1
|
Functional approaches to the study of G-protein-coupled receptors in postmortem brain tissue: [ 35S]GTPγS binding assays combined with immunoprecipitation. Pharmacol Rep 2021; 73:1079-1095. [PMID: 33876404 DOI: 10.1007/s43440-021-00253-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
G-protein-coupled receptors (GPCRs) have an enormous biochemical importance as they bind to diverse extracellular ligands and regulate a variety of physiological and pathological responses. G-protein activation measures the functional consequence of receptor occupancy at one of the earliest receptor-mediated events. Receptor coupling to G-proteins promotes the GDP/GTP exchange on Gα subunits. Thus, modulation of the binding of the poorly hydrolysable GTP analog [35S]GTPγS to the Gα-protein subunit can be used as a functional approach to quantify GPCR interaction with agonist, antagonist or inverse agonist drugs. In order to determine receptor-mediated selective activation of the different Gα-proteins, [35S]GTPγS binding assays combined with immunodetection by specific antibodies have been developed and applied to physiological and pathological brain conditions. Currently, immunoprecipitation with magnetic beads and scintillation proximity assays are the most habitual techniques for this purpose. The present review summarizes the different procedures, advantages and limitations of the [35S]GTPγS binding assays combined with selective Gα-protein sequestration methods. Experience of functional coupling of several GPCRs to different Gα-proteins and recommendations for optimal performance in brain membranes are described. One of the biggest opportunities opened by these techniques is that they enable evaluation of biased agonism in the native tissue, which results in high interest in drug discovery. The available results derived from application of these functional methodologies to study GPCR dysfunctions in neuro-psychiatric disorders are also described. In conclusion, [35S]GTPγS binding combined with antibody-mediated immunodetection represents an useful method to separately evaluate the functional activity of drugs acting on GPCRs over each Gα-protein subtype.
Collapse
|
2
|
Jiao C, Gu Z. iTRAQ-based proteomic analysis reveals changes in response to UV-B treatment in soybean sprouts. Food Chem 2019; 275:467-473. [PMID: 30724221 DOI: 10.1016/j.foodchem.2018.09.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 08/03/2018] [Accepted: 09/10/2018] [Indexed: 02/03/2023]
Abstract
It has been shown that 15 μW·cm-2 UV-B radiation has the most pronounced effects on γ-aminobutiric acid (GABA), inositol 1,4,5-trisphosphate (IP3) and abscisic acid (ABA) accumulation in 4-day-old soybean sprouts. Nevertheless, its mechanism of action, from the perspective of protein expression, remains largely unknown. In this study, isobaric tags for relative and absolute quantitation (iTRAQ) were employed to investigate UV-B treatment-induced proteomic changes in soybean sprouts. Results showed that UV-B treatment effectively regulated proteins involved in GABA biosynthesis, such as glutamate synthase, glutamate decarboxylase (GAD), methionine synthetase, 5-methyltetrahydropteroyltriglutamate--homocysteine methyltransferase, aminoaldehyde dehydrogenase (AMADH) and inositol phosphate metabolism pathways, including phosphoinositide phospholipase C (PI-PLC), purple acid phosphatase (PAP) and inositol polyphosphate 5-phosphatase. In addition, proteins involved in ABA biosynthesis and signal transduction, such as 9-cis-epoxycarotenoid dioxygenase (NCED), abscisic-aldehyde oxidase (AO), SNF1-related protein kinase (SnRK), protein phosphatase 2C (PP2C), guanine nucleotide-binding protein and calreticulin-3, were also modulated under UV-B treatment.
Collapse
Affiliation(s)
- Caifeng Jiao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
| | - Zhenxin Gu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| |
Collapse
|
3
|
Jiao C, Gu Z. Cyclic GMP mediates abscisic acid-stimulated isoflavone synthesis in soybean sprouts. Food Chem 2019; 275:439-445. [PMID: 30724218 DOI: 10.1016/j.foodchem.2018.09.071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 08/20/2018] [Accepted: 09/11/2018] [Indexed: 10/28/2022]
Abstract
The influences of abscisic acid (ABA)-guanosine 3',5'-cyclic monophosphate (cGMP) on UV-B treatment-stimulated isoflavone synthesis in soybean sprouts was explored. It turned out that ABA, with cGMP, up-regulated gene expression and activity of chalcone synthase (CHS) and isoflavone synthase (IFS), and subsequently induced isoflavone biosynthesis under UV-B treatment. Furthermore, data obtained from the isobaric tags for relative and absolute quantification (iTRAQ) analysis showed that there were two core components in ABA response: SNF1-related protein kinase (SnRK) and type 2C protein phosphatase (PP2C), were up and down regulated after UV-B treatment, respectively. UV-B exposure stimulated increment in guanine nucleotide-binding protein and calreticulin expression. Additionally, CHS and IFS protein expression were up regulated under UV-B stress. Overall, UV-B-induced ABA resulted in PP2C inhibition and SnRK2 activation, and up-regulated CHS and IFS expression, leading to enhancement of isoflavone accumulation. cGMP and calreticulin as downstream messengers, mediated ABA-stimulated isoflavone biosynthesis after UV-B exposure.
Collapse
Affiliation(s)
- Caifeng Jiao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China..
| | - Zhenxin Gu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| |
Collapse
|
4
|
Jiao C, Gu Z. iTRAQ-based analysis of proteins involved in secondary metabolism in response to ABA in soybean sprouts. Food Res Int 2019; 116:878-882. [PMID: 30717018 DOI: 10.1016/j.foodres.2018.09.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/01/2018] [Accepted: 09/08/2018] [Indexed: 01/05/2023]
Abstract
Abscisic acid (ABA), as a sesquiterpenoid hormone, could regulate lots of physiological processes, especially secondary metabolism in plants. Nevertheless, its mechanism of action, from the perspective of protein expression, remains largely unknown. In the study, isobaric tags for relative and absolute quantitation (iTRAQ) was employed to investigate ABA treatment-induced proteomic changes related to secondary metabolism in soybean sprouts. Among the 3033 proteins identified, compared with the control, ABA treatment up- and down-regulated 350 proteins. These proteins were involved in GABA biosynthesis, such as glutamate synthase, glutamate decarboxylase (GAD), methionine synthetase, 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase 1, aminoaldehyde dehydrogenase (AMADH) and inositol phosphate metabolism pathways, including phosphoinositide phospholipase C (PI-PLC), purple acid phosphatase (PAP) and inositol polyphosphate 5-phosphatase. In addition, flavonoid biosynthetic proteins, such as cinnamate 4-hydroxylase, chalcone isomerase, chalcone synthase, isoflavone synthase and isoflavone reductase, were also modulated in response to ABA treatment. What's more, ABA treatment regulated proteins involved in ABA signal transduction, such as SNF1-related protein kinase (SnRK), protein phosphatase 2C (PP2C), guanine nucleotide-binding protein and calreticulin-3.
Collapse
Affiliation(s)
- Caifeng Jiao
- Institute of Agro-Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Opening Laboratory of Agricultural Products Processing and Quality Control, Ministry of Agriculture, Beijing 100193, People's Republic of China.
| | - Zhenxin Gu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| |
Collapse
|
5
|
Odagaki Y, Kinoshita M, Toyoshima R. Pharmacological characterization of M1 muscarinic acetylcholine receptor-mediated Gq activation in rat cerebral cortical and hippocampal membranes. Naunyn Schmiedebergs Arch Pharmacol 2013; 386:937-47. [DOI: 10.1007/s00210-013-0887-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/27/2013] [Indexed: 11/30/2022]
|
6
|
Jin XG, Chen SR, Cao XH, Li L, Pan HL. Nitric oxide inhibits nociceptive transmission by differentially regulating glutamate and glycine release to spinal dorsal horn neurons. J Biol Chem 2011; 286:33190-202. [PMID: 21813646 DOI: 10.1074/jbc.m111.270967] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nitric oxide (NO) is involved in many physiological functions, but its role in pain signaling remains uncertain. Surprisingly, little is known about how endogenous NO affects excitatory and inhibitory synaptic transmission at the spinal level. Here we determined how NO affects excitatory and inhibitory synaptic inputs to dorsal horn neurons using whole-cell recordings in rat spinal cord slices. The NO precursor L-arginine or the NO donor SNAP significantly increased the frequency of glycinergic spontaneous and miniature inhibitory postsynaptic currents (IPSCs) of lamina II neurons. However, neither L-arginine nor SNAP had any effect on GABAergic IPSCs. L-arginine and SNAP significantly reduced the amplitude of monosynaptic excitatory postsynaptic currents (EPSCs) evoked from the dorsal root with an increase in paired-pulse ratio. Inhibition of the soluble guanylyl cyclase abolished the effect of L-arginine on glycinergic IPSCs but not on evoked monosynaptic EPSCs. Also, inhibition of protein kinase G blocked the increase in glycinergic sIPSCs by the cGMP analog 8-bromo-cGMP. The inhibitory effects of L-arginine on evoked EPSCs and high voltage-activated Ca(2+) channels expressed in HEK293 cells and dorsal root ganglion neurons were abolished by blocking the S-nitrosylation reaction with N-ethylmaleimide. Intrathecal injection of L-arginine and SNAP significantly increased mechanical nociceptive thresholds. Our findings suggest that spinal endogenous NO enhances inhibitory glycinergic input to dorsal horn neurons through sGC-cGMP-protein kinase G. Furthermore, NO reduces glutamate release from primary afferent terminals through S-nitrosylation of voltage-activated Ca(2+) channels. Both of these actions probably contribute to inhibition of nociceptive transmission by NO at the spinal level.
