1
|
Kundu D, Acharya S, Wang S, Kim KM. Unveiling the intracellular dynamics of α4β2 nAChR-mediated ERK activation through the interplay of arrestin, Gβγ, and PKCβII. Life Sci 2024; 355:122994. [PMID: 39163903 DOI: 10.1016/j.lfs.2024.122994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/28/2024] [Accepted: 08/14/2024] [Indexed: 08/22/2024]
Abstract
AIMS In contrast to G protein-coupled receptors or receptor tyrosine kinases, the mechanism underlying ERK activation through nicotine acetylcholine receptors (nAChRs), members of the ligand-gated ion channel family, remains poorly elucidated. This study aimed to delineate the signaling pathway responsible for ERK activation by the α4β2 nAChR subtype, which is implicated in nicotine addiction and various mental disorders. MATERIALS AND METHODS Loss-of-function strategies and mutants of arrestin2/PKCβII with distinct functional characteristics were employed to identify the cellular components and processes involved in ERK activation. KEY FINDINGS ERK activation via α4β2 nAChR was observed within the nucleus and necessitated the nuclear translocation of arrestin2 and PKCβII, which exhibited mutual augmentation. Activation of PKCβII by α4β2 nAChR stimulation facilitated the nuclear translocation of arrestin2 by enhancing its interaction with importin β1. Apart from scaffolding ERK activation in the nucleus, arrestin2, in cooperation with GRK2, facilitated the activation of the Src/Syk/PKCβII signaling cascade, leading to the nuclear entry of PKCβII in a Gβγ-dependent manner. Upon nuclear localization, PKCβII underwent ubiquitination by Mdm2 and interacted with MEK1, resulting in ERK activation. In summary, α4β2 nAChR-mediated ERK activation in the nucleus involves the nuclear translocation of arrestin2 and PKCβII, which is reciprocally facilitated via positive feedback augmentation. SIGNIFICANCE As α4β2 nAChRs play a pivotal role in various cellular processes including drug addiction and mental disorders, our findings will offer insights into understanding the pathogenesis of α4β2 nAChR-related disorders and may facilitate the development of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Dooti Kundu
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Srijan Acharya
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Shujie Wang
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kyeong-Man Kim
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
2
|
Liu E, Zhang Y, Wang JZ. Updates in Alzheimer's disease: from basic research to diagnosis and therapies. Transl Neurodegener 2024; 13:45. [PMID: 39232848 PMCID: PMC11373277 DOI: 10.1186/s40035-024-00432-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/11/2024] [Indexed: 09/06/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, characterized pathologically by extracellular deposition of β-amyloid (Aβ) into senile plaques and intracellular accumulation of hyperphosphorylated tau (pTau) as neurofibrillary tangles. Clinically, AD patients show memory deterioration with varying cognitive dysfunctions. The exact molecular mechanisms underlying AD are still not fully understood, and there are no efficient drugs to stop or reverse the disease progression. In this review, we first provide an update on how the risk factors, including APOE variants, infections and inflammation, contribute to AD; how Aβ and tau become abnormally accumulated and how this accumulation plays a role in AD neurodegeneration. Then we summarize the commonly used experimental models, diagnostic and prediction strategies, and advances in periphery biomarkers from high-risk populations for AD. Finally, we introduce current status of development of disease-modifying drugs, including the newly officially approved Aβ vaccines, as well as novel and promising strategies to target the abnormal pTau. Together, this paper was aimed to update AD research progress from fundamental mechanisms to the clinical diagnosis and therapies.
Collapse
Affiliation(s)
- Enjie Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yao Zhang
- Department of Endocrine, Liyuan Hospital, Key Laboratory of Ministry of Education for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China
| | - Jian-Zhi Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China.
| |
Collapse
|
3
|
Su LY, Jiao L, Liu Q, Qiao X, Xie T, Ma Z, Xu M, Ye MS, Yang LX, Chen C, Yao YG. S-nitrosoglutathione reductase alleviates morphine analgesic tolerance by restricting PKCα S-nitrosation. Redox Biol 2024; 75:103239. [PMID: 38901102 PMCID: PMC11253161 DOI: 10.1016/j.redox.2024.103239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024] Open
Abstract
Morphine, a typical opiate, is widely used for controlling pain but can lead to various side effects with long-term use, including addiction, analgesic tolerance, and hyperalgesia. At present, however, the mechanisms underlying the development of morphine analgesic tolerance are not fully understood. This tolerance is influenced by various opioid receptor and kinase protein modifications, such as phosphorylation and ubiquitination. Here, we established a murine morphine tolerance model to investigate whether and how S-nitrosoglutathione reductase (GSNOR) is involved in morphine tolerance. Repeated administration of morphine resulted in the down-regulation of GSNOR, which increased excessive total protein S-nitrosation in the prefrontal cortex. Knockout or chemical inhibition of GSNOR promoted the development of morphine analgesic tolerance and neuron-specific overexpression of GSNOR alleviated morphine analgesic tolerance. Mechanistically, GSNOR deficiency enhanced S-nitrosation of cellular protein kinase alpha (PKCα) at the Cys78 and Cys132 sites, leading to inhibition of PKCα kinase activity, which ultimately promoted the development of morphine analgesic tolerance. Our study highlighted the significant role of GSNOR as a key regulator of PKCα S-nitrosation and its involvement in morphine analgesic tolerance, thus providing a potential therapeutic target for morphine tolerance.
Collapse
Affiliation(s)
- Ling-Yan Su
- Key Laboratory of Genetic Evolution and Animal Models of the Chinese Academy of Sciences, Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China; College of Food Science and Technology, and Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Lijin Jiao
- Key Laboratory of Genetic Evolution and Animal Models of the Chinese Academy of Sciences, Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Qianjin Liu
- Key Laboratory of Genetic Evolution and Animal Models of the Chinese Academy of Sciences, Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Xinhua Qiao
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ting Xie
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhiyu Ma
- Key Laboratory of Genetic Evolution and Animal Models of the Chinese Academy of Sciences, Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Min Xu
- Key Laboratory of Genetic Evolution and Animal Models of the Chinese Academy of Sciences, Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Mao-Sen Ye
- Key Laboratory of Genetic Evolution and Animal Models of the Chinese Academy of Sciences, Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Lu-Xiu Yang
- Key Laboratory of Genetic Evolution and Animal Models of the Chinese Academy of Sciences, Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Chang Chen
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yong-Gang Yao
- Key Laboratory of Genetic Evolution and Animal Models of the Chinese Academy of Sciences, Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China; National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, China.
| |
Collapse
|
4
|
Lim WL, Gaunt JR, Tan JM, Zainolabidin N, Bansal VA, Lye YM, Ch'ng TH. CREB-regulated transcription during glycogen synthesis in astrocytes. Sci Rep 2024; 14:17942. [PMID: 39095513 PMCID: PMC11297295 DOI: 10.1038/s41598-024-67976-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024] Open
Abstract
Glycogen storage, conversion and utilization in astrocytes play an important role in brain energy metabolism. The conversion of glycogen to lactate through glycolysis occurs through the coordinated activities of various enzymes and inhibition of this process can impair different brain processes including formation of long-lasting memories. To replenish depleted glycogen stores, astrocytes undergo glycogen synthesis, a cellular process that has been shown to require transcription and translation during specific stimulation paradigms. However, the detail nuclear signaling mechanisms and transcriptional regulation during glycogen synthesis in astrocytes remains to be explored. In this report, we study the molecular mechanisms of vasoactive intestinal peptide (VIP)-induced glycogen synthesis in astrocytes. VIP is a potent neuropeptide that triggers glycogenolysis followed by glycogen synthesis in astrocytes. We show evidence that VIP-induced glycogen synthesis requires CREB-mediated transcription that is calcium dependent and requires conventional Protein Kinase C but not Protein Kinase A. In parallel to CREB activation, we demonstrate that VIP also triggers nuclear accumulation of the CREB coactivator CRTC2 in astrocytic nuclei. Transcriptome profiles of VIP-induced astrocytes identified robust CREB transcription, including a subset of genes linked to glucose and glycogen metabolism. Finally, we demonstrate that VIP-induced glycogen synthesis shares similar as well as distinct molecular signatures with glucose-induced glycogen synthesis, including the requirement of CREB-mediated transcription. Overall, our data demonstrates the importance of CREB-mediated transcription in astrocytes during stimulus-driven glycogenesis.
Collapse
Affiliation(s)
- Wei Lee Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Clinical Science Building, 11 Mandalay Road, 10-01-01M, Singapore, 308232, Singapore
| | - Jessica Ruth Gaunt
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Clinical Science Building, 11 Mandalay Road, 10-01-01M, Singapore, 308232, Singapore
| | - Jia Min Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Clinical Science Building, 11 Mandalay Road, 10-01-01M, Singapore, 308232, Singapore
| | - Norliyana Zainolabidin
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Clinical Science Building, 11 Mandalay Road, 10-01-01M, Singapore, 308232, Singapore
| | - Vibhavari Aysha Bansal
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Clinical Science Building, 11 Mandalay Road, 10-01-01M, Singapore, 308232, Singapore
| | - Yi Ming Lye
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Clinical Science Building, 11 Mandalay Road, 10-01-01M, Singapore, 308232, Singapore
| | - Toh Hean Ch'ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Clinical Science Building, 11 Mandalay Road, 10-01-01M, Singapore, 308232, Singapore.
- School of Biological Science, Nanyang Technological University, Singapore, 636551, Singapore.
| |
Collapse
|
5
|
Xu Y, Cohen E, Johnson CN, Parent CA, Coulombe PA. Repeated stress to the skin amplifies neutrophil infiltration in a keratin 17- and PKCα-dependent manner. PLoS Biol 2024; 22:e3002779. [PMID: 39159283 PMCID: PMC11361748 DOI: 10.1371/journal.pbio.3002779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 08/29/2024] [Accepted: 07/31/2024] [Indexed: 08/21/2024] Open
Abstract
Neutrophils are the first immune cells to reach inflamed sites and contribute to the pathogenesis of chronic inflammatory skin diseases. Yet, little is known about the pattern of neutrophil infiltration in inflamed skin in vivo and the mechanisms mediating their recruitment. Here, we provide insight into the dynamics of neutrophil infiltration in skin in response to acute or repeated inflammatory stress, highlighting a novel keratinocyte- and keratin 17 (K17)-dependent mechanism that regulates neutrophil recruitment to inflamed skin. We used the phorbol ester TPA and UVB, alone or in combination, to induce sterile inflammation in mouse skin. A single TPA treatment results in a neutrophil influx in the dermis that peaks at 12 h and resolves within 24 h. A subsequent TPA treatment or a UVB challenge, when applied 24 h but not 48 h later, accelerates, amplifies, and prolongs neutrophil infiltration. This transient amplification response (TAR) is mediated by local signals in inflamed skin, can be recapitulated in ex vivo culture, and involves the K17-dependent sustainment of protein kinase Cα (PKCα) activity and release of chemoattractants by stressed keratinocytes. K17 binds RACK1, a scaffold protein essential for PKCα activity. The N-terminal head domain of K17 is crucial for its association with RACK1 and regulation of PKCα activity. Analysis of RNAseq data reveals a signature consistent with TAR and PKCα activation in inflammatory skin diseases. These findings uncover a novel, keratin-dependent mechanism that amplifies neutrophil recruitment in skin under stress, with direct implications for inflammatory skin disorders.
Collapse
Affiliation(s)
- Yang Xu
- Graduate Program in Pharmacology and Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Erez Cohen
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Craig N. Johnson
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Carole A. Parent
- Graduate Program in Pharmacology and Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Life Science Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Pierre A. Coulombe
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
6
|
Iseki S, Ikeda H, Kobayashi S, Irie K, Harada H, Kakeya H. Teleocidin B-4, a PKC Activator, Upregulates Hypoxia-Inducible Factor 1 (HIF-1) Activity by Promoting the Accumulation of HIF-1α Protein via the PKCα/mTORC Signaling Pathway. JOURNAL OF NATURAL PRODUCTS 2024; 87:1666-1671. [PMID: 38840407 DOI: 10.1021/acs.jnatprod.4c00395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Hypoxia-inducible factor 1 (HIF-1) signaling is upregulated in an oxygen-dependent manner under hypoxic conditions. Activation of HIF-1 signaling increases the expression of HIF-1 target genes involved in cell survival, proliferation, and angiogenesis. Therefore, compounds that activate HIF-1 signaling have therapeutic potential in ischemic diseases. Screening for compounds that activate HIF-1 activity identified a microbial metabolite, teleocidin B-4, a PKC activator. Other PKC activators, such as TPA and 10-Me-Aplog-1, also activated HIF-1 activity. PKC activators induced HIF-1α protein accumulation through PKCα/mTORC activation. These results suggest that PKC activators without tumor-promoting activity have potential as therapeutic agents via HIF-1 target gene activation.
Collapse
Affiliation(s)
- Shogo Iseki
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroaki Ikeda
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Sayaka Kobayashi
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuhiro Irie
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
7
|
Wingrove JS, Wimmer J, Saba Echezarreta VE, Piazza A, Spencer GE. Retinoic acid reduces the formation of, and acutely modulates, invertebrate electrical synapses. J Neurophysiol 2024; 131:965-981. [PMID: 38568843 DOI: 10.1152/jn.00057.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024] Open
Abstract
Communication between cells in the nervous system is dependent on both chemical and electrical synapses. Factors that can affect chemical synapses have been well studied, but less is known about factors that influence electrical synapses. Retinoic acid, the vitamin A metabolite, is a known regulator of chemical synapses, but few studies have examined its capacity to regulate electrical synapses. In this study, we determine that retinoic acid is capable of rapidly altering the strength of electrical synapses in an isomer- and cell-dependent manner. Furthermore, we provide evidence that this acute effect might be independent of either the retinoid receptors or the activation of a protein kinase. In addition to the rapid modulatory effects of retinoic acid, we provide data to suggest that retinoic acid is also capable of regulating the formation of electrical synapses. Long-term exposure to both all-trans-retinoic acid or 9-cis-retinoic acid reduced the proportion of cell pairs forming electrical synapses, as well as reduced the strength of electrical synapses that did form. In summary, this study provides insights into the role that retinoids might play in both the formation and modulation of electrical synapses in the central nervous system.NEW & NOTEWORTHY Retinoids are known modulators of chemical synapses and mediate synaptic plasticity in the nervous system, but little is known of their effects on electrical synapses. Here, we show that retinoids selectively reduce electrical synapses in a cell- and isomer-dependent manner. This modulatory action on existing electrical synapses was rapid and nongenomic in nature. We also showed for the first time that longer retinoid exposures inhibit the formation of electrical synapses.
