1
|
Zhu M, Xu H, Jin Y, Kong X, Xu B, Liu Y, Yu H. Synaptotagmin-1 undergoes phase separation to regulate its calcium-sensitive oligomerization. J Cell Biol 2024; 223:e202311191. [PMID: 38980206 PMCID: PMC11232894 DOI: 10.1083/jcb.202311191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/17/2024] [Accepted: 06/11/2024] [Indexed: 07/10/2024] Open
Abstract
Synaptotagmin-1 (Syt1) is a calcium sensor that regulates synaptic vesicle fusion in synchronous neurotransmitter release. Syt1 interacts with negatively charged lipids and the SNARE complex to control the fusion event. However, it remains incompletely understood how Syt1 mediates Ca2+-trigged synaptic vesicle fusion. Here, we discovered that Syt1 undergoes liquid-liquid phase separation (LLPS) to form condensates both in vitro and in living cells. Syt1 condensates play a role in vesicle attachment to the PM and efficiently recruit SNAREs and complexin, which may facilitate the downstream synaptic vesicle fusion. We observed that Syt1 condensates undergo a liquid-to-gel-like phase transition, reflecting the formation of Syt1 oligomers. The phase transition can be blocked or reversed by Ca2+, confirming the essential role of Ca2+ in Syt1 oligomer disassembly. Finally, we showed that the Syt1 mutations causing Syt1-associated neurodevelopmental disorder impair the Ca2+-driven phase transition. These findings reveal that Syt1 undergoes LLPS and a Ca2+-sensitive phase transition, providing new insights into Syt1-mediated vesicle fusion.
Collapse
Affiliation(s)
- Min Zhu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Han Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yulei Jin
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaoxu Kong
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Bingkuan Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yinghui Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Haijia Yu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
2
|
Mast N, Petrov AM, Prendergast E, Bederman I, Pikuleva IA. Brain Acetyl-CoA Production and Phosphorylation of Cytoskeletal Proteins Are Targets of CYP46A1 Activity Modulation and Altered Sterol Flux. Neurotherapeutics 2021; 18:2040-2060. [PMID: 34235635 PMCID: PMC8609074 DOI: 10.1007/s13311-021-01079-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2021] [Indexed: 02/04/2023] Open
Abstract
Cholesterol and 24-hydroxycholesterol are the most abundant brain sterols and represent the substrate and product, respectively, of cytochrome P450 46A1 (CYP46A1), a CNS-specific enzyme. CYP46A1 controls cholesterol elimination and turnover in the brain, the two processes that determine the rate of brain sterol flux through the plasma membranes and thereby the properties of these membranes. Brain sterol flux is decreased in Cyp46a1-/- mice compared to wild-type mice and increased in 5XFAD mice (a model of Alzheimer's disease) when they are treated with a small dose of efavirenz, a CYP46A1 activator. Herein, we first assessed the brain proteome (synaptosomal fractions) and phospho-proteome (synaptosomal fractions and brain homogenates) of efavirenz-treated and control 5XFAD mice. Then, based on the pattern of protein abundance change, we conducted acetyl-CoA measurements (brain homogenates and mitochondria) and metabolic profiling (brain homogenates). The phospho-proteomics datasets were used for comparative analyses with the datasets obtained by us previously on mice with the same changes (efavirenz-treated and control 5XFAD mice from a different treatment paradigm) or with changes in the opposite direction (Cyp46a1-/- vs wild-type mice) in brain sterol flux. We found that CYP46A1 activity or the rate of brain sterol flux affects acetyl-CoA-related metabolic pathways as well as phosphorylation of cytoskeletal and other proteins. Knowledge of the key roles of acetyl-CoA and cytoskeletal phosphorylation in cell biology expands our understanding of the significance of CYP46A1-mediated cholesterol 24-hydroxylation in the brain and provides an additional explanation for why CYP46A1 activity modulations are beneficial in mouse models of different brain diseases.
Collapse
Affiliation(s)
- Natalia Mast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Alexey M Petrov
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center, Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, 420111, Kazan, Russia
- Institute of Neuroscience, Kazan State Medial University, 49 Butlerova Street, 420012, Kazan, Russia
| | - Erin Prendergast
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Ilya Bederman
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
3
|
Guo T, Duan Z, Chen J, Xie C, Wang Y, Chen P, Wang X. Pull-down combined with proteomic strategy reveals functional diversity of synaptotagmin I. PeerJ 2017; 5:e2973. [PMID: 28194317 PMCID: PMC5301975 DOI: 10.7717/peerj.2973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/10/2017] [Indexed: 12/05/2022] Open
Abstract
Synaptotagmin I (Syt I) is most abundant in the brain and is involved in multiple cellular processes. Its two C2 domains, C2A and C2B, are the main functional regions. Our present study employed a pull-down combined with proteomic strategy to identify the C2 domain-interacting proteins to comprehensively understand the biological roles of the C2 domains and thus the functional diversity of Syt I. A total of 135 non-redundant proteins interacting with the C2 domains of Syt I were identified. Out of them, 32 and 64 proteins only bound to C2A or C2B domains, respectively, and 39 proteins bound to both of them. Compared with C2A, C2B could bind to many more proteins particularly those involved in synaptic transmission and metabolic regulation. Functional analysis indicated that Syt I may exert impacts by interacting with other proteins on multiple cellular processes, including vesicular membrane trafficking, synaptic transmission, metabolic regulation, catalysis, transmembrane transport and structure formation, etc. These results demonstrate that the functional diversity of Syt I is higher than previously expected, that its two domains may mediate the same and different cellular processes cooperatively or independently, and that C2B domain may play even more important roles than C2A in the functioning of Syt I. This work not only further deepened our understanding of the functional diversity of Syt I and the functional differences between its two C2 domains, but also provided important clues for the further related researches.
Collapse
Affiliation(s)
- Tianyao Guo
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University , Changsha , Hunan , P. R. of China
| | - Zhigui Duan
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University , Changsha , Hunan , P. R. of China
| | - Jia Chen
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University , Changsha , Hunan , P. R. of China
| | - Chunliang Xie
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University , Changsha , Hunan , P. R. of China
| | - Ying Wang
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University , Changsha , Hunan , P. R. of China
| | - Ping Chen
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University , Changsha , Hunan , P. R. of China
| | - Xianchun Wang
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University , Changsha , Hunan , P. R. of China
| |
Collapse
|
4
|
Gao J, Hirata M, Mizokami A, Zhao J, Takahashi I, Takeuchi H, Hirata M. Differential role of SNAP-25 phosphorylation by protein kinases A and C in the regulation of SNARE complex formation and exocytosis in PC12 cells. Cell Signal 2015; 28:425-437. [PMID: 26721188 DOI: 10.1016/j.cellsig.2015.12.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 12/15/2015] [Accepted: 12/21/2015] [Indexed: 11/30/2022]
Abstract
The final step of regulated exocytosis, membrane fusion, is mediated by formation of the SNARE complex by syntaxin, SNAP-25 (synaptosomal-associated protein of 25 kDa), and VAMP (vesicle-associated membrane protein). Phosphorylation of SNARE and accessory proteins contributes to regulation of exocytosis. We previously identified residues of SNAP-25 phosphorylated by protein kinase A (PKA) and PKC. However, the physiological role of SNAP-25 phosphorylation in exocytosis, in particular with regard to SNARE complex formation, has remained elusive. SNARE complex formation by purified recombinant SNAP-25, syntaxin-1, and VAMP-2 in vitro was inhibited or promoted as a result of the phosphorylation at Thr(138) by PKA or at Ser(187) by PKC, respectively. SNARE complex formation in intact PC12 cells was similarly inhibited by forskolin (activator of PKA) and promoted by phorbol 12-myristate 13-acetate (PMA, activator of PKC). Noradrenaline secretion from PC12 cells induced by a high K(+) concentration was enhanced by forskolin or PMA. Stable depletion of SNAP-25 inhibited high-K(+)-induced noradrenaline secretion. Forced expression of WT SNAP-25 restored the secretory response of the SNAP-25-depleted cells to high-K(+), and this response was enhanced by forskolin or PMA. Expression of the nonphosphorylatable T138A or S187A mutants of SNAP-25 similarly rescued the secretory response to high-K(+), but the augmentation of this response by forskolin was more pronounced in the cells expressing SNAP-25 (T138A) than in those expressing SNAP-25 (WT), whereas that by PMA was less pronounced in those expressing SNAP-25 (S187A). Our results thus suggest that SNAP-25 phosphorylation by PKA or PKC contributes differentially to the control of exocytosis in PC12 cells by regulating SNARE complex formation.
