMR study. J Biol Chem 2002; 277:29444-54. [PMID: 12019262 DOI: 10.1074/jbc.m111335200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although acetate, the main circulating volatile fatty acid in humans and animals, is metabolized at high rates by the renal tissue, little is known about the precise fate of its carbons and about the regulation of its renal metabolism. Therefore, we studied the metabolism of variously labeled [(13)C]acetate and [(14)C]acetate molecules and its regulation by alanine, which is also readily metabolized by the kidney, in isolated rabbit renal proximal tubules. With acetate as the sole substrate, 72% of the C-1 and 49% of the C-2 of acetate were released as CO(2); with acetate plus alanine, the corresponding values were decreased to 49 and 25%. The only other important products formed from the acetate carbons were glutamine, and to a smaller extent, glutamate. By combining (13)C NMR and radioactive and enzymatic measurements with a novel model of acetate metabolism, fluxes through the enzymes involved were calculated. Thanks to its anaplerotic effect, alanine caused a stimulation of acetate removal and a large increase in fluxes through pyruvate carboxylase, citrate synthase, and the enzymes involved in glutamate and glutamine synthesis but not in flux through alpha-ketoglutarate dehydrogenase. We conclude that the anaplerotic substrate alanine not only accelerates the disposal of acetate but also prevents the wasting of the latter compound as CO(2).
Collapse
Affiliation(s)
- Agnès Conjard
- Centre d'Etudes Métaboliques par Spectroscopie de Résonance Magnétique (INSERM U 499), Pavillon P, Hôpital Edouard Herriot, place d'Arsonval, 69374 Lyon Cedex 08, France
| | | | | | | | | | | |
Collapse
|
14
|
Metzler DE, Metzler CM, Sauke DJ. The Metabolism of Nitrogen and Amino Acids. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50027-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Herve M, Buffin-Meyer B, Bouet F, Son TD. Detection of modifications in the glucose metabolism induced by genetic mutations in Saccharomyces cerevisiae by 13C- and H-NMR spectroscopy. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:3337-44. [PMID: 10824121 DOI: 10.1046/j.1432-1327.2000.01365.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
NMR spectroscopy may offer a suitable technique to characterize the glucose metabolism in response to genetic mutations in cells. The effects of various genetic modifications in Saccharomyces cerevisiae yeast were investigated using 13C- and 1H-NMR spectroscopy associated with biochemical techniques. Cells were incubated with [1-13C]glucose in order to study glucose consumption and the formation of various end-products (ethanol, trehalose, glycerol, glutamate and amino acids) as a function of time. Two types of genetic modifications were studied in S. cerevisiae. A genetic modification deleted the N-terminal part of the TFC7 protein which is the smallest subunit (tau55) of the TFIIIC transcription factor. One secondary effect of this mutation was a large deletion of mitochondrial DNA giving the rho-phenotype. The other genetic modification corresponded to the disruption of the HUF gene; the mutated cells were rho+ like the reference strain. Both mutations increase the glycolysis rate and glycerol synthesis and decrease trehalose production. The most modified cells, which contain both TFC7 deletion and HUF gene disruption, utilize glucose in the most extreme manner as in these cells the largest production of the two glycolytic products (ethanol and glycerol) and the smallest trehalose formation occur. The HUF gene disruption serves as a positive modulator of glycolysis and respiration. However, the TFC7 deletion, associated with the phenotype rho-, induces the most damage in the cellular function, dramatically altering the behaviour of the Krebs cycle. The cycle becomes blocked at the level of 2-oxoglutarate, detected by a characteristic pattern of the 13C-NMR glutamate spectra. These NMR spectra corroborate the phenotypic data, the rho-phenotype corresponding to deletions of mitochondria DNA which block all mitochondria protein synthesis and render the cells unable to derive energy from respiration. Moreover, as a consequence of the Krebs cycle blocking, alanine formation is also observed.
