1
|
Chen C, Ziobro J, Robinson-Cooper L, Hodges SL, Chen Y, Edokobi N, Lopez-Santiago L, Habig K, Moore C, Minton J, Bramson S, Scheuing C, Daddo N, Štěrbová K, Weckhuysen S, Parent JM, Isom LL. Epilepsy and sudden unexpected death in epilepsy in a mouse model of human SCN1B-linked developmental and epileptic encephalopathy. Brain Commun 2023; 5:fcad283. [PMID: 38425576 PMCID: PMC10903178 DOI: 10.1093/braincomms/fcad283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/13/2023] [Accepted: 10/18/2023] [Indexed: 03/02/2024] Open
Abstract
Voltage-gated sodium channel β1 subunits are essential proteins that regulate excitability. They modulate sodium and potassium currents, function as cell adhesion molecules and regulate gene transcription following regulated intramembrane proteolysis. Biallelic pathogenic variants in SCN1B, encoding β1, are linked to developmental and epileptic encephalopathy 52, with clinical features overlapping Dravet syndrome. A recessive variant, SCN1B-c.265C>T, predicting SCN1B-p.R89C, was homozygous in two children of a non-consanguineous family. One child was diagnosed with Dravet syndrome, while the other had a milder phenotype. We identified an unrelated biallelic SCN1B-c.265C>T patient with a clinically more severe phenotype than Dravet syndrome. We used CRISPR/Cas9 to knock-in SCN1B-p.R89C to the mouse Scn1b locus (Scn1bR89/C89). We then rederived the line on the C57BL/6J background to allow comparisons between Scn1bR89/R89 and Scn1bC89/C89 littermates with Scn1b+/+ and Scn1b-/- mice, which are congenic on C57BL/6J, to determine whether the SCN1B-c.265C>T variant results in loss-of-function. Scn1bC89/C89 mice have normal body weights and ∼20% premature mortality, compared with severely reduced body weight and 100% mortality in Scn1b-/- mice. β1-p.R89C polypeptides are expressed in brain at comparable levels to wild type. In heterologous cells, β1-p.R89C localizes to the plasma membrane and undergoes regulated intramembrane proteolysis similar to wild type. Heterologous expression of β1-p.R89C results in sodium channel α subunit subtype specific effects on sodium current. mRNA abundance of Scn2a, Scn3a, Scn5a and Scn1b was increased in Scn1bC89/C89 somatosensory cortex, with no changes in Scn1a. In contrast, Scn1b-/- mouse somatosensory cortex is haploinsufficient for Scn1a, suggesting an additive mechanism for the severity of the null model via disrupted regulation of another Dravet syndrome gene. Scn1bC89/C89 mice are more susceptible to hyperthermia-induced seizures at post-natal Day 15 compared with Scn1bR89/R89 littermates. EEG recordings detected epileptic discharges in young adult Scn1bC89/C89 mice that coincided with convulsive seizures and myoclonic jerks. We compared seizure frequency and duration in a subset of adult Scn1bC89/C89 mice that had been exposed to hyperthermia at post-natal Day 15 versus a subset that were not hyperthermia exposed. No differences in spontaneous seizures were detected between groups. For both groups, the spontaneous seizure pattern was diurnal, occurring with higher frequency during the dark cycle. This work suggests that the SCN1B-c.265C>T variant does not result in complete loss-of-function. Scn1bC89/C89 mice more accurately model SCN1B-linked variants with incomplete loss-of-function compared with Scn1b-/- mice, which model complete loss-of-function, and thus add to our understanding of disease mechanisms as well as our ability to develop new therapeutic strategies.