Collapse
Affiliation(s)
- Xiao-Gao Jin
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
7
|
Odagaki Y, Kinoshita M, Toyoshima R. Functional coupling between metabotropic glutamate receptors and G-proteins in rat cerebral cortex assessed by guanosine-5'-O-(3-[(35)S]thio)triphosphate binding assay. Basic Clin Pharmacol Toxicol 2011; 109:175-85. [PMID: 21443596 DOI: 10.1111/j.1742-7843.2011.00705.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Stimulation of specific guanosine-5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPγS) binding by l-glutamate was pharmacologically characterized in rat cerebral cortical membranes. Optimization of the experimental conditions with respect to the concentrations of GDP, MgCl(2) and NaCl in assay buffer prompted us to adopt the incubation of rat cerebral cortical membranes with 0.2 nM [(35)S]GTPγS at 30°C for 60 min. in the presence of 20 μM GDP, 5 mM MgCl(2) and 100 mM NaCl as a standard condition. Specific [(35)S]GTPγS binding was stimulated by l-glutamate in a concentration-dependent manner but not by ionotropic glutamate receptor agonists. The stimulatory responses were also elicited by many agonists for metabotropic glutamate (mGlu) receptor, with (-)-2-oxa-4-aminobicyclo[3.1.0]hexane-4,6-dicarboxylic acid (LY379268) being the most potent. l-glutamate-stimulated [(35)S]GTPγS binding was inhibited by several mGlu antagonists, with (2S)-2-amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid (LY341495) being the most potent. The pharmacological properties of a series of agonists and antagonists indicated the involvement of group II mGlu receptors, especially mGlu2. Supportive of this notion was the finding that l-glutamate-stimulated specific [(35)S]GTPγS binding was augmented by 2,2,2-trifluoro-N-[4-(2-methoxyphenoxy)phenyl]-N-(3-pyridinylmethyl)ethanesulphonamide hydrochloride (LY487379), a reportedly selective allosteric positive modulator for mGlu2, by means of upward and leftward shift of the concentration-response curve. In addition, LY487379 per se stimulated [(35)S]GTPγS binding, though, through a mechanism different from the stimulation by l-glutamate. Pre-treatment of the membranes with N-ethylmaleimide (NEM) cancelled l-glutamate-stimulated [(35)S]GTPγS binding in a concentration- and incubation time-dependent manner. Taken altogether, l-glutamate-stimulated [(35)S]GTPγS binding serves as a useful functional assay for the activation of NEM-sensitive G(i/o) -mediated group II mGlu receptors in rat cerebral cortical membranes.
Collapse
Affiliation(s)
- Yuji Odagaki
- Department of Psychiatry, Faculty of Medicine, Saitama Medical University, Moroyama-machi, Iruma-gun, Japan.
| | | | | |
Collapse
|
8
|
Huhtinen A, Scheinin M. Expression and characterization of the human alpha 2B-adrenoceptor in a vascular smooth muscle cell line. Eur J Pharmacol 2008; 587:48-56. [PMID: 18456256 DOI: 10.1016/j.ejphar.2008.03.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Revised: 02/29/2008] [Accepted: 03/14/2008] [Indexed: 01/14/2023]
Abstract
A vascular smooth muscle cell line stably expressing the human alpha 2B-adrenoceptor at a density of 1.5 pmol/mg membrane protein was generated by transfection of rat A7r5 cells. [35S]GTPgammaS binding experiments and [3H]thymidine incorporation experiments indicated that the expressed receptors were functional, had the expected pharmacological characteristics and efficiently stimulated smooth muscle cell proliferation. Confocal fluorescence microscopy was used to visualize alpha2B-adrenoceptors in A7r5-alpha 2B cells and indicated that the receptors were mainly localized in the plasma membrane. The expression of the smooth muscle-specific marker alpha-actin was similar in transfected A7r5-alpha 2B cells and in non-transfected A7r5 wild-type cells. The generated A7r5-alpha 2B cell line will be a useful tool for studying the function and regulation of alpha 2B-adrenoceptors in vascular smooth muscle cells.
Collapse
Affiliation(s)
- Anna Huhtinen
- Department of Pharmacology, Drug Development and Therapeutics, University of Turku, FI-20520 Turku, Finland.
| | | |
Collapse
|
9
|
Tejedor-Real P, Vogel R, Mallet J, Biguet NF. Gi/Go protein-dependent presynaptic mechanisms are involved in clozapine-induced down-regulation of tyrosine hydroxylase in PC12 cells. J Neurosci Res 2005; 81:739-45. [PMID: 15983997 DOI: 10.1002/jnr.20585] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Although the clinical effects of antipsychotics have been extensively studied, the molecular mechanisms underlying their antipsychotic activity are unclear. Chronic clozapine has been reported to reduce significantly the expression of tyrosine hydroxylase (TH) in the mesolimbic system. To characterize the mechanisms of action of clozapine on TH expression, PC12 cells turned out to be a useful model, being by far less complex than the entire brain. Both the quantity of TH protein and the amount of TH mRNA in PC12 cells were found to be decreased during incubation of the cells in the presence of clozapine. This decline was followed by a decrease in the enzymatic activity of TH. The effect of clozapine was blocked by preincubation with N-ethylmaleimide, a sulphydryl-alkylating reagent that interferes in Gi/o protein-mediated second messenger pathways. Clozapine may thus decrease TH expression by interacting with Gi/o protein-coupled receptors, such as D2 and 5HT1A. Knowledge of the molecular mechanisms underlying the clinical effects of established antipsychotics will promote the development of new and more efficient antipsychotic drugs.
Collapse
|
10
|
Frère SGA, Lüthi A. Pacemaker channels in mouse thalamocortical neurones are regulated by distinct pathways of cAMP synthesis. J Physiol 2004; 554:111-25. [PMID: 14678496 PMCID: PMC1664735 DOI: 10.1113/jphysiol.2003.050989] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
A crucial aspect of pacemaker current (Ih) function is the regulation by cyclic nucleotides. To assess the endogenous mechanisms controlling cAMP levels in the vicinity of pacemaker channels, Ih regulation by G-protein-coupled neurotransmitter receptors was studied in mouse thalamocortical neurones. Activation of beta-adrenergic receptors with (-)-isoproterenol (Iso) led to a small steady enhancement of Ih amplitude, whereas activation of GABAB receptors with (+/-)-Baclofen (Bac) reduced Ih, consistent with an up- and down-regulation of basal cAMP levels, respectively. In contrast, a transient (taudecay, approximately 200 s), supralinear up-regulation of Ih was observed upon coapplication of Iso and Bac that was larger than that observed with Iso alone. This up-regulation appeared to involve a cAMP synthesis pathway distinct from that recruited by Iso, as it was associated with a reversible acceleration in Ih activation kinetics and an occlusion of modulation by photolytically released cAMP, yet showed an 11 mV as opposed to a 6 mV positive shift in the activation curve and an at least seven-fold increase in duration. GABA, in the presence of the GABAA antagonist picrotoxin, mimicked, whereas N-ethylmaleimide, an inhibitor of Gi-proteins, blocked the up-regulation, supporting a requirement for GABAB receptor activation in the potentiation. Activation of synaptic GABAB responses via stimulation of inhibitory afferents from the nucleus reticularis potentiated Iso-induced increments in Ih, suggesting that synaptically located receptors couple positively to cAMP synthesis induced by beta-adrenergic receptors. These findings indicate that distinct pathways of cAMP synthesis target the pacemaker current and the recruitment of these may be controlled by GABAergic activity within thalamic networks.
Collapse
Affiliation(s)
- Samuel G A Frère
- Section of Pharmacology and Neurobiology, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | | |
Collapse
|
11
|
Kubiak TM, Larsen MJ, Davis JP, Zantello MR, Bowman JW. AF2 interaction with Ascaris suum body wall muscle membranes involves G-protein activation. Biochem Biophys Res Commun 2003; 301:456-9. [PMID: 12565883 DOI: 10.1016/s0006-291x(02)03054-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
KHEYLRF-NH(2) (AF2) is the most abundant FMRFamide-related peptide (FaRP) in Ascaris suum and also in many other parasitic and free-living nematodes. The AF2 abundance in the highly diverse nematodes and its potent and profound effects on the neuromuscular systems make AF2 and its receptor(s) very attractive targets for the discovery of novel broad-spectrum anthelmintics. Although FaRP receptors are believed to belong to the large family of G-protein coupled receptors (GPCRs), to date no AF2 receptor(s) have been cloned so there is no final proof to show that they are indeed G-protein coupled. In this study, using A. suum body wall muscle membranes, we showed that: (1) AF2 effectively (EC(50) 57 nM) induced a dose-dependent stimulation of [35S]GTP gamma S binding to the membranes, which is a hallmark of G-protein activation; (2) the high affinity binding of [125I-Tyr(4)]AF2 was inhibited in a dose-dependent manner by GTP with a K(i) of 10.5 nM (so-called guanine nucleotide effect, characteristic for GPCRs). Collectively, our results provide direct evidence for G-protein involvement in AF2-triggered receptor activation and thus confirm that the receptor for AF2 in A. suum is a GPCR.
Collapse
Affiliation(s)
- Teresa M Kubiak
- Animal Health Discovery Research, PHARMACIA Corporation, Mail stop 7923-25-428, Kalamazoo, MI 49001, USA.
| | | | | | | | | |
Collapse
|
12
|
Alberts GL, Chio CL, Im WB, Slightom JL. A unique phenotype of 5-HT2C, agonist-induced GTPgamma35S binding, transferable to 5-HT2A and 5-HT2B, upon swapping intracellular regions. Br J Pharmacol 2003; 138:427-34. [PMID: 12569067 PMCID: PMC1573684 DOI: 10.1038/sj.bjp.0705058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2002] [Revised: 10/07/2002] [Accepted: 10/22/2002] [Indexed: 11/08/2022] Open
Abstract
1 The human 5-HT(2C) receptor, when expressed heterologously in various mammalian cell lines (HEK293, SH-EP and NIH-3T3) at various receptor densities (6 to 45 pmol mg(-1) protein), mediates robust agonist-induced GTPgamma(35)S binding from coupling to G(i) subtypes of G proteins, in addition to G(q/11). Such a phenotype, however, was not seen with the human 5-HT(2A) and 5-HT(2B) receptors, indicating their common pathway with 5-HT(2C) limited to G(q/11), not including G(i). 2 Because intracellular regions are largely responsible for signalling pathways, we prepared the chimeras of the 5-HT(2A) and 5-HT(2B) receptors where the second and third intracellular loops, and the C-terminal region were replaced with the 5-HT(2C) counterparts. 3 The chimeras showed robust agonist-induced GTPgamma(35)S binding. Relative intrinsic efficacies of agonists from the GTPgamma(35)S binding were nearly identical to the reported values for their parent receptors as measured with Ca(2+) or [(3)H]-inositol phosphate accumulation. Also the chimeras displayed the same ligand-binding properties as the parent receptors. 4 We conclude that the phenotype of agonist-induced GTPgamma(35)S binding is unique to 5-HT(2C) among the 5-HT(2) receptor family, and is transferable to 5-HT(2A) and 5-HT(2B), upon swapping intracellular sequences, without altering their receptor pharmacology.