Collapse
Affiliation(s)
- M Herve
- Section de Biophysique des Protéines et des Membranes, Département de Biologie Cellulaire et Moléculaire, CEN Saclay, Gif-sur-Yvette, France.
| | | | | | | |
Collapse
|
16
|
Matheron C, Delort AM, Gaudet G, Liptaj T, Forano E. Interactions between carbon and nitrogen metabolism in Fibrobacter succinogenes S85: a 1H and 13C nuclear magnetic resonance and enzymatic study. Appl Environ Microbiol 1999; 65:1941-8. [PMID: 10223984 PMCID: PMC91281 DOI: 10.1128/aem.65.5.1941-1948.1999] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effect of the presence of ammonia on [1-13C]glucose metabolism in the rumen fibrolytic bacterium Fibrobacter succinogenes S85 was studied by 13C and 1H nuclear magnetic resonance (NMR). Ammonia halved the level of glycogen storage and increased the rate of glucose conversion into acetate and succinate 2.2-fold and 1.4-fold, respectively, reducing the succinate-to-acetate ratio. The 13C enrichment of succinate and acetate was precisely quantified by 13C-filtered spin-echo difference 1H-NMR spectroscopy. The presence of ammonia did not modify the 13C enrichment of succinate C-2 (without ammonia, 20.8%, and with ammonia, 21.6%), indicating that the isotopic dilution of metabolites due to utilization of endogenous glycogen was not affected. In contrast, the presence of ammonia markedly decreased the 13C enrichment of acetate C-2 (from 40 to 31%), reflecting enhanced reversal of the succinate synthesis pathway. The reversal of glycolysis was unaffected by the presence of ammonia as shown by 13C-NMR analysis. Study of cell extracts showed that the main pathways of ammonia assimilation in F. succinogenes were glutamate dehydrogenase and alanine dehydrogenase. Glutamine synthetase activity was not detected. Glutamate dehydrogenase was active with both NAD and NADP as cofactors and was not repressed under ammonia limitation in the culture. Glutamate-pyruvate and glutamate-oxaloacetate transaminase activities were evidenced by spectrophotometry and 1H NMR. When cells were incubated in vivo with [1-13C]glucose, only 13C-labeled aspartate, glutamate, alanine, and valine were detected. Their labelings were consistent with the proposed amino acid synthesis pathway and with the reversal of the succinate synthesis pathway.
Collapse
Affiliation(s)
- C Matheron
- Laboratoire de Synthèse, Electrosynthèse et Etude de Systèmes à Interêt Biologique, UMR 6504-CNRS, France
| | | | | | | | | |
Collapse
|
17
|
Lie-Venema H, Hakvoort TB, van Hemert FJ, Moorman AF, Lamers WH. Regulation of the spatiotemporal pattern of expression of the glutamine synthetase gene. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1998; 61:243-308. [PMID: 9752723 DOI: 10.1016/s0079-6603(08)60829-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Glutamine synthetase, the enzyme that catalyzes the ATP-dependent conversion of glutamate and ammonia into glutamine, is expressed in a tissue-specific and developmentally controlled manner. The first part of this review focuses on its spatiotemporal pattern of expression, the factors that regulate its levels under (patho)physiological conditions, and its role in glutamine, glutamate, and ammonia metabolism in mammals. Glutamine synthetase protein stability is more than 10-fold reduced by its product glutamine and by covalent modifications. During late fetal development, translational efficiency increases more than 10-fold. Glutamine synthetase mRNA stability is negatively affected by cAMP, whereas glucocorticoids, growth hormone, insulin (all positive), and cAMP (negative) regulate its rate of transcription. The signal transduction pathways by which these factors may regulate the expression of glutamine synthetase are briefly discussed. The second part of the review focuses on the evolution, structure, and transcriptional regulation of the glutamine synthetase gene in rat and chicken. Two enhancers (at -6.5 and -2.5 kb) were identified in the upstream region and two enhancers (between +156 and +857 bp) in the first intron of the rat glutamine synthetase gene. In addition, sequence analysis suggests a regulatory role for regions in the 3' untranslated region of the gene. The immediate-upstream region of the chicken glutamine synthetase gene is responsible for its cell-specific expression, whereas the glucocorticoid-induced developmental appearance in the neural retina is governed by its far-upstream region.