Collapse
Affiliation(s)
- Chunling Chen
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Julie Ziobro
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | - Samantha L Hodges
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yan Chen
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Nnamdi Edokobi
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Luis Lopez-Santiago
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Karl Habig
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Chloe Moore
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Joe Minton
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sabrina Bramson
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Caroline Scheuing
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Noor Daddo
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Katalin Štěrbová
- Department of Pediatric Neurology, Charles University and Motol Hospital, V Úvalu 84, 150 06 Prague 5, Czech Republic
| | - Sarah Weckhuysen
- Applied & Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Universiteitsplein 1 B-2610 Antwerpen, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Universiteitsplein 1 B-2610 Antwerpen, Belgium
- Department of Neurology, Antwerp University Hospital, Universiteitsplein 1B-2610 Antwerpen, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Universiteitsplein 1B-2610 Antwerpen, Belgium
| | - Jack M Parent
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Neurology, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| | - Lori L Isom
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
2
|
Nevin ST, Lawrence N, Nicke A, Lewis RJ, Adams DJ. Functional modulation of the human voltage-gated sodium channel Na V1.8 by auxiliary β subunits. Channels (Austin) 2021; 15:79-93. [PMID: 33315536 PMCID: PMC7781643 DOI: 10.1080/19336950.2020.1860399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 12/03/2022] Open
Abstract
The voltage-gated sodium channel Nav1.8 mediates the tetrodotoxin-resistant (TTX-R) Na+ current in nociceptive primary sensory neurons, which has an important role in the transmission of painful stimuli. Here, we describe the functional modulation of the human Nav1.8 α-subunit in Xenopus oocytes by auxiliary β subunits. We found that the β3 subunit down-regulated the maximal Na+ current amplitude and decelerated recovery from inactivation of hNav1.8, whereas the β1 and β2 subunits had no such effects. The specific regulation of Nav1.8 by the β3 subunit constitutes a potential novel regulatory mechanism of the TTX-R Na+ current in primary sensory neurons with potential implications in chronic pain states. In particular, neuropathic pain states are characterized by a down-regulation of Nav1.8 accompanied by increased expression of the β3 subunit. Our results suggest that these two phenomena may be correlated, and that increased levels of the β3 subunit may directly contribute to the down-regulation of Nav1.8. To determine which domain of the β3 subunit is responsible for the specific regulation of hNav1.8, we created chimeras of the β1 and β3 subunits and co-expressed them with the hNav1.8 α-subunit in Xenopus oocytes. The intracellular domain of the β3 subunit was shown to be responsible for the down-regulation of maximal Nav1.8 current amplitudes. In contrast, the extracellular domain mediated the effect of the β3 subunit on hNav1.8 recovery kinetics.
Collapse
Affiliation(s)
- S. T. Nevin
- School of Biomedical Sciences and the Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - N. Lawrence
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - A. Nicke
- School of Biomedical Sciences and the Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - R. J. Lewis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - D. J. Adams
- School of Biomedical Sciences and the Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia
| |
Collapse
|
3
|
Walther F, Feind D, Vom Dahl C, Müller CE, Kukaj T, Sattler C, Nagel G, Gao S, Zimmer T. Action potentials in Xenopus oocytes triggered by blue light. J Gen Physiol 2020; 152:151581. [PMID: 32211871 PMCID: PMC7201882 DOI: 10.1085/jgp.201912489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/24/2020] [Indexed: 11/20/2022] Open
Abstract
Voltage-gated sodium (Na+) channels are responsible for the fast upstroke of the action potential of excitable cells. The different α subunits of Na+ channels respond to brief membrane depolarizations above a threshold level by undergoing conformational changes that result in the opening of the pore and a subsequent inward flux of Na+. Physiologically, these initial membrane depolarizations are caused by other ion channels that are activated by a variety of stimuli such as mechanical stretch, temperature changes, and various ligands. In the present study, we developed an optogenetic approach to activate Na+ channels and elicit action potentials in Xenopus laevis oocytes. All recordings were performed by the two-microelectrode technique. We first coupled channelrhodopsin-2 (ChR2), a light-sensitive ion channel of the green alga Chlamydomonas reinhardtii, to the auxiliary β1 subunit of voltage-gated Na+ channels. The resulting fusion construct, β1-ChR2, retained the ability to modulate Na+ channel kinetics and generate photosensitive inward currents. Stimulation of Xenopus oocytes coexpressing the skeletal muscle Na+ channel Nav1.4 and β1-ChR2 with 25-ms lasting blue-light pulses resulted in rapid alterations of the membrane potential strongly resembling typical action potentials of excitable cells. Blocking Nav1.4 with tetrodotoxin prevented the fast upstroke and the reversal of the membrane potential. Coexpression of the voltage-gated K+ channel Kv2.1 facilitated action potential repolarization considerably. Light-induced action potentials were also obtained by coexpressing β1-ChR2 with either the neuronal Na+ channel Nav1.2 or the cardiac-specific isoform Nav1.5. Potential applications of this novel optogenetic tool are discussed.