Collapse
Affiliation(s)
- Jing Gao
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Makiko Hirata
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Section of Orthodontics, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Akiko Mizokami
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Jin Zhao
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ichiro Takahashi
- Section of Orthodontics, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hiroshi Takeuchi
- Division of Applied Pharmacology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan
| | - Masato Hirata
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
5
|
Sun J. A legend of the SNARE complex and synaptotagmin-the insight into synaptic transmission. SCIENCE CHINA. LIFE SCIENCES 2013; 56:1150-1153. [PMID: 24222513 DOI: 10.1007/s11427-013-4572-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 11/04/2013] [Indexed: 06/02/2023]
Affiliation(s)
- JianYuan Sun
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China,
| |
Collapse
|
6
|
Al Quobaili F, Montenarh M. CK2 and the regulation of the carbohydrate metabolism. Metabolism 2012; 61:1512-7. [PMID: 22917893 DOI: 10.1016/j.metabol.2012.07.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 07/10/2012] [Accepted: 07/17/2012] [Indexed: 11/21/2022]
Abstract
Protein kinase CK2 was originally identified by analyzing carbohydrate metabolism. Now it is clear that life without CK2 is impossible. Moreover, CK2 activity was found elevated in rapidly proliferating cells when compared to slowly proliferating or resting cells. Proliferating cells have an elevated need for energy which is generated from an elevated carbohydrate metabolism. From early observations and the emerging role of CK2 in cellular regulation, it is not surprising that CK2 plays a role in hormonal regulation of carbohydrate metabolism as well as modulating activities of enzymes directly involved in carbohydrate storage and metabolism. The aim of the present review is to summarize the knowledge about the role of CK2 in the regulation of the carbohydrate metabolism.
Collapse
Affiliation(s)
- Faizeh Al Quobaili
- Department of Biochemistry and Microbiology, Damascus University, 6735 Damascus, Syria
| | | |
Collapse
|
7
|
Rose CM, Venkateshwaran M, Volkening JD, Grimsrud PA, Maeda J, Bailey DJ, Park K, Howes-Podoll M, den Os D, Yeun LH, Westphall MS, Sussman MR, Ané JM, Coon JJ. Rapid phosphoproteomic and transcriptomic changes in the rhizobia-legume symbiosis. Mol Cell Proteomics 2012; 11:724-44. [PMID: 22683509 PMCID: PMC3434772 DOI: 10.1074/mcp.m112.019208] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 06/07/2012] [Indexed: 11/06/2022] Open
Abstract
Symbiotic associations between legumes and rhizobia usually commence with the perception of bacterial lipochitooligosaccharides, known as Nod factors (NF), which triggers rapid cellular and molecular responses in host plants. We report here deep untargeted tandem mass spectrometry-based measurements of rapid NF-induced changes in the phosphorylation status of 13,506 phosphosites in 7739 proteins from the model legume Medicago truncatula. To place these phosphorylation changes within a biological context, quantitative phosphoproteomic and RNA measurements in wild-type plants were compared with those observed in mutants, one defective in NF perception (nfp) and one defective in downstream signal transduction events (dmi3). Our study quantified the early phosphorylation and transcription dynamics that are specifically associated with NF-signaling, confirmed a dmi3-mediated feedback loop in the pathway, and suggested "cryptic" NF-signaling pathways, some of them being also involved in the response to symbiotic arbuscular mycorrhizal fungi.
Collapse
Affiliation(s)
- Christopher M. Rose
- From the ‡Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706
- ‖Genome Center of Wisconsin, University of Wisconsin, Madison, Wisconsin 53706
| | | | - Jeremy D. Volkening
- ¶Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Paul A. Grimsrud
- ¶Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Junko Maeda
- §Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| | - Derek J. Bailey
- From the ‡Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706
- ‖Genome Center of Wisconsin, University of Wisconsin, Madison, Wisconsin 53706
| | - Kwanghyun Park
- ‖Genome Center of Wisconsin, University of Wisconsin, Madison, Wisconsin 53706
- **Department of Computer Sciences, University of Wisconsin, Madison, Wisconsin 53706
| | | | - Désirée den Os
- §Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
- §§Present address: Penn State Biology Department, University Park, Pennsylvania 16802
| | - Li Huey Yeun
- §Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| | - Michael S. Westphall
- From the ‡Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706
- ‖Genome Center of Wisconsin, University of Wisconsin, Madison, Wisconsin 53706
| | - Michael R. Sussman
- ¶Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
- ‖Genome Center of Wisconsin, University of Wisconsin, Madison, Wisconsin 53706
| | - Jean-Michel Ané
- §Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| | - Joshua J. Coon
- From the ‡Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706
- ‖Genome Center of Wisconsin, University of Wisconsin, Madison, Wisconsin 53706
- ‡‡Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
8
|
Sancenon V, Lee SA, Patrick C, Griffith J, Paulino A, Outeiro TF, Reggiori F, Masliah E, Muchowski PJ. Suppression of α-synuclein toxicity and vesicle trafficking defects by phosphorylation at S129 in yeast depends on genetic context. Hum Mol Genet 2012; 21:2432-49. [PMID: 22357655 DOI: 10.1093/hmg/dds058] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The aggregation of α-synuclein (αSyn) is a neuropathologic hallmark of Parkinson's disease and other synucleinopathies. In Lewy bodies, αSyn is extensively phosphorylated, predominantly at serine 129 (S129). Recent studies in yeast have shown that, at toxic levels, αSyn disrupts Rab homeostasis, causing an initial endoplasmic reticulum-to-Golgi block that precedes a generalized trafficking collapse. However, whether αSyn phosphorylation modulates trafficking defects has not been evaluated. Here, we show that constitutive expression of αSyn in yeast impairs late-exocytic, early-endocytic and/or recycling trafficking. Although members of the casein kinase I (CKI) family phosphorylate αSyn at S129, they attenuate αSyn toxicity and trafficking defects by an S129 phosphorylation-independent mechanism. Surprisingly, phosphorylation of S129 modulates αSyn toxicity and trafficking defects in a manner strictly determined by genetic background. Abnormal endosome morphology, increased levels of the endosome marker Rab5 and co-localization of mammalian CKI with αSyn aggregates are observed in brain sections from αSyn-overexpressing mice and human synucleinopathies. Our results contribute to evidence that suggests αSyn-induced defects in endocytosis, exocytosis and/or recycling of vesicles involved in these cellular processes might contribute to the pathogenesis of synucleinopathies.
Collapse
Affiliation(s)
- Vicente Sancenon
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Gao J, Takeuchi H, Zhang Z, Fukuda M, Hirata M. Phospholipase C-related but catalytically inactive protein (PRIP) modulates synaptosomal-associated protein 25 (SNAP-25) phosphorylation and exocytosis. J Biol Chem 2012; 287:10565-10578. [PMID: 22311984 DOI: 10.1074/jbc.m111.294645] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Exocytosis is one of the most fundamental cellular events. The basic mechanism of the final step, membrane fusion, is mediated by the formation of the SNARE complex, which is modulated by the phosphorylation of proteins controlled by the concerted actions of protein kinases and phosphatases. We have previously shown that a protein phosphatase-1 (PP1) anchoring protein, phospholipase C-related but catalytically inactive protein (PRIP), has an inhibitory role in regulated exocytosis. The current study investigated the involvement of PRIP in the phospho-dependent modulation of exocytosis. Dephosphorylation of synaptosome-associated protein of 25 kDa (SNAP-25) was mainly catalyzed by PP1, and the process was modulated by wild-type PRIP but not by the mutant (F97A) lacking PP1 binding ability in in vitro studies. We then examined the role of PRIP in phospho-dependent regulation of exocytosis in cell-based studies using pheochromocytoma cell line PC12 cells, which secrete noradrenalin. Exogenous expression of PRIP accelerated the dephosphorylation process of phosphorylated SNAP-25 after forskolin or phorbol ester treatment of the cells. The phospho-states of SNAP-25 were correlated with noradrenalin secretion, which was enhanced by forskolin or phorbol ester treatment and modulated by PRIP expression in PC12 cells. Both SNAP-25 and PP1 were co-precipitated in anti-PRIP immunocomplex isolated from PC12 cells expressing PRIP. Collectively, together with our previous observation regarding the roles of PRIP in PP1 regulation, these results suggest that PRIP is involved in the regulation of the phospho-states of SNAP-25 by modulating the activity of PP1, thus regulating exocytosis.