Collapse
MESH Headings
- Animals
- Binding, Competitive
- Cell Line
- Cloning, Molecular
- Guanosine 5'-O-(3-Thiotriphosphate)/metabolism
- Humans
- Ligands
- Mice
- Phenotype
- Polymerase Chain Reaction
- Protein Binding
- Radioligand Assay
- Receptor, Serotonin, 5-HT2A
- Receptor, Serotonin, 5-HT2B
- Receptor, Serotonin, 5-HT2C
- Receptors, Serotonin/drug effects
- Receptors, Serotonin/genetics
- Receptors, Serotonin/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Serotonin Receptor Agonists/pharmacology
Collapse
Affiliation(s)
- Glen L Alberts
- BiologyII/Neurobiology, Pharmacia, 301 Henrietta Street, Kalamazoo, MI 49007, U.S.A
| | - Christopher L Chio
- BiologyII/Neurobiology, Pharmacia, 301 Henrietta Street, Kalamazoo, MI 49007, U.S.A
| | - Wha Bin Im
- BiologyII/Neurobiology, Pharmacia, 301 Henrietta Street, Kalamazoo, MI 49007, U.S.A
| | - Jerry L Slightom
- Genomics, Pharmacia, 301 Henrietta Street, Kalamazoo, MI 49007, U.S.A
| |
Collapse
|
13
|
Sum CS, Park PSH, Wells JW. Effects of N-ethylmaleimide on conformational equilibria in purified cardiac muscarinic receptors. J Biol Chem 2002; 277:36188-203. [PMID: 12119286 DOI: 10.1074/jbc.m201731200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Muscarinic receptors purified from porcine atria and devoid of G protein underwent a 9-27-fold decrease in their apparent affinity for the antagonists quinuclidinyl benzilate, N-methylscopolamine, and scopolamine when treated with the thiol-selective reagent N-ethylmaleimide. Their apparent affinity for the agonists carbachol and oxotremorine-M was unchanged. Conversely, the rate of alkylation by N-ethylmaleimide, as monitored by the binding of [(3)H]quinuclidinyl benzilate, was decreased by antagonists while agonists were without effect. The receptor also underwent a time-dependent inactivation that was hastened by N-ethylmaleimide but slowed by quinuclidinyl benzilate and N-methylscopolamine. The destabilizing effect of N-ethylmaleimide was counteracted fully or nearly so at saturating concentrations of each antagonist and the agonist carbachol. Similar effects occurred with human M(2) receptors differentially tagged with the c-Myc and FLAG epitopes, coexpressed in Sf9 cells, and extracted in digitonin/cholate. The degree of coimmunoprecipitation was unchanged by N-ethylmaleimide, which therefore was without discernible effect on oligomeric size. The data are quantitatively consistent with a model in which the purified receptor from porcine atria interconverts spontaneously between two states (i.e. R R*). Antagonists favor the R state; agonists and N-ethylmaleimide favor the comparatively unstable R* state, which predominates after purification. Occupancy by a ligand stabilizes both states, and antagonists impede alkylation by favoring R over R*. Similarities with constitutively active receptors suggest that R and R* are akin to the inactive and active states, respectively. Purified M(2) receptors therefore appear to exist predominantly in their active state.
Collapse
Affiliation(s)
- Chi Shing Sum
- Department of Pharmacology and Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 2S2, Canada
| | | | | |
Collapse
|
14
|
González-Maeso J, Rodríguez-Puertas R, Meana JJ. Quantitative stoichiometry of G-proteins activated by mu-opioid receptors in postmortem human brain. Eur J Pharmacol 2002; 452:21-33. [PMID: 12323382 DOI: 10.1016/s0014-2999(02)02242-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Paradoxically, the potencies (EC(50)) of agonists stimulating [35S]GTPgammaS binding are several orders of magnitude lower than their affinities in receptor binding assays. We have investigated the quantitative stoichiometry of mu-opioid receptor-G-protein coupling in postmortem human brain. [D-Ala(2),N-Me-Phe(4),Gly(5)-ol]enkephalin (DAMGO) displaced [3H]naloxone binding in a biphasic pattern. The ratio between K(i-low) and EC(50) of DAMGO stimulating [35S]GTPgammaS binding was lower than one. The K(A) of DAMGO was calculated following mu-opioid receptor alkylation by beta-funaltrexamine from [35S]GTPgammaS binding data using the "nested hyperbolic method", yielding K(A)/EC(50)>1. Thus, only 1.2 +/- 0.2% of mu-opioid receptors was needed to be occupied to achieve the half-maximal effect of DAMGO. The estimated ratio between the G-proteins activated by 10 microM DAMGO (determined by isotopic dilution curves) and the occupied-mu-opioid receptors was 1304. In conclusion, we have determined the stoichiometric and the kinetic parameters in the mu-opioid receptor-G-protein system.
Collapse
Affiliation(s)
- Javier González-Maeso
- Department of Pharmacology, University of the Basque Country, E-48940 Leioa, Vizcaya, Spain.
| | | | | |
Collapse
|
15
|
Mseeh F, Gerdin MJ, Dubocovich MI. Identification of cysteines involved in ligand binding to the human melatonin MT(2) receptor. Eur J Pharmacol 2002; 449:29-38. [PMID: 12163103 DOI: 10.1016/s0014-2999(02)01903-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In mammals, melatonin activates melatonin MT(1) and MT(2) receptors. Using site-directed mutagenesis and chemical modification, we investigated the role of conserved cysteines in ligand binding. Dithiothreitol inhibited 2-[(125)I]iodomelatonin binding to the FLAG-tagged human melatonin MT(2) receptor without affecting ligand affinity. Alanine substitution of Cys(113) or Cys(190) resulted in a loss of specific 2-[(125)I]iodomelatonin binding, without altering cell surface receptor expression. This suggests that a putative disulfide bond linking Cys(113) and Cys(190) is essential to maintain a proper human melatonin MT(2) receptor conformation for melatonin binding. N-ethylmaleimide alkylation of cysteines inhibited 2-[(125)I]iodomelatonin binding, decreasing both ligand affinity and receptor density. Alkylation of Cys(140) contributes to changes in ligand affinity, while alkylation of Cys(143) and Cys(219) reduced binding capacity. We suggest that a disulfide bridge is important for the proper structural conformation of the human melatonin MT(2) receptor to bind melatonin. Cysteines located in receptor regions near the ligand binding site and/or G protein coupling region are involved in N-ethylmaleimide-induced changes in affinity and receptor density.
Collapse
MESH Headings
- Alkylating Agents/pharmacology
- Cysteine/chemistry
- Cysteine/metabolism
- DNA, Complementary/drug effects
- DNA, Complementary/genetics
- Dithiothreitol/pharmacology
- Epitopes
- Ethylmaleimide/pharmacology
- Humans
- Immunohistochemistry
- Ligands
- Melatonin/metabolism
- Microscopy, Confocal
- Mutagenesis, Site-Directed/drug effects
- Oligopeptides
- Peptides
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/drug effects
- Receptors, Cell Surface/metabolism
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Cytoplasmic and Nuclear/drug effects
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Melatonin
- Sulfhydryl Compounds/pharmacology
- Transfection
Collapse
Affiliation(s)
- Faika Mseeh
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, Chicago, IL 60611-3008, USA
| | | | | |
Collapse
|
16
|
Chen Y, Yao Y, Penington NJ. Effect of pertussis toxin and N-ethylmaleimide on voltage-dependent and -independent calcium current modulation in serotonergic neurons. Neuroscience 2002; 111:207-14. [PMID: 11955723 DOI: 10.1016/s0306-4522(01)00550-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Introduction of GTP-gamma-S into a neuronal cell spontaneously results in G-protein activation. A possible contribution to this mechanism is that some receptors have a constitutive activity that stimulates GDP/GTP exchange resulting in increased GTPase activity of G-protein alpha subunits, leading to a facilitation of GTP-gamma-S binding. It follows that partial or complete uncoupling of receptors and G-proteins could inhibit Ca(2+) current modulation by GTP-gamma-S. This possibility was tested in acutely isolated rat dorsal raphe neurons by uncoupling the receptor and G-protein using N-ethylmaleimide and pertussis toxin. Since these compounds have been suggested to differentially block voltage-dependent inhibition, relative to voltage-independent, we investigated whether the apparent voltage-independent component of Ca(2+) channel modulation by 5-hydroxytryptamine (5-HT) shares the same mechanism as the voltage-dependent component. N-ethylmaleimide inhibited the response to 5-HT by about 50% but had no effect on the response to GTP-gamma-S. In dorsal raphe neurons 28.9% of the total response to 5-HT was voltage-independent. N-ethylmaleimide had identical effects on the voltage-dependent and -independent components as measured by tail current inhibition. The response to 5-HT was completely sensitive to pertussis toxin, and completely uncoupling the receptors and G-proteins did not affect the maximal response to GTP-gamma-S. Our results suggest that the apparent voltage-independent component of Ca(2+) channel modulation by 5-HT in dorsal raphe neurons might share the same mechanism as does the voltage-dependent component. In addition, these experiments provided evidence that partial or even complete uncoupling of receptors and G-proteins did not affect Ca(2+) current modulation by direct activators of G-proteins.
Collapse
Affiliation(s)
- Y Chen
- Department of Pharmacology, University of Washington, Seattle 98195, USA
| | | | | |
Collapse
|
17
|
Ikeda M, Sagara M, Sekino Y, Shirao T, Honda K, Yoshioka T, Allen CN, Inoué S. The sulphydryl reagent, N-ethylmaleimide, disrupts sleep and blocks A1 adenosine receptor-mediated inhibition of intracellular calcium signaling in the in vitro ventromedial preoptic nucleus. Neuroscience 2002; 106:733-43. [PMID: 11682159 DOI: 10.1016/s0306-4522(01)00290-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
To explore the neuronal signaling mechanisms underlying sleep regulation in the rat, the present study examined continuous intra-third ventricle infusion of N-ethylmaleimide (NEM), a sulphydryl reagent that inhibits G(i/o) protein-coupled receptor-mediated signaling pathways. The diurnal infusion of NEM (0.01-10 micromol/10 h) dose-dependently inhibited both non-rapid eye movement sleep and rapid eye movement sleep. A maximal dose of NEM (10 micromol/10 h) dramatically inhibited day-time sleep (-57% for non-rapid eye movement sleep and -89% for rapid eye movement sleep) with a compensatory increase of sleep during the subsequent night-time (+33% for non-rapid eye movement sleep and +259% for rapid eye movement sleep). The day-time brain temperature was also increased by NEM, demonstrating effects of NEM on both sleep and body temperature levels. Immunostaining of the rat hypothalamus with a monoclonal antibody against the A1 adenosine receptor (A1R) was used to explore the distribution of a sleep-related G(i/o) protein-coupled receptor. Robust A1R-like immunoreactivity was found in the ventromedial preoptic nucleus and the supraoptic nucleus. Fura-2-based Ca(2+) imaging analysis of acute hypothalamic slices further demonstrated that the A1R agonist N(6)-cyclopentyladenosine (CPA; 200 nM) inhibited spontaneous Ca(2+) oscillations and high potassium (80 mM)-induced Ca(2+) flux in the ventromedial preoptic nucleus, while NEM (100-300 microM) and an A1R antagonist 8-cyclopentyl-dipropylxanthine (300 nM) blocked the CPA actions and increased the high potassium-induced Ca(2+) flux. From these results we suggest that NEM-sensitive G protein-coupled receptor(s) may play an important role in the regulation of sleep and body temperature in the rat and one possible mechanism is an A1R-mediated regulation of intracellular Ca(2+) concentrations in the ventromedial preoptic nucleus.