Collapse
Affiliation(s)
- H Lie-Venema
- Department of Anatomy and Embryology, University of Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
18
|
Bonarius HPJ, Houtman JHM, de Gooijer CD, Tramper J, Schmid G. Activity of glutamate dehydrogenase is increased in ammonia-stressed hybridoma cells. Biotechnol Bioeng 1998. [DOI: 10.1002/(sici)1097-0290(19980220)57:4<447::aid-bit8>3.0.co;2-m] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Bolon C, Gauthier C, Simonnet H. Glycolysis inhibition by palmitate in renal cells cultured in a two-chamber system. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:C1732-8. [PMID: 9374661 DOI: 10.1152/ajpcell.1997.273.5.c1732] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A major shortcoming of renal proximal tubular cells (RPTC) in culture is the gradual modification of their energy metabolism from the oxidative type to the glycolytic type. To test the possible reduction of glycolysis by naturally occurring long-chain fatty acids, RPTC were cultured in a two-chamber system, with albumin-bound palmitate (0.4 mM) added to the basolateral chamber after confluency. Twenty-four hours of contact with palmitate decreased glycolysis by 38% provided that carnitine was present; lactate production was decreased by 38%, and the decrease in glycolysis resulted from a similar decrease of basolateral and apical net uptake of glucose. In contrast to the previously described effect of the nonphysiological oxidative substrate heptanoate, palmitate promoted a long-term decrease in lactate production and sustained excellent cellular growth. After 4 days of contact, decreased glycolysis was maintained even in the absence of carnitine and resulted from a decrease of basolateral uptake only, suggestive of long-term regulation different from the earlier effects. Thus, although cultured RPTC lost their oxidative phenotype, they exhibited a type of regulation (Randle effect) that is found in the oxidative-type but not in the glycolytic-type tissues, therefore unmasking a regulative capacity barely detectable in fresh RPTC. Low PO2 (50 mmHg in the apical chamber) could be a major cause of elevated glycolysis and could hinder the effects of palmitate.
Collapse
Affiliation(s)
- C Bolon
- Laboratoire de Physiopathologie Métabolique et Rénale, Institut National de la Santé et de la Recherche Médicale, Faculté de Médecine Alexis Carrel, Université Lyon I, France
| | | | | |
Collapse
|
20
|
Wiechert W, Siefke C, de Graaf AA, Marx A. Bidirectional reaction steps in metabolic networks: II. Flux estimation and statistical analysis. Biotechnol Bioeng 1997; 55:118-35. [DOI: 10.1002/(sici)1097-0290(19970705)55:1<118::aid-bit13>3.0.co;2-i] [Citation(s) in RCA: 204] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Chauvin MF, Megnin-Chanet F, Martin G, Mispelter J, Baverel G. The rabbit kidney tubule simultaneously degrades and synthesizes glutamate. A 13C NMR study. J Biol Chem 1997; 272:4705-16. [PMID: 9030522 DOI: 10.1074/jbc.272.8.4705] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The rabbit kidney does not readily metabolize but synthesizes glutamine at high rates by pathways that remain poorly defined. Therefore, the metabolism of variously labeled [13C]- and [14C]glutamates has been studied in isolated rabbit kidney tubules with and without acetate. CO2, glutamine, and alanine were the main carbon and nitrogenous end products of glutamate metabolism but no ammonia accumulated. Absolute fluxes through enzymes involved in glutamate metabolism, including enzymes of four different cycles operating simultaneously, were assessed by combining mainly the 13C NMR data with a new model of glutamate metabolism. In contrast to a previous conclusion of Klahr et al. (Klahr, S., Schoolwerth, A. C., and Bourgoignie, J. J. (1972) Am. J. Physiol. 222, 813-820), glutamate metabolism was found to be initiated by glutamate dehydrogenase at high rates. Glutamate dehydrogenase also operated at high rates in the reverse direction; this, together with the operation of the glutamine synthetase reaction, masked the release of ammonia. Addition of acetate stimulated the operation of the "glutamate --> alpha-ketoglutarate --> glutamate" cycle and the accumulation of glucose but reduced both the net oxidative deamination of glutamate and glutamine synthesis. Acetate considerably increased flux through alpha-ketoglutarate dehydrogenase and citrate synthase at the expense of flux through phosphoenolpyruvate carboxykinase; acetate also caused a large decrease in flux through alanine aminotransferase, pyruvate dehydrogenase, and the "substrate cycle" involving oxaloacetate, phosphoenolpyruvate, and pyruvate.