Collapse
Affiliation(s)
- Jing Gao
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan and
| | - Hiroshi Takeuchi
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan and
| | - Zhao Zhang
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan and
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Masato Hirata
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan and.
| |
Collapse
|
10
|
Gustavsson N, Wu B, Han W. Calcium sensing in exocytosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:731-57. [PMID: 22453967 DOI: 10.1007/978-94-007-2888-2_32] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neurotransmitters, neuropeptides and hormones are released through regulated exocytosis of synaptic vesicles and large dense core vesicles. This complex and highly regulated process is orchestrated by SNAREs and their associated proteins. The triggering signal for regulated exocytosis is usually an increase in intracellular calcium levels. Besides the triggering role, calcium signaling modulates the precise amount and kinetics of vesicle release. Thus, it is a central question to understand the molecular machineries responsible for calcium sensing in exocytosis. Here we provide an overview of our current understanding of calcium sensing in neurotransmitter release and hormone secretion.
Collapse
Affiliation(s)
- Natalia Gustavsson
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore.
| | | | | |
Collapse
|
11
|
Vrljic M, Strop P, Hill RC, Hansen KC, Chu S, Brunger AT. Post-translational modifications and lipid binding profile of insect cell-expressed full-length mammalian synaptotagmin 1. Biochemistry 2011; 50:9998-10012. [PMID: 21928778 PMCID: PMC3217305 DOI: 10.1021/bi200998y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Synaptotagmin 1 (Syt1) is a Ca(2+) sensor for SNARE-mediated, Ca(2+)-triggered synaptic vesicle fusion in neurons. It is composed of luminal, transmembrane, linker, and two Ca(2+)-binding (C2) domains. Here we describe expression and purification of full-length mammalian Syt1 in insect cells along with an extensive biochemical characterization of the purified protein. The expressed and purified protein is properly folded and has increased α-helical content compared to the C2AB fragment alone. Post-translational modifications of Syt1 were analyzed by mass spectrometry, revealing the same modifications of Syt1 that were previously described for Syt1 purified from brain extract or mammalian cell lines, along with a novel modification of Syt1, tyrosine nitration. A lipid binding screen with both full-length Syt1 and the C2AB fragments of Syt1 and Syt3 isoforms revealed new Syt1-lipid interactions. These results suggest a conserved lipid binding mechanism in which Ca(2+)-independent interactions are mediated via a lysine rich region of the C2B domain while Ca(2+)-dependent interactions are mediated via the Ca(2+)-binding loops.
Collapse
Affiliation(s)
- Marija Vrljic
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305-5432, USA
| | | | | | | | | | | |
Collapse
|
12
|
Hussain S, Davanger S. The discovery of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex and the molecular regulation of synaptic vesicle transmitter release: the 2010 Kavli Prize in neuroscience. Neuroscience 2011; 190:12-20. [PMID: 21641968 DOI: 10.1016/j.neuroscience.2011.05.057] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 05/16/2011] [Indexed: 11/25/2022]
Abstract
Brain function depends on a crucial feature: The ability of individual neurons to share packets of information, known as quantal transmission. Given the sheer number of tasks the brain has to deal with, this information sharing must be extremely rapid. Synapses are specialized points of contact between neurons, where fast transmission takes place. Though the basic elements and functions of the synapse had been established since the 1950s, the molecular basis for regulation of fast synaptic transmitter release was not known 20 years ago. However, around 1990, crucial discoveries were made by Richard Scheller, James Rothman, and Thomas Südhof, leading a few years later to the formulation of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) hypothesis and a new understanding of the molecular events controlling vesicular release of transmitter in synapses. The 2010 Kavli Prize in neuroscience was awarded to these three researchers, "for their work to reveal the precise molecular basis of the transfer of signals between nerve cells in the brain."
Collapse
Affiliation(s)
- S Hussain
- Institute of Basic Medical Science, and Centre for Molecular Biology and Neuroscience, University of Oslo, PO Box 1105 Blindern, 0317 Oslo, Norway
| | | |
Collapse
|
13
|
Nalaila S, Stothard P, Moore S, Wang Z, Li C. Whole genome fine mapping of quantitative trait loci for ultrasound and carcass merit traits in beef cattle. CANADIAN JOURNAL OF ANIMAL SCIENCE 2011. [DOI: 10.4141/cjas10007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nalaila, S. M., Stothard, P., Moore, S. S., Wang, Z. and Li, C. 2011. Whole genome fine mapping of quantitative trait loci for ultrasound and carcass merit traits in beef cattle. Can. J. Anim. Sci. 91: 61–73. Quantitative trait loci (QTL) mapped to large chromosomal regions have limited utility as DNA markers for marker-assisted selection (MAS) and are less informative as a reference for the identification of the underlying causative quantitative trait nucleotides (QTN). The objective of this study was to conduct a whole genome fine mapping of QTL for ultrasound and carcass merit traits in beef cattle using a greater density of single nucleotide polymorphism (SNP) markers, and to identify SNP markers within the QTL regions that are associated with the traits. A total of 418 steers from 28 sires were used in this study with nine ultrasound and seven carcass merit traits that were collected as part of a feedlot trial conducted from 2003 to 2005 at the University of Alberta Kinsella ranch. Sires and their progeny were genotyped for a total of 4592 SNP markers distributed across all 29 bovine autosomes (BTA). Across-family analyses detected 12 QTL for five ultrasound traits on nine chromosomes and 18 QTL for six carcass merit traits on 10 chromosomes (P<0.05). Within-family analyses identified 78 significant QTL for nine ultrasound and seven carcass merit traits (P<0.01). The use of a denser panel of SNP markers allowed fine mapping of QTL to smaller chromosomal regions ranging from 0.6 to 11 cM compared with relatively larger QTL regions of 4 to 24 cM reported in previous studies. Furthermore, single SNP marker association analyses identified 22 SNPs that were significantly associated with three ultrasound and four carcass merit traits under 12 QTL regions (P<0.05). These identified SNP markers significantly associated with the traits under the fine mapped QTL regions provide genomic tools for potential application of MAS and a reference to assist with the identification of QTN causing variations in ultrasound and carcass merit traits in beef cattle.
Collapse
Affiliation(s)
- Sungael Nalaila
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada, T6G 2P5
| | - Paul Stothard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada, T6G 2P5
| | - Stephen Moore
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada, T6G 2P5
| | - Zhiquan Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada, T6G 2P5
| | - Changxi Li
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada, T6G 2P5
- Agriculture and Agri-Food Canada, Lacombe Research Centre, 6000 C&E Trail, Lacombe, Alberta, Canada T4L 1W1
| |
Collapse
|
14
|
Gil C, Falqués A, Sarró E, Cubi R, Blasi J, Aguilera J, Itarte E. Protein kinase CK2 associates to lipid rafts and its pharmacological inhibition enhances neurotransmitter release. FEBS Lett 2010; 585:414-20. [PMID: 21187092 DOI: 10.1016/j.febslet.2010.12.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 12/17/2010] [Accepted: 12/17/2010] [Indexed: 01/14/2023]
Abstract
In the present work we report the presence of protein kinase CK2 in lipid raft preparations from rat brain synaptosomes, obtained after detergent extraction and subsequent isolation of detergent-resistant membranes using sucrose gradient ultracentrifugation. Moreover, the phosphorylation of syntaxin-1 at Ser14, a specific CK2 target, has been detected in lipid rafts, as assessed by a phospho-specific antibody. Treatment with DMAT, a specific CK2 inhibitor, results in a decrease of syntaxin-1 Ser14 phosphorylation in lipid rafts, while the glutamate release from synaptosomes is enhanced. In conclusion, CK2 might control neurotransmitter release by acting on SNARE proteins attached to cholesterol-enriched microdomains.