Collapse
Affiliation(s)
- Florian Walther
- Institute of Physiology II, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| | - Dominic Feind
- Institute of Physiology II, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| | - Christian Vom Dahl
- Institute of Physiology II, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| | - Christoph Emanuel Müller
- Institute of Physiology II, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| | - Taulant Kukaj
- Institute of Physiology II, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| | - Christian Sattler
- Institute of Physiology II, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| | - Georg Nagel
- Institute of Physiology-Neurophysiology, Biocentre, Julius-Maximilians-University, Wuerzburg, Germany
| | - Shiqiang Gao
- Institute of Physiology-Neurophysiology, Biocentre, Julius-Maximilians-University, Wuerzburg, Germany
| | - Thomas Zimmer
- Institute of Physiology II, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
4
|
Hull JM, Isom LL. Voltage-gated sodium channel β subunits: The power outside the pore in brain development and disease. Neuropharmacology 2017; 132:43-57. [PMID: 28927993 DOI: 10.1016/j.neuropharm.2017.09.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/19/2017] [Accepted: 09/11/2017] [Indexed: 12/19/2022]
Abstract
Voltage gated sodium channels (VGSCs) were first identified in terms of their role in the upstroke of the action potential. The underlying proteins were later identified as saxitoxin and scorpion toxin receptors consisting of α and β subunits. We now know that VGSCs are heterotrimeric complexes consisting of a single pore forming α subunit joined by two β subunits; a noncovalently linked β1 or β3 and a covalently linked β2 or β4 subunit. VGSC α subunits contain all the machinery necessary for channel cell surface expression, ion conduction, voltage sensing, gating, and inactivation, in one central, polytopic, transmembrane protein. VGSC β subunits are more than simple accessories to α subunits. In the more than two decades since the original cloning of β1, our knowledge of their roles in physiology and pathophysiology has expanded immensely. VGSC β subunits are multifunctional. They confer unique gating mechanisms, regulate cellular excitability, affect brain development, confer distinct channel pharmacology, and have functions that are independent of the α subunits. The vast array of functions of these proteins stems from their special station in the channelome: being the only known constituents that are cell adhesion and intra/extracellular signaling molecules in addition to being part of channel complexes. This functional trifecta and how it goes awry demonstrates the power outside the pore in ion channel signaling complexes, broadening the term channelopathy beyond defects in ion conduction. This article is part of the Special Issue entitled 'Channelopathies.'
Collapse
Affiliation(s)
- Jacob M Hull
- Neuroscience Program and Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Lori L Isom
- Neuroscience Program and Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, United States.
| |
Collapse
|
5
|
Winters JJ, Isom LL. Developmental and Regulatory Functions of Na(+) Channel Non-pore-forming β Subunits. CURRENT TOPICS IN MEMBRANES 2016; 78:315-51. [PMID: 27586289 DOI: 10.1016/bs.ctm.2016.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Voltage-gated Na(+) channels (VGSCs) isolated from mammalian neurons are heterotrimeric complexes containing one pore-forming α subunit and two non-pore-forming β subunits. In excitable cells, VGSCs are responsible for the initiation of action potentials. VGSC β subunits are type I topology glycoproteins, containing an extracellular amino-terminal immunoglobulin (Ig) domain with homology to many neural cell adhesion molecules (CAMs), a single transmembrane segment, and an intracellular carboxyl-terminal domain. VGSC β subunits are encoded by a gene family that is distinct from the α subunits. While α subunits are expressed in prokaryotes, β subunit orthologs did not arise until after the emergence of vertebrates. β subunits regulate the cell surface expression, subcellular localization, and gating properties of their associated α subunits. In addition, like many other Ig-CAMs, β subunits are involved in cell migration, neurite outgrowth, and axon pathfinding and may function in these roles in the absence of associated α subunits. In sum, these multifunctional proteins are critical for both channel regulation and central nervous system development.
Collapse
Affiliation(s)
- J J Winters
- University of Michigan Neuroscience Program, Ann Arbor, MI, United States
| | - L L Isom
- University of Michigan Neuroscience Program, Ann Arbor, MI, United States; University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
6
|
Gawali V, Todt H. Mechanism of Inactivation in Voltage-Gated Na+ Channels. CURRENT TOPICS IN MEMBRANES 2016; 78:409-50. [DOI: 10.1016/bs.ctm.2016.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Affiliation(s)
- William A Catterall
- Department of Pharmacology, University of Washington, Seattle, Washington 98195-7280.