Collapse
Affiliation(s)
- M Ikeda
- Advanced research Institute for Science and Engineering, Waseda University, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Alberts GL, Chio CL, Im WB. Allosteric modulation of the human 5-HT(7A) receptor by lipidic amphipathic compounds. Mol Pharmacol 2001; 60:1349-55. [PMID: 11723242 DOI: 10.1124/mol.60.6.1349] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human 5-HT7A receptors positively modulated adenylyl cyclases via Gs subtypes of G proteins in human embryonic kidney 293 cells, and bound 5-hydroxytryptamine (HT) with high and low affinity (K(I) values of 1.5 +/- 0.3 and 93 +/- 4 nM). More than 60% of 5-HT7A receptors, however, displayed the high-affinity 5-HT binding with no sensitivity to 5'-guanylylimidodiphosphate. In this study, we found that select amphipathic agents affected the high-affinity 5-HT binding to 5-HT7A. Oleic acid at low concentrations (<15 microM), but not palmitic, stearic, and arachidonic acids, increased maximal [3H]5-HT binding without affecting its K(D) value and [3H]mesulergine (antagonist) binding. Fatty acid-free bovine serum albumin (FF-BSA), a scavenger of fatty acids and lipid metabolites, substantially reduced maximal [3H]5-HT binding (no change in K(D) value and antagonist binding) but lost its action upon treatment with inactive stearic acid. FF-BSA and oleic acid produced no appreciable effects on [3H]5-HT binding to analogous 5-HT receptors 5-HT1D and 5-HT2C. Among various lysophospholipids, lysophosphatidyl choline (50 microM) decreased maximal [3H]5-HT binding, and a similar zwitterion, 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS; 0.1%), increased it (no change in K(D)). Functionally, 5-HT-induced guanosine-5'-O-(3-[35S]thio)triphosphate (GTPgamma35S) binding was enhanced by oleic acid and CHAPS, but reduced by FF-BSA and lysophosphatidyl choline; the amphipathic agents and FF-BSA did not affect dopamine-induced GTPgamma35S binding at D1, a prototypic Gs-coupled receptor. At 5-HT7A, oleic acid, FF-BSA, CHAPS, and lysophosphatidyl choline also brought about corresponding changes in the half-maximal 5-HT concentration for cAMP production, without affecting the maximal and basal levels. We propose that endogenous, amphipathic lipid metabolites may modulate 5-HT7A receptors allosterically to promote high-affinity 5-HT binding and to enable receptors to couple more efficiently to Gs subtypes of G proteins.
Collapse
Affiliation(s)
- G L Alberts
- Department of Biology II/Neurobiology, Pharmacia & Upjohn, Kalamazoo, Michigan
| | | | | |
Collapse
|
19
|
Heuss C, Scanziani M, Gähwiler BH, Gerber U. G-protein-independent signaling mediated by metabotropic glutamate receptors. Nat Neurosci 1999; 2:1070-7. [PMID: 10570483 DOI: 10.1038/15996] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Synaptically released glutamate activates ionotropic and metabotropic receptors at central synapses. Metabotropic glutamate receptors (mGluRs) are thought to modulate membrane conductances through transduction cascades involving G proteins. Here we show, in CA3 pyramidal cells from rat hippocampus, that synaptic activation of type 1 mGluRs by mossy fiber stimulation evokes an excitatory postsynaptic response independent of G-protein function, while inhibiting an afterhyperpolarization current through a G-protein-coupled mechanism. Experiments using peptide activators and specific inhibitors identified a Src-family protein tyrosine kinase as a component of the G-protein-independent transduction pathway. These results represent the first functional evidence for a dual signaling mechanism associated with a heptahelical receptor such as mGluR1, in which intracellular transduction involves activation of either G proteins or tyrosine kinases.
Collapse
Affiliation(s)
- C Heuss
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | | | |
Collapse
|
20
|
Andriambeloson E, Stoclet JC, Andriantsitohaina R. Mechanism of endothelial nitric oxide-dependent vasorelaxation induced by wine polyphenols in rat thoracic aorta. J Cardiovasc Pharmacol 1999; 33:248-54. [PMID: 10028933 DOI: 10.1097/00005344-199902000-00011] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The mechanisms by which red wine polyphenolic compounds (RWPCs) induced endothelium-dependent relaxation were investigated in rat thoracic aorta rings with endothelium. RWPCs produced relaxation that was prevented by the nitric oxide (NO) synthase inhibitor, N(omega)-nitro-L-arginine-methyl-ester. This relaxation was abolished in the absence of extracellular calcium in the medium or in the presence of the Ca2+ entry blocker, La3+, but it was not affected by the nonselective K+ channels blocker, tetrabutylammonium. N-Ethyl-maleimide (NEM), a sulfhydryl alkylating agent, abolished vasorelaxation produced by RWPCs and acetylcholine but not that produced either by the sarcoendoplasmic reticulum Ca2+-adenosine triphosphatase (ATPase) pump inhibitor, cyclopyazonic acid (CPA) or the calcium ionophore, ionomycin. Neither pertussis toxin (PTX) nor cholera toxin (CTX) inhibited the vasorelaxant effect of RWPC. The effect of RWPC was not affected by the phospholipase C (PLC) blocker, L-alpha-glycerophospho-D-myo-inositol 4-monophosphate (Gro-pip), and the phospholipase A2 pathway blockers, quinacrine and ONO-RS-082. Finally, the protein kinase C (PKC) inhibitor, GF 109203X, and tyrosine kinase inhibitors, tyrphostin A-23 and genistein, did not impair the response to RWPCs. These results suggest that RWPCs produce endothelium-NO-derived vasorelaxation through an extracellular Ca2+-dependent mechanism via an NEM-sensitive pathway. They also show that PTX- or CTX-sensitive G proteins, activation of PLC or PLA2 pathways, PKC, or tyrosine kinase may not be involved.
Collapse
Affiliation(s)
- E Andriambeloson
- Laboratoire de Pharmacologie et Physiopathologie Cellulaires, Université Louis Pasteur de Strasbourg, CNRS ERS 653 Faculté de Pharmacie, Illkirch, France
| | | | | |
Collapse
|
21
|
Jin YH, Akaike N. Tandospirone-induced K+ current in acutely dissociated rat dorsal raphe neurones. Br J Pharmacol 1998; 124:897-904. [PMID: 9692774 PMCID: PMC1565471 DOI: 10.1038/sj.bjp.0701922] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
1. The effects of tandospirone (TDS) on dissociated rat dorsal raphe neurones were investigated using the patch-clamp method. 2. Under current-clamp conditions, TDS hyperpolarized the cell membrane, resulting in the reduction of firing rates. 3. Under voltage-clamp conditions, TDS induced an inward rectifying K+ current in a concentration-dependent manner. 4. The TDS-induced K+ currents (I(TDS)) were mimicked by 8-OH-DPAT, a 5-HT1A agonist. The I(TDS) was blocked by spiperone, a 5-HT1A receptor antagonist, in a concentration-dependent manner. 5. N-Ethylmaleimide, an agent which uncouples between the receptor and the G-protein, irreversibly blocked the I(TDS). 6. In neurones perfused intracellularly with a pipette-solution containing GTP using the conventional whole-cell patch recording, the I(TDS) showed a gradual rundown. When the neurones were perfused with GTPgammaS, TDS activated the inwardly rectifying K+ current in an irreversible manner. 7. In the inside-out patch recording mode, TDS-activated single K+ channel currents (i(TDS)) which also showed an inward rectification. When the GDP in cytosolic side was completely replaced with GTP, the open probability of i(TDS) significantly increased. 8. These results indicate that the activation of 5-HT1A receptors by TDS directly opens the inward rectifying K+ channels via a G-protein mediated process.
Collapse
Affiliation(s)
- Y H Jin
- Department of Physiology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | | |
Collapse
|
22
|
Huang CS, Narahashi T. The role of G proteins in the activity and mercury modulation of GABA-induced currents in rat neurons. Neuropharmacology 1997; 36:1623-30. [PMID: 9517433 DOI: 10.1016/s0028-3908(97)00173-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The role of G proteins in the functional modulation and potentiation by mercury chloride of the GABA(A) receptor-channel complex in rat dorsal root ganglion neurons was studied by using the whole-cell patch clamp technique. Stimulation of Gs proteins by application of GTP-gamma-S in the patch pipette or by incubation of neurons with cholera toxin reduced GABA-induced currents, suggesting modulation of GABA-induced currents via a Gs-protein-coupled pathway. GDP-beta-S in the pipette solution or pretreatment of dorsal root ganglion neurons with pertussis toxin suppressed GABA-induced currents, suggesting that basal Gi/Go-protein activity positively modulates the GABA(A) receptor-channel complex. Mercury chloride potentiation of GABA-activated currents was blocked by application of GTP-gamma-S in the patch pipette or by incubation of neurons with cholera toxin. Mercury chloride potentiation of GABA-activated currents was blocked by application of GDP-beta-S in the patch pipette or by incubation of neurons with pertussis toxin. G proteins, probably Gi/Go proteins, underlie the mercury chloride potentiation of GABA-induced currents.
Collapse
Affiliation(s)
- C S Huang
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, Chicago, IL 60611, USA
| | | |
Collapse
|
23
|
Pregenzer JF, Alberts GL, Im WB. Agonist-induced [35S]GTPgammaS binding in the membranes of Spodoptera frugiperda insect cells expressing the human D3 dopamine receptor. Neurosci Lett 1997; 226:91-4. [PMID: 9159497 DOI: 10.1016/s0304-3940(97)00251-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In the membranes of Spodoptera frugiperda (Sf-9) insect cells heterologously expressing the human D3 dopamine receptor, agonists selective for the receptor, but not antagonists, robustly enhanced [35S]GTPgammaS binding. Quinpirole, for instance, dose-dependently enhanced [35S]GTPgammaS binding with a half-maximal concentration of 2.3 +/- 0.2 nM. Its action was absent in the cells infected with wild type viruses, and competitively blocked by an antagonist, YM-09151-2. A number of known agonists enhanced [35S]GTPgammaS binding to variable degrees, probably reflecting their differential efficacy to activate target G-proteins via the receptor. This agonist-induced [35S]GTPgammaS binding was abolished by N-ethylmaleimide, a selective blocking agent for Gi/Go proteins, with no appreciable effect on ligand binding. We propose coupling of the cloned D3 receptor to endogenous G-proteins in Sf-9 cells, probably homologs of mammalian Gi/Go proteins. Despite the apparent coupling of the D3 receptor to G-proteins, GTPgammaS (10 microM) failed to decrease agonist binding ([3H]dopamine) to the D3 receptor, probably due to small affinity differences between low and high affinity states for agonists in the D3 receptor, as well as due to high receptor density in Sf-9 cells. We conclude that agonist-induced [35S]GTPgammaS binding for the D3 receptor is suitable for estimating ligand intrinsic efficacy and pharmacological characterizations of ligand-receptor interactions.