Collapse
Affiliation(s)
- Carles Gil
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | | | | | | | | | | | | |
Collapse
|
15
|
Nojiri M, Loyet KM, Klenchin VA, Kabachinski G, Martin TFJ. CAPS activity in priming vesicle exocytosis requires CK2 phosphorylation. J Biol Chem 2009; 284:18707-14. [PMID: 19460754 DOI: 10.1074/jbc.m109.017483] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
CAPS (Ca(2+)-dependent activator protein for secretion) functions in priming Ca(2+)-dependent vesicle exocytosis, but the regulation of CAPS activity has not been characterized. Here we show that phosphorylation by protein kinase CK2 is required for CAPS activity. Dephosphorylation eliminated CAPS activity in reconstituting Ca(2+)-dependent vesicle exocytosis in permeable and intact PC12 cells. Ser-5, -6, and -7 and Ser-1281 were identified by mass spectrometry as the major phosphorylation sites in the 1289 residue protein. Ser-5, -6, and -7 but not Ser-1281 to Ala substitutions abolished CAPS activity. Protein kinase CK2 phosphorylated CAPS in vitro at these sites and restored the activity of dephosphorylated CAPS. CK2 is the likely in vivo CAPS protein kinase based on inhibition of phosphorylation by tetrabromo-2-benzotriazole in PC12 cells and by the identity of in vivo and in vitro phosphorylation sites. CAPS phosphorylation by CK2 was constitutive, but the elevation of Ca(2+) in synaptosomes increased CAPS Ser-5 and -6 dephosphorylation, which terminates CAPS activity. These results identify a functionally important N-terminal phosphorylation site that regulates CAPS activity in priming vesicle exocytosis.
Collapse
Affiliation(s)
- Mari Nojiri
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
16
|
Serova OV, Popova NV, Deev IE, Petrenko AG. [Identification of proteins in complexes with alpha-latrotoxin receptors]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2009; 34:747-53. [PMID: 19088747 DOI: 10.1134/s1068162008060046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A thorough analysis of proteins capable of interacting with presynaptic receptors of alpha-latrotoxin was carried out. The protein components of receptor complexes were isolated from rat brain membranes by affinity chromatography on immobilized alpha-latrotoxin and antibodies to the cytoplasmic moiety of the calcium-independent receptor of alpha-latrotoxin (CIRL) followed by analysis by mass spectrometry. Several proteins were identified, with structural proteins, intracellular signal proteins, and proteins involved in the endocytosis and transport of synaptic vesicles being among them.
Collapse
Affiliation(s)
- O V Serova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997 Russia
| | | | | | | |
Collapse
|
17
|
Leguia M, Conner S, Berg L, Wessel GM. Synaptotagmin I is involved in the regulation of cortical granule exocytosis in the sea urchin. Mol Reprod Dev 2006; 73:895-905. [PMID: 16572466 DOI: 10.1002/mrd.20454] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cortical granules are stimulus-dependent secretory vesicles found in the egg cortex of most vertebrates and many invertebrates. Upon fertilization, an increase in intracellular calcium levels triggers cortical granules to exocytose enzymes and structural proteins that permanently modify the extracellular surface of the egg to prevent polyspermy. Synaptotagmin is postulated to be a calcium sensor important for stimulus-dependent secretion and to test this hypothesis for cortical granule exocytosis, we identified the ortholog in two sea urchin species that is present selectively on cortical granules. Characterization by RT-PCR, in-situ RNA hybridization, Western blot and immunolocalization shows that synaptotagmin I is expressed in a manner consistent with it having a role during cortical granule secretion. We specifically tested synaptotagmin function during cortical granule exocytosis using a microinjected antibody raised against the entire cytoplasmic domain of sea urchin synaptotagmin I. The results show that synaptotagmin I is essential for normal cortical granule dynamics at fertilization in the sea urchin egg. Identification of this same protein in other developmental stages also shown here will be important for interpreting stimulus-dependent secretory events for signaling throughout embryogenesis.
Collapse
Affiliation(s)
- Mariana Leguia
- Department of Molecular and Cellular Biology & Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | | | | | | |
Collapse
|
18
|
Roggero CM, Tomes CN, De Blas GA, Castillo J, Michaut MA, Fukuda M, Mayorga LS. Protein kinase C-mediated phosphorylation of the two polybasic regions of synaptotagmin VI regulates their function in acrosomal exocytosis. Dev Biol 2006; 285:422-35. [PMID: 16111671 DOI: 10.1016/j.ydbio.2005.07.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Revised: 07/09/2005] [Accepted: 07/11/2005] [Indexed: 11/22/2022]
Abstract
We have previously reported that synaptotagmin VI is present in human sperm cells and that a recombinant protein containing the C2A and C2B domains abrogates acrosomal exocytosis in permeabilized spermatozoa, an effect that was regulated by phosphorylation. In this report, we show that each individual C2 domain blocks acrosomal exocytosis. The inhibitory effect was completely abrogated by phosphorylation of the domains with purified PKCbetaII. We found by site-directed mutagenesis that Thr418 and/or Thr419 in the polybasic region (KKKTTIK) of the C2B domain--a key region for the function of synaptotagmins--are the PKC target that regulates its inhibitory effect on acrosomal exocytosis. Similarly, we showed that Thr284 in the polybasic region of C2A (KCKLQTR) is the target for PKC-mediated phosphorylation in this domain. An antibody that specifically binds to the phosphorylated polybasic region of the C2B domain recognized endogenous phosphorylated synaptotagmin in the sperm acrosomal region. The antibody was inhibitory only at early stages of exocytosis in sperm acrosome reaction assays, and the immunolabeling decreased upon sperm stimulation, indicating that the protein is dephosphorylated during acrosomal exocytosis. Our results indicate that acrosomal exocytosis is regulated through the PKC-mediated phosphorylation of conserved threonines in the polybasic regions of synaptotagmin VI.
Collapse
Affiliation(s)
- Carlos M Roggero
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Casilla de Correo 56, 5500 Mendoza, Argentina
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Several members of the synaptotagmin (syt) family of vesicle proteins have been proposed to act as Ca2+ sensors on synaptic vesicles. The mechanism by which calcium activates this class of proteins has been the subject of controversy, yet relatively few detailed biophysical studies have been reported on how isoforms other than syt I respond to divalent metal ions. Here, we report a series of studies on the response of syt II to a wide range of metal ions. Analytical ultracentrifugation studies demonstrate that Ca2+ induces protein dimerization upon exposure to 5 mM Ca2+. Whereas Ba2+, Mg2+, or Sr2+ do not potentiate self-association as strongly as Ca2+, Pb2+ triggers self-association of syt II at concentrations as low as 10 microM. Partial proteolysis studies suggest that the various divalent metals cause different changes in the conformation of the protein. The high calcium concentrations required for self-association of syt II suggest that the oligomerized state of this protein is not a critical intermediate in vesicle fusion; however, low-affinity calcium sites on syt II may play a critical role in buffering calcium at the presynaptic active zone. In addition, the high propensity of lead to oligomerize syt II offers a possible molecular explanation for how lead interferes with calcium-evoked neurotransmitter release.
Collapse
Affiliation(s)
- Ricardo A García
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois 60208, USA
| | | |
Collapse
|
20
|
Lee BH, Min X, Heise CJ, Xu BE, Chen S, Shu H, Luby-Phelps K, Goldsmith EJ, Cobb MH. WNK1 Phosphorylates Synaptotagmin 2 and Modulates Its Membrane Binding. Mol Cell 2004; 15:741-51. [PMID: 15350218 DOI: 10.1016/j.molcel.2004.07.018] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2003] [Revised: 06/14/2004] [Accepted: 06/17/2004] [Indexed: 11/16/2022]
Abstract
WNK (with no lysine [K]) protein kinases were named for their unique active site organization. Mutations in WNK1 and WNK4 cause a familial form of hypertension by undefined mechanisms. Here, we report that WNK1 selectively binds to and phosphorylates synaptotagmin 2 (Syt2) within its calcium binding C2 domains. Endogenous WNK1 and Syt2 coimmunoprecipitate and colocalize on a subset of secretory granules in INS-1 cells. Phosphorylation by WNK1 increases the amount of Ca2+ required for Syt2 binding to phospholipid vesicles; mutation of threonine 202, a WNK1 phosphorylation site, partially prevents this change. These findings suggest that phosphorylation of Syts by WNK1 can regulate Ca2+ sensing and the subsequent Ca2+-dependent interactions mediated by Syt C2 domains. These findings provide a biochemical mechanism that could lead to the retention or insertion of proteins in the plasma membrane. Interruption of this regulatory pathway may disturb membrane events that regulate ion balance.