| |
Collapse
|
8
|
Baroni D, Moran O. Differential gene expression profiles of two excitable rat cell lines after over-expression of WT- and C121W-β1 sodium channel subunits. Neuroscience 2015; 297:105-17. [PMID: 25827112 DOI: 10.1016/j.neuroscience.2015.03.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/11/2015] [Accepted: 03/22/2015] [Indexed: 12/19/2022]
Abstract
Voltage-dependent sodium channels are membrane proteins essential for cell excitability. They are composed by a pore-forming α-subunit, encoded in mammals by up to nine different genes, and four different ancillary β-subunits. The expression pattern of the α subunit isoforms confers the distinctive functional and pharmacological properties to different excitable tissues. β-Subunits are important modulators of channel function and expression. Mutation C121W of the β1-subunit causes an autosomal dominant epileptic syndrome without cardiac symptoms. In neuroectoderm GH3 and cardiac H9C2 cells, the over-expression of β1 subunit augments α subunit mRNA and protein levels as well as sodium current density. Interestingly, the introduction of the epileptogenic C121W-β1 subunit produces additional changes in the α-subunit expression pattern of H9C2 cells, leaving unaltered the sodium channel isoform composition of GH3 cells. The challenge of the present work was to identify those genes that were differentially expressed in response to WT- or C121W-β1 subunit over-expression in the two rat cell lines under analysis. Hence, we analyzed the total mRNA extracted from control-untransfected and from WT- and C121W-β1-transfected GH3 and H9C2 cells by DNA-microarray. We found that, in agreement with their different embryonal origin, the over-expression of WT- and C121W-β1 subunits modifies the expression of different gene sets in GH3 and H9C2 cells. Focusing on the effects of the C121W mutation, we found that it causes the modification of 214 genes, most of them were down-regulated (202) in GH3 cells; on the contrary, it determined the up-regulation of only five genes in H9C2 cells. Interestingly, most genes modified by the C121W β1 subunit are involved in pivotal processes of the cell such as cellular communication and protein expression. Our results confirm the important role of the sodium channel β1 subunit in the control of NaCh gene expression, and highlight once more the tissue-specific effect of the C121W mutation.
Collapse
Affiliation(s)
- D Baroni
- Istituto di Biofisica, CNR, Via De Marini 6, 16149 Genova, Italy.
| | - O Moran
- Istituto di Biofisica, CNR, Via De Marini 6, 16149 Genova, Italy
| |
Collapse
|
9
|
Singular localization of sodium channel β4 subunit in unmyelinated fibres and its role in the striatum. Nat Commun 2014; 5:5525. [PMID: 25413837 DOI: 10.1038/ncomms6525] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 10/09/2014] [Indexed: 01/15/2023] Open
Abstract
Voltage-gated Na(+) channel β-subunits are multifunctional molecules that modulate Na(+) channel activity and regulate cell adhesion, migration and neurite outgrowth. β-subunits including β4 are known to be highly concentrated in the nodes of Ranvier and axon initial segments in myelinated axons. Here we show diffuse β4 localization in striatal projection fibres using transgenic mice that express fluorescent protein in those fibres. These axons are unmyelinated, forming large, inhibitory fibre bundles. Furthermore, we report β4 dimer expression in the mouse brain, with high levels of β4 dimers in the striatal projection fascicles, suggesting a specific role of β4 in those fibres. Scn4b-deficient mice show a resurgent Na(+) current reduction, decreased repetitive firing frequency in medium spiny neurons and increased failure rates of inhibitory postsynaptic currents evoked with repetitive stimulation, indicating an in vivo channel regulatory role of β4 in the striatum.
Collapse
|
10
|
Calhoun JD, Isom LL. The role of non-pore-forming β subunits in physiology and pathophysiology of voltage-gated sodium channels. Handb Exp Pharmacol 2014; 221:51-89. [PMID: 24737232 DOI: 10.1007/978-3-642-41588-3_4] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Voltage-gated sodium channel β1 and β2 subunits were discovered as auxiliary proteins that co-purify with pore-forming α subunits in brain. The other family members, β1B, β3, and β4, were identified by homology and shown to modulate sodium current in heterologous systems. Work over the past 2 decades, however, has provided strong evidence that these proteins are not simply ancillary ion channel subunits, but are multifunctional signaling proteins in their own right, playing both conducting (channel modulatory) and nonconducting roles in cell signaling. Here, we discuss evidence that sodium channel β subunits not only regulate sodium channel function and localization but also modulate voltage-gated potassium channels. In their nonconducting roles, VGSC β subunits function as immunoglobulin superfamily cell adhesion molecules that modulate brain development by influencing cell proliferation and migration, axon outgrowth, axonal fasciculation, and neuronal pathfinding. Mutations in genes encoding β subunits are linked to paroxysmal diseases including epilepsy, cardiac arrhythmia, and sudden infant death syndrome. Finally, β subunits may be targets for the future development of novel therapeutics.