Collapse
Affiliation(s)
- M F Chauvin
- Centre d'Etudes Métaboliques par Spectroscopie de Résonance Magnétique (INSERM CRI 950201), Hôpital Edouard Herriot, 69374 Lyon Cedex 03, France
| | | | | | | | | |
Collapse
|
22
|
Tran-Dinh S, Bouet F, Huynh QT, Herve M. Mathematical models for determining metabolic fluxes through the citric acid and the glyoxylate cycles in Saccharomyces cerevisiae by 13C-NMR spectroscopy. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 242:770-8. [PMID: 9022708 DOI: 10.1111/j.1432-1033.1996.0770r.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We propose, first, a practical method for studying the isotopic transformation of glutamate or any other metabolite isotopomers in the citric acid and the glyoxylate cycles; second, two mathematical models, one for evaluating the flux through the citric acid cycle and the other for evaluating the flux through the latter coupled to the glyoxylate cycle in yeast. These models are based on the analysis of 13C-NMR spectra of glutamate obtained from Saccharomyces cerevisiae, NCYC strain, fed with 100% enriched [2-13C]acetate. The population of each glutamate isotopomer, the change in intensity of each multiplet component or the enrichment of any glutamate carbon is expressed by a specific analytical equation from which the flux in the citric acid and the glyoxylate cycles can be deduced. The aerobic metabolism of 100% [2-13C]acetate in acetate-grown S. cerevisiae cells was studied as a function of time using 13C-NMR. 1H-NMR and biochemical techniques. The C1 and C6 doublet and singlet of labeled trehalose increase continuously with time indicating that there is no isotopic transformation between trehalose isotopomers even though the corresponding formation rates are different. By contrast, the glutamate C4 singlet increases then decreases with time. The C4 doublet, which is lower than the singlet for t < 60 min, increases continuously and becomes higher than the singlet for t > 90 min. A similar observation was made for the C2 resonance singlet and doublet. In addition, the glutamate C2 multiplet consists of only seven instead of nine peaks as in random labeling. These results agree well with our models and demonstrate that, in the presence of acetate, anaplerotic carbon sources involved in the synthesis of acetyl-CoA are negligible in yeast. The flux in the citric acid cycle was deduced from a plot of the C4 area versus incubation time, while the flux within the glyoxylate cycle was determined from the relative intensity of the glutamate C4 doublet and singlet. The fluxes in the citric acid and the glyoxylate cycles were found to be comparable. The proportion of glutamate in isotopic exchange with the citric acid cycle is about 2.5% min1 in yeast.