Collapse
Affiliation(s)
- Byung-Hoon Lee
- Department of Pharmacology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Hewitt EW, Tao JX, Strasser JE, Cutler DF, Dean GE. Synaptotagmin I-DeltaC2B. A novel synaptotagmin isoform with a single C2 domain in the bovine adrenal medulla. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1561:76-90. [PMID: 11988182 DOI: 10.1016/s0005-2736(01)00459-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Synaptotagmin I is a 65 kDa type 1 membrane glycoprotein found in secretory organelles that plays a key role in regulated exocytosis. We have characterised two forms (long and short) of synaptotagmin I that are present in the bovine adrenal medulla. The long form is a type I integral membrane protein which has two cytoplasmic C2 domains and corresponds to the previously characterised full-length synaptotagmin I isoform. The short-form synaptotagmin I-DeltaC2B has the same structure in the lumenal and transmembrane sequences, but synaptotagmin I-DeltaC2B is truncated such that it only has a single cytoplasmic C2 domain. Analysis of synaptotagmin I-DeltaC2B expression indicates that synaptotagmin I-DeltaC2B is preferentially expressed in the bovine adrenal medulla. However, it is absent from the dense core chromaffin granules. Furthermore, when expressed in the rat pheochromocytoma cell line PC12 bovine synaptotagmin I-DeltaC2B is largely absent from dense core granules and synaptic-like microvesicles. Instead, indirect immunofluorescence microscopy reveals the intracellular location of synaptotagmin I-DeltaC2B to be the plasma membrane.
Collapse
Affiliation(s)
- Eric W Hewitt
- MRC Laboratory for Molecular Cell Biology, Cell Biology Unit, WC1E 6BT, London, UK
| | | | | | | | | |
Collapse
|
22
|
Affiliation(s)
- Thomas C Südhof
- Center for Basic Neuroscience, Department of Molecular Genetics, and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111, USA.
| |
Collapse
|
23
|
Nuthall HN, Husain J, McLarren KW, Stifani S. Role for Hes1-induced phosphorylation in Groucho-mediated transcriptional repression. Mol Cell Biol 2002; 22:389-99. [PMID: 11756536 PMCID: PMC139746 DOI: 10.1128/mcb.22.2.389-399.2002] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Transcriptional corepressors of the Groucho/transducin-like Enhancer of split (Gro/TLE) family regulate a number of developmental pathways in both invertebrates and vertebrates. They form transcription repression complexes with members of several DNA-binding protein families and participate in the regulation of the expression of numerous genes. Despite their pleiotropic roles, little is known about the mechanisms that regulate the functions of Gro/TLE proteins. It is shown here that Gro/TLEs become hyperphosphorylated in response to neural cell differentiation and interaction with the DNA-binding cofactor Hairy/Enhancer of split 1 (Hes1). Hyperphosphorylation of Gro/TLEs is correlated with a tight association with the nuclear compartment through interaction with chromatin, suggesting that hyperphosphorylated Gro/TLEs may mediate transcriptional repression via chromatin remodeling mechanisms. Pharmacological inhibition of protein kinase CK2 reduces the Hes1-induced hyperphosphorylation of Gro/TLEs and causes a decrease in the chromatin association of the latter. Moreover, the transcription repression activity of Gro/TLEs is reduced by protein kinase CK2 inhibition. Consistent with these observations, Gro/TLEs are phosphorylated in vitro by purified protein kinase CK2. Taken together, these results implicate protein kinase CK2 in Gro/TLE functions. They suggest further that this kinase is involved in a hyperphosphorylation mechanism activated by Hes1 that promotes the transcription repression functions of Hes1-Gro/TLE protein complexes.
Collapse
Affiliation(s)
- Hugh N Nuthall
- Center for Neuronal Survival, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | | | | | |
Collapse
|
24
|
Michaut M, De Blas G, Tomes CN, Yunes R, Fukuda M, Mayorga LS. Synaptotagmin VI participates in the acrosome reaction of human spermatozoa. Dev Biol 2001; 235:521-9. [PMID: 11437455 DOI: 10.1006/dbio.2001.0316] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acrosomal exocytosis is a calcium-dependent secretion event causing the release of the acrosomal contents and the loss of the membranes surrounding the acrosome. The synaptotagmins are a family of calcium-binding proteins that participate in the exocytosis of synaptic vesicles. The ubiquitous synaptotagmin VI isoform was found in human sperm cells by Western blot analysis. Immunocytochemistry at the optical and electron microscopy levels localized the protein to the outer acrosomal membrane. Calcium-triggered acrosomal exocytosis in permeabilized sperm cells was abrogated by a specific anti-synaptotagmin VI antibody, indicating that the protein is required for the process. Moreover, a recombinant fusion protein between glutathione S-transferase and the two calcium and phospholipid binding domains of synaptotagmin VI completely inhibited calcium-triggered exocytosis. Interestingly, phorbol ester-dependent in vitro phosphorylation of this recombinant protein abolished its inhibitory effect. We previously showed that, in permeabilized spermatozoa, addition of active Rab3A triggers acrosomal exocytosis at very low calcium concentration. Rab3A-promoted exocytosis was inhibited by the cytosolic domain of synaptotagmin VI and by the anti-synaptotagmin VI antibody, indicating that synaptotagmin is also necessary for Rab-mediated acrosomal content release. In conclusion, the results strongly indicate that synaptotagmin VI is a key component of the secretory machinery involved in acrosomal exocytosis.
Collapse
Affiliation(s)
- M Michaut
- Laboratorio de Biología Celular y Molecular, Istituto de Histologia y Embriologia (IHEM-CONICET), Universidad Nacional de Cuyo, Casilla de Correo 56, 5500 Mendoza, Argentina
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Chemical synaptic transmission serves as the main form of cell to cell communication in the nervous system. Neurotransmitter release occurs through the process of regulated exocytosis, in which a synaptic vesicle releases its contents in response to an increase in calcium. The use of genetic, biochemical, structural, and functional studies has led to the identification of factors important in the synaptic vesicle life cycle. Here we focus on the prominent role of SNARE (soluble NSF attachment protein receptor) proteins during membrane fusion and the regulation of SNARE function by Rab3a, nSec1, and NSF. Many of the proteins important for transmitter release have homologs involved in intracellular vesicle transport, and all forms of vesicle trafficking share common basic principles. Finally, modifications to the synaptic exocytosis pathway are very likely to underlie certain forms of synaptic plasticity and therefore contribute to learning and memory.
Collapse
Affiliation(s)
- R C Lin
- Howard Hughes Medical Institute, Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305-5428, USA
| | | |
Collapse
|
26
|
Southard RC, Haggard J, Crider ME, Whiteheart SW, Cooper RL. Influence of serotonin on the kinetics of vesicular release. Brain Res 2000; 871:16-28. [PMID: 10882778 DOI: 10.1016/s0006-8993(00)02347-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The mechanisms by which synaptic vesicles are transported and primed to fuse with the presynaptic membrane are important to all chemical synapses. Processes of signal transduction that affect vesicular dynamics, such as the second-messenger cascades induced by neuromodulators, are more readily addressed in assessable synaptic preparations of neuromuscular junctions in the crayfish. We assessed the effects of serotonin (5-HT) through the analysis of the latency jitter and the quantal parameters: n and p in the opener muscle of the walking leg in crayfish. There is an increase in the size of the postsynaptic currents due to more vesicles being released. Quantal analysis reveals a presynaptic mechanism by an increase in the number of vesicles being released. Latency measures show more events occur with a short latency in the presence of 5-HT. No effect on the frequency or size of spontaneous release was detected. Thus, the influence of 5-HT is presynaptic, leading to a release of more vesicles at a faster rate.