Collapse
Affiliation(s)
- Joel S Wingrove
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Justin Wimmer
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | | | - Alicia Piazza
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Gaynor E Spencer
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| |
Collapse
|
8
|
Xing H, Sabe SA, Shi G, Harris DD, Liu Y, Sellke FW, Feng J. Role of Protein Kinase C in Metabolic Regulation of Coronary Endothelial Small Conductance Calcium-Activated Potassium Channels. J Am Heart Assoc 2024; 13:e031028. [PMID: 38293916 PMCID: PMC11056132 DOI: 10.1161/jaha.123.031028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/02/2023] [Indexed: 02/01/2024]
Abstract
BACKGROUND Small conductance calcium-activated potassium (SK) channels are largely responsible for endothelium-dependent coronary arteriolar relaxation. Endothelial SK channels are downregulated by the reduced form of nicotinamide adenine dinucleotide (NADH), which is increased in the setting of diabetes, yet the mechanisms of these changes are unclear. PKC (protein kinase C) is an important mediator of diabetes-induced coronary endothelial dysfunction. Thus, we aimed to determine whether NADH signaling downregulates endothelial SK channel function via PKC. METHODS AND RESULTS SK channel currents of human coronary artery endothelial cells were measured by whole cell patch clamp method in the presence/absence of NADH, PKC activator phorbol 12-myristate 13-acetate, PKC inhibitors, or endothelial PKCα/PKCβ knockdown by using small interfering RNA. Human coronary arteriolar reactivity in response to the selective SK activator NS309 was measured by vessel myography in the presence of NADH and PKCβ inhibitor LY333531. NADH (30-300 μmol/L) or PKC activator phorbol 12-myristate 13-acetate (30-300 nmol/L) reduced endothelial SK current density, whereas the selective PKCᵦ inhibitor LY333531 significantly reversed the NADH-induced SK channel inhibition. PKCβ small interfering RNA, but not PKCα small interfering RNA, significantly prevented the NADH- and phorbol 12-myristate 13-acetate-induced SK inhibition. Incubation of human coronary artery endothelial cells with NADH significantly increased endothelial PKC activity and PKCβ expression and activation. Treating vessels with NADH decreased coronary arteriolar relaxation in response to the selective SK activator NS309, and this inhibitive effect was blocked by coadministration with PKCβ inhibitor LY333531. CONCLUSIONS NADH-induced inhibition of endothelial SK channel function is mediated via PKCβ. These findings may provide insight into novel therapeutic strategies to preserve coronary microvascular function in patients with metabolic syndrome and coronary disease.
Collapse
Affiliation(s)
- Hang Xing
- Division of Cardiothoracic Surgery, Rhode Island HospitalAlpert Medical School of Brown UniversityProvidenceRI
| | - Sharif A. Sabe
- Division of Cardiothoracic Surgery, Rhode Island HospitalAlpert Medical School of Brown UniversityProvidenceRI
| | - Guangbin Shi
- Division of Cardiothoracic Surgery, Rhode Island HospitalAlpert Medical School of Brown UniversityProvidenceRI
| | - Dwight D. Harris
- Division of Cardiothoracic Surgery, Rhode Island HospitalAlpert Medical School of Brown UniversityProvidenceRI
| | - Yuhong Liu
- Division of Cardiothoracic Surgery, Rhode Island HospitalAlpert Medical School of Brown UniversityProvidenceRI
| | - Frank W. Sellke
- Division of Cardiothoracic Surgery, Rhode Island HospitalAlpert Medical School of Brown UniversityProvidenceRI
| | - Jun Feng
- Division of Cardiothoracic Surgery, Rhode Island HospitalAlpert Medical School of Brown UniversityProvidenceRI
| |
Collapse
|
9
|
Hamshaw I, Ellahouny Y, Malusickis A, Newman L, Ortiz-Jacobs D, Mueller A. The role of PKC and PKD in CXCL12 and CXCL13 directed malignant melanoma and acute monocytic leukemic cancer cell migration. Cell Signal 2024; 113:110966. [PMID: 37949381 DOI: 10.1016/j.cellsig.2023.110966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/03/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
Cancer metastasis is the leading cause of cancer related mortality. Chemokine receptors and proteins in their downstream signalling axis represent desirable therapeutic targets for the prevention of metastasis. Despite this, current therapeutics have experienced limited success in clinical trials due to a lack of insight into the downstream signalling pathway of specific chemokine receptor cascades in different tumours. In this study, we investigated the role of protein kinase C (PKC) and protein kinase D (PKD) in CXCL12 and CXCL13 stimulated SK-MEL-28 (malignant melanoma) and THP-1 (acute monocytic leukaemia) cell migration. While PKC and PKD had no active role in CXCL12 or CXCL13 stimulated THP-1 cell migration, PKC and PKD inhibition reduced CXCL12 stimulated migration and caused profound effects upon the cytoskeleton of SK-MEL-28 cells. Furthermore, only PKC and not PKD inhibition reduced CXCL13 stimulated migration in SK-MEL-28 cells however PKC inhibition failed to stimulate any changes to the actin cytoskeleton. These findings indicate that PKC inhibitors would be a useful therapeutic for the prevention of both CXCL12 and CXCL13 stimulated migration and PKD inhibitors for CXCL12 stimulated migration in malignant melanoma.
Collapse
Affiliation(s)
- Isabel Hamshaw
- School of Pharmacy, University of East Anglia, Norwich NR4 7TJ, UK
| | | | - Artur Malusickis
- School of Pharmacy, University of East Anglia, Norwich NR4 7TJ, UK
| | - Lia Newman
- School of Pharmacy, University of East Anglia, Norwich NR4 7TJ, UK
| | | | - Anja Mueller
- School of Pharmacy, University of East Anglia, Norwich NR4 7TJ, UK.
| |
Collapse
|
10
|
Xu Y, Cohen E, Johnson CN, Parent CA, Coulombe PA. Keratin 17- and PKCα-dependent transient amplification of neutrophil influx after repeated stress to the skin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.11.561954. [PMID: 37873256 PMCID: PMC10592713 DOI: 10.1101/2023.10.11.561954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Neutrophils contribute to the pathogenesis of chronic inflammatory skin diseases. Little is known about the source and identity of the signals mediating their recruitment in inflamed skin. We used the phorbol ester TPA and UVB, alone or in combination, to induce sterile inflammation in mouse skin and assess whether keratinocyte-derived signals impact neutrophil recruitment. A single TPA treatment results in a neutrophil influx in the dermis that peaks at 12h and resolves within 24h. A second TPA treatment or a UVB challenge, when applied at 24h but not 48h later, accelerates, amplifies, and prolongs neutrophil infiltration. This transient amplification response (TAR) is mediated by local signals in inflamed skin, can be recapitulated in ex vivo culture, and involves the K17-dependent sustainment of protein kinase Cα (PKCα) activity and release of neutrophil chemoattractants by stressed keratinocytes. We show that K17 binds RACK1, a scaffold essential for PKCα activity. Finally, analyses of RNAseq data reveal the presence of a transcriptomic signature consistent with TAR and PKCα activation in chronic inflammatory skin diseases. These findings uncover a novel, transient, and keratin-dependent mechanism that amplifies neutrophil recruitment to the skin under stress, with direct implications for inflammatory skin disorders.
Collapse
|
11
|
Lin VHC, Chien A, Chien EJ. The rapid activation of cPKCβII by progesterone results in the negative regulation of Ca 2+ influx in human resting T cells. J Chin Med Assoc 2023; 86:885-891. [PMID: 37496123 DOI: 10.1097/jcma.0000000000000970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND Progesterone-stimulated rapid suppression of phytohemagglutinin (PHA)-activated sustained membrane Ca 2+ influx is revealed by Mn 2+ quenching fura-2 fluorescence. Ca 2+ influx suppression results in immunosuppression of T-cell proliferation. Downregulation of protein kinase C (PKC) activity by phorbol 12-myristate 13-acetate (PMA) enhances the PHA-activated increase in sustained intracellular Ca 2+ concentration ([Ca 2+ ] i ) via Ca 2+ influx in T cells. Conventional PKC (cPKC) inhibitors also enhance the [Ca 2+ ] i increase in resting T cells caused by progesterone. This study explores whether cPKC activation by progesterone results in suppression of Ca 2+ influx in resting T cells. METHODS Progesterone, its analogs (R5020/Org OD 02-0), and plasma membrane-impermeable progesterone-bovine serum albumin conjugate were used to stimulate human resting T cells. Inhibitors and PKC downregulation by PMA were used to investigate whether cPKC affects Ca 2+ influx. RESULTS Progesterone and analogs dose-dependently suppressed Ca 2+ influx in T cells. One cPKC inhibitor, Ro318220, attenuated Ca 2+ influx suppression, and enhanced the increase in [Ca 2+ ] i caused by progesterone and analogs. U73122 did not affect Ca 2+ influx suppression but did decrease the [Ca 2+ ] i increase. Ca 2+ influx suppression was not attenuated by the cPKCα/βI isoform-selective inhibitor, Go6976, nevertheless, a cPKCβI/βII isoform-selective inhibitor, LY333531 did. Ca 2+ influx suppression was attenuated by the cPKCβII-specific inhibitor CGP53353. After PKC downregulated by PMA, Ca 2+ influx suppression by progesterone and analogs was almost abolished in parallel with a massive reduction in cPKCβII expression. This suggests cPKCβII activation by progesterone and analogs mediate Ca 2+ influx suppression in resting T cells. CONCLUSION Nongenomic membrane activation of cPKCβII by progesterone causes immunosuppression via negative regulation of Ca 2+ influx into human resting T cells. This prevents resting T-cell activation and proliferation, which protects the fetus from maternal immune attack while decreasing maternal autoimmune disease flare-ups during pregnancy. Thus, cPKCβII modulators might provide a new therapeutic approach to balancing T-cell tolerance and immunity.
Collapse
Affiliation(s)
- Veronica Hui-Chen Lin
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Angela Chien
- Department of Biotechnology, School of Health Technology, Ming Chuan University, Taoyuan, Taiwan, ROC
| | - Eileen Jea Chien
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| |
Collapse
|
12
|
Singh RK, Kumar S, Kumar S, Shukla A, Kumar N, Patel AK, Yadav LK, Kaushalendra, Antiwal M, Acharya A. Potential implications of protein kinase Cα in pathophysiological conditions and therapeutic interventions. Life Sci 2023; 330:121999. [PMID: 37536614 DOI: 10.1016/j.lfs.2023.121999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
PKCα is a molecule with many functions that play an important role in cell survival and death to maintain cellular homeostasis. Alteration in the normal functioning of PKCα is responsible for the complicated etiology of many pathologies, including cancer, cardiovascular diseases, kidney complications, neurodegenerative diseases, diabetics, and many others. Several studies have been carried out over the years on this kinase's function, and regulation in normal physiology and pathological conditions. A lot of data with antithetical results have therefore accumulated over time to create a complex framework of physiological implications connected to the PKCα function that needs comprehensive elucidation. In light of this information, we critically analyze the multiple roles played by PKCα in basic cellular processes and their molecular mechanism during various pathological conditions. This review further discusses the current approaches to manipulating PKCα signaling amplitude in the patient's favour and proposed PKCα as a therapeutic target to reverse pathological states.
Collapse
Affiliation(s)
- Rishi Kant Singh
- Lab of Hematopoiesis and Leukemia, KSBS, Indian Institute of Technology, Delhi, New Delhi 110016, India; Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Sanjay Kumar
- Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Sandeep Kumar
- Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Alok Shukla
- Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Naveen Kumar
- Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Anand Kumar Patel
- Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Lokesh Kumar Yadav
- Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Kaushalendra
- Department of Zoology, Pachhunga University College Campus, Mizoram University, Aizawl 796001, India
| | - Meera Antiwal
- Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Arbind Acharya
- Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
13
|
Han Y, Srinivasan S, Yun CC. Inhibition of protein kinase C-α and activation of ezrin by Lactobacillus acidophilus restore Na +/H + exchange activity and fluid absorption in db/db mice. Am J Physiol Endocrinol Metab 2023; 325:E214-E226. [PMID: 37467022 PMCID: PMC10511175 DOI: 10.1152/ajpendo.00145.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023]
Abstract
Gastrointestinal (GI) complications, including diarrhea, constipation, and gastroparesis, are common in patients with diabetes. Dysregulation of the Na+/H+ exchanger NHE3 in the intestine is linked to diarrhea and constipation, and recent studies showed that NHE3 expression is reduced in type 1 diabetes and metformin causes diarrhea in the db/db mouse model of type 2 diabetes (T2D) via inhibition of NHE3. In this study, we investigated whether NHE3 expression is altered in type 2 diabetic intestine and the underlying mechanism that dysregulates NHE3. NHE3 expression in the brush border membrane (BBM) of the intestine of diabetic mice and humans was decreased. Protein kinase C (PKC) activation is associated with pathologies of diabetes, and immunofluorescence (IF) analysis revealed increased BBM PKCα abundance. Inhibition of PKCα increased NHE3 BBM abundance and NHE3-mediated intestinal fluid absorption in db/db mice. Previous studies have shown that Lactobacillus acidophilus (LA) stimulates intestinal ion transporters. LA increased NHE3 BBM expression and mitigated metformin-mediated inhibition of NHE3 in vitro and in vivo. To understand the underlying mechanism of LA-mediated stimulation of NHE3, we used Caco-2bbe cells overexpressing PKCα that mimic the elevated state of PKCα in T2D. LA diminished PKCα BBM expression, increased phosphorylation of ezrin, and the interaction of NHE3 with NHE regulatory factor 2 (NHERF2). In addition, inhibition of PKCι blocked phosphorylation of ezrin and activation of NHE3 by LA. These findings demonstrate that NHE3 is downregulated in T2D, and LA restores NHE3 expression via regulation of PKCα, PKCι, and ezrin.NEW & NOTEWORTHY We used mouse models of type 2 diabetes (T2D) and human patient-derived samples to show that Na+/H+ exchanger 3 (NHE3) expression is decreased in T2D. We show that protein kinase C-α (PKCα) is activated in diabetes and inhibition of PKCα increased NHE3 expression and mitigates diarrhea. We show that Lactobacillus acidophilus (LA) stimulates NHE3 via inhibition of PKCα and phosphorylation of ezrin.