Collapse
Affiliation(s)
- J F Pregenzer
- CNS Diseases Research 7251-209-114, Pharmacia and Upjohn, Inc., Kalamazoo, MI 49001, USA
| | | | | |
Collapse
|
24
|
Katayama J, Yakushiji T, Akaike N. Characterization of the K+ current mediated by 5-HT1A receptor in the acutely dissociated rat dorsal raphe neurons. Brain Res 1997; 745:283-92. [PMID: 9037420 DOI: 10.1016/s0006-8993(96)01141-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The action of 5-hydroxytryptamine (5-HT) via the 5-HT1A receptor on dissociated rat dorsal raphe neurons was characterized under the whole-cell mode by using the nystatin-perforated patch-clamp technique. Under voltage-clamp conditions, 5-HT induced an inwardly rectifying K+ current (I5-HT) in a concentration-dependent manner. I5-HT was mimicked by 8-OH-DPAT and buspirone, which are both 5-HT1A receptor agonists. I5-HT was reversibly blocked by such 5-HT1A receptor antagonists as (S)-UH-301 a 5-HT4 receptor antagonist. I5-HT was antagonized concentration-dependently by such K+ channel blockers as quinine, Ba2+ and 4-aminopyridine but was relatively insensitive to both CS+ and tetraethylammonium. When the neurons were loaded with guanosine 5'-O-3-thiotriphosphate through a patch pipette, the K+ current induced by 5-HT became irreversible. N-ethylmaleimide (NEM), a sulfhydryl alkylating agent, irreversibly blocked I5-HT. The intracellular perfusion with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), a Ca2+ chelator, or neomycine, a phospholipase C inhibitor, never significantly affected the 5-HT-induced response. 12-Myristate 13-acetate diester (PMA), a protein kinase C (PKC) activator, had only a weak inhibitory effect on I5-HT, and staurosporine, a PKC inhibitor, failed to significantly occlude I5-HT. Therefore, the K+ conductance activated via the 5-HT1a receptor of dorsal raphe neurons was thus characterized by the sensitivity to such K+ channel blockers as quinine, Ba2+ and 4-aminopyridine. Moreover, G protein which is NEM-sensitive and can couple to the 5-HT1A receptor, is thus considered to activate the inwardly rectifying K+ conductance without being mediated by such second messengers as Ca2+ and PKC.
Collapse
Affiliation(s)
- J Katayama
- Research Laboratories, Yoshitomi Pharmaceutical Industries, Ltd., Fukuoka, Japan
| | | | | |
Collapse
|
25
|
Olianas MC, Onali P. Impairment of muscarinic stimulation of adenylyl cyclase by heparin in rat olfactory bulb. Life Sci 1997; 61:515-22. [PMID: 9247321 DOI: 10.1016/s0024-3205(97)00411-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In rat olfactory bulb membranes, the stimulation of adenylyl cyclase by the cholinergic agonist carbachol (CCh) was markedly inhibited by heparin at concentrations (0.3-10 microM) that had smaller or no effects on the enzyme stimulations elicited by vasoactive intestinal peptide, pituitary adenylate cyclase activating polypeptide (PACAP), 1-isoproterenol and corticotropin releasing hormone. Heparin did not significantly affect the binding of [3H]N-methylscopolamine ([3H]NMS) to muscarinic receptors, but decreased the potency of CCh in displacing the bound radioligand in a manner similar to that of the GTP analogue guanosine-5'-O-(3'-thio)triphosphate (GTPgammaS). Heparin inhibited the binding of [35S]GTPgammaS to membrane G proteins stimulated by CCh more potently than that elicited by PACAP. Moreover, at the same concentrations, heparin inhibited the muscarinic inhibition of adenylyl cyclase in rat striatal membranes. These data indicate that heparin impairs the muscarinic stimulation of olfactory bulb adenylyl cyclase likely by interfering with the receptor-induced activation of G proteins. The higher sensitivity to heparin of this response as compared to those displayed by Gs-mediated enzyme stimulations provides further evidence that Gi/Go, rather than Gs, mediate the muscarinic stimulation of adenylyl cyclase in rat olfactory bulb.
Collapse
Affiliation(s)
- M C Olianas
- Department of Neurosciences, University of Cagliari, Italy
| | | |
Collapse
|
26
|
Piacentini L, Mura R, Jakobs KH, Niroomand F. Stable GDP analog-induced inactivation of G(i) proteins promotes cardiac adenylyl cyclase inhibition by guanosine 5'-(beta gamma-imino)triphosphate and muscarinic acetylcholine receptor. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1282:11-6. [PMID: 8679647 DOI: 10.1016/0005-2736(96)00029-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Low concentrations of GDP and its stable analog guanosine 5'-O-(2-thio)diphosphate (GDP beta S) have been shown to stimulate adenylyl cyclase activity in canine cardiac sarcolemmal membranes independent from a phosphate transfer reaction. The mechanism of this stimulation was further examined. The stable GTP analog guanosine 5'-(beta gamma-imino)triphosphate (Gpp(NH)p) increased basal adenylyl cyclase activity and inhibited forskolin-stimulated activity with EC50 (half-maximal effective concentration) values of 0.7 mumol/l and 10 nmol/l, respectively. In the presence of GDP beta S (5 mumol/l), which increased basal activity by about 150%, addition of Gpp(NH)p inhibited adenylyl cyclase activity by up to 50% with an EC50 value of 40 nmol/l. Activation of cardiac muscarinic acetylcholine receptors by carbachol amplified this Gpp(NH)p-induced inhibition of GDP beta S-stimulated adenylyl cyclase activity. The stimulatory effect of GDP beta S and the inhibitory effect of Gpp(NH)p on GDP beta S-stimulated adenylyl cyclase activity were both attenuated by increasing the Mg2+ concentration or substituting Mn2+ for Mg2+ in the assay. Furthermore, both effects were strongly reduced or abolished upon pretreatment of the sarcolemmal membranes with a low concentration of the SH reagent N-ethylmaleimide (10 mumol/l). These results suggest that the stimulatory effect of GDP beta S on basal adenylyl cyclase activity in canine cardiac sarcolemmal membranes is caused by inactivation of G(i) proteins, which are then rendered susceptible to activation by Gpp(NH)p and inhibitory receptors.
Collapse
|
27
|
Bartolami S, Planche M, Pujol R. Effects of ototoxins on quinuclidinyl benzylate binding in the rat cochlea. Neurosci Lett 1994; 174:169-72. [PMID: 7970174 DOI: 10.1016/0304-3940(94)90013-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Ototoxins inhibit the muscarinic receptor-activated inositol phosphate synthesis in the rat cochlea. In order to study this inhibitory mechanism, we investigated the effects of the ototoxins ethacrynate, cisplatin, HgCl2 and neomycin on [3H]quinuclidinyl benzylate binding to muscarinic receptors in adult and 12-day-old rat cochleas. The results are similar whatever the age: at concentrations that inhibit the inositol phosphate synthesis, ethacrynate is without effect. Neomycin only reduces [3H]quinuclidinyl benzylate binding at concentrations in the millimolar range. Cisplatin and HgCl2 block the binding in a dose-dependent way. These results suggest that the block of the transduction system by cisplatin and HgCl2 is due to direct interactions with muscarinic binding sites. Moreover, considering these data together with previous results, ethacrynate and neomycin may affect the phosphoinositide signalling pathway at targets including phosphoinositides and G proteins.
Collapse
Affiliation(s)
- S Bartolami
- Laboratoire de Neurobiologie de l'Audition, INSERM U254, CHU Saint Charles, Montpellier, France
| | | | | |
Collapse
|
28
|
Liu Y, Hillefors-Berglund M, von Euler G. Modulation of dopamine D3 receptor binding by N-ethylmaleimide and neurotensin. Brain Res 1994; 643:343-8. [PMID: 7913398 DOI: 10.1016/0006-8993(94)90045-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
GTP or G protein inactivation by N-ethylmaleimide reduced the Bmax value but not the KD value of 7-[3H]hydroxy-N,N-di-n-propyl-2-aminotetralin ([3H]7-OH-DPAT) binding in the rat subcortical limbic area. Neurotensin (10 nM) increased the KD and the Bmax values of [3H]7-OH-DPAT binding, and these effects persisted also following N-ethylmaleimide pretreatment. N-Propylnorapomorphine, quinpirole, raclopride, and remoxipride inhibited [3H]7-OH-DPAT binding with Ki values of 0.093, 1.97, 10.6, and 710 nM, respectively. These findings indicate that the D3 receptor is coupled to G proteins in the brain, and that neurotensin can modulate D3 agonist binding by a G protein-independent mechanism.
Collapse
Affiliation(s)
- Y Liu
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
29
|
Allgaier C, Choi BK, Hertting G. Muscarine receptors regulating electrically evoked release of acetylcholine in hippocampus are linked to pertussis toxin-sensitive G proteins but not to adenylate cyclase. J Neurochem 1993; 61:1043-9. [PMID: 8360671 DOI: 10.1111/j.1471-4159.1993.tb03618.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
[3H]Acetylcholine release elicited with 360 pulses/3 Hz from slices of rabbit hippocampus is facilitated in the presence of the muscarine (M) receptor antagonist atropine (indicating the existence of autoinhibition) and diminished by the M receptor agonists carbachol and oxotremorine. N-Ethylmaleimide (30 microM) and pertussis toxin (8 micrograms/ml) counteracted antagonist-induced facilitation and agonist-induced inhibition of release, suggesting that a pertussis toxin-sensitive GTP-binding protein is involved in the chain of events mediating activation of M receptors to inhibition of release. Neither 8-bromo-cyclic AMP (300 microM), a membrane analogue of cyclic AMP, nor rolipram (10 microM), a phosphodiesterase inhibitor, affected electrically evoked release of [3H]acetylcholine. They also did not influence the oxotremorine-induced inhibition of transmitter release. In conclusion, no evidence was found for the assumption that activation of M autoreceptors is linked to inhibition of adenylate cyclase.