Collapse
Affiliation(s)
- R C Southard
- Department of Biology, 101 Morgan Building, University of Kentucky, 40506-0225, Lexington, KY, USA
| | | | | | | | | |
Collapse
|
27
|
Bosc DG, Graham KC, Saulnier RB, Zhang C, Prober D, Gietz RD, Litchfield DW. Identification and characterization of CKIP-1, a novel pleckstrin homology domain-containing protein that interacts with protein kinase CK2. J Biol Chem 2000; 275:14295-306. [PMID: 10799509 DOI: 10.1074/jbc.275.19.14295] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The catalytic subunits of protein kinase CK2, CK2alpha and CK2alpha', are closely related to each other but exhibit functional specialization. To test the hypothesis that specific functions of CK2alpha and CK2alpha' are mediated by specific interaction partners, we used the yeast two-hybrid system to identify CK2alpha- or CK2alpha'-binding proteins. We report the identification and characterization of a novel CK2-interacting protein, designated CKIP-1, that interacts with CK2alpha, but not CK2alpha', in the yeast two-hybrid system. CKIP-1 also interacts with CK2alpha in vitro and is co-immunoprecipitated from cell extracts with epitope-tagged CK2alpha and an enhanced green fluorescent protein fusion protein encoding CKIP-1 (i.e. EGFP-CKIP-1) when they are co-expressed. CK2 activity is detected in anti-CKIP-1 immunoprecipitates performed with extracts from non-transfected cells indicating that CKIP-1 and CK2 interact under physiological conditions. The CKIP-1 cDNA is broadly expressed and encodes a protein with a predicted molecular weight of 46,000. EGFP-CKIP-1 is localized within the nucleus and at the plasma membrane. The plasma membrane localization is dependent on the presence of an amino-terminal pleckstrin homology domain. We postulate that CKIP-1 is a non-enzymatic regulator of one isoform of CK2 (i.e. CK2alpha) with a potential role in targeting CK2alpha to a particular cellular location.
Collapse
Affiliation(s)
- D G Bosc
- Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
The aim of this review is to give a broad picture of what is actually known about the synaptotagmin family. Synaptotagmin I is an abundant synaptic vesicle and secretory granule protein in neurons and endocrine cells which plays a key role in Ca(2+)-induced exocytosis. It belongs to the large family of C2 domain-proteins as it contains two internal repeats that have homology to the C2 domain of protein kinase C. Eleven synaptotagmin genes have been described in rat and mouse. Except for synaptotagmin I, and by analogy synaptotagmin II, the functions of these proteins are unknown. In this review we focus on data obtained on the various isoforms without exhaustively discussing the role of synaptotagmin I in neurotransmission. Numerous in vitro interactions of synaptotagmin I with key components of the exocytosis-endocytosis machinery have been reported. Additional data concerning the other synaptotagmins are now becoming available and are reviewed here. Only interactions which have been described for several synaptotagmins, are mentioned. It is unlikely that a single isoform displays all of these potential interactions in vivo and probably the subcellular distribution of the protein will favor some of them and preclude others. Therefore, to discuss the putative role of the various synaptotagmins we have examined in detail published data concerning their localization.
Collapse
Affiliation(s)
- B Marquèze
- INSERM U464, Institut Fédératif Jean-Roche, Université de la Méditerranée, Faculté de Médecine, Boulevard Pierre-Dramard, 13916 cedex 20, Marseille, France.
| | | | | |
Collapse
|
29
|
Verona M, Zanotti S, Schäfer T, Racagni G, Popoli M. Changes of synaptotagmin interaction with t-SNARE proteins in vitro after calcium/calmodulin-dependent phosphorylation. J Neurochem 2000; 74:209-21. [PMID: 10617122 DOI: 10.1046/j.1471-4159.2000.0740209.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The regulation of multiple phases of the life cycle of synaptic vesicles is carried out by a complex series of protein-protein interactions. According to the SNARE hypothesis the core of these interactions is a heterotrimeric complex formed by syntaxin, SNAP-25, and VAMP-synaptobrevin. Other proteins interacting with the core of the SNARE complex, such as voltage-activated calcium channels and synaptotagmin (a putative calcium sensor), are considered crucial for the calcium dependence of release and also molecular mediators of synaptic plasticity. Here the interaction of synaptotagmin with SNARE proteins was studied in immunoprecipitated native complexes, and the effects of previous phosphorylation-dephosphorylation on this interaction were analyzed. It is surprising that the interaction of synaptotagmin with syntaxin and SNAP-25 in native complexes was not found to be calcium-dependent. However, previous incubation under dephosphorylating conditions decreased the synaptotagmin-syntaxin interaction. Stimulation of Ca2+/calmodulin-dependent protein kinase II, which endogenously phosphorylates synaptotagmin in synaptic vesicles, increased the interaction of syntaxin and SNAP-25 with synaptotagmin (particularly when measured in the presence of calcium), as well as increasing the binding of the kinase itself. These results suggest that calcium decreases synaptotagmin-t-SNARE interactions after dephosphorylation and increases them after phosphorylation. Overall, these results imply a phosphorylation-dephosphorylation balance in regulation of the synaptotagmin-t-SNARE interaction and suggest a role for protein phosphorylation in the modulation of calcium sensitivity in transmitter release.
Collapse
Affiliation(s)
- M Verona
- Center of Neuropharmacology, Institute of Pharmacological Sciences, University of Milan, Italy
| | | | | | | | | |
Collapse
|
30
|
He P, Southard RC, Chen D, Whiteheart SW, Cooper RL. Role of alpha-SNAP in promoting efficient neurotransmission at the crayfish neuromuscular junction. J Neurophysiol 1999; 82:3406-16. [PMID: 10601471 DOI: 10.1152/jn.1999.82.6.3406] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this manuscript, we address the role of the soluble N-ethylmaleimide sensitive factor attachment protein (alpha-SNAP) in synaptic transmission at the neuromuscular junction of the crayfish opener muscle. Immunochemical methods confirm the presence of alpha-SNAP in these preparations and show that it is concentrated in the synaptic areas. Microinjection and electrophysiological studies show that alpha-SNAP causes an increase in neurotransmitter release yet does not significantly affect the kinetics. More specific quantal analysis, using focal, macropatch, synaptic current recordings, shows that alpha-SNAP increases transmitter release by increasing the probability of exocytosis but not the number of potential release sites. These data demonstrate that the role of alpha-SNAP is to increase the efficiency of neurotransmission by increasing the probability that a stimulus will result in neurotransmitter release. What this suggests is that alpha-SNAP is critical for the formation and maintenance of a "ready release" pool of synaptic vesicles.
Collapse
Affiliation(s)
- P He
- T. H. Morgan School of Biological Science, University of Kentucky, Lexington 40506-0225, USA
| | | | | | | | | |
Collapse
|
31
|
Blagoveshchenskaya AD, Hewitt EW, Cutler DF. Di-leucine signals mediate targeting of tyrosinase and synaptotagmin to synaptic-like microvesicles within PC12 cells. Mol Biol Cell 1999; 10:3979-90. [PMID: 10564285 PMCID: PMC25693 DOI: 10.1091/mbc.10.11.3979] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
One pathway in forming synaptic-like microvesicles (SLMV) involves direct budding from the plasma membrane, requires adaptor protein 2 (AP2) and is brefeldin A (BFA) resistant. A second route leads from the plasma membrane to an endosomal intermediate from which SLMV bud in a BFA-sensitive, AP3-dependent manner. Because AP3 has been shown to bind to a di-leucine targeting signal in vitro, we have investigated whether this major class of targeting signals is capable of directing protein traffic to SLMV in vivo. We have found that a di-leucine signal within the cytoplasmic tail of human tyrosinase is responsible for the majority of the targeting of HRP-tyrosinase chimeras to SLMV in PC12 cells. Furthermore, we have discovered that a Met-Leu di-hydrophobic motif within the extreme C terminus of synaptotagmin I supports 20% of the SLMV targeting of a CD4-synaptotagmin chimera. All of the traffic to the SLMV mediated by either di-Leu or Met-Leu is BFA sensitive, strongly suggesting a role for AP3 and possibly for an endosomal intermediate in this process. The differential reduction in SLMV targeting for HRP-tyrosinase and CD4-synaptotagmin chimeras by di-alanine substitutions or BFA treatment implies that different proteins use the two routes to the SLMV to differing extents.