Collapse
Affiliation(s)
- Jeffrey D Calhoun
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, 48109-5632, USA
| | | |
Collapse
|
11
|
Abnormal neuronal patterning occurs during early postnatal brain development of Scn1b-null mice and precedes hyperexcitability. Proc Natl Acad Sci U S A 2012; 110:1089-94. [PMID: 23277545 DOI: 10.1073/pnas.1208767110] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Voltage-gated Na(+) channel (VGSC) β1 subunits, encoded by SCN1B, are multifunctional channel modulators and cell adhesion molecules (CAMs). Mutations in SCN1B are associated with the genetic epilepsy with febrile seizures plus (GEFS+) spectrum disorders in humans, and Scn1b-null mice display severe spontaneous seizures and ataxia from postnatal day (P)10. The goal of this study was to determine changes in neuronal pathfinding during early postnatal brain development of Scn1b-null mice to test the hypothesis that these CAM-mediated roles of Scn1b may contribute to the development of hyperexcitability. c-Fos, a protein induced in response to seizure activity, was up-regulated in the Scn1b-null brain at P16 but not at P5. Consistent with this, epileptiform activity was observed in hippocampal and cortical slices prepared from the P16 but not from the P5-P7 Scn1b-null brain. On the basis of these results, we investigated neuronal pathfinding at P5. We observed disrupted fasciculation of parallel fibers in the P5 null cerebellum. Further, P5 null mice showed reduced neuron density in the dentate gyrus granule cell layer, increased proliferation of granule cell precursors in the hilus, and defective axonal extension and misorientation of somata and processes of inhibitory neurons in the dentate gyrus and CA1. Thus, Scn1b is critical for neuronal proliferation, migration, and pathfinding during the critical postnatal period of brain development. We propose that defective neuronal proliferation, migration, and pathfinding in response to Scn1b deletion may contribute to the development of hyperexcitability.
Collapse
|
12
|
Ho C, Zhao J, Malinowski S, Chahine M, O'Leary ME. Differential expression of sodium channel β subunits in dorsal root ganglion sensory neurons. J Biol Chem 2012; 287:15044-53. [PMID: 22408255 DOI: 10.1074/jbc.m111.333740] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The small-diameter (<25 μm) and large-diameter (>30 μm) sensory neurons of the dorsal root ganglion (DRG) express distinct combinations of tetrodotoxin sensitive and tetrodotoxin-resistant Na(+) channels that underlie the unique electrical properties of these neurons. In vivo, these Na(+) channels are formed as complexes of pore-forming α and auxiliary β subunits. The goal of this study was to investigate the expression of β subunits in DRG sensory neurons. Quantitative single-cell RT-PCR revealed that β subunit mRNA is differentially expressed in small (β(2) and β(3)) and large (β(1) and β(2)) DRG neurons. This raises the possibility that β subunit availability and Na(+) channel composition and functional regulation may differ in these subpopulations of sensory neurons. To further explore these possibilities, we quantitatively compared the mRNA expression of the β subunit with that of Na(v)1.7, a TTX-sensitive Na(+) channel widely expressed in both small and large DRG neurons. Na(v)1.7 and β subunit mRNAs were significantly correlated in small (β(2) and β(3)) and large (β(1) and β(2)) DRG neurons, indicating that these subunits are coexpressed in the same populations. Co-immunoprecipitation and immunocytochemistry indicated that Na(v)1.7 formed stable complexes with the β(1)-β(3) subunits in vivo and that Na(v)1.7 and β(3) co-localized within the plasma membranes of small DRG neurons. Heterologous expression studies showed that β(3) induced a hyperpolarizing shift in Na(v)1.7 activation, whereas β(1) produced a depolarizing shift in inactivation and faster recovery. The data indicate that β(3) and β(1) subunits are preferentially expressed in small and large DRG neurons, respectively, and that these auxiliary subunits differentially regulate the gating properties of Na(v)1.7 channels.
Collapse
Affiliation(s)
- Cojen Ho
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|
13
|
Cervenka R, Zarrabi T, Lukacs P, Todt H. The outer vestibule of the Na+ channel-toxin receptor and modulator of permeation as well as gating. Mar Drugs 2010; 8:1373-93. [PMID: 20479982 PMCID: PMC2866490 DOI: 10.3390/md8041373] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 03/31/2010] [Accepted: 04/19/2010] [Indexed: 12/19/2022] Open
Abstract
The outer vestibule of voltage-gated Na(+) channels is formed by extracellular loops connecting the S5 and S6 segments of all four domains ("P-loops"), which fold back into the membrane. Classically, this structure has been implicated in the control of ion permeation and in toxin blockage. However, conformational changes of the outer vestibule may also result in alterations in gating, as suggested by several P-loop mutations that gave rise to gating changes. Moreover, partial pore block by mutated toxins may reverse gating changes induced by mutations. Therefore, toxins that bind to the outer vestibule can be used to modulate channel gating.