Collapse
Affiliation(s)
- Yiran Han
- Gastroenterology Research, Atlanta Veterans Administration Medical Center, Decatur, Georgia, United States
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Shanthi Srinivasan
- Gastroenterology Research, Atlanta Veterans Administration Medical Center, Decatur, Georgia, United States
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - C Chris Yun
- Gastroenterology Research, Atlanta Veterans Administration Medical Center, Decatur, Georgia, United States
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States
| |
Collapse
|
14
|
Sung DJ, Park S, Noh HJ, Golpasandi S, Eun SH, Lee H, Kim B, Wie J, Seo MS, Park SW, Bae YM. Receptor-specific contributions of caveolae, PKC, and Src tyrosine kinase to serotonergic and adrenergic regulation of Kv channels and vasoconstriction. Life Sci 2023; 328:121903. [PMID: 37394095 DOI: 10.1016/j.lfs.2023.121903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/04/2023]
Abstract
AIMS Caveolae are invaginated, Ω-shaped membrane structures. They are now recognized as portals for signal transduction of multiple chemical and mechanical stimuli. Notably, the contribution of caveolae has been reported to be receptor-specific. However, details of how they differentially contribute to receptor signaling remain unclear. MAIN METHODS Using isometric tension measurements, patch-clamping, and western blotting, we examined the contribution of caveolae and their related signaling pathways to serotonergic (5-HT2A receptor-mediated) and adrenergic (α1-adrenoceptor-mediated) signaling in rat mesenteric arteries. KEY FINDINGS Disruption of caveolae by methyl-β-cyclodextrin effectively blocked vasoconstriction mediated by the 5-HT2A receptor (5-HT2AR), but not by the α1-adrenoceptor. Caveolar disruption selectively impaired 5-HT2AR-mediated voltage-dependent K+ channel (Kv) inhibition, but not α1-adrenoceptor-mediated Kv inhibition. In contrast, both serotonergic and α1-adrenergic effects on vasoconstriction, as well as Kv currents, were similarly blocked by the Src tyrosine kinase inhibitor PP2. However, inhibition of protein kinase C (PKC) by either GO6976 or chelerythrine selectively attenuated the effects mediated by the α1-adrenoceptor, but not by 5-HT2AR. Disruption of caveolae decreased 5-HT2AR-mediated Src phosphorylation, but not α1-adrenoceptor-mediated Src phosphorylation. Finally, the PKC inhibitor GO6976 blocked Src phosphorylation by the α1-adrenoceptor, but not by 5-HT2AR. SIGNIFICANCE 5-HT2AR-mediated Kv inhibition and vasoconstriction are dependent on caveolar integrity and Src tyrosine kinase, but not on PKC. In contrast, α1-adrenoceptor-mediated Kv inhibition and vasoconstriction are not dependent on caveolar integrity, but rather on PKC and Src tyrosine kinase. Caveolae-independent PKC is upstream of Src activation for α1-adrenoceptor-mediated Kv inhibition and vasoconstriction.
Collapse
Affiliation(s)
- Dong Jun Sung
- Department of Sport and Health Studies, College of Biomedical and Health Science, Konkuk University, Chungju 27478, Republic of Korea; Sports Convergence Institute, Konkuk University, Chungju 27478, Republic of Korea; Center for Metabolic Diseases, Konkuk University, Chungju 27478, Republic of Korea; Research Institute for Biomedical & Health Science, Chungju 27478, Republic of Korea
| | - Solah Park
- Department of Physiology, KU Open Innovation Center, Research Institute of Medical Science, Konkuk University School of Medicine, Chungju 27478, Republic of Korea
| | - Hyun Ju Noh
- Department of Physiology, KU Open Innovation Center, Research Institute of Medical Science, Konkuk University School of Medicine, Chungju 27478, Republic of Korea
| | - Shadi Golpasandi
- Department of Physiology, KU Open Innovation Center, Research Institute of Medical Science, Konkuk University School of Medicine, Chungju 27478, Republic of Korea
| | - Seo Hyeon Eun
- Department of Physiology, KU Open Innovation Center, Research Institute of Medical Science, Konkuk University School of Medicine, Chungju 27478, Republic of Korea
| | - Hyeryeong Lee
- Department of Physiology, KU Open Innovation Center, Research Institute of Medical Science, Konkuk University School of Medicine, Chungju 27478, Republic of Korea
| | - Bokyung Kim
- Department of Physiology, KU Open Innovation Center, Research Institute of Medical Science, Konkuk University School of Medicine, Chungju 27478, Republic of Korea
| | - Jinhong Wie
- Department of Physiology, KU Open Innovation Center, Research Institute of Medical Science, Konkuk University School of Medicine, Chungju 27478, Republic of Korea
| | - Mi Seon Seo
- Department of Physiology, KU Open Innovation Center, Research Institute of Medical Science, Konkuk University School of Medicine, Chungju 27478, Republic of Korea
| | - Sang Woong Park
- Department of Emergency Medical Services, Eulji University, Seongnam 13135, Republic of Korea.
| | - Young Min Bae
- Department of Physiology, KU Open Innovation Center, Research Institute of Medical Science, Konkuk University School of Medicine, Chungju 27478, Republic of Korea.
| |
Collapse
|
15
|
Diez AF, Leroux LP, Chagneau S, Plouffe A, Gold M, Chaparro V, Jaramillo M. Toxoplasma gondii inhibits the expression of autophagy-related genes through AKT-dependent inactivation of the transcription factor FOXO3a. mBio 2023; 14:e0079523. [PMID: 37387601 PMCID: PMC10470550 DOI: 10.1128/mbio.00795-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/15/2023] [Indexed: 07/01/2023] Open
Abstract
The intracellular parasite Toxoplasma gondii induces host AKT activation to prevent autophagy-mediated clearance; however, the molecular underpinnings are not fully understood. Autophagy can be negatively regulated through AKT-sensitive phosphorylation and nuclear export of the transcription factor Forkhead box O3a (FOXO3a). Using a combination of pharmacological and genetic approaches, herein we investigated whether T. gondii hinders host autophagy through AKT-dependent inactivation of FOXO3a. We found that infection by type I and II strains of T. gondii promotes gradual and sustained AKT-dependent phosphorylation of FOXO3a at residues S253 and T32 in human foreskin fibroblasts (HFF) and murine 3T3 fibroblasts. Mechanistically, AKT-sensitive phosphorylation of FOXO3a by T. gondii required live infection and the activity of PI3K but was independent of the plasma membrane receptor EGFR and the kinase PKCα. Phosphorylation of FOXO3a at AKT-sensitive residues was paralleled by its nuclear exclusion in T. gondii-infected HFF. Importantly, the parasite was unable to drive cytoplasmic localization of FOXO3a upon pharmacological blockade of AKT or overexpression of an AKT-insensitive mutant form of FOXO3a. Transcription of a subset of bona fide autophagy-related targets of FOXO3a was reduced during T. gondii infection in an AKT-dependent fashion. However, parasite-directed repression of autophagy-related genes was AKT-resistant in cells deficient in FOXO3a. Consistent with this, T. gondii failed to inhibit the recruitment of acidic organelles and LC3, an autophagy marker, to the parasitophorous vacuole upon chemically or genetically induced nuclear retention of FOXO3a. In all, we provide evidence that T. gondii suppresses FOXO3a-regulated transcriptional programs to prevent autophagy-mediated killing. IMPORTANCE The parasite Toxoplasma gondii is the etiological agent of toxoplasmosis, an opportunistic infection commonly transmitted by ingestion of contaminated food or water. To date, no effective vaccines in humans have been developed and no promising drugs are available to treat chronic infection or prevent congenital infection. T. gondii targets numerous host cell processes to establish a favorable replicative niche. Of note, T. gondii activates the host AKT signaling pathway to prevent autophagy-mediated killing. Herein, we report that T. gondii inhibits FOXO3a, a transcription factor that regulates the expression of autophagy-related genes, through AKT-dependent phosphorylation. The parasite's ability to block the recruitment of the autophagy machinery to the parasitophorous vacuole is impeded upon pharmacological inhibition of AKT or overexpression of an AKT-insensitive form of FOXO3a. Thus, our study provides greater granularity in the role of FOXO3a during infection and reinforces the potential of targeting autophagy as a therapeutic strategy against T. gondii.
Collapse
Affiliation(s)
- Andres Felipe Diez
- Institut National de la Recherche Scientifique (INRS)—Centre Armand-Frappier Santé Biotechnologie (AFSB), Laval, Québec, Canada
| | - Louis-Philippe Leroux
- Institut National de la Recherche Scientifique (INRS)—Centre Armand-Frappier Santé Biotechnologie (AFSB), Laval, Québec, Canada
| | - Sophie Chagneau
- Institut National de la Recherche Scientifique (INRS)—Centre Armand-Frappier Santé Biotechnologie (AFSB), Laval, Québec, Canada
| | - Alexandra Plouffe
- Institut National de la Recherche Scientifique (INRS)—Centre Armand-Frappier Santé Biotechnologie (AFSB), Laval, Québec, Canada
| | - Mackenzie Gold
- Institut National de la Recherche Scientifique (INRS)—Centre Armand-Frappier Santé Biotechnologie (AFSB), Laval, Québec, Canada
| | - Visnu Chaparro
- Institut National de la Recherche Scientifique (INRS)—Centre Armand-Frappier Santé Biotechnologie (AFSB), Laval, Québec, Canada
| | - Maritza Jaramillo
- Institut National de la Recherche Scientifique (INRS)—Centre Armand-Frappier Santé Biotechnologie (AFSB), Laval, Québec, Canada
| |
Collapse
|
16
|
Aquino A, Bianchi N, Terrazzan A, Franzese O. Protein Kinase C at the Crossroad of Mutations, Cancer, Targeted Therapy and Immune Response. BIOLOGY 2023; 12:1047. [PMID: 37626933 PMCID: PMC10451643 DOI: 10.3390/biology12081047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023]
Abstract
The frequent PKC dysregulations observed in many tumors have made these enzymes natural targets for anticancer applications. Nevertheless, this considerable interest in the development of PKC modulators has not led to the expected therapeutic benefits, likely due to the complex biological activities regulated by PKC isoenzymes, often playing ambiguous and protective functions, further driven by the occurrence of mutations. The structure, regulation and functions of PKCs have been extensively covered in other publications. Herein, we focused on PKC alterations mostly associated with complete functional loss. We also addressed the modest yet encouraging results obtained targeting PKC in selected malignancies and the more frequent negative clinical outcomes. The reported observations advocate the need for more selective molecules and a better understanding of the involved pathways. Furthermore, we underlined the most relevant immune mechanisms controlled by PKC isoforms potentially impacting the immune checkpoint inhibitor blockade-mediated immune recovery. We believe that a comprehensive examination of the molecular features of the tumor microenvironment might improve clinical outcomes by tailoring PKC modulation. This approach can be further supported by the identification of potential response biomarkers, which may indicate patients who may benefit from the manipulation of distinctive PKC isoforms.
Collapse
Affiliation(s)
- Angelo Aquino
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Nicoletta Bianchi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (N.B.); (A.T.)
| | - Anna Terrazzan
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (N.B.); (A.T.)
- Laboratory for Advanced Therapy Technologies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Ornella Franzese
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| |
Collapse
|
17
|
Common Markers and Small Molecule Inhibitors in Golgi Studies. Methods Mol Biol 2022; 2557:453-493. [PMID: 36512231 PMCID: PMC10178357 DOI: 10.1007/978-1-0716-2639-9_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this chapter, we provide a detailed guide for the application of commonly used small molecules to study Golgi structure and function in vitro. Furthermore, we have curated a concise, validated list of endomembrane markers typically used in downstream assays to examine the consequent effect on the Golgi via microscopy and western blot after drug treatment. This chapter will be useful for researchers beginning their foray into the field of intracellular trafficking and Golgi biology.
Collapse
|
18
|
Oezen G, Schentarra EM, Bolten JS, Huwyler J, Fricker G. Sodium arsenite but not aluminum chloride stimulates ABC transporter activity in renal proximal tubules of killifish (Fundulus heteroclitus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 252:106314. [PMID: 36201872 DOI: 10.1016/j.aquatox.2022.106314] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/12/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
ABC export proteins including Multidrug resistance-related protein 2 (Mrp2) serve as detoxification mechanism in renal proximal tubules due to active transport of xenobiotics and metabolic waste products into primary urine. The environmental pollutants aluminum and arsenic interfere with a multitude of regulatory mechanisms in the body and here their impact on ABC transporter function was studied. NaAsO2 but not AlCl3 rapidly stimulated Mrp2-mediated Texas Red (TR) transport in isolated renal proximal tubules from killifish, a well-established laboratory model for the determination of efflux transporter activity by utilizing fluorescent substrates for the ABC transporters of interest and confocal microscopy followed by image analysis. This observed stimulation remained unaffected by the translation inhibitor cycloheximide (CHX), but it was abrogated by antagonists and inhibitors of the endothelin receptor type B (ETB)/nitric oxide synthase (NOS)/protein kinase C (PKC) signaling pathway. NaAsO2-triggered effects were abolished as a consequence of PKCα inhibition through Gö6976 and PKCα inhibitor peptide C2-4. Phosphatidylinositol 3-kinase (PI3K) inhibitor LY 294,002 as well as the mammalian target of rapamycin (mTOR) inhibitor rapamycin suppressed NaAsO2-triggered stimulation of luminal TR transport. In addition, the stimulatory effect of NaAsO2 was abolished by GSK650394, an inhibitor of serum- and glucocorticoid-inducible kinase 1 (SGK1), which is an important downstream target. Environmentally relevant concentrations of NaAsO2 further stimulated transport function of P-glycoprotein (P-gp), Multidrug resistance-related protein 4 (Mrp4) and Breast cancer resistance protein (Bcrp) while AlCl3 was ineffective. To our knowledge, this is the first report engaging in the impact of NaAsO2 on efflux transporter signaling and it may contribute to the understanding of defense mechanisms versus this worrying pollutant.