Collapse
Affiliation(s)
- C Allgaier
- Institute of Pharmacology and Toxicology, University of Freiburg, F.R.G
| | | | | |
Collapse
|
30
|
Bartolami S, Planche M, Pujol R. Sulphhydryl-modifying reagents alter ototoxin block of muscarinic receptor-linked phosphoinositide turnover in the cochlea. Eur J Neurosci 1993; 5:832-8. [PMID: 8281295 DOI: 10.1111/j.1460-9568.1993.tb00935.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In the 12-day-old rat cochlea, the synthesis of inositol phosphates (IPs) can be activated via M3 cholinoceptors. This stimulation is blocked by ototoxins (mercury, ethacrynate, cisplatin, neomycin), drugs with side effects that lead to damage of hair cells and strial cells. As these toxic effects can be reversed in vivo by thiol molecules, we investigated whether modifications of thiol compounds could be involved in ototoxin-induced inhibition of the IP turnover in the cochlea. For this purpose, we assessed whether the sulphhydryl-modifying reagents N-ethylmaleimide and cadmium modify the carbachol-stimulated formation of IPs in the 12-day-old rat cochlea. Both molecules inhibit the carbachol effect on a dose-dependent way without altering the basal metabolism of IPs. As cadmium may block some calcium channels, the effect of verapamil, another calcium channel antagonist, was tested. Verapamil (1-50 microM) does not alter carbachol-evoked IP formation, suggesting that the inhibitory effect of cadmium is not due to a calcium influx block. Binding experiments with the muscarinic ligand quinuclidinyl benzylate (QNB) showed that the sulphhydryl-modifying reagents do not displace QNB from binding sites. Combining ototoxins and reagents shows that N-ethylmaleimide acts synergistically with all ototoxins but ethacrynate while cadmium does so only with mercury. Both N-ethylmaleimide and cadmium have additive effects with ethacrynate. As a supplement, disulphide bond-modifying agents do not alter the carbachol-enhanced metabolism of IPs. These results suggest that molecules having thiol-modifying properties inhibit the carbachol-induced turnover of IPs without acting at the muscarinic sites.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S Bartolami
- INSERM U. 254, Laboratorie de Neurobiologie de l'Audition, CHU St. Charles, Montpellier, France
| | | | | |
Collapse
|
31
|
Cohen-Armon M, Sokolovsky M. Evidence for involvement of the voltage-dependent Na+ channel gating in depolarization-induced activation of G-proteins. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)98421-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
32
|
Bartolami S, Planche M, Pujol R. Inhibition of the carbachol-evoked synthesis of inositol phosphates by ototoxic drugs in the rat cochlea. Hear Res 1993; 67:203-10. [PMID: 8340273 DOI: 10.1016/0378-5955(93)90248-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The ability of amikacin, neomycin, ethacrynate, mercuric chloride and cisplatin to alter the inositol phosphate (IP) signalling pathway was assessed in the 12-day-old rat cochlea, where the turnover of IPs is coupled to muscarinic receptors. This study was motivated by: (1) the demonstration of neomycin binding to phosphatidylinositol 4,5-biphosphate, the precursor of IPs, and (2) the fact that ototoxic drugs induce some common symptoms in outer hair cells. At concentrations below 1 mM, none of the compounds changed the control 3H-IP formation. Mercuric chloride, cisplatin and ethacrynate inhibited the carbachol-induced formation of IPs in a dose-dependent manner with IC50 values of 74,340 and 430 microM, respectively. The aminoglycosides were less efficient in reducing the carbachol-stimulated accumulation of IPs, since neither amikacin nor neomycin, both at 1 mM, had any significant effect. However, neomycin applied at 15 and 30 microM induced 29% and 43% of inhibition of the stimulated IP response. Finally, additive effects are obtained between some of the toxic drugs. The results suggest that a block of the IP transduction system, associated with the cholinergic efferent innervation of the organ of Corti, is a feature that may be involved in some types of ototoxicity. The inefficiency of aminoglycosides and the putative targets of the ototoxic agents are discussed.
Collapse
Affiliation(s)
- S Bartolami
- INSERM U 254, Université de Montpellier II, France
| | | | | |
Collapse
|
33
|
Kwon G, Remmers AE, Datta S, Neubig RR. Synthesis and characterization of fluorescently labeled bovine brain G protein subunits. Biochemistry 1993; 32:2401-8. [PMID: 8443180 DOI: 10.1021/bi00060a035] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
G proteins play an important role in transmitting hormonal signals, and fluorescence techniques would be useful to study their cellular distribution and mechanisms. To prepare active fluorescent G protein Go/Gi or beta gamma subunits were reacted with fluorescein isothiocyanate (FITC) to label the alpha (F-alpha) and gamma (F-gamma/beta) subunits or with (iodoacetamido)tetramethylrhodamine (TMR-IAA) to label the beta subunit (TMR-beta gamma). Unreacted dye was removed from the labeled proteins by ultrafiltration, followed by further purification using HPLC gel filtration. The molar ratios of dye to protein were 0.96 +/- 0.15, 0.59 +/- 0.07, and 1.37 +/- 0.09 for labeled alpha,beta, and gamma subunits, respectively. GTP gamma S binding to F-alpha and ADP-ribosylation by pertussis toxin of F-alpha were reduced to 63% and 78% of control, respectively. F-alpha was a heterogeneous population of alpha subunits. Active F-alpha containing less than one (0.7) label/subunit (F-alpha-Mono Q) was separated from unlabeled and multiply labeled F-alpha by Mono Q anion-exchange chromatography. F-alpha-Mono Q displayed reduced GTPase activity (turnover number was 46% of control), while GTP gamma S binding and ADP-ribosylation by pertussis toxin were only decreased to 78% and 82% of control, respectively. TMR-beta gamma and F-gamma/beta retain full function compared to native beta gamma, as measured by three methods: (1) TMR-beta gamma and F-gamma/beta are able to form heterotrimers with alpha o subunits, (2) TMR-beta gamma and F-gamma/beta support the ADP ribosylation of alpha o subunits by pertussis toxin, and (3) TMR-beta gamma and F-gamma/beta inhibit forskolin-stimulated adenylyl cyclase activity. The fluorescent G protein subunits will be valuable tools to study G protein mechanisms in reconstituted membranes and intact cells.
Collapse
Affiliation(s)
- G Kwon
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor 48109-0626
| | | | | | | |
Collapse
|
34
|
Mitra SP, Carraway RE. Importance of thiol group(s) in the binding of 125I-labeled neurotensin to membranes from porcine brain. Peptides 1993; 14:185-9. [PMID: 8387186 DOI: 10.1016/0196-9781(93)90028-f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In a radioreceptor assay employing 125I-labeled neurotensin (125I-NT) and membranes from porcine brain, the reducing agent, dithiothreitol (DTT), was found to enhance binding (ED50, approximately 10 microM), whereas alkylating agents such as N-ethyl-maleimide (NEM) suppressed binding (ED50, approximately 0.7 mM). The enhanced binding appeared to be due to an effect on disulfide group(s) within the NT-receptor or associated protein(s), since the stability of 125I-NT in the presence of membranes was not altered by 2 mM DTT. Scatchard analysis indicated that treatment with 2 mM DTT increased the total number of binding sites approximately 1.6-fold without much effect on the apparent KdS for the high- and low-affinity states. In a similar manner, the effect of 1 mM NEM was shown to result primarily from a decrease (approximately 60%) in the number of binding sites with little change in the KdS. The additional receptors gained by exposure to DTT appeared not to be sensitive to NEM unless pretreated with DTT, suggesting that reduction of disulfide bond(s) converted latent receptors into active receptors. Interestingly, nine Cys residues have been found to be present in the recently cloned rat NT receptor. In other studies, preincubation of membranes with NT prior to treatment with NEM diminished the inhibitory effect of NEM on agonist binding, suggesting that the critical sulfhydryl group(s) were located at the NT binding site or were protected by an allosteric effect.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S P Mitra
- Department of Physiology, University of Massachusetts Medical Center, Worcester 01655
| | | |
Collapse
|
35
|
Murphy TV, Foucart S, Majewski H. Prejunctional alpha 2-adrenoceptors in mouse atria function through G-proteins which are sensitive to N-ethylmaleimide, but not pertussis toxin. Br J Pharmacol 1992; 106:871-6. [PMID: 1356569 PMCID: PMC1907645 DOI: 10.1111/j.1476-5381.1992.tb14427.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
1. The identity of the G-proteins involved in prejunctional alpha 2-adrenoceptor signal transduction in mouse atria was examined by use of the G-protein inactivators N-ethylmaleimide and pertussis toxin. 2. The alpha 2-adrenoceptor partial agonist clonidine (0.03 microM) inhibited the electrical stimulation-induced (S-I) outflow of radioactivity from mouse atria which were incubated with [3H]-noradrenaline and stimulated at 5 Hz. The partial alpha 2-adrenoceptor agonist St 363 (10 microM) inhibited the S-I outflow of radioactivity at the lower stimulation frequency of 2.5 Hz. The inhibitory effects of these compounds were not altered in mice pretreated with pertussis toxin (1.5 micrograms, i.v.). 3. The alpha 2-adrenoceptor antagonist, idazoxan (0.1 microM), increased the S-I outflow of radioactivity from mouse atria stimulated at 5 Hz, and this effect was not altered in atria from mice pretreated with pertussis toxin. 4. The inhibitory effects of clonidine and St 363 and the facilitatory effect of idazoxan on the S-I outflow of radioactivity from mouse atria were significantly less in atria incubated with N-ethylmaleimide (NEM, 3 microM) for 60 min before the [3H]-noradrenaline incubation. 5. The results suggest that prejunctional alpha 2-adrenoceptors in mouse atria function through G-proteins which are NEM-sensitive, but pertussis toxin insensitive.
Collapse
Affiliation(s)
- T V Murphy
- Department of Pharmacology, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
36
|
Abstract
The sulfhydryl alkylating agent N-ethylmaleimide (NEM) was used to probe the possible modulation of calcium current (ICa) by G-proteins in identified neurons of Aplysia californica. ICa recorded with conventional two-electrode voltage clamp was irreversibly suppressed by bath applied NEM in a concentration-dependent manner. This effect was fully blocked by addition of dithiothreitol or intracellular pressure injection of GTP gamma S but was unaffected by pre-treatment with pertussis toxin. These findings suggest that NEM inhibits ICa by causing persistent activation of an inhibitory G-protein in the absence of applied agonist. It appears that alkylation of key cysteine residues involved in G-protein deactivation underlie this effect.