Collapse
Affiliation(s)
| | | | - Peter Lukacs
- Institute of Pharmacology, Centre of Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; E-Mails:
(R.C.);
(T.Z.);
(P.L.)
| | - Hannes Todt
- Institute of Pharmacology, Centre of Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; E-Mails:
(R.C.);
(T.Z.);
(P.L.)
| |
Collapse
|
14
|
Brackenbury WJ, Djamgoz MBA, Isom LL. An emerging role for voltage-gated Na+ channels in cellular migration: regulation of central nervous system development and potentiation of invasive cancers. Neuroscientist 2008; 14:571-83. [PMID: 18940784 DOI: 10.1177/1073858408320293] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Voltage-gated Na(+) channels (VGSCs) exist as macromolecular complexes containing a pore-forming alpha subunit and one or more beta subunits. The VGSC alpha subunit gene family consists of 10 members, which have distinct tissue-specific and developmental expression profiles. So far, four beta subunits (beta1-beta4) and one splice variant of beta1 (beta1A, also called beta1B) have been identified. VGSC beta subunits are multifunctional, serving as modulators of channel activity, regulators of channel cell surface expression, and as members of the immunoglobulin superfamily, cell adhesion molecules (CAMs). beta subunits are substrates of beta-amyloid precursor protein-cleaving enzyme (BACE1) and gamma-secretase, yielding intracellular domains (ICDs) that may further modulate cellular activity via transcription. Recent evidence shows that beta1 regulates migration and pathfinding in the developing postnatal CNS in vivo. The alpha and beta subunits, together with other components of the VGSC signaling complex, may have dynamic interactive roles depending on cell/tissue type, developmental stage, and pathophysiology. In addition to excitable cells like nerve and muscle, VGSC alpha and beta subunits are functionally expressed in cells that are traditionally considered nonexcitable, including glia, vascular endothelial cells, and cancer cells. In particular, the alpha subunits are up-regulated in line with metastatic potential and are proposed to enhance cellular migration and invasion. In contrast to the alpha subunits, beta1 is more highly expressed in weakly metastatic cancer cells, and evidence suggests that its expression enhances cellular adhesion. Thus, novel roles are emerging for VGSC alpha and beta subunits in regulating migration during normal postnatal development of the CNS as well as during cancer metastasis.
Collapse
Affiliation(s)
- William J Brackenbury
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109-0632, USA
| | | | | |
Collapse
|
15
|
Caceres AI, Obeso A, Gonzalez C, Rocher A. Molecular identification and functional role of voltage-gated sodium channels in rat carotid body chemoreceptor cells. Regulation of expression by chronic hypoxia in vivo. J Neurochem 2007; 102:231-45. [PMID: 17564680 DOI: 10.1111/j.1471-4159.2007.04465.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have assessed the expression, molecular identification and functional role of Na+ channels (Na(v)) in carotid bodies (CB) obtained from normoxic and chronically hypoxic adult rats. Veratridine evoked release of catecholamines (CA) from an in vitro preparation of intact CBs obtained from normoxic animals, the response being Ca2+ and Na+-dependent and sensitive to tetrodotoxin (TTX). TTX inhibited by 25-50% the CA release response evoked by graded hypoxia. Immunoblot assays demonstrated the presence of Na(v)alpha-subunit (c. 220 kDa) in crude homogenates from rat CBs, being evident an up-regulation (60%) of this protein in the CBs obtained from chronically hypoxic rats (10% O2; 7 days). This up-regulation was accompanied by an enhanced TTX-sensitive release response to veratridine, and by an enhanced ventilatory response to acute hypoxic stimuli. RT-PCR studies demonstrated the expression of mRNA for Na(v)1.1, Na(v)1.2, Na(v)1.3, Na(v)1.6 and Na(v)1.7 isoforms. At least three isoforms, Na(v)1.1, Na(v)1.3 and Na(v)1.6 co-localized with tyrosine hydroxylase in all chemoreceptor cells. RT-PCR and immunocytochemistry indicated that Na(v)1.1 isoform was up-regulated by chronic hypoxia in chemoreceptor cells. We conclude that Na(v) up-regulation represents an adaptive mechanism to increase chemoreceptor sensitivity during acclimatization to sustained hypoxia as evidenced by enhanced ventilatory responses to acute hypoxic tests.