Collapse
Affiliation(s)
- Goezde Oezen
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg 69120, Germany; Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, United States
| | - Eva-Maria Schentarra
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg 69120, Germany; Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, United States
| | - Jan Stephan Bolten
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, United States; Department of Pharmaceutical Sciences, University of Basel, Basel 4056, Switzerland
| | - Joerg Huwyler
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, United States; Department of Pharmaceutical Sciences, University of Basel, Basel 4056, Switzerland
| | - Gert Fricker
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg 69120, Germany; Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, United States.
| |
Collapse
|
19
|
Filippone MG, Freddi S, Zecchini S, Restelli S, Colaluca IN, Bertalot G, Pece S, Tosoni D, Di Fiore PP. Aberrant phosphorylation inactivates Numb in breast cancer causing expansion of the stem cell pool. J Cell Biol 2022; 221:213525. [PMID: 36200956 PMCID: PMC9545709 DOI: 10.1083/jcb.202112001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 07/19/2022] [Accepted: 09/14/2022] [Indexed: 12/13/2022] Open
Abstract
Asymmetric cell division is a key tumor suppressor mechanism that prevents the uncontrolled expansion of the stem cell (SC) compartment by generating daughter cells with alternative fates: one retains SC identity and enters quiescence and the other becomes a rapidly proliferating and differentiating progenitor. A critical player in this process is Numb, which partitions asymmetrically at SC mitosis and inflicts different proliferative and differentiative fates in the two daughters. Here, we show that asymmetric Numb partitioning per se is insufficient for the proper control of mammary SC dynamics, with differential phosphorylation and functional inactivation of Numb in the two progeny also required. The asymmetric phosphorylation/inactivation of Numb in the progenitor is mediated by the atypical PKCζ isoform. This mechanism is subverted in breast cancer via aberrant activation of PKCs that phosphorylate Numb in both progenies, leading to symmetric division and expansion of the cancer SC compartment, associated with aggressive disease. Thus, Numb phosphorylation represents a target for breast cancer therapy.
Collapse
Affiliation(s)
- Maria Grazia Filippone
- IEO-IRCCS, Istituto Europeo di Oncologia-Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Stefano Freddi
- IEO-IRCCS, Istituto Europeo di Oncologia-Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Silvia Zecchini
- IEO-IRCCS, Istituto Europeo di Oncologia-Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Silvia Restelli
- IEO-IRCCS, Istituto Europeo di Oncologia-Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Ivan Nicola Colaluca
- IEO-IRCCS, Istituto Europeo di Oncologia-Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Giovanni Bertalot
- IEO-IRCCS, Istituto Europeo di Oncologia-Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Salvatore Pece
- IEO-IRCCS, Istituto Europeo di Oncologia-Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy,Dipartimento di Oncologia e Emato-Oncologia, Università degli Studi di Milano, Milan, Italy
| | - Daniela Tosoni
- IEO-IRCCS, Istituto Europeo di Oncologia-Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Pier Paolo Di Fiore
- IEO-IRCCS, Istituto Europeo di Oncologia-Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy,Dipartimento di Oncologia e Emato-Oncologia, Università degli Studi di Milano, Milan, Italy,Correspondence to Pier Paolo Di Fiore:
| |
Collapse
|
20
|
Perea-Gil I, Seeger T, Bruyneel AAN, Termglinchan V, Monte E, Lim EW, Vadgama N, Furihata T, Gavidia AA, Arthur Ataam J, Bharucha N, Martinez-Amador N, Ameen M, Nair P, Serrano R, Kaur B, Feyen DAM, Diecke S, Snyder MP, Metallo CM, Mercola M, Karakikes I. Serine biosynthesis as a novel therapeutic target for dilated cardiomyopathy. Eur Heart J 2022; 43:3477-3489. [PMID: 35728000 PMCID: PMC9794189 DOI: 10.1093/eurheartj/ehac305] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 04/14/2022] [Accepted: 05/24/2022] [Indexed: 12/30/2022] Open
Abstract
AIMS Genetic dilated cardiomyopathy (DCM) is a leading cause of heart failure. Despite significant progress in understanding the genetic aetiologies of DCM, the molecular mechanisms underlying the pathogenesis of familial DCM remain unknown, translating to a lack of disease-specific therapies. The discovery of novel targets for the treatment of DCM was sought using phenotypic sceening assays in induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) that recapitulate the disease phenotypes in vitro. METHODS AND RESULTS Using patient-specific iPSCs carrying a pathogenic TNNT2 gene mutation (p.R183W) and CRISPR-based genome editing, a faithful DCM model in vitro was developed. An unbiased phenotypic screening in TNNT2 mutant iPSC-derived cardiomyocytes (iPSC-CMs) with small molecule kinase inhibitors (SMKIs) was performed to identify novel therapeutic targets. Two SMKIs, Gö 6976 and SB 203580, were discovered whose combinatorial treatment rescued contractile dysfunction in DCM iPSC-CMs carrying gene mutations of various ontologies (TNNT2, TTN, LMNA, PLN, TPM1, LAMA2). The combinatorial SMKI treatment upregulated the expression of genes that encode serine, glycine, and one-carbon metabolism enzymes and significantly increased the intracellular levels of glucose-derived serine and glycine in DCM iPSC-CMs. Furthermore, the treatment rescued the mitochondrial respiration defects and increased the levels of the tricarboxylic acid cycle metabolites and ATP in DCM iPSC-CMs. Finally, the rescue of the DCM phenotypes was mediated by the activating transcription factor 4 (ATF4) and its downstream effector genes, phosphoglycerate dehydrogenase (PHGDH), which encodes a critical enzyme of the serine biosynthesis pathway, and Tribbles 3 (TRIB3), a pseudokinase with pleiotropic cellular functions. CONCLUSIONS A phenotypic screening platform using DCM iPSC-CMs was established for therapeutic target discovery. A combination of SMKIs ameliorated contractile and metabolic dysfunction in DCM iPSC-CMs mediated via the ATF4-dependent serine biosynthesis pathway. Together, these findings suggest that modulation of serine biosynthesis signalling may represent a novel genotype-agnostic therapeutic strategy for genetic DCM.
Collapse
Affiliation(s)
- Isaac Perea-Gil
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Timon Seeger
- Department of Medicine III, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Arne A N Bruyneel
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Vittavat Termglinchan
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Emma Monte
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Esther W Lim
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Nirmal Vadgama
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
| | - Takaaki Furihata
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexandra A Gavidia
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
| | - Jennifer Arthur Ataam
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Nike Bharucha
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Noel Martinez-Amador
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
| | - Mohamed Ameen
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Pooja Nair
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
| | - Ricardo Serrano
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Balpreet Kaur
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
| | - Dries A M Feyen
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Sebastian Diecke
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Christian M Metallo
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Mark Mercola
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Ioannis Karakikes
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
21
|
PKC-Mediated Orai1 Channel Phosphorylation Modulates Ca2+ Signaling in HeLa Cells. Cells 2022; 11:cells11132037. [PMID: 35805121 PMCID: PMC9266177 DOI: 10.3390/cells11132037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/15/2022] [Accepted: 05/27/2022] [Indexed: 12/04/2022] Open
Abstract
The overexpression of the Orai1 channel inhibits SOCE when using the Ca2+ readdition protocol. However, we found that HeLa cells overexpressing the Orai1 channel displayed enhanced Ca2+ entry and a limited ER depletion in response to the combination of ATP and thapsigargin (TG) in the presence of external Ca2+. As these effects require the combination of an agonist and TG, we decided to study whether the phosphorylation of Orai1 S27/S30 residues had any role using two different mutants: Orai1-S27/30A (O1-AA, phosphorylation-resistant) and Orai1-S27/30D (O1-DD, phosphomimetic). Both O1-wt and O1-AA supported enhanced Ca2+ entry, but this was not the case with O1-E106A (dead-pore mutant), O1-DD, and O1-AA-E106A, while O1-wt, O1-E106A, and O1-DD inhibited the ATP and TG-induced reduction of ER [Ca2+], suggesting that the phosphorylation of O1 S27/30 interferes with the IP3R activity. O1-wt and O1-DD displayed an increased interaction with IP3R in response to ATP and TG; however, the O1-AA channel decreased this interaction. The expression of mCherry-O1-AA increased the frequency of ATP-induced sinusoidal [Ca2+]i oscillations, while mCherry-O1-wt and mCherry-O1-DD decreased this frequency. These data suggest that the combination of ATP and TG stimulates Ca2+ entry, and the phosphorylation of Orai1 S27/30 residues by PKC reduces IP3R-mediated Ca2+ release.
Collapse
|
22
|
Angiotensin II Inhibits Insulin Receptor Signaling in Adipose Cells. Int J Mol Sci 2022; 23:ijms23116048. [PMID: 35682723 PMCID: PMC9181642 DOI: 10.3390/ijms23116048] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Angiotensin II (Ang II) is a critical regulator of insulin signaling in the cardiovascular system and metabolic tissues. However, in adipose cells, the regulatory role of Ang II on insulin actions remains to be elucidated. The effect of Ang II on insulin-induced insulin receptor (IR) phosphorylation, Akt activation, and glucose uptake was examined in 3T3-L1 adipocytes. In these cells, Ang II specifically inhibited insulin-stimulated IR and insulin receptor substrate-1 (IRS-1) tyrosine-phosphorylation, Akt activation, and glucose uptake in a time-dependent manner. These inhibitory actions were associated with increased phosphorylation of the IR at serine residues. Interestingly, Ang II-induced serine-phosphorylation of IRS was not detected, suggesting that Ang II-induced desensitization begins from IR regulation itself. PKC inhibition by BIM I restored the inhibitory effect of Ang II on insulin actions. We also found that Ang II promoted activation of several PKC isoforms, including PKCα/βI/βII/δ, and its association with the IR, particularly PKCβII, showed the highest interaction. Finally, we also found a similar regulatory effect of Ang II in isolated adipocytes, where insulin-induced Akt phosphorylation was inhibited by Ang II, an effect that was prevented by PKC inhibitors. These results suggest that Ang II may lead to insulin resistance through PKC activation in adipocytes.
Collapse
|
23
|
Dai X, Wang Y, Li Y, Zhong Y, Pei M, Long J, Dong X, Chen YL, Wang Q, Wang G, Gold BG, Vandenbark AA, Neve KA, Offner H, Wang C. Tyrphostin A9 protects axons in experimental autoimmune encephalomyelitis through activation of ERKs. Life Sci 2022; 294:120383. [PMID: 35143827 PMCID: PMC8920308 DOI: 10.1016/j.lfs.2022.120383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022]
Abstract
AIMS Small molecule compound tyrphostin A9 (A9), an inhibitor of platelet-derived growth factor (PDGF) receptor, was previously reported by our group to stimulate extracellular signal-regulated kinase 1 (ERK1) and 2 (ERK2) in neuronal cells in a PDGF receptor-irrelevant manner. The study aimed to investigate whether A9 could protect axons in experimental autoimmune encephalomyelitis through activation of ERKs. MAIN METHODS A9 treatment on the protection on neurite outgrowth in SH-SY5Y neuroblastoma cells and primary substantia nigra neuron cultures from the neurotoxin MPP+ were analyzed. Then, clinical symptoms as well as ERK1/2 activation, axonal protection induction, and the abundance increases of the regeneration biomarker GAP-43 in the CNS in the relapsing-remitting experimental autoimmune encephalomyelitis (EAE) model were verified. KEY FINDINGS A9 treatment could stimulate neurite outgrowth in SH-SY5Y neuroblastoma cells and protect primary substantia nigra neuron cultures from the neurotoxin MPP+. In the relapsing-remitting EAE model, oral administration of A9 successfully ameliorated clinical symptoms, activated ERK1/2, induced axonal protection, and increased the abundance of the regeneration biomarker GAP-43 in the CNS. Interestingly, gene deficiency of ERK1 or ERK2 disrupted the beneficial effects of A9 in MOG-35-55-induced EAE. SIGNIFICANCE These results demonstrated that small molecule compounds that stimulate persistent ERK activation in vitro and in vivo may be useful in protective or restorative treatment for neurodegenerative diseases.
Collapse
MESH Headings
- Animals
- Axons/drug effects
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/etiology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Extracellular Signal-Regulated MAP Kinases/genetics
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Female
- Gene Expression Regulation/drug effects
- Humans
- Mice
- Mice, Inbred C57BL
- Neuroblastoma/drug therapy
- Neuroblastoma/metabolism
- Neuroblastoma/pathology
- Rats
- Rats, Sprague-Dawley
- Tyrphostins/pharmacology
Collapse
Affiliation(s)
- Xiaodong Dai
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 200126, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yongmei Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 200126, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuexin Li
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, United States of America; Research Service, VA Portland Health Care System, Portland, OR 97239, United States of America
| | - Yongping Zhong
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, United States of America
| | - Min Pei
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 200126, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jing Long
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 200126, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xingchen Dong
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 200126, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yi-Li Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 200126, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qi Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 200126, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Guifeng Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 200126, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Bruce G Gold
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, United States of America
| | - Arthur A Vandenbark
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, United States of America; Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, United States of America; Research Service, VA Portland Health Care System, Portland, OR 97239, United States of America
| | - Kim A Neve
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States of America; Research Service, VA Portland Health Care System, Portland, OR 97239, United States of America
| | - Halina Offner
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, United States of America; Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR 97239, United States of America; Research Service, VA Portland Health Care System, Portland, OR 97239, United States of America
| | - Chunhe Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 200126, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Department of Neurology, Oregon Health & Science University, Portland, OR 97239, United States of America; Research Service, VA Portland Health Care System, Portland, OR 97239, United States of America.
| |
Collapse
|
24
|
Protein Kinase C-α Is a Gatekeeper of Cryptosporidium Sporozoite Adherence and Invasion. Infect Immun 2022; 90:e0067921. [PMID: 35099276 PMCID: PMC8929341 DOI: 10.1128/iai.00679-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cryptosporidium infection is a leading cause of diarrhea-associated morbidity and mortality in young children globally. Single nucleotide polymorphisms (SNPs) in the human protein kinase C-α (PRKCA) gene region have been associated with susceptibility to cryptosporidiosis. Here, we examined the role of protein kinase C-α (PKCα) activity in human HCT-8 intestinal epithelial cells during infection with Cryptosporidium parvum sporozoites. To delineate the role of PKCα in infection, we developed a fluorescence-based imaging assay to differentiate adherent from intracellular parasites. We tested pharmacological agonists and antagonists of PKCα and measured the effect on C. parvum sporozoite adherence to and invasion of HCT-8 cells. We demonstrate that both PKCα agonists and antagonists significantly alter parasite adherence and invasion in vitro. We found that HCT-8 cell PKCα is activated by C. parvum infection. Our findings suggest intestinal epithelial cell PKCα as a potential host-directed therapeutic target for cryptosporidiosis and implicate PKCα activity as a mediator of parasite adherence and invasion.