Collapse
Affiliation(s)
- A D Blagoveshchenskaya
- Medical Research Council Laboratory for Molecular Cell Biology and Department of Biochemistry and Molecular Biology, University College London, London WC1E 6BT, United Kingdom
| | | | | |
Collapse
|
32
|
Hilfiker S, Pieribone VA, Nordstedt C, Greengard P, Czernik AJ. Regulation of synaptotagmin I phosphorylation by multiple protein kinases. J Neurochem 1999; 73:921-32. [PMID: 10461881 DOI: 10.1046/j.1471-4159.1999.0730921.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Synaptotagmin I has been suggested to function as a low-affinity calcium sensor for calcium-triggered exocytosis from neurons and neuroendocrine cells. We have studied the phosphorylation of synaptotagmin I by a variety of protein kinases in vitro and in intact preparations. SyntagI, the purified, recombinant, cytoplasmic domain of rat synaptotagmin I, was an effective substrate in vitro for Ca2+/calmodulin-dependent protein kinase II (CaMKII), protein kinase C (PKC), and casein kinase II (caskII). Sequencing of tryptic phosphopeptides from syntagI revealed that CaMKII and PKC phosphorylated the same residue, corresponding to Thr112, whereas caskII phosphorylated two residues, corresponding to Thr125 and Thr128. Endogenous synaptotagmin I was phosphorylated on purified synaptic vesicles by all three kinases. In contrast, no phosphorylation was observed on clathrin-coated vesicles, suggesting that phosphorylation of synaptotagmin I in vivo occurs only at specific stage(s) of the synaptic vesicle life cycle. In rat brain synaptosomes and PC12 cells, K+-evoked depolarization or treatment with phorbol ester caused an increase in the phosphorylation state of synaptotagmin I at Thr112. The results suggest the possibility that the phosphorylation of synaptotagmin I by CaMKII and PKC contributes to the mechanism(s) by which these two kinases regulate neurotransmitter release.
Collapse
Affiliation(s)
- S Hilfiker
- Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
33
|
Pance A, Morgan K, Guest PC, Bowers K, Dean GE, Cutler DF, Jackson AP. A PC12 variant lacking regulated secretory organelles: aberrant protein targeting and evidence for a factor inhibiting neuroendocrine gene expression. J Neurochem 1999; 73:21-30. [PMID: 10386951 DOI: 10.1046/j.1471-4159.1999.0730021.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A variant of the PC12 pheochromocytoma cell line (termed A35C) has been isolated that lacks regulated secretory organelles and several constituent proteins. Northern and Southern blot analyses suggested a block at the transcriptional level. The proprotein-converting enzyme carboxypeptidase H was synthesised in the A35C cell line but was secreted by the constitutive pathway. Transient transfection of A35C cells with cDNAs encoding the regulated secretory proteins dopamine beta-hydroxylase and synaptotagmin I resulted in distinct patterns of mistargeting of these proteins. It is surprising that hybrid cells created by fusing normal PC12 cells with A35C cells exhibited the variant phenotype, suggesting that A35C cells express an inhibitory factor that represses neuroendocrine-specific gene expression.
Collapse
Affiliation(s)
- A Pance
- Department of Biochemistry, University of Cambridge, England, UK
| | | | | | | | | | | | | |
Collapse
|
34
|
Iwashita S, Nobukuni T, Tanaka S, Kobayashi M, Iwanaga T, Tamate HB, Masui T, Takahashi I, Hashimoto K. Partial nuclear localization of a bovine phosphoprotein, BCNT, that includes a region derived from a LINE repetitive sequence in Ruminantia. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1427:408-16. [PMID: 10350657 DOI: 10.1016/s0304-4165(99)00049-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
BCNT, named after Bucentaur, is a protein that contains a 324-amino-acid region derived from part of a long interspersed DNA sequence element (LINE) in Ruminantia. However, the unique portion is completely missing in human and mouse BCNTs. Since no significant information on their function has been obtained by homology search, we at first examined cellular localization and biochemical characteristics of bovine BCNT to get a hint on its function. Subcellular fractionation and immunohistochemical analyses using a normal bovine epithelial cell line and bovine brain revealed that a significant amount of bovine BCNT is localized in the nuclei, while the major portion is present in the cytosol. Furthermore, it was shown that bovine BCNT is a phosphoprotein and that both bovine and human BCNTs are phosphorylated by casein kinase II in vitro. These results show that BCNTs consist of a unique family, probably a substrate of casein kinase II, which may contribute further to the understanding of gene evolution.
Collapse
Affiliation(s)
- S Iwashita
- Mitsubishi Kasei Institute of Life Sciences, 11 Minamiooya, Machida-shi, Tokyo 194, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Hattori N, Matsumine H, Asakawa S, Kitada T, Yoshino H, Elibol B, Brookes AJ, Yamamura Y, Kobayashi T, Wang M, Yoritaka A, Minoshima S, Shimizu N, Mizuno Y. Point mutations (Thr240Arg and Gln311Stop) [correction of Thr240Arg and Ala311Stop] in the Parkin gene. Biochem Biophys Res Commun 1998; 249:754-8. [PMID: 9731209 DOI: 10.1006/bbrc.1998.9134] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Autosomal recessive juvenile parkinsonism (AR-JP) is a distinct clinical and genetic entity characterized by selective degeneration of nigral neurons. Recently, the parkin gene responsible for AR-JP has been identified. To date, we found two different deletional mutations including single and multiple exonic deletions. In the present study, we identified two types of point mutations (Thr240Arg and Gln311Stop) involving exons 6 and 8 in the parkin gene of the AR-JP patients from two Turkish families. This is the first report on point mutations for the parkin gene. Furthermore, the Thr240Arg mutation was located on a consensus sequence for the site of phosphorylation by casein kinase II. Identification of its mutation provides an important clue as to the role of the Parkin protein in degeneration of the substantia nigra in the brain of AR-JP patients.
Collapse
Affiliation(s)
- N Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
LaVallee TM, Tarantini F, Gamble S, Mouta Carreira C, Jackson A, Maciag T. Synaptotagmin-1 is required for fibroblast growth factor-1 release. J Biol Chem 1998; 273:22217-23. [PMID: 9712835 DOI: 10.1074/jbc.273.35.22217] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
By using p65 synaptotagmin-1 and fibroblast growth factor (FGF)-1:beta-galactosidase (beta-gal) NIH 3T3 cell co-transfectants, we demonstrate that a proteolytic fragment consisting of the extravesicular domain of synaptotagmin-1 is released into the extracellular compartment in response to temperature stress with similar kinetics and pharmacological properties as FGF-1:beta-gal. Using a deletion mutant that lacks 95 amino acids from the extravesicular domain of synaptotagmin-1, neither synaptotagmin-1 nor FGF-1:beta-gal are able to access the stress-induced release pathway. Furthermore, the p40 extravesicular fragment of synaptotagmin-1 is constitutively released in p40 synaptotagmin-1 NIH 3T3 cell transfectants, and this release is potentiated when the cells are subjected to temperature stress. These data demonstrate that the p40 fragment derived from synaptotagmin-1 is able to utilize the FGF-1 non-classical exocytotic pathway and that the release of FGF-1 is dependent on synaptotagmin-1.
Collapse
Affiliation(s)
- T M LaVallee
- Department of Molecular Biology, Holland Laboratory, American Red Cross, Rockville, Maryland 20855, USA
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
1. Exocytosis and endocytosis are the continuous outward and inward vesicular transports in a cell that occur constantly for intra- and inter-cellular communications. These events are accomplished with the release and uptake of chemical messages fundamental in a variety of cellular functions, such as neurotransmitter release, hormone secretion and receptor internalization. 2. Although the mechanisms underlying these events have not been fully established, it is widely accepted that they are largely mediated and controlled by a number of effector proteins. These proteins can operate individually and in concert to produce specialized machineries in the sequential steps of exocytotic and endocytic transports. 3. Protein phosphorylation, the most common covalent modification of proteins in cells, has been implicated as playing an important role in the regulation of exocytosis and endocytosis. Many proteins involved in these processes have been identified to be phosphorylated under certain conditions. 4. For instance, synapsin I, myristoylated alanine-rich C kinase substrate and dynamin I undergo dynamic phosphorylation and dephosphorylation cycles during exocytosis and endocytosis, implying that protein phosphorylation regulates the functions of these proteins and, thus, exocytosis and endocytosis.