Collapse
Affiliation(s)
- M W Fryer
- Department of Zoology, La Trobe University, Bundoora, Australia
| |
Collapse
|
37
|
Thomas JM, Meier-Davis SR, Hoffman BB. Prolonged activation of inhibitory somatostatin receptors increases adenylate cyclase activity in wild-type and Gs alpha-deficient (cyc-) S49 mouse lymphoma cells. Cell Signal 1992; 4:571-81. [PMID: 1329904 DOI: 10.1016/0898-6568(92)90026-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Many cells develop enhanced adenylate cyclase activity after prolonged exposure to drugs that acutely inhibit the enzyme and it has been suggested that this adaptation may be due to an increase in Gs alpha. We have treated wild-type and Gs alpha-deficient cyc- S49 mouse lymphoma cells with a stable analogue (SMS 201-995) of the inhibitory agonist somatostatin. After incubation with SMS for 24 h, the forskolin-stimulated cAMP synthetic rate in intact cyc- cells was increased by 76%, similar to the increase found in the wild-type cells. Forskolin-stimulated adenylate cyclase activity in the presence of Mn2+ was also increased in membranes prepared from SMS-treated cyc- cells; however, guanine nucleotide-mediated inhibition of adenylate cyclase activity was not changed despite a small decrease in inhibitory Gi alpha subunits detected by immunoblotting. Pretreatment of cyc- cells with pertussis toxin prevented SMS from inducing the enhancement of forskolin-stimulated cAMP accumulation in intact cells. After chronic incubation of cyc- cells with SMS, exposure to N-ethylmaleimide, which abolished receptor-mediated inhibition of cAMP accumulation, did not attenuate the enhanced rate of forskolin-stimulated cAMP synthesis compared to N-ethylmaleimide-treated controls. These results with cyc- cells demonstrate that an adaptive increase in adenylate cyclase activity induced by chronic treatment with an inhibitory drug can occur in the absence of expression of Gs alpha.
Collapse
Affiliation(s)
- J M Thomas
- Department of Medicine, Stanford University School of Medicine, CA
| | | | | |
Collapse
|
38
|
Avigan J, Murtagh JJ, Stevens LA, Angus CW, Moss J, Vaughan M. Pertussis toxin-catalyzed ADP-ribosylation of G(o) alpha with mutations at the carboxyl terminus. Biochemistry 1992; 31:7736-40. [PMID: 1510959 DOI: 10.1021/bi00148a039] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The guanine nucleotide-binding protein G(o alpha) has been implicated in the regulation of Ca2+ channels in neural tissues. Covalent modification of G(o alpha) by pertussis toxin-catalyzed ADP-ribosylation of a cysteine (position 351) four amino acids from the carboxyl terminus decouples G(o alpha) from receptor. To define the structural requirements for ADP-ribosylation, preparations of recombinant G(o alpha) with mutations within the five amino acids at the carboxyl terminus were evaluated for their ability to serve as pertussis toxin substrates. As expected, the mutant in which cysteine 351 was replaced by glycine (C351G) was not a toxin substrate. Other inactive mutants were G352D and L353 delta/Y354 delta. Mutations that had no significant effect on toxin-catalyzed ADP-ribosylation included G350D, G350R, Y354 delta, and L353V/Y354 delta. Less active mutants were L353G/Y354 delta, L353A/Y354 delta, and L353G. ADP-ribosylation of the active mutants, like that of wild-type G(o alpha), was enhanced by the beta gamma subunits of bovine transducin. It appears that three of the four terminal amino acids critically influence pertussis toxin-catalyzed ADP-ribosylation of G(o alpha).
Collapse
Affiliation(s)
- J Avigan
- Laboratory of Cellular Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | | | | | |
Collapse
|
39
|
Ying SW, Niles L, Pickering D, Ye M. Involvement of multiple sulfhydryl groups in melatonin signal transduction in chick brain. Mol Cell Endocrinol 1992; 85:53-63. [PMID: 1326452 DOI: 10.1016/0303-7207(92)90124-o] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
To gain insight into the molecular mechanism underlying melatonin binding and signal transduction in the chick brain, we have investigated the role of -SH groups, using a sulfhydryl alkylating reagent N-ethylmaleimide (NEM). At least two -SH groups are involved in the formation of the receptor-G protein complex: one is sensitive to and the other relatively insensitive to NEM. Alkylation of the sensitive group selectively abolishes high affinity binding of 2-[125I]iodomelatonin ([125I]MEL), similar to the effect induced by GTP, thus leading to a complete loss of sensitivity to nucleotides. Modification of both groups causes a marked reduction in binding capacity. Agonists with high affinity, but not other compounds with low affinity for the melatonin receptor, protect against alkylation by NEM. GTP gamma s does not significantly alter the reactivity of -SH groups towards NEM, but agonist-protected receptors remain sensitive to this nucleotide. Moreover, NEM pretreatment blocks the inhibitory effect of melatonin on forskolin-stimulated adenylate cyclase activity in chick brain. These data suggest that the -SH group modulating agonist affinity may lie within the coupling domain between the receptor and G protein but outside of the GTP binding site. In addition, sulfhydryl groups are essential for melatonin binding and signal transduction in chick brain.
Collapse
Affiliation(s)
- S W Ying
- Department of Biomedical Sciences, McMaster University, Hamilton, Ont., Canada
| | | | | | | |
Collapse
|
40
|
Wu Y, Yang Y, Wagner P. Modification of chromaffin cells with pertussis toxin or N-ethylmaleimide lowers cytoskeletal F-actin and enhances Ca(2+)-dependent secretion. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42458-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
41
|
van der Ploeg I, Parkinson FE, Fredholm BB. Effect of pertussis toxin on radioligand binding to rat brain adenosine A1 receptors. J Neurochem 1992; 58:1221-9. [PMID: 1548460 DOI: 10.1111/j.1471-4159.1992.tb11332.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In a previous study we showed that in vivo treatment with pertussis toxin could inhibit some, but not all, effects of adenosine in the rat hippocampus. In this study we investigated the effect of pertussis toxin on the binding of adenosine analogues to A1 receptors in rat brain. Intraventricular injection of pertussis toxin (10 micrograms into the lateral ventricle) did not affect A1 receptor binding in any brain region studied, as evaluated by autoradiography. In vitro treatment of brain sections (10 microns) with pertussis toxin for 5 h, under conditions when greater than 80% of the G proteins were ADP ribosylated, did not alter radioligand binding to adenosine A1 receptors. GTP (10 microM) virtually abolished the high-affinity agonist binding to the A1 receptor. On the other hand, in solubilized cortical membrane preparations, pertussis toxin pretreatment induced a complete shift of the A1 receptors to the low-affinity state. This suggests that the ability of pertussis toxin to affect G proteins coupled to A1 receptors in brain depends not only on the distribution of the toxin but also on the configuration of receptors and G proteins.
Collapse
Affiliation(s)
- I van der Ploeg
- Department of Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
42
|
Gierschik P. ADP-ribosylation of signal-transducing guanine nucleotide-binding proteins by pertussis toxin. Curr Top Microbiol Immunol 1992; 175:69-96. [PMID: 1628499 DOI: 10.1007/978-3-642-76966-5_4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- P Gierschik
- Pharmakologisches Institut, Universität Heidelberg, FRG
| |
Collapse
|
43
|
Strömberg I, Bickford-Wimer P. Effects of locally applied D1 and D2 agonists on striatal neurons with 6-OHDA and pertussis toxin lesions. Brain Res 1991; 564:279-85. [PMID: 1687374 DOI: 10.1016/0006-8993(91)91464-c] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Electrophysiological recordings were performed on caudate neurons in rats with dopamine (DA) depleted striatum in combination with pertussis toxin (PT) lesions. Pertussis toxin inactivates the G protein coupled to D2 receptors. DA depletions were performed by unilateral injections of 6-hydroxydopamine (6-OHDA). After the 6-OHDA lesion, rats were challenged with low doses of apomorphine. When a double peak rotational pattern was stable over repeated rotational tests, PT was injected into striatum ipsilateral to the DA depleted side. Two days after the PT injections extracellular recordings with local applications of the D1 agonist SKF 38393 and the D2 agonist N-0437 were performed. Spontaneous firing rates, measured before drug application, were elevated in animals with both 6-OHDA and 6-OHDA/PT combination of lesions. In rats with only 6-OHDA lesions, a supersensitivity to N-0437 was observed, while no significant change in response to the D1 agonist was detected. Recordings from caudate neurons in rats with a combination of 6-OHDA and PT resulted in no response to the D2 agonist. However, a subsensitivity to the D1 agonist was detected and only 60% of neurons were inhibited by SKF 38393. Taken together, these data suggest an interaction between the D1 and D2 receptors, which is revealed only after an upregulation of the D2 receptors and subsequent blockade of D2 mediated effects.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Animals
- Apomorphine/pharmacology
- Caudate Nucleus/cytology
- Caudate Nucleus/drug effects
- Corpus Striatum/cytology
- Corpus Striatum/drug effects
- Dopamine Agents/pharmacology
- Female
- Nervous System Diseases/chemically induced
- Nervous System Diseases/physiopathology
- Neurons/drug effects
- Oxidopamine
- Pertussis Toxin
- Rats
- Rats, Inbred Strains
- Receptors, Dopamine/physiology
- Receptors, Dopamine D1
- Receptors, Dopamine D2
- Stereotaxic Techniques
- Sympathectomy, Chemical
- Tetrahydronaphthalenes/pharmacology
- Thiophenes/pharmacology
- Up-Regulation/drug effects
- Virulence Factors, Bordetella
Collapse
Affiliation(s)
- I Strömberg
- Department of Histology and Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
44
|
Abstract
p-Bromophenacyl bromide (BPB) is an alkylating agent which has been used in biochemical studies as an inhibitor of phospholipase A2 activity. We report here that BPB irreversibly inhibited adenylate cyclase activity stimulated by hormones, forskolin, GppNHp, NaF, and cholera toxin. The action of BPB in S49 lymphoma cell membranes (wild type and cyc-) indicates that it can inhibit adenylate cyclase function in the absence of Gs. In the presence of Gs, however, inhibition of adenylate cyclase by BPB was enhanced, suggesting that BPB may covalently modify the catalytic protein on a site involved in activated catalytic functioning or critical to its interaction with Gs and/or additionally on the alpha s protein.