Collapse
|
25
|
Huang R, Liu Y, Li B, Wang R, Tamalunas A, Waidelich R, Strittmatter F, Stief CG, Hennenberg M. Inhibition of human prostate smooth muscle contraction by the inhibitors of protein kinase C, GF109203X, and Go6983. Prostate 2022; 82:59-77. [PMID: 34633103 DOI: 10.1002/pros.24248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/09/2021] [Accepted: 09/27/2021] [Indexed: 11/07/2022]
Abstract
INTRODUCTION Prostate smooth muscle contraction is promoted by receptor-induced activation of intracellular signaling pathways. The presumed involvement in etiology and medical treatment of lower urinary tract symptoms (LUTS) suggestive of benign prostatic hyperplasia (BPH) imparts a high clinical relevance to prostate smooth muscle contraction, which is contrasted by incomplete understanding at the molecular level. Involvement of protein kinase C (PKC) has been commonly assumed, but available studies were limited to nonhuman prostate smooth muscle or cell cultures. Here, we examined the effects of the PKC inhibitors Go6983 and GF109203x on contractions of human prostate tissues. METHODS Prostate tissues were obtained from radical prostatectomy. Contractions were induced by electric field stimulation (EFS), α1 -adrenergic agonists (noradrenaline, phenylephrine, methoxamine), thromboxane A2 analog U46619, endothelin-1, or calcium chloride in an organ bath. RESULTS GF109203X (500 nM) and Go6983 (300 nM) reduced EFS-, noradrenaline-, phenylephrine-, methoxamine-, and U46619-induced contractions of human prostate tissues, with maximum inhibitions approaching up to 55%. Using concentrations of 3 µM, GF109203X and Go6983 inhibited EFS- and noradrenaline-induced contractions, with similar effect sizes as 500 and 300 nM, respectively. Endothelin-1-induced contractions were not inhibited by GF109203X, and to neglectable extent by Go6983. After depolarization in calcium-free solution, calcium chloride-induced concentration-dependent contractions, which were inhibited by GF109203X and Go6983. CONCLUSIONS GF109203X and Go6983 inhibit neurogenic, α1 -adrenergic, and thromboxane A2 -induced smooth muscle contractions in the human prostate, suggesting a role of PKC for human prostate smooth muscle contraction. The inhibition may by be imparted by inhibition of calcium sensitivity.
Collapse
Affiliation(s)
- Ru Huang
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Yuhan Liu
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Bingsheng Li
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Ruixiao Wang
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Alexander Tamalunas
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Raphaela Waidelich
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Frank Strittmatter
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Christian G Stief
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Martin Hennenberg
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| |
Collapse
|
26
|
Renkhold L, Kollmann R, Inderwiedenstraße L, Kienitz MC. PKC-isoform specific regulation of receptor desensitization and KCNQ1/KCNE1 K + channel activity by mutant α 1B-adrenergic receptors. Cell Signal 2021; 91:110228. [PMID: 34958868 DOI: 10.1016/j.cellsig.2021.110228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/25/2022]
Abstract
Activation of a specific protein kinase C (PKC) isoform during stimulation of Gq protein-coupled receptors (GqPCRs) is determined by homologous receptor desensitization that controls the spatiotemporal formation of downstream Gq signalling molecules. Furthermore, GqPCR-activated PKC isoforms specifically regulate receptor activity via a negative feedback mechanism. In the present study, we investigated the contribution of several phosphorylation sites in the α1B-adrenergic receptor (α1B-AR) for PKC and G protein coupled receptor kinase 2 (GRK2) to homologous receptor desensitization and effector modulation. We analyzed signalling events downstream to human wildtype α1B-ARs and α1B-ARs lacking PKC or GRK2 phosphorylation sites (Δ391-401, α1B-ΔPKC-AR and Δ402-520, α1B-ΔGRK-AR) by means of FRET-based biosensors in HEK293 that served as online-assays of receptor activity. K+ currents through KCNQ1/KCNE1 channels (IKs), which are regulated by both phosphatidylinositol 4,5-bisphosphate (PIP2)-depletion and/or phosphorylation by PKC, were measured as a functional readout of wildtype and mutant α1B-AR receptor activity. As a novel finding, we provide evidence that deletion of PKC and GRK2 phosphorylation sites in α1B-ARs abrogates the contribution of PKCα to homologous receptor desensitization. Instead, the time course of mutant receptor activity was specifically modulated by PKCβ. Mutant α1B-ARs displayed pronounced homologous receptor desensitization that was abolished by PKCβ-specific pharmacological inhibitors. IKs modulation during stimulation of wildtype and mutant α1B-ARs displayed transient inhibition and current facilitation after agonist withdrawal with reduced capability of mutant α1B-ARs to induce IKs inhibition. Pharmacological inhibition of the PKCβ isoform did not augment IKs reduction by mutant α1B-ARs, but shifted IKs modulation towards current facilitation. Coexpression of an inactive (dominant-negative) PKCδ isoform (DN-PKCδ) abolished IKs facilitation in α1B-ΔGRK-AR-expressing cells, but not in α1B-ΔPKC-AR-expressing cells. The data indicate that the differential modulation of IKs activity by α1B-ΔGRK- and α1B-ΔPKC-receptors is attributed to the activation of entirely distinct novel PKC isoforms. To summarize, specific phosphorylation sites within the wildtype and mutant α1B-adrenergic receptors are targeted by different PKC isoforms, resulting in differential regulation of receptor desensitization and effector function.
Collapse
Affiliation(s)
- Lina Renkhold
- Klinik für Hautkrankheiten, Universitätsklinikum Münster, Von-Esmarch-Str. 58, D-48149 Münster, Deutschland, Germany
| | - Rike Kollmann
- Department of Cellular Physiology, Institute of Physiology, Ruhr University Bochum, Universitätsstrasse 150, D-44801 Bochum, Germany
| | - Leonie Inderwiedenstraße
- Department of Cellular Physiology, Institute of Physiology, Ruhr University Bochum, Universitätsstrasse 150, D-44801 Bochum, Germany
| | - Marie-Cecile Kienitz
- Department of Cellular Physiology, Institute of Physiology, Ruhr University Bochum, Universitätsstrasse 150, D-44801 Bochum, Germany.
| |
Collapse
|
27
|
Ågren R, Sahlholm K. G protein-coupled receptor kinase-2 confers isoform-specific calcium sensitivity to dopamine D 2 receptor desensitization. FASEB J 2021; 35:e22013. [PMID: 34699610 DOI: 10.1096/fj.202100704rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/04/2021] [Accepted: 10/11/2021] [Indexed: 11/11/2022]
Abstract
The dopamine D2 receptor (D2 R) functions as an autoreceptor on dopaminergic cell bodies and terminals and as a postsynaptic receptor on a variety of neurons in the central nervous system. As a result of alternative splicing, the D2 R is expressed as two isoforms: long (D2L R) and short (D2S R) differing by a stretch of 29 residues in the third intracellular loop, with D2S R being the predominant presynaptic isoform. Recent reports described a Ca2+ sensitivity of the desensitization time course of potassium currents elicited via D2S R, but not via D2L R, when either isoform was selectively expressed in dopaminergic neurons. Here, we aimed to study the mechanism behind this subtype-specific Ca2+ sensitivity. Thus, we measured the desensitization of potassium channel responses evoked by D2L R and D2S R using two-electrode voltage clamp in Xenopus oocytes in the absence and presence of different amounts of β-arrestin2 and G protein-coupled receptor kinase-2 (GRK2), both of which are known to play important roles in D2 R desensitization in native cells. We found that co-expression of both GRK2 and β-arrestin2 was necessary for reconstitution of the Ca2+ sensitivity of D2S R desensitization, while D2L R did not display Ca2+ sensitivity under these conditions. The effect of Ca2+ chelation by BAPTA-AM to slow the rate of D2S R desensitization was mimicked by the GRK2 inhibitor, Cmpd101, and by the kinase-inactivating GRK2 mutation, K220R, but not by the PKC inhibitor, Gö6976, nor by the calmodulin antagonist, KN-93. Thus, Ca2+ -sensitive desensitization of D2S R appears to be mediated via a GRK2 phosphorylation-dependent mechanism.
Collapse
Affiliation(s)
- Richard Ågren
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Kristoffer Sahlholm
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Integrative Medical Biology, Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
28
|
Wang Y, Lu S, Chen Y, Li L, Li X, Qu Z, Huang J, Fan L, Yuan C, Song N, Zhang J, Xu W, Yang S, Wang Y. Smoothened is a therapeutic target for reducing glutamate toxicity in ischemic stroke. Sci Transl Med 2021; 13:eaba3444. [PMID: 34516830 DOI: 10.1126/scitranslmed.aba3444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Yuqing Wang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China.,Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, 200031 Shanghai, China
| | - Shanshan Lu
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Yifei Chen
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Liang Li
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Xia Li
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Zhongwei Qu
- Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, 200031 Shanghai, China
| | - Junbo Huang
- Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, 200031 Shanghai, China
| | - Liu Fan
- Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, 200031 Shanghai, China
| | - Chao Yuan
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Nan Song
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Jun Zhang
- Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Wendong Xu
- Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Shenglian Yang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Yizheng Wang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China.,Huashan Hospital, Fudan University, 200040 Shanghai, China
| |
Collapse
|
29
|
Glomerular Mesangial Cell pH Homeostasis Mediates Mineralocorticoid Receptor-Induced Cell Proliferation. Biomedicines 2021; 9:biomedicines9091117. [PMID: 34572303 PMCID: PMC8468551 DOI: 10.3390/biomedicines9091117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 11/17/2022] Open
Abstract
Mineralocorticoids (e.g., aldosterone) support chronic inflammatory tissue damage, including glomerular mesangial injury leading to glomerulosclerosis. Furthermore, aldosterone leads to activation of the extracellular signal-regulated kinases (ERK1/2) in rat glomerular mesangial cells (GMC). Because ERK1/2 can affect cellular pH homeostasis via activation of Na+/H+-exchange (NHE) and the resulting cellular alkalinization may support proliferation, we tested the hypothesis that aldosterone affects pH homeostasis and thereby cell proliferation as well as collagen secretion also in primary rat GMC. Cytoplasmic pH and calcium were assessed by single-cell fluorescence ratio imaging, using the dyes BCECF or FURA2, respectively. Proliferation was determined by cell counting, thymidine incorporation and collagen secretion by collagenase-sensitive proline incorporation and ERK1/2-phosphorylation by Western blot. Nanomolar aldosterone induces a rapid cytosolic alkalinization which is prevented by NHE inhibition (10 µmol/L EIPA) and by blockade of the mineralocorticoid receptor (100 nmol/L spironolactone). pH changes were not affected by inhibition of HCO3- transporters and were not dependent on HCO3-. Aldosterone enhanced ERK1/2 phosphorylation and inhibition of ERK1/2-phosphorylation (10 µmol/L U0126) prevented aldosterone-induced alkalinization. Furthermore, aldosterone induced proliferation of GMC and collagen secretion, both of which were prevented by U0126 and EIPA. Cytosolic calcium was not involved in this aldosterone action. In conclusion, our data show that aldosterone can induce GMC proliferation via a MR and ERK1/2-mediated activation of NHE with subsequent cytosolic alkalinization. GMC proliferation leads to glomerular hypercellularity and dysfunction. This effect presents a possible mechanism contributing to mineralocorticoid receptor-induced pathogenesis of glomerular mesangial injury during chronic kidney disease.
Collapse
|
30
|
Cao ZR, Chen XP, Feng M, Hou YL, Li Y, Hu XL, Huang ZL, Hu J. The effect of Gö6976 on chronic myeloid leukemia in vitro and in vivo. ACTA ACUST UNITED AC 2021; 26:543-551. [PMID: 34348586 DOI: 10.1080/16078454.2021.1945235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Objectives: Chronic myeloid leukemia (CML) is a malignant tumor of the blood system. Gö6976, as a type of indolocarbazole and shows strong antitumor effects, but there have been no reports on the effect of Gö6976 on CML. The objectives of this research were: (1) to explore the impact of Gö6976 on CML in vitro and in vivo; and (2) to explore the drug toxicity of Gö6976 to normal cells and animals.Methods:K562 cells and CML mice were used to explore the effect of Gö6976 on CML. Peripheral blood mononuclear cells (PBMCs), CD34+ cells, and healthy mice were used to explore the drug toxicity of Gö6976.Results: Cell experiments showed that Gö6976 could inhibit the proliferation of K562 cells and enhance the inhibitory effects of imatinib at 5 μM and 10 μM, but it had little effect on CD34+ cells or PBMCs at concentrations less than 5 μM. Animal experiments showed that 2.5 mg/kg Gö6976 could effectively inhibit the development of CML in mice, and it had almost no effects on healthy mice at 2.5 mg/kg and 10 mg/kg.Discussion: Because of the direct inhibitory effect of Gö6976 on CML and its pharmacological enhancement effect on imatinib, it is foreseeable that Gö6976 could become a new type of anti-CML medicine. And the further research is needed.Conclusion: Our findings verified that Gö6976 could effectively inhibit CML in vitro and in vivo, and it is almost nontoxic to hematopoietic cells, immune cells, and healthy mice.
Collapse
Affiliation(s)
- Zhen-Rui Cao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xiao-Peng Chen
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, People's Republic of China
| | - Min Feng
- Neuroscience Research Center, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yun-Long Hou
- Zhoukou Union Osteological Hospital, Zhoukou, People's Republic of China
| | - Yan Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xiao-Lei Hu
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, People's Republic of China
| | - Zheng-Lan Huang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jing Hu
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
31
|
Yang C, He Z, Zhang Q, Lu M, Zhao J, Chen W, Gao L. TSH Activates Macrophage Inflammation by G13- and G15-dependent Pathways. Endocrinology 2021; 162:6225351. [PMID: 33851697 DOI: 10.1210/endocr/bqab077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Indexed: 12/17/2022]
Abstract
Thyroid-stimulating hormone (TSH) treatment activates inhibitor of NF-κB/nuclear factor κB (IκB/NFκB) and extracellular signal-regulated kinase (ERK)-P38 in macrophages, but how these pathways are activated, and how they contribute to the proinflammatory effect of TSH on macrophages remain unknown. The TSH receptor (TSHR) is coupled to 4 subfamilies of G proteins (Gs, Gi/o, Gq/11, and G12/13) for its downstream signaling. This study investigated the G protein subtypes responsible for the proinflammatory effect of TSH on macrophages. qPCR showed that Gi2, Gi3, Gas, Gq, G11, G12, G13, and G15 are abundantly expressed by macrophages. The contribution of different G protein pathways to the proinflammatory effect was studied by the corresponding inhibitors or siRNA interference. While TSH-induced IκB phosphorylation was not inhibited by Gs inhibitor NF449, Gi inhibitor pertussis toxin, or Gq or G11 siRNA, it was blocked by phospholipase C inhibitor U73122 or G15 siRNA interference. TSH-induced ERK and P38 phosphorylation was blocked by G13 but not G12 siRNA interference. Interference of either G13 or G15 could block the proinflammatory effect of TSH on macrophages. The present study demonstrate that TSH activates macrophage inflammation by the G13/ERK-P38/Rho GTPase and G15/phospholipase C (PLC)/protein kinases C (PKCs)/IκB pathways.