Collapse
Affiliation(s)
- J P Liu
- Baker Medical Research Institute, Prahran, Victoria, Australia.
| |
Collapse
|
38
|
Linial M, Parnas D. Deciphering neuronal secretion: tools of the trade. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1286:117-52. [PMID: 8652611 DOI: 10.1016/0304-4157(96)00007-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- M Linial
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel.
| | | |
Collapse
|
39
|
Meffert MK, Calakos NC, Scheller RH, Schulman H. Nitric oxide modulates synaptic vesicle docking fusion reactions. Neuron 1996; 16:1229-36. [PMID: 8663999 DOI: 10.1016/s0896-6273(00)80149-x] [Citation(s) in RCA: 185] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Nitric oxide (NO) stimulates calcium-independent neurotransmitter release from synaptosomes. NO-stimulated release was found to be inhibited by Botulinum neurotoxins that inactivate the core complex of synaptic proteins involved in the docking and fusion of synaptic vesicles. In experiments using recombinant proteins, NO donors increased formation of the VAMP/SNAP-25/syntaxin 1a core complex and inhibited the binding of n-sec1 to syntaxin 1a. The combined effects of these activities is predicted to promote vesicle docking/fusion. The sulfhydryl reagent NEM inhibited the binding of n-sec1 to syntaxin 1a, while beta-ME could reverse the NO-enhanced association of VAMP/SNAP-25/syntaxin 1a. These data suggest that post-translational modification of sulfhydryl groups by a nitrogen monoxide (likely to be NO+) alters the synaptic protein interactions that regulate neurotransmitter release and synaptic plasticity.
Collapse
Affiliation(s)
- M K Meffert
- Department of Neurobiology, Stanford University School of Medicine, California 94305, USA
| | | | | | | |
Collapse
|
40
|
Sugita S, Hata Y, Südhof TC. Distinct Ca(2+)-dependent properties of the first and second C2-domains of synaptotagmin I. J Biol Chem 1996; 271:1262-5. [PMID: 8576108 DOI: 10.1074/jbc.271.3.1262] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Synaptotagmin 1 (SytI) is a synaptic vesicle protein that binds Ca2+ and is essential for fast, Ca(2+)-dependent neurotransmitter release in the hippocampus, suggesting that it serves as a Ca2+ sensor for exocytosis. Although SytI has two cytoplasmic C2-domains, only the first C2-domain was shown to exhibit Ca2+ regulation; it binds phospholipids and syntaxin in a Ca(2+)-dependent manner. By contrast, the second C2-domain is inactive in these assays and only binds putative interacting molecules in a Ca(2+)-independent manner. We have now discovered in a yeast two-hybrid screen for SytI-interacting molecules that the C2-domains of SytI interact with themselves. Using immobilized recombinant C2-domains from SytI and SytII, we found that only the second but not the first C2-domains of these synaptotagmins are capable of affinity-purifying native rat brain SytI and that this binding is Ca(2+)-dependent, suggesting that only the second C2-domain is capable of a Ca(2+)-triggered self-association. A relatively high Ca2+ concentration (> 100 microM) is required for binding in the presence of Mg2+; Sr2+ and Ba2+ but not Mg2+ can substitute for Ca2+. Our data suggest that the second C2-domain of SytI is also a Ca(2+)-regulated domain similar to the first C2-domain but with distinct binding activities.
Collapse
Affiliation(s)
- S Sugita
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas 75235, USA
| | | | | |
Collapse
|
41
|
Newman LS, McKeever MO, Okano HJ, Darnell RB. Beta-NAP, a cerebellar degeneration antigen, is a neuron-specific vesicle coat protein. Cell 1995; 82:773-83. [PMID: 7671305 DOI: 10.1016/0092-8674(95)90474-3] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have identified a target antigen in autoimmune cerebellar degeneration, beta-NAP, that is closely related to the beta-adaptin and beta-COP coat proteins. Beta-NAP is a nonclathrin-associated phosphoprotein expressed exclusively in neurons, from E12 through adulthood. Beta-NAP is present in the neuronal soma and nerve terminal as soluble and membrane-bound pools and is associated with a discrete set of nerve-terminal vesicles. These results establish beta-NAP as a neuron-specific vesicle coat protein. We propose a model in which beta-NAP mediates vesicle transport between the soma and the axon terminus and suggest that beta-NAP may represent a general class of coat proteins that mediates apical transport in polarized cells.
Collapse
Affiliation(s)
- L S Newman
- Laboratory of Neuro-Oncology, Rockefeller University, New York, New York 10021, USA
| | | | | | | |
Collapse
|
42
|
Fried G. Synaptic vesicles and release of transmitters: new insights at the molecular level. ACTA PHYSIOLOGICA SCANDINAVICA 1995; 154:1-15. [PMID: 7572197 DOI: 10.1111/j.1748-1716.1995.tb09880.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Neurotransmitter release from transmitter storage vesicles is a regulated signalling event that has properties in common with other secretory systems. Biochemical characterization of mammalian synaptic vesicle proteins has recently converged with studies of protein traffic in non-neuronal cells and the genetic dissection of the yeast secretory pathway to give us a considerable amount of new data. Many new synaptic vesicle proteins have been characterized together with plasma membrane proteins with which they interact, and it appears that many of the participating components may be part of a general machinery for secretion. The new results significantly improve our understanding of the molecular mechanisms governing transmitter release. This review discusses the recent progress in terms of synaptic vesicle components and the proposed mechanisms for exocytosis.
Collapse
Affiliation(s)
- G Fried
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
43
|
Abstract
Regulated Ca(2+)-dependent release of transmitters from synaptic vesicles is an important characteristic of chemical neurotransmission. Synaptotagmins are abundant synaptic vesicle transmembrane proteins that probably function as Ca2+ sensors. Molecular cloning has identified four different synaptotagmin isoforms in mammals. We report here the cloning and sequencing of a novel isoform of 386 amino acids. Synaptotagmin V is 54% identical in sequence to synaptotagmin I and possesses all the domains that characterise this multigene family. It is expressed at high levels in rat brain, but not in spinal cord or a number of peripheral non-neuronal tissues.
Collapse
Affiliation(s)
- M Craxton
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | |
Collapse
|
44
|
Abstract
Synaptic vesicles play the central role in synaptic transmission. They are regarded as key organelles involved in synaptic functions such as uptake, storage and stimulus-dependent release of neurotransmitter. In the last few years our knowledge concerning the molecular components involved in the functioning of synaptic vesicles has grown impressively. Combined biochemical and molecular genetic approaches characterize many constituents of synaptic vesicles in molecular detail and contribute to an elaborate understanding of the organelle responsible for fast neuronal signalling. By studying synaptic vesicles from the electric organ of electric rays and from the mammalian cerebral cortex several proteins have been characterized as functional carriers of vesicle function, including proteins involved in the molecular cascade of exocytosis. The synaptic vesicle specific proteins, their presumptive function and targets of synaptic vesicle proteins will be discussed. This paper focuses on the small synaptic vesicles responsible for fast neuronal transmission. Comparing synaptic vesicles from the peripheral and central nervous systems strengthens the view of a high conservation in the overall composition of synaptic vesicles with a unique set of proteins attributed to this cellular compartment. Synaptic vesicle proteins belong to gene families encoding multiple isoforms present in subpopulations of neurons. The overall architecture of synaptic vesicle proteins is highly conserved during evolution and homologues of these proteins govern the constitutive secretion in yeast. Neurotoxins from different sources helped to identify target proteins of synaptic vesicles and to elucidate the molecular machinery of docking and fusion. Synaptic vesicle proteins and their markers are useful tools for the understanding of the complex life cycle of synaptic vesicles.
Collapse
Affiliation(s)
- W Volknandt
- Zoologisches Institut, J. W. Goethe-Universität, Frankfurt/M., Germany
| |
Collapse
|
45
|
Damer CK, Creutz CE. Secretory and synaptic vesicle membrane proteins and their possible roles in regulated exocytosis. Prog Neurobiol 1994; 43:511-36. [PMID: 7816934 DOI: 10.1016/0301-0082(94)90051-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- C K Damer
- Program in Neuroscience, University of Virginia, Charlottesville 22908
| | | |
Collapse
|
46
|
Bajjalieh SM, Scheller RH. Synaptic vesicle proteins and exocytosis. ADVANCES IN SECOND MESSENGER AND PHOSPHOPROTEIN RESEARCH 1994; 29:59-79. [PMID: 7848732 DOI: 10.1016/s1040-7952(06)80007-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- S M Bajjalieh
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, California 94305
| | | |
Collapse
|