Collapse
Affiliation(s)
- K A O'Donnell
- Department of Pharmacological and Physiological Science, St. Louis University School of Medicine, MO 63104
| | | |
Collapse
|
45
|
Rossi MA, Curzio M, Di Mauro C, Fidale F, Garramone A, Esterbauer H, Torrielli M, Dianzani MU. Experimental studies on the mechanism of action of 4-hydroxy-2,3-trans-nonenal, a lipid peroxidation product displaying chemotactic activity toward rat neutrophils. Cell Biochem Funct 1991; 9:163-70. [PMID: 1661207 DOI: 10.1002/cbf.290090304] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The effects of 4-hydroxy-2,3-trans-nonenal (HNE) and nonanal on the activity of phosphoinositide-specific phospholipase C of rat neutrophils have been studied in parallel with their action on neutrophil oriented migration. Concentrations of HNE ranging from 10(-7) to 10(-5) M significantly stimulated the oriented migration of rat polymorphonuclear leukocytes. HNE stimulated both the basal and GTP gamma S-induced phospholipase C activity when used at concentrations between 10(-8) and 10(-6) M. Nonanal was devoid both of chemotactic activity and of any action on phospholipase C activity. The effect of GTP gamma S on the stimulation of phospholipase C induced by HNE was higher when the lowest dose of the aldehyde was used; the finding of an additive effect between 10(-8) M HNE and 2 x 10(-5) M GTP gamma S suggests that the two compounds may share a final common pathway of action. These results suggest that the chemotactic activity of HNE might be mediated, like that of other more well-known chemoattractants, by the stimulation of phosphoinositide-specific phospholipase C.
Collapse
Affiliation(s)
- M A Rossi
- Department of Experimental Medicine and Oncology, University of Turin, Torino, Italy
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Fishman JB, Rubins JB, Chen JC, Dickey BF, Volicer L. Modification of brain guanine nucleotide-binding regulatory proteins by tryptamine-4,5-dione, a neurotoxic derivative of serotonin. J Neurochem 1991; 56:1851-4. [PMID: 1902871 DOI: 10.1111/j.1471-4159.1991.tb03440.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have recently characterized a novel oxidation product of serotonin (5-hydroxytryptamine, 5-HT), tryptamine-4,5-dione, which increases 5-HT efflux from striatum and hippocampus and causes selective neuronal death. Exposure of striatal synaptosomes or the major brain guanine nucleotide-binding regulatory proteins Gi and Go to [3H]tryptamine-4,5-dione resulted in the radiolabeling of a major band with an apparent molecular mass equivalent to that of the alpha subunits of Gi and Go (approximately 40,000). The binding of [35S]guanosine-5'-O-(3-thiotriphosphate) ([35S]GTP-gamma-S) to Gi and Go and pertussis toxin-catalyzed [32P]ADP-ribosylation of the G protein alpha subunits were both inhibited in a dose-dependent manner by tryptamine-4,5-dione. Thus, neurotoxins such as tryptamine-4,5-dione may exert their effects through specific interactions with G proteins.
Collapse
Affiliation(s)
- J B Fishman
- Department of Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | | | | | | | | |
Collapse
|
47
|
Emerit MB, Miquel MC, Gozlan H, Hamon M. The GTP-insensitive component of high-affinity [3H]8-hydroxy-2-(di-n-propylamino)tetralin binding in the rat hippocampus corresponds to an oxidized state of the 5-hydroxytryptamine1A receptor. J Neurochem 1991; 56:1705-16. [PMID: 1826520 DOI: 10.1111/j.1471-4159.1991.tb02071.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Previous studies on central 5-hydroxytryptamine1A (5-HT1A) receptors have consistently shown the existence of a GTP-insensitive component of agonist binding, i.e., binding of [3H]8-hydroxy-2-(di-n-propylamino)tetralin ([3H]8-OH-DPAT) that persists in the presence of 0.1 mM GTP or guanylylimidodiphosphate (GppNHp). The molecular basis for this apparent heterogeneity was investigated pharmacologically and biochemically in the present study. The GppNHp-insensitive component of [3H]8-OH-DPAT binding increased spontaneously by exposure of rat hippocampal membranes or their 3-[3-(cholamidopropyl)dimethylammonio]-1-propane sulfonate-soluble extracts to air; it was reduced by preincubation of solubilized 5-HT1A binding sites in the presence of dithiothreitol and, in contrast, reversibly increased by preincubation in the presence of various oxidizing reagents like sodium tetrathionate or hydrogen peroxide. In addition, exposure of hippocampal soluble extracts to short-cross-linking reagents specific for thiols produced an irreversible increase in the proportion of GppNHp-insensitive over total [3H]8-OH-DPAT binding. The pharmacological properties of this GppNHp-insensitive component of [3H]8-OH-DPAT binding were similar to those of 5-HT1A sites in the absence of nucleotide. Sucrose gradient sedimentation of solubilized 5-HT1A binding sites treated by dithiothreitol or sodium tetrathionate showed that oxidation prevented the dissociation by GTP of the complex formed by the 5-HT1A receptor binding subunit (R[5-HT1A]) and a guanine nucleotide-binding protein (G protein). Moreover, the oxidation of -SH groups by sodium tetrathionate did not prevent the inactivation of [3H]8-OH-DPAT specific binding by N-ethylmaleimide, in contrast to that expected from an interaction of both reagents with the same -SH groups on the R[5-HT1A]-G protein complex. These data suggest that the appearance of GTP-insensitive [3H]8-OH-DPAT specific binding occurs as a result of the (spontaneous) oxidation of essential -SH groups (different from those preferentially inactivated by N-ethylmaleimide) on the R[5-HT1A]-G protein complex.
Collapse
Affiliation(s)
- M B Emerit
- INSERM U. 288, Neurobiologie Cellulaire et Fonctionnelle, Faculté de Médecine Pitié-Salpêtrière, Paris, France
| | | | | | | |
Collapse
|
48
|
Stutchfield J, Cockcroft S. Characterization of fMet-Leu-Phe-stimulated phospholipase C in streptolysin-O-permeabilised cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 197:119-25. [PMID: 2015814 DOI: 10.1111/j.1432-1033.1991.tb15889.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Phospholipase C (specific for inositol lipids) is known to be present both in membranes and cytosol. Receptor-mediated activation of this enzyme occurs via a guanine nucleotide regulatory protein (G-protein), designated Gp. We have compared the stimulation of this enzyme by fMet-Leu-Phe via the G-protein in HL60 membranes and in permeabilised cells. fMet-Leu-Phe stimulated phospholipase C in membranes at 2 min and the response was dependent on exogenously added GTP. GTP alone also stimulated phospholipase C activity such that at 10 min the response to fMet-Leu-Phe was minimal. In comparison, the response to fMet-Leu-Phe in permeabilised cells was greater in extent but did not require added GTP. However, it was antagonized by GDP analogues (GDP[beta S] greater than GDP greater than dGDP) and by pertussis toxin pretreatment, indicating that fMet-Leu-Phe-stimulated phospholipase C activity was also mediated via Gp. GTP and its analogue GTP[gamma S] also stimulated phospholipase C and their effects were strictly additive to the stimulation obtained with fMet-Leu-Phe. Such additivity was also observed when two receptor-directed agonists, fMet-Leu-Phe and ATP, were used to stimulate intact cells. It is concluded that (a) the size of the response with fMet-Leu-Phe in membranes is limited by the loss of a component, possibly phospholipase C, and (b) stoichiometry and physical organisation of multiple species of G-proteins and/or phospholipases C may explain the independent nature of phospholipase C activation by fMet-Leu-Phe, ATP and guanine nucleotides.
Collapse
Affiliation(s)
- J Stutchfield
- Department of Physiology, University College London, England
| | | |
Collapse
|
49
|
Marin C, Parashos SA, Chase TN. Effect of Gi protein ADP-ribosylation induced by pertussis toxin on dopamine-mediated behaviors. Eur J Pharmacol 1991; 195:19-25. [PMID: 1676678 DOI: 10.1016/0014-2999(91)90377-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The effect of Gi protein modification produced by intrastriatal pertussis toxin injection on dopamine (DA)-mediated behaviors was studied. Administration of the selective D2 agonist quinpirole induced ipsilateral rotation but the selective D1 agonist SKF 38393 did not. However, SKF 38393 was able to increase the rotation induced by quinpirole. The selective D2 antagonist raclopride and the selective D1 antagonist SCH 23390 both blocked the effect of quinpirole. Striatal levels of cAMP were measured in both intact and pertussis toxin injected striatum. SKF 38393 induced a significant increase in cAMP, but quinpirole had no effect. When both drugs were administered together, quinpirole attenuated the SKF 38393-induced increase in cAMP levels. Moreover, quinpirole-induced attenuation of SKF 38393 effect was greater in intact striatum. In pertussis toxin-injected striatum, quinpirole only attenuated SKF 38393-induced increase of cAMP to control levels. This imbalance between intact and injected striatum might be the cause of the rotation in pertussis toxin-injected rats suggesting an important role for G proteins in DA receptor interactions.
Collapse
Affiliation(s)
- C Marin
- Experimental Therapeutics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD
| | | | | |
Collapse
|
50
|
Maus M, Homburger V, Cordier J, Pantaloni C, Bockaert J, Glowinski J, Prémont J. Treatment of intact striatal neurones with cholera toxin or 8-bromoadenosine 3',5'-(cyclic)phosphate decreases the ability of pertussis toxin to ADP-ribosylate the alpha-subunits of inhibitory and other guanine-nucleotide-binding regulatory proteins, Gi and Go. Evidence for two distinct mechanisms. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 196:313-20. [PMID: 1848817 DOI: 10.1111/j.1432-1033.1991.tb15819.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Using primary cultures of striatal neurones from the mouse embryo, we showed that treatment of intact cells with cholera toxin (5 micrograms/ml, 22 h) decreases the subsequent ADP-ribosylation of the alpha subunit of the guanine-nucleotide-binding regulatory protein Go (Go alpha) and the alpha subunit of the inhibitory guanine-nucleotide-binding regulatory protein (Gi alpha) of adenylate cyclase, which is catalyzed in vitro on neuronal membranes by pertussis toxin. The inhibitory effect of cholera toxin could not only be attributed to an increased production of cAMP in neurones. Treatment of cells with 0.1 microM 8-bromoadenosine 3',5'-(cyclic)phosphate (BrcAMP) for 16 h, or with 0.1 mM BrcAMP for 5 min, mimicked the effect of cholera toxin on the ADP-ribosylation of Go alpha and Gi alpha in vitro. However, the two agents seem to act through distinct mechanisms. The protein kinase inhibitor 1-(5-isoquinolinesulfonyl)-2-methylpiperazine prevented the action of Br8cAMP but not that of cholera toxin. In addition, measurements of the pI of the Go alpha deduced from immunoblots of two-dimensional gels performed using a specific antibody directed against Go alpha suggest that treatment of neurones with cholera toxin induces ADP-ribosylation of Go alpha in intact cells, while BrcAMP does not.
Collapse
Affiliation(s)
- M Maus
- Laboratoire de Neuropharmacologie, Institut National de la Santé et de la Recherche Médicale, Unité 114, Paris, France
| | | | | | | | | | | | | |
Collapse
|