Collapse
Affiliation(s)
- Chongbo Yang
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - Zhao He
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qunye Zhang
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Ministry of Public Health, the State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ming Lu
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - Wenbin Chen
- Scientific Center, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ling Gao
- Scientific Center, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
32
|
Grant SN, Lester HA. Regulation of epithelial sodium channel activity by SARS-CoV-1 and SARS-CoV-2 proteins. Biophys J 2021; 120:2805-2813. [PMID: 34197807 PMCID: PMC8238646 DOI: 10.1016/j.bpj.2021.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/21/2021] [Accepted: 06/03/2021] [Indexed: 01/06/2023] Open
Abstract
Severe acute respiratory syndrome (SARS) coronavirus (CoV) 2 (SARS-CoV-2), which causes the coronavirus disease 2019, encodes several proteins whose roles are poorly understood. We tested their ability either to directly form plasma membrane ion channels or to change functions of two mammalian plasma membrane ion channels, the epithelial sodium channel (ENaC) and the α3β4 nicotinic acetylcholine receptor. In mRNA-injected Xenopus oocytes, none of nine SARS-CoV-2 proteins or two SARS-CoV-1 proteins produced conductances, nor did co-injection of several combinations. Immunoblots for ORF8, spike (S), and envelope (E) proteins revealed that the proteins are expressed at appropriate molecular weights. In experiments on coexpression with ENaC, three tested SARS proteins (SARS-CoV-1 E, SARS-CoV-2 E, and SARS-CoV-2 S) markedly decrease ENaC currents. SARS-CoV-1 S protein decreases ENaC currents modestly. Coexpressing the E proteins but not the S proteins with α3β4 nicotinic acetylcholine receptors significantly reduces acetylcholine-induced currents. ENaC inhibition does not occur if the SARS-CoV protein mRNAs are injected 24 h after the ENaC mRNAs, suggesting that SARS-CoV proteins affect early step(s) in functional expression of channel proteins. Consistent with the hypothesis that the SARS-CoV-2 S protein-induced ENaC inhibition involves competition for available protease, mutating the furin cleavage site in SARS-CoV-2 S protein partially relieves inhibition of ENaC currents. Extending previous suggestions that SARS proteins affect ENaC currents via protein kinase C (PKC) activation, PKC activation via phorbol 12-myristate 13-acetate decreases ENaC and α3β4 activity. Phorbol 12-myristate 13-acetate application reduced membrane capacitance ∼5%, presumably via increased endocytosis, but this decrease is much smaller than the SARS proteins' effects on conductances. Also, incubating oocytes in Gö-6976, a PKCα and PKCβ inhibitor, did not alter E or S protein-induced channel inhibition. We conclude that SARS-CoV-1 and SARS-CoV-2 proteins alter the function of human plasma membrane channels, via incompletely understood mechanisms. These interactions may play a role in the coronavirus 2019 pathophysiology.
Collapse
Affiliation(s)
- Stephen N Grant
- Division of Chemistry and Chemical Engineering, Pasadena, California
| | - Henry A Lester
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California.
| |
Collapse
|
33
|
Mohan S, Tiwari MN, Stanojević M, Biala Y, Yaari Y. Muscarinic regulation of the neuronal Na + /K + -ATPase in rat hippocampus. J Physiol 2021; 599:3735-3754. [PMID: 34148230 DOI: 10.1113/jp281460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/16/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Stimulation of postsynaptic muscarinic receptors was shown to excite principal hippocampal neurons by modulating several membrane ion conductances. We show here that activation of postsynaptic muscarinic receptors also causes neuronal excitation by inhibiting Na+ /K+ -ATPase activity. Muscarinic Na+ /K+ -ATPase inhibition is mediated by two separate signalling pathways that lead downstream to enhanced Na+ /K+ -ATPase phosphorylation by activating protein kinase C and protein kinase G. Muscarinic excitation through Na+ /K+ -ATPase inhibition is probably involved in cholinergic modulation of hippocampal activity and may turn out to be a widespread mechanism of neuronal excitation in the brain. ABSTRACT Stimulation of muscarinic cholinergic receptors on principal hippocampal neurons enhances intrinsic neuronal excitability by modulating several membrane ion conductances. The electrogenic Na+ /K+ -ATPase (NKA; the 'Na+ pump') is a ubiquitous regulator of intrinsic neuronal excitability, generating a hyperpolarizing current to thwart excessive neuronal firing. Using electrophysiological and pharmacological methodologies in rat hippocampal slices, we show that neuronal NKA pumping activity is also subjected to cholinergic regulation. Stimulation of postsynaptic muscarinic, but not nicotinic, cholinergic receptors activates membrane-bound phospholipase C and hydrolysis of membrane-integral phosphatidylinositol 4,5-bisphosphate into diacylglycerol (DAG) and inositol 1,4,5-triphosphate (IP3 ). Along one signalling pathway, DAG activates protein kinase C (PKC). Along a second signalling pathway, IP3 causes Ca2+ release from the endoplasmic reticulum, facilitating nitric oxide (NO) production. The rise in NO levels stimulates cGMP synthesis by guanylate-cyclase, activating protein kinase G (PKG). The two pathways converge to cause partial NKA inhibition through enzyme phosphorylation by PKC and PKG, leading to a marked increase in intrinsic neuronal excitability. This novel mechanism of neuronal NKA regulation probably contributes to the cholinergic modulation of hippocampal activity in spatial navigation, learning and memory.
Collapse
Affiliation(s)
- Sandesh Mohan
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah School of Medicine, Jerusalem, 91120, Israel
| | - Manindra Nath Tiwari
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah School of Medicine, Jerusalem, 91120, Israel
| | - Marija Stanojević
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah School of Medicine, Jerusalem, 91120, Israel
| | - Yoav Biala
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah School of Medicine, Jerusalem, 91120, Israel
| | - Yoel Yaari
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah School of Medicine, Jerusalem, 91120, Israel
| |
Collapse
|
34
|
Belvedere R, Morretta E, Pessolano E, Novizio N, Tosco A, Porta A, Whiteford J, Perretti M, Filippelli A, Monti MC, Petrella A. Mesoglycan exerts its fibrinolytic effect through the activation of annexin A2. J Cell Physiol 2021; 236:4926-4943. [PMID: 33284486 DOI: 10.1002/jcp.30207] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022]
Abstract
Mesoglycan is a drug based on a mixture of glycosaminoglycans mainly used for the treatment of blood vessel diseases acting as antithrombotic and profibrinolytic drugs. Besides the numerous clinical studies, there is no information about its function on the fibrinolytic cascade. Here, we have elucidated the mechanism of action by which mesoglycan induces the activation of plasmin from endothelial cells. Surprisingly, by a proteomic analysis, we found that, following mesoglycan treatment, these cells show a notable amount of annexin A2 (ANXA2) at the plasma membrane. This protein has been widely associated with fibrinolysis and appears able to move to the membrane when phosphorylated. In our model, this translocation has proven to enhance cell migration, invasion, and angiogenesis. Furthermore, the interaction of mesoglycan with syndecan 4 (SDC4), a coreceptor belonging to the class of heparan sulfate proteoglycans, represents the upstream event of the ANXA2 behavior. Indeed, the activation of SDC4 triggers the motility of endothelial cells culminating in angiogenesis. Interestingly, mesoglycan can induce the release of plasmin in endothelial cell supernatants only in the presence of ANXA2. This evaluation suggests that mesoglycan triggers the formation of a chain mechanism starting from the activation of SDC4, and the related cascade of events, including src complex and PKCα activation, promoting the phosphorylation of ANXA2 and its translocation to plasma membrane. This indicates a connection among mesoglycan, SDC4-(PKCα-src), and ANXA2 which, in turn, links the tissue plasminogen activator bringing it closer to plasminogen. This latter is so cleaved to release the plasmin and degrade fibrin sleeves.
Collapse
Affiliation(s)
| | - Elva Morretta
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy
| | - Emanuela Pessolano
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Nunzia Novizio
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy
| | - Alessandra Tosco
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy
| | - Amalia Porta
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy
| | - James Whiteford
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mauro Perretti
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Amelia Filippelli
- Department of Medicine, Surgery, and Dentistry, University of Salerno, Baronissi (SA), Italy
| | | | | |
Collapse
|
35
|
Alemán OR, Mora N, Rosales C. The Antibody Receptor Fc Gamma Receptor IIIb Induces Calcium Entry via Transient Receptor Potential Melastatin 2 in Human Neutrophils. Front Immunol 2021; 12:657393. [PMID: 34054821 PMCID: PMC8155622 DOI: 10.3389/fimmu.2021.657393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/23/2021] [Indexed: 11/13/2022] Open
Abstract
Human neutrophils express two unique antibody receptors for IgG, the FcγRIIa and the FcγRIIIb. FcγRIIa contains an immunoreceptor tyrosine-based activation motif (ITAM) sequence within its cytoplasmic tail, which is important for initiating signaling. In contrast, FcγRIIIb is a glycosylphosphatidylinositol (GPI)-linked receptor with no cytoplasmic tail. Although, the initial signaling mechanism for FcγRIIIb remains unknown, it is clear that both receptors are capable of initiating distinct neutrophil cellular functions. For example, FcγRIIa is known to induce an increase in L-selectin expression and efficient phagocytosis, while FcγRIIIb does not promote these responses. In contrast, FcγRIIIb has been reported to induce actin polymerization, activation of β1 integrins, and formation of neutrophils extracellular traps (NET) much more efficiently than FcγRIIa. Another function where these receptors seem to act differently is the increase of cytoplasmic calcium concentration. It has been known for a long time that FcγRIIa induces production of inositol triphosphate (IP3) to release calcium from intracellular stores, while FcγRIIIb does not use this phospholipid. Thus, the mechanism for FcγRIIIb-mediated calcium rise remains unknown. Transient Receptor Potential Melastatin 2 (TRPM2) is a calcium permeable channel expressed in many cell types including vascular smooth cells, endothelial cells and leukocytes. TRPM2 can be activated by protein kinase C (PKC) and by oxidative stress. Because we previously found that FcγRIIIb stimulation leading to NET formation involves PKC activation and reactive oxygen species (ROS) production, in this report we explored whether TRPM2 is activated via FcγRIIIb and mediates calcium rise in human neutrophils. Calcium rise was monitored after Fcγ receptors were stimulated by specific monoclonal antibodies in Fura-2-loaded neutrophils. The bacterial peptide fMLF and FcγRIIa induced a calcium rise coming initially from internal pools. In contrast, FcγRIIIb caused a calcium rise by inducing calcium entry from the extracellular medium. In addition, in the presence of 2-aminoethoxydiphenyl borate (2-APB) or of clotrimazole, two inhibitors of TRPM2, FcγRIIIb-induced calcium rise was blocked. fMLF- or FcγRIIa-induced calcium rise was not affected by these inhibitors. These data suggest for the first time that FcγRIIIb aggregation activates TRPM2, to induce an increase in cytoplasmic calcium concentration through calcium internalization in human neutrophils.
Collapse
Affiliation(s)
| | | | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
36
|
Ma Q, Cao Z, Li H, Wang W, Tian Y, Yan L, Liao Y, Chen X, Chen Y, Shi Y, Tang S, Zhou N. Two naturally occurring mutations of human GPR103 define distinct G protein selection bias. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119046. [PMID: 33872671 DOI: 10.1016/j.bbamcr.2021.119046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/18/2022]
Abstract
The neuropeptide 26RFa plays important roles in the regulation of many physiological functions. 26RFa has been recognized as an endogenous ligand for receptor GPR103. In the present study, we demonstrate that GPR103 dually couples to Gαq and Gαi/o proteins. However, two naturally occurring missense mutations were identified from a young male patient. In the first, Y68H, induction of Ca2+ mobilization was noted without detection of ERK1/2 activation. In the second, R371W, the potential to activate ERK1/2 signaling was retained but with failure to evoke Ca2+ mobilization. Further analysis provides evidence that Gαq, L-type Ca2+ channel and PKCβI and βII are involved in the Y68H-mediated signaling pathway, whereas Gαi/o, Gβγ, and PKCζ are implicated in the R371W-induced signaling. Our results demonstrate that two point mutations, Y68H and R371W, affect the equilibrium between the different receptor conformations, leading to alteration of G protein-coupling preferences. Importantly, these findings provide a foundation for future elucidation of GPCR-mediated biased signaling and the physiological implications of their bias.
Collapse
Affiliation(s)
- Qiang Ma
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, MOE Frontier Center of Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Zheng Cao
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Huanzheng Li
- Wenzhou Key Laboratory of Birth Defects, Wenzhou Central Hospital, Wenzhou, Zhejiang 325000, China
| | - Weiwei Wang
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yanan Tian
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lili Yan
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yuan Liao
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiangnan Chen
- Wenzhou Key Laboratory of Birth Defects, Wenzhou Central Hospital, Wenzhou, Zhejiang 325000, China
| | - Yu Chen
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ying Shi
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shaohua Tang
- Wenzhou Key Laboratory of Birth Defects, Wenzhou Central Hospital, Wenzhou, Zhejiang 325000, China; School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 32500, China
| | - Naiming Zhou
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
37
|
Baffi TR, Lordén G, Wozniak JM, Feichtner A, Yeung W, Kornev AP, King CC, Del Rio JC, Limaye AJ, Bogomolovas J, Gould CM, Chen J, Kennedy EJ, Kannan N, Gonzalez DJ, Stefan E, Taylor SS, Newton AC. mTORC2 controls the activity of PKC and Akt by phosphorylating a conserved TOR interaction motif. Sci Signal 2021; 14:eabe4509. [PMID: 33850054 PMCID: PMC8208635 DOI: 10.1126/scisignal.abe4509] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The complex mTORC2 is accepted to be the kinase that controls the phosphorylation of the hydrophobic motif, a key regulatory switch for AGC kinases, although whether mTOR directly phosphorylates this motif remains controversial. Here, we identified an mTOR-mediated phosphorylation site that we termed the TOR interaction motif (TIM; F-x3-F-pT), which controls the phosphorylation of the hydrophobic motif of PKC and Akt and the activity of these kinases. The TIM is invariant in mTORC2-dependent AGC kinases, is evolutionarily conserved, and coevolved with mTORC2 components. Mutation of this motif in Akt1 and PKCβII abolished cellular kinase activity by impairing activation loop and hydrophobic motif phosphorylation. mTORC2 directly phosphorylated the PKC TIM in vitro, and this phosphorylation event was detected in mouse brain. Overexpression of PDK1 in mTORC2-deficient cells rescued hydrophobic motif phosphorylation of PKC and Akt by a mechanism dependent on their intrinsic catalytic activity, revealing that mTORC2 facilitates the PDK1 phosphorylation step, which, in turn, enables autophosphorylation. Structural analysis revealed that PKC homodimerization is driven by a TIM-containing helix, and biophysical proximity assays showed that newly synthesized, unphosphorylated PKC dimerizes in cells. Furthermore, disruption of the dimer interface by stapled peptides promoted hydrophobic motif phosphorylation. Our data support a model in which mTORC2 relieves nascent PKC dimerization through TIM phosphorylation, recruiting PDK1 to phosphorylate the activation loop and triggering intramolecular hydrophobic motif autophosphorylation. Identification of TIM phosphorylation and its role in the regulation of PKC provides the basis for AGC kinase regulation by mTORC2.
Collapse
Affiliation(s)
- Timothy R Baffi
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA
- Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, CA 92093, USA
| | - Gema Lordén
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Jacob M Wozniak
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA
- Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093, USA
| | - Andreas Feichtner
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck A-6020, Austria
| | - Wayland Yeung
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Alexandr P Kornev
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Charles C King
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Jason C Del Rio
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA
- Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, CA 92093, USA
| | - Ameya J Limaye
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| | - Julius Bogomolovas
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Christine M Gould
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA
- Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, CA 92093, USA
| | - Ju Chen
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Eileen J Kennedy
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| | - Natarajan Kannan
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - David J Gonzalez
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093, USA
| | - Eduard Stefan
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck A-6020, Austria
| | - Susan S Taylor
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093, USA
| | - Alexandra C Newton
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
38
|
Belkacemi L, Zhong W, Darmani NA. Signal transduction pathways involved in dopamine D 2 receptor-evoked emesis in the least shrew (Cryptotis parva). Auton Neurosci 2021; 233:102807. [PMID: 33865060 DOI: 10.1016/j.autneu.2021.102807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/15/2021] [Accepted: 03/29/2021] [Indexed: 12/21/2022]
Abstract
With its five receptor subtypes (D1-5), dopamine is implicated in a myriad of neurological illnesses. Dopamine D2 receptor-based agonist therapy evokes nausea and vomiting. The signaling mechanisms by which dopamine D2 receptors evoke vomiting remains unknown. Phosphatidylinositol 3-kinases (PI3K)- and protein kinase C (PKC)-related signaling cascades stimulate vomiting post-injection of various emetogens in emetically competent animals. This study investigated potential mechanisms involved in dopamine D2 receptor-mediated vomiting using least shrews. We found that vomiting evoked by the selective dopamine D2 receptor agonist quinpirole (2 mg/kg, i.p.) was significantly suppressed by: i) a dopamine D2 preferring antagonist, sulpiride (s.c.); ii) a selective PI3K inhibitor, LY294002 (i.p.); iii) a PKCαβII inhibitor, GF109203X (i.p.); and iv) a selective inhibitor of extracellular signal-regulated protein kinase1/2 (ERK1/2), U0126 (i.p.). Quinpirole-evoked c-fos immunofluorescence in the nucleus tractus solitarius (NTS) was suppressed by pretreatment with sulpiride (8 mg/kg, s.c.). Western blot analysis of shrew brainstem emetic loci protein lysates revealed a significant and time-dependent increase in phosphorylation of Akt (protein kinase B (PKB)) at Ser473 following a 30-min exposure to quinpirole (2 mg/kg, i.p.). Pretreatment with effective antiemetic doses of sulpiride, LY294002, GF109203X, or U0126 significantly reduced quinpirole-stimulated phosphorylation of emesis-associated proteins including p-85PI3K, mTOR (Ser2448/2481), PKCαβII (Thr638/641), ERK1/2 (Thr202/204), and Akt (Ser473). Our results substantiate the implication of PI3K/mTOR/Akt and PI3K/PKCαβII/ERK1/2/Akt signaling pathways in dopamine D2 receptor-mediated vomiting. Potential novel antiemetics targeting emetic proteins associated with these signaling cascades may offer enhanced potency and/or efficacy against emesis.
Collapse
Affiliation(s)
- Louiza Belkacemi
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Weixia Zhong
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Nissar A Darmani
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA.
| |
Collapse
|
39
|
Synthesis of dibenzo[e,g]isoindol-1-ones via photoinduced intramolecular annulation of 3,4-diphenyl-1H-pyrrol-2(5H)-ones. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.131981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Wang J, Hertz L, Ruppenthal S, El Nemer W, Connes P, Goede JS, Bogdanova A, Birnbaumer L, Kaestner L. Lysophosphatidic Acid-Activated Calcium Signaling Is Elevated in Red Cells from Sickle Cell Disease Patients. Cells 2021; 10:456. [PMID: 33672679 PMCID: PMC7924404 DOI: 10.3390/cells10020456] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/15/2022] Open
Abstract
(1) Background: It is known that sickle cells contain a higher amount of Ca2+ compared to healthy red blood cells (RBCs). The increased Ca2+ is associated with the most severe symptom of sickle cell disease (SCD), the vaso-occlusive crisis (VOC). The Ca2+ entry pathway received the name of Psickle but its molecular identity remains only partly resolved. We aimed to map the involved Ca2+ signaling to provide putative pharmacological targets for treatment. (2) Methods: The main technique applied was Ca2+ imaging of RBCs from healthy donors, SCD patients and a number of transgenic mouse models in comparison to wild-type mice. Life-cell Ca2+ imaging was applied to monitor responses to pharmacological targeting of the elements of signaling cascades. Infection as a trigger of VOC was imitated by stimulation of RBCs with lysophosphatidic acid (LPA). These measurements were complemented with biochemical assays. (3) Results: Ca2+ entry into SCD RBCs in response to LPA stimulation exceeded that of healthy donors. LPA receptor 4 levels were increased in SCD RBCs. Their activation was followed by the activation of Gi protein, which in turn triggered opening of TRPC6 and CaV2.1 channels via a protein kinase Cα and a MAP kinase pathway, respectively. (4) Conclusions: We found a new Ca2+ signaling cascade that is increased in SCD patients and identified new pharmacological targets that might be promising in addressing the most severe symptom of SCD, the VOC.
Collapse
Affiliation(s)
- Jue Wang
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA;
| | - Laura Hertz
- Theoretical Medicine and Biosciences, Saarland University, 66421 Homburg, Germany;
- Experimental Physics, Dynamics of Fluids, Saarland University, 66123 Saarbrücken, Germany;
| | - Sandra Ruppenthal
- Experimental Physics, Dynamics of Fluids, Saarland University, 66123 Saarbrücken, Germany;
- Gynaecology, Obstetrics and Reproductive Medicine, Saarland University Hospital, 66421 Homburg, Germany
| | - Wassim El Nemer
- Etablissement Français du Sang PACA-Corse, Aix Marseille Université, EFS, CNRS, ADES, 13005 Marseille, France;
- Laboratoire d’Excellence GR-Ex, 75015 Paris, France;
| | - Philippe Connes
- Laboratoire d’Excellence GR-Ex, 75015 Paris, France;
- Laboratory LIBM EA7424, Vascular Biology and Red Blood Cell Teal, University Claude Bernard Lyon 1, 69008 Lyon, France
| | - Jeroen S. Goede
- Division of Oncology and Hematology, Kantonsspital Winterthur, CH-8401 Winterthur, Switzerland;
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, University of Zürich, CH-8057 Zürich, Switzerland;
| | - Lutz Birnbaumer
- Institute of Biomedical Research (BIOMED), Catholic University of Argentina, C1107AFF Buenos Aires, Argentina;
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Lars Kaestner
- Theoretical Medicine and Biosciences, Saarland University, 66421 Homburg, Germany;
- Experimental Physics, Dynamics of Fluids, Saarland University, 66123 Saarbrücken, Germany;
| |
Collapse
|
41
|
Machida T, Endo TH, Oyoshi R, Yutani M, Machida M, Shiga S, Murakami H, Hiraide S, Hirafuji M, Iizuka K. Abnormal Pressure Stress Reduces Interleukin-1β-Induced Cyclooxygenase-2 Expression in Cultured Rat Vascular Smooth Muscle Cells. Biol Pharm Bull 2021; 44:853-860. [PMID: 34078818 DOI: 10.1248/bpb.b21-00078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Elevated mechanical stress on blood vessels associated with hypertension has a direct effect on the function of vascular endothelial cells and vascular smooth muscle cells (VSMCs). In the present study, we have identified the effect of pulsatile pressure stress on cyclooxygenase-2 (COX-2) expression induced by interleukin (IL)-1β in cultured rat VSMCs. VSMCs were isolated from aortic media of Wistar rats and cultured. Pulsatile pressure applied to VSMCs was repeatedly given between either 80 and 160 mmHg, which simulates systolic hypertension, or 80 and 120 mmHg, which simulates normal blood pressure, at a frequency of 4 cycles per min using our original apparatus. Pressure loading that simulates systolic hypertension reduced IL-1β-induced COX-2 expression. The pressure also inhibited the rapid and transient phosphorylation of extracellular signal-regulated kinase (ERK) induced by IL-1β. IL-1β-induced COX-2 expression was significantly inhibited by a specific conventional protein kinase C (PKC) inhibitor. Pressure loading that simulates systolic hypertension also reduced phorbol myristate 13-acetate (PMA) (a PKC activator)-induced COX-2 expression and the rapid and transient phosphorylation of ERK. Pressure loading that simulates normal blood pressure had no effect on IL-1β- and PMA-induced COX-2 expression. The present study shows that pressure stress between 80 and 160 mmHg, which simulates systolic hypertension reduces IL-1β-induced COX-2 expression by affecting a mechanism involving PKC and ERK signaling pathways. Downregulation of COX-2 expression in VSMCs by abnormal pressure stress may further worsen local vascular injury associated with hypertension.
Collapse
Affiliation(s)
- Takuji Machida
- Department of Pharmacological Sciences, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido
| | - Tomoko Hinse Endo
- Department of Pharmacological Sciences, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido
| | - Riho Oyoshi
- Department of Pharmacological Sciences, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido
| | - Mikiko Yutani
- Department of Pharmacological Sciences, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido
| | - Maiko Machida
- Division of Pharmacotherapy, Faculty of Pharmaceutical Sciences, Hokkaido University of Science
| | - Saki Shiga
- Department of Pharmacological Sciences, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido
| | - Hina Murakami
- Department of Pharmacological Sciences, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido
| | - Sachiko Hiraide
- Department of Pharmacological Sciences, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido
| | - Masahiko Hirafuji
- Department of Pharmacological Sciences, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido
| | - Kenji Iizuka
- Department of Pharmacological Sciences, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido
| |
Collapse
|
42
|
Wang T, Zhou G, He M, Xu Y, Rusyniak WG, Xu Y, Ji Y, Simon RP, Xiong ZG, Zha XM. GPR68 Is a Neuroprotective Proton Receptor in Brain Ischemia. Stroke 2020; 51:3690-3700. [PMID: 33059544 PMCID: PMC7678672 DOI: 10.1161/strokeaha.120.031479] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Supplemental Digital Content is available in the text. Brain acidosis is prevalent in stroke and other neurological diseases. Acidosis can have paradoxical injurious and protective effects. The purpose of this study is to determine whether a proton receptor exists in neurons to counteract acidosis-induced injury.
Collapse
Affiliation(s)
- Tao Wang
- Department of Physiology and Cell Biology (T.W., G.Z., M.H., Yuanyuan Xu, X.-m.Z.), University of South Alabama College of Medicine, Mobile
| | - Guokun Zhou
- Department of Physiology and Cell Biology (T.W., G.Z., M.H., Yuanyuan Xu, X.-m.Z.), University of South Alabama College of Medicine, Mobile.,Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, China (G.Z., Y.J.)
| | - Mindi He
- Department of Physiology and Cell Biology (T.W., G.Z., M.H., Yuanyuan Xu, X.-m.Z.), University of South Alabama College of Medicine, Mobile
| | - Yuanyuan Xu
- Department of Physiology and Cell Biology (T.W., G.Z., M.H., Yuanyuan Xu, X.-m.Z.), University of South Alabama College of Medicine, Mobile
| | - W G Rusyniak
- Department of Neurosurgery (W.G.R.), University of South Alabama College of Medicine, Mobile
| | - Yan Xu
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis (Yan Xu)
| | - Yonghua Ji
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, China (G.Z., Y.J.)
| | - Roger P Simon
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA (R.P.S., Z.-G.X.)
| | - Zhi-Gang Xiong
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA (R.P.S., Z.-G.X.)
| | - Xiang-Ming Zha
- Department of Physiology and Cell Biology (T.W., G.Z., M.H., Yuanyuan Xu, X.-m.Z.), University of South Alabama College of Medicine, Mobile
| |
Collapse
|
43
|
Protein Kinase C Regulates ASIC1a Protein Expression and Channel Function via NF-kB Signaling Pathway. Mol Neurobiol 2020; 57:4754-4766. [PMID: 32783140 DOI: 10.1007/s12035-020-02056-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 08/03/2020] [Indexed: 10/23/2022]
Abstract
Tissue acidosis is a common feature in many pathological conditions. Activation of acid-sensing ion channel 1a (ASIC1a) plays a key role in acidosis-mediated neurotoxicity. Protein kinase C (PKC) activity has been proved to be associated with many physiological processes and pathological conditions; however, whether PKC activation regulates ASIC1a protein expression and channel function remains ill defined. In this study, we demonstrated that treatment with phorbol 12-myristate 13-acetate (PMA, a PKC activator) for 6 h significantly increased ASIC1a protein expression and ASIC currents in NS20Y cells, a neuronal cell line, and in primary cultured mouse cortical neurons. In contrast, treatment with Calphostin C (a nonselective PKC inhibitor) for 6 h or longer decreased ASIC1a protein expression and ASIC currents. Similar to Calphostin C, PKC α and βI inhibitor Go6976 exposure also reduced ASIC1a protein expression. The reduction in ASIC1a protein expression by PKC inhibition involves a change in ASIC1a protein degradation, which is mediated by ubiquitin-proteasome system (UPS)-dependent degradation pathway. In addition, we showed that PKC regulation of ASIC1a protein expression involves NF-κB signaling pathway. Consistent with their effects on ASIC1a protein expression and channel function, PKC inhibition protected NS20Y cells against acidosis-induced cytotoxicity, while PKC activation potentiated acidosis-induced cells injury. Together, these results indicate that ASIC1a protein expression and channel function are closely regulated by the activity of protein kinase C and its downstream signaling pathway(s).
Collapse
|
44
|
Yang N, Hong NJ, Garvin JL. Dietary fructose enhances angiotensin II-stimulated Na + transport via activation of PKC-α in renal proximal tubules. Am J Physiol Renal Physiol 2020; 318:F1513-F1519. [PMID: 32390510 DOI: 10.1152/ajprenal.00543.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Angiotensin II (ANG II) stimulates proximal nephron transport via activation of classical protein kinase C (PKC) isoforms. Acute fructose treatment stimulates PKC and dietary fructose enhances ANG II's ability to stimulate Na+ transport, but the mechanisms are unclear. We hypothesized that dietary fructose enhances ANG II's ability to stimulate renal proximal tubule Na+ reabsorption by augmenting PKC-α activation and increases in intracellular Ca2+. We measured total and isoform-specific PKC activity, basal and ANG II-stimulated oxygen consumption, a surrogate of Na+ reabsorption, and intracellular Ca2+ in proximal tubules from rats given either 20% fructose in their drinking water (fructose group) or tap water (control group). Total PKC activity was measured by ELISA. PKC-α, PKC-β, and PKC-γ activities were assessed by measuring particulate-to-soluble ratios. Intracelluar Ca2+ was measured using fura 2. ANG II stimulated total PKC activity by 53 ± 15% in the fructose group but not in the control group (-15 ± 11%, P < 0.002). ANG II stimulated PKC-α by 0.134 ± 0.026 but not in the control group (-0.002 ± 0.020, P < 0.002). ANG II increased PKC-γ activity by 0.008 ± 0.003 in the fructose group but not in the control group (P < 0.046). ANG II did not stimulate PKC-β in either group. ANG II increased Na+ transport by 454 ± 87 nmol·min-1·mg protein-1 in fructose group, and the PKC-α/β inhibitor Gö6976 blocked this increase (-96 ± 205 nmol·min-1·mg protein-1, P < 0.045). ANG II increased intracellular Ca2+ by 148 ± 53 nM in the fructose group but only by 43 ± 10 nM in the control group (P < 0.035). The intracellular Ca2+ chelator BAPTA blocked the ANG II-induced increase in Na+ transport in the fructose group. We concluded that dietary fructose enhances ANG II's ability to stimulate renal proximal tubule Na+ reabsorption by augmenting PKC-α activation via elevated increases in intacellular Ca2+.
Collapse
Affiliation(s)
- Nianxin Yang
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio.,Biochemistry, Molecular, Cellular and Developmental Biology, University of California, Davis, California
| | - Nancy J Hong
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Jeffrey L Garvin
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
45
|
Phosphoproteomics identifies dual-site phosphorylation in an extended basophilic motif regulating FILIP1-mediated degradation of filamin-C. Commun Biol 2020; 3:253. [PMID: 32444788 PMCID: PMC7244511 DOI: 10.1038/s42003-020-0982-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/01/2020] [Indexed: 01/10/2023] Open
Abstract
The PI3K/Akt pathway promotes skeletal muscle growth and myogenic differentiation. Although its importance in skeletal muscle biology is well documented, many of its substrates remain to be identified. We here studied PI3K/Akt signaling in contracting skeletal muscle cells by quantitative phosphoproteomics. We identified the extended basophilic phosphosite motif RxRxxp[S/T]xxp[S/T] in various proteins including filamin-C (FLNc). Importantly, this extended motif, located in a unique insert in Ig-like domain 20 of FLNc, is doubly phosphorylated. The protein kinases responsible for this dual-site phosphorylation are Akt and PKCα. Proximity proteomics and interaction analysis identified filamin A-interacting protein 1 (FILIP1) as direct FLNc binding partner. FILIP1 binding induces filamin degradation, thereby negatively regulating its function. Here, dual-site phosphorylation of FLNc not only reduces FILIP1 binding, providing a mechanism to shield FLNc from FILIP1-mediated degradation, but also enables fast dynamics of FLNc necessary for its function as signaling adaptor in cross-striated muscle cells. Reimann, Schwäble et al. perform quantitative proteomics to study PI3K/Akt signaling in contracting myotubes. They identify a dual-site phosphorylation motif in the actin cross-linker and signaling adaptor filamin C, which regulates its degradation and mobility, suggesting the importance of dual phosphorylation for filamin C function in striated muscle cells.
Collapse
|
46
|
Zhang Y, Yonezawa A, Nakagawa S, Imai S, Denda M, Omura T, Nakagawa T, Matsubara K. Cisplatin, rather than oxaliplatin, increases paracellular permeability of LLC-PK1 cells via activating protein kinase C. Drug Metab Pharmacokinet 2020; 35:111-116. [PMID: 31964622 DOI: 10.1016/j.dmpk.2019.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 09/10/2019] [Accepted: 09/13/2019] [Indexed: 10/26/2022]
Abstract
The clinical use of cisplatin is limited by its adverse events, particularly serious nephrotoxicity. It was clarified that cisplatin is transported by a kidney-specific organic cation transporter (OCT2). OCT2 also mediates the uptake of oxaliplatin into renal proximal tubular cells; however, this agent does not lead nephrotoxicity. In the present study, we carried out comparative experiments with cisplatin and oxaliplatin using porcine kidney LLC-PK1 cell monolayers. In the fluorescein-labeled isothiocyanate-dextran flux assay, the basolateral application of cisplatin, but not oxaliplatin, resulted in an increase in the paracellular permeability of cell monolayers. Even though the cellular accumulation of platinum at 50 μM oxaliplatin could reach the same level at 30 μM cisplatin, oxaliplatin did not induce hyper-permeability in cell monolayers. Cisplatin, but not oxaliplatin, significantly activated PKC. In addition, the combination of PKC inhibitors recovered the increase in paracellular permeability. In conclusion, pharmacodynamic mechanisms via PKC could explain the difference in nephrotoxicity between cisplatin and oxaliplatin.
Collapse
Affiliation(s)
- Yunpeng Zhang
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan; Graduate School and Faculty of Pharmaceutical Science, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Atsushi Yonezawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan; Graduate School and Faculty of Pharmaceutical Science, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Shunsaku Nakagawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Satoshi Imai
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Masaya Denda
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan; Graduate School and Faculty of Pharmaceutical Science, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tomohiro Omura
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takayuki Nakagawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kazuo Matsubara
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
47
|
Culp DJ, Zhang Z, Evans RL. VIP and muscarinic synergistic mucin secretion by salivary mucous cells is mediated by enhanced PKC activity via VIP-induced release of an intracellular Ca 2+ pool. Pflugers Arch 2020; 472:385-403. [PMID: 31932898 DOI: 10.1007/s00424-020-02348-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/09/2019] [Accepted: 01/06/2020] [Indexed: 12/12/2022]
Abstract
Mucin secretion by salivary mucous glands is mediated predominantly by parasympathetic acetylcholine activation of cholinergic muscarinic receptors via increased intracellular free calcium ([Ca2+]i) and activation of conventional protein kinase C isozymes (cPKC). However, the parasympathetic co-neurotransmitter, vasoactive intestinal peptide (VIP), also initiates secretion, but to a lesser extent. In the present study, cross talk between VIP- and muscarinic-induced mucin secretion was investigated using isolated rat sublingual tubuloacini. VIP-induced secretion is mediated by cAMP-activated protein kinase A (PKA), independently of increased [Ca2+]i. Synergistic secretion between VIP and the muscarinic agonist, carbachol, was demonstrated but only with submaximal carbachol. Carbachol has no effect on cAMP ± VIP. Instead, PKA activated by VIP releases Ca2+ from an intracellular pool maintained by the sarco/endoplasmic reticulum Ca2+-ATPase pump. Calcium release was independent of phospholipase C activity. The resultant sustained [Ca2+]i increase is additive to submaximal, but not maximal carbachol-induced [Ca2+]i. Synergistic mucin secretion was mimicked by VIP plus either phorbol 12-myristate 13-acetate or 0.01 μM thapsigargin, and blocked by the PKC inhibitor, Gö6976. VIP-induced Ca2+ release also promoted store-operated Ca2+ entry. Synergism is therefore driven by VIP-mediated [Ca2+]i augmenting cPKC activity to enhance muscarinic mucin secretion. Additional data suggest ryanodine receptors control VIP/PKA-mediated Ca2+ release from a Ca2+ pool also responsive to maximal carbachol. A working model of muscarinic and VIP control of mucous cell exocrine secretion is presented. Results are discussed in relation to synergistic mechanisms in other secretory cells, and the physiological and therapeutic significance of VIP/muscarinic synergism controlling salivary mucous cell exocrine secretion.
Collapse
Affiliation(s)
- David J Culp
- Center for Oral Biology, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA. .,Department of Oral Biology, UF College of Dentistry, P.O. Box 100424, Gainesville, FL, 32610-3003, USA.
| | - Z Zhang
- Center for Oral Biology, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA
| | - R L Evans
- Center for Oral Biology, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA.,Unilever Research & Development, Port Sunlight Laboratory, Quarry Road East, Bebington, Wirral, CH63 3JW, UK
| |
Collapse
|
48
|
Niemeyer A, Rinne A, Kienitz MC. Receptor-specific regulation of atrial GIRK channel activity by different Ca2+-dependent PKC isoforms. Cell Signal 2019; 64:109418. [DOI: 10.1016/j.cellsig.2019.109418] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 12/23/2022]
|
49
|
Arredondo SB, Guerrero FG, Herrera-Soto A, Jensen-Flores J, Bustamante DB, Oñate-Ponce A, Henny P, Varas-Godoy M, Inestrosa NC, Varela-Nallar L. Wnt5a promotes differentiation and development of adult-born neurons in the hippocampus by noncanonical Wnt signaling. Stem Cells 2019; 38:422-436. [PMID: 31721364 DOI: 10.1002/stem.3121] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 10/08/2019] [Accepted: 10/22/2019] [Indexed: 12/20/2022]
Abstract
In the adult hippocampus, new neurons are generated in the dentate gyrus. The Wnt signaling pathway regulates this process, but little is known about the endogenous Wnt ligands involved. We investigated the role of Wnt5a on adult hippocampal neurogenesis. Wnt5a regulates neuronal morphogenesis during embryonic development, and maintains dendritic architecture of pyramidal neurons in the adult hippocampus. Here, we determined that Wnt5a knockdown in the mouse dentate gyrus by lentivirus-mediated shRNA impaired neuronal differentiation of progenitor cells, and reduced dendritic development of adult-born neurons. In cultured adult hippocampal progenitors (AHPs), Wnt5a knockdown reduced neuronal differentiation and morphological development of AHP-derived neurons, whereas treatment with Wnt5a had the opposite effect. Interestingly, no changes in astrocytic differentiation were observed in vivo or in vitro, suggesting that Wnt5a does not affect fate-commitment. By using specific inhibitors, we determined that Wnt5a signals through CaMKII to induce neurogenesis, and promotes dendritic development of newborn neurons through activating Wnt/JNK and Wnt/CaMKII signaling. Our results indicate Wnt5a as a niche factor in the adult hippocampus that promotes neuronal differentiation and development through activation of noncanonical Wnt signaling pathways.
Collapse
Affiliation(s)
- Sebastian B Arredondo
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Fernanda G Guerrero
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Andrea Herrera-Soto
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Joaquin Jensen-Flores
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Daniel B Bustamante
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Alejandro Oñate-Ponce
- Laboratorio de Neuroanatomía, Departamento de Anatomía, Facultad de Medicina and Centro Interdisciplinario de Neurociencias, NeuroUC, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo Henny
- Laboratorio de Neuroanatomía, Departamento de Anatomía, Facultad de Medicina and Centro Interdisciplinario de Neurociencias, NeuroUC, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Manuel Varas-Godoy
- Cancer Cell Biology Lab, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Lorena Varela-Nallar
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
50
|
Qian X, Zhao H, Feng Q. Involvement of miR-200b-PKCα signalling in pulmonary hypertension in cor pulmonale model. Clin Exp Pharmacol Physiol 2019; 47:478-484. [PMID: 31730233 DOI: 10.1111/1440-1681.13213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 11/29/2022]
Abstract
The right ventricle (RV) enlargement and pulmonary fibrosis are involved in cor pulmonale. The role of miR-200b in cor pulmonale is less well understood. This study was designed to evaluate the regulatory roles of miR-200b in cor pulmonale. Cor pulmonary mouse model was built via monocrotaline injection of monocrotaline (MCT). The expression of miR-200b in the lungs, RV and left ventricle (LV) are using real-time polymerase chain reaction. The transthoracic echocardiography was employed to determine the effects of miR-200b mimics and Gö6976 injection on MCT mice. The protein levels of protein kinase C α (PKCα), collagen, and fibronectin in the lung, RV, and LV in the mice with and without miR-200b mimics and Gö6976 injection were evaluated using western blot. The expression of miR-200b decreased in MCT mice, while there was no difference in LV. Both the miR-200b mimics and Gö6976 injection reversed the muscularization in the pulmonary artery, reversed RV hypertrophy, reduced RV systolic pressure, wall thickness and pulmonary fibrosis. The injection of miR-200b can reduce the PKCα expression in the lung, RV, and LV. This study confirmed the down-regulation of miR-200b in cor pulmonale. The reverse effects of miR-200b in the present study may provide a potential tool for cor pulmonary treatment.
Collapse
Affiliation(s)
- Xiaojun Qian
- Wuxi No.2 People's Hospital, Affiliated Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Hongqin Zhao
- Wuxi No.2 People's Hospital, Affiliated Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Qiuting Feng
- Wuxi No.2 People's Hospital, Affiliated Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| |
Collapse
|