Collapse
Affiliation(s)
- Ana I Caceres
- Departamento de Bioquímica, Biología Molecular y Fisiología, Facultad de Medicina/Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid/CSIC, Valladolid, Spain
| | | | | | | |
Collapse
|
16
|
Zimmer T, Benndorf K. The intracellular domain of the beta 2 subunit modulates the gating of cardiac Na v 1.5 channels. Biophys J 2007; 92:3885-92. [PMID: 17369409 PMCID: PMC1868996 DOI: 10.1529/biophysj.106.098889] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have previously shown that the transmembrane segment plus either the extracellular or intracellular domain of the beta1 subunit are required to modify cardiac Na(v)1.5 channels. In this study, we coexpressed the intracellular domain of the beta2 subunit in a beta1/beta2 chimera with Na(v)1.5 channels in Xenopus oocytes and obtained an atypical recovery behavior of Na(v)1.5 channels not reported before for other Na(+) channels: Recovery times of up to 20 ms at -120 mV produced a similar fast recovery as observed for Na(v)1.5/beta1 channels, but the current amplitude decreased again at longer recovery times and reached a steady-state level after 1-2 s with current amplitudes of only 43 +/- 2% of the value at 20 ms. Current reduction was accompanied by slowed inactivation and by a shift of steady-state activation toward depolarized potentials by 9 mV. All effects were reversible and they were not seen when deleting the beta2 intracellular domain. These results describe the first functional effects of a beta2 subunit region on Na(v)1.5 channels and suggest a novel closed state in cardiac Na(+) channels accessible at hyperpolarized potentials.
Collapse
Affiliation(s)
- Thomas Zimmer
- Institute of Physiology II, Friedrich Schiller University, Jena, Germany.
| | | |
Collapse
|
17
|
Chen C, Dickendesher TL, Oyama F, Miyazaki H, Nukina N, Isom LL. Floxed allele for conditional inactivation of the voltage-gated sodium channel β1 subunitScn1b. Genesis 2007; 45:547-53. [PMID: 17868089 DOI: 10.1002/dvg.20324] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The voltage-gated sodium channel gene Scn1b encodes the auxiliary subunit beta1, which is widely distributed in neurons and glia of the central and peripheral nervous systems, cardiac myocytes, skeletal muscle myocytes, and neuroendocrine cells. We showed previously that the Scn1b null mutation results in a complex and severe phenotype that includes retarded growth, seizures, ataxia, and death by postnatal day 21. We generated a floxed allele of Scn1b by inserting loxP sites surrounding the second coding exon. Ubiquitous deletion of the floxed exon by Cre recombinase using CMV-Cre-transgenic mice produced the Scn1b(del) allele. The null phenotype of Scn1b(del) homozygotes is indistinguishable from that of Scn1b nulls and confirms the invivo inactivation of Scn1b. Conditional inactivation ofthe floxed allele will make it possible to circumvent the lethality that results from complete loss of this gene, such that the physiological role of Scn1b in specific cell types and/or specific developmental time points can be investigated.
Collapse
Affiliation(s)
- Chunling Chen
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109-0632, USA
| | | | | | | | | | | |
Collapse
|
18
|
Liu H, Wu MM, Zakon HH. Individual variation and hormonal modulation of a sodium channel β subunit in the electric organ correlate with variation in a social signal. Dev Neurobiol 2007; 67:1289-304. [PMID: 17638382 DOI: 10.1002/dneu.20404] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The sodium channel beta1 subunit affects sodium channel gating and surface density, but little is known about the factors that regulate beta1 expression or its participation in the fine control of cellular excitability. In this study we examined whether graded expression of the beta1 subunit contributes to the gradient in sodium current inactivation, which is tightly controlled and directly related to a social behavior, the electric organ discharge (EOD), in a weakly electric fish Sternopygus macrurus. We found the mRNA and protein levels of beta1 in the electric organ both correlate with EOD frequency. We identified a novel mRNA splice form of this gene and found the splicing preference for this novel splice form also correlates with EOD frequency. Androgen implants lowered EOD frequency and decreased the beta1 mRNA level but did not affect splicing. Coexpression of each splice form in Xenopus oocytes with either the human muscle sodium channel gene, hNav1.4, or a Sternopygus ortholog, smNav1.4b, sped the rate of inactivation of the sodium current and shifted the steady-state inactivation toward less negative membrane potentials. The translational product of the novel mRNA splice form lacks a previously identified important tyrosine residue but still functions normally. The properties of the fish alpha and coexpressed beta1 subunits in the oocyte replicate those of the electric organ's endogenous sodium current. These data highlight the role of ion channel beta subunits in regulating cellular excitability.
Collapse
Affiliation(s)
- He Liu
- Section of Neurobiology and the Institute of Neuroscience, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | |
Collapse
|
19
|
Coutts CA, Patten SA, Balt LN, Ali DW. Development of ionic currents of zebrafish slow and fast skeletal muscle fibers. ACTA ACUST UNITED AC 2006; 66:220-35. [PMID: 16329121 DOI: 10.1002/neu.20214] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Voltage-gated Na+ and K+ channels play key roles in the excitability of skeletal muscle fibers. In this study we investigated the steady-state and kinetic properties of voltage-gated Na+ and K+ currents of slow and fast skeletal muscle fibers in zebrafish ranging in age from 1 day postfertilization (dpf) to 4-6 dpf. The inner white (fast) fibers possess an A-type inactivating K+ current that increases in peak current density and accelerates its rise and decay times during development. As the muscle matured, the V50s of activation and inactivation of the A-type current became more depolarized, and then hyperpolarized again in older animals. The activation kinetics of the delayed outward K+ current in red (slow) fibers accelerated within the first week of development. The tail currents of the outward K+ currents were too small to allow an accurate determination of the V50s of activation. Red fibers did not show any evidence of inward Na+ currents; however, white fibers expressed Na+ currents that increased their peak current density, accelerated their inactivation kinetics, and hyperpolarized their V50 of inactivation during development. The action potentials of white fibers exhibited significant changes in the threshold voltage and the half width. These findings indicate that there are significant differences in the ionic current profiles between the red and white fibers and that a number of changes occur in the steady-state and kinetic properties of Na+ and K+ currents of developing zebrafish skeletal muscle fibers, with the most dramatic changes occurring around the end of the first day following egg fertilization.
Collapse
Affiliation(s)
- Christopher A Coutts
- Department of Biological Sciences, Biological Sciences Building, University of Alberta, Edmonton, Alberta, Canada, T6G 2E9
| | | | | | | |
Collapse
|
20
|
Johnson D, Montpetit ML, Stocker PJ, Bennett ES. The Sialic Acid Component of the β1 Subunit Modulates Voltage-gated Sodium Channel Function. J Biol Chem 2004; 279:44303-10. [PMID: 15316006 DOI: 10.1074/jbc.m408900200] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium channels (Nav) are responsible for initiation and propagation of nerve, skeletal muscle, and cardiac action potentials. Nav are composed of a pore-forming alpha subunit and often one to several modulating beta subunits. Previous work showed that terminal sialic acid residues attached to alpha subunits affect channel gating. Here we show that the fully sialylated beta1 subunit induces a uniform, hyperpolarizing shift in steady state and kinetic gating of the cardiac and two neuronal alpha subunit isoforms. Under conditions of reduced sialylation, the beta1-induced gating effect was eliminated. Consistent with this, mutation of beta1 N-glycosylation sites abolished all effects of beta1 on channel gating. Data also suggest an interaction between the cis effect of alpha sialic acids and the trans effect of beta1 sialic acids on channel gating. Thus, beta1 sialic acids had no effect gating on the of the heavily glycosylated skeletal muscle alpha subunit. However, when glycosylation of the skeletal muscle alpha subunit was reduced through chimeragenesis such that alpha sialic acids did not impact gating, beta1 sialic acids caused a significant hyperpolarizing shift in channel gating. Together, the data indicate that beta1 N-linked sialic acids can modulate Nav gating through an apparent saturating electrostatic mechanism. A model is proposed in which a spectrum of differentially sialylated Nav can directly modulate channel gating, thereby impacting cardiac, skeletal muscle, and neuronal excitability.
Collapse
Affiliation(s)
- Daniel Johnson
- Department of Physiology & Biophysics and Program in Neuroscience, University of South Florida College of Medicine, Tampa, Florida 33612, USA
| | | | | | | |
Collapse
|
21
|
Baker MD. Electrophysiology of mammalian Schwann cells. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2002; 78:83-103. [PMID: 12429109 DOI: 10.1016/s0079-6107(02)00007-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Schwann cells are the satellite cell of the peripheral nervous system, and they surround axons and motor nerve terminals. The review summarises evidence for the ion channels expressed by mammalian Schwann cells, their molecular nature and known or speculated functions. In addition, the recent evidence for gap junctions and cytoplasmic diffusion pathways within the myelin and the functional consequences of a lower-resistance myelin sheath are discussed. The main types of ion channel expressed by Schwann cells are K(+) channels, Cl(-) channels, Na(+) channels and Ca(2+) channels. Each is represented by a variety of sub-types. The molecular and biophysical characteristics of the cation channels expressed by Schwann cells are closely similar or identical to those of channels expressed in peripheral axons and elsewhere. In addition, Schwann cells express