Collapse
Affiliation(s)
- S Tran-Dinh
- Département de Biologie Cellulaíre et Moléculaire, CEN Saclay, Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
23
|
Chauvin MF, Bolon C, Conjard A, Martin G, Ferrier B, Martin M, Michoudet C, Durozard D, Laréal MC, Gauthier C, Simonnet H, Elhamri M, Dugelay S, Joly B, Baverel G. Advantages and limitations of the use of isolated kidney tubules in pharmacotoxicology. Cell Biol Toxicol 1996; 12:283-7. [PMID: 9034622 DOI: 10.1007/bf00438159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Among the cellular models used in in vitro renal pharmacotoxicology, isolated kidney tubules, used as suspensions mainly of proximal tubules, offer important advantages. They can be prepared in large amounts under nonsterile conditions within 1-2 h; thus, it is possible to employ a great number of experimental conditions simultaneously and to obtain rapidly many experimental results. Kidney tubules can be prepared from the kidney of many animal species and also from the human kidney; given the very limited availability of healthy human renal tissue, it is therefore possible to choose the most appropriate species for the study of a particular problem encountered in man. Kidney tubules can be used for screening and prevention of nephrotoxic effects and to identify their mechanisms as well as to study the renal metabolism of xenobiotics. When compared with cultured renal cell, a major advantage of kidney tubules is that they remain differentiated. The main limitations of the use of kidney tubules in pharmacotoxicology are (1) the necessity to prepare them as soon as the renal tissue sample is obtained; (2) their limited viability, which is restricted to 2-3 h; (3) the inability to expose them chronically to a potential nephrotoxic drug; (4) the inability to study transepithelial transport; and (5) the uncertainty in the extrapolation to man of the results obtained using animal kidney tubules. These advantages and limitations of the use of human and animal kidney tubules in pharmacotoxicology are illustrated mainly by the results of experiments performed with valproate, an antiepileptic and moderately hyperammonemic agent. The fact that kidney tubules, unlike cultured renal cells, retain key metabolic properties is also shown to be of the utmost importance in detecting certain nephrotoxic effects.
Collapse
Affiliation(s)
- M F Chauvin
- Laboratoire de Physiopathologie Métabolique et Rénale, INSERM CRI 950201, Faculté de Médecine R. Laënnec, Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Jeffrey FM, Storey CJ, Sherry AD, Malloy CR. 13C isotopomer model for estimation of anaplerotic substrate oxidation via acetyl-CoA. THE AMERICAN JOURNAL OF PHYSIOLOGY 1996; 271:E788-99. [PMID: 8897869 DOI: 10.1152/ajpendo.1996.271.4.e788] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A previous model using 13C nuclear magnetic resonance isotopomer analysis provided for direct measurement of the oxidation of 13C-enriched substrates in the tricarboxylic acid cycle and/or their entry via anaplerotic pathways. This model did not allow for recycling of labeled metabolites from tricarboxylic acid cycle intermediates into the acetyl-CoA pool. An extension of this model is now presented that incorporates carbon flow from oxaloacetate or malate to acetyl-CoA. This model was examined using propionate metabolism in the heart, in which previous observations indicated that all of the propionate consumed was oxidized to CO2 and water. Application of the new isotopomer model shows that 2 mM [3-13C]propionate entered the tricarboxylic acid cycle as succinyl-CoA (an anaplerotic pathway) at a rate equal to 52% of tricarboxylic acid cycle turnover and that all of this carbon entered the acetyl-CoA pool and was oxidized. This was verified using standard biochemical analysis; from the rate (mumol.min-1.g dry wt-1) of propionate uptake (4.0 +/- 0.7), the estimated oxygen consumption (24.8 +/- 5) matched that experimentally determined (24.4 +/- 3).
Collapse
Affiliation(s)
- F M Jeffrey
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, USA
| | | | | | | |
Collapse
|
25
|
Baverel G, Ferrier B, Martin M. Fuel selection by the kidney: adaptation to starvation. Proc Nutr Soc 1995; 54:197-212. [PMID: 7568254 DOI: 10.1079/pns19950049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- G Baverel
- Laboratoire de Physiopathologie Métabolique et Rénale, Faculté de Médecine Alexis Carrel, Lyon, France
| | | | | |
Collapse
|
26
|
Non-steady state model applicable to NMR studies for calculating flux rates in glycolysis, gluconeogenesis, and citric acid cycle. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47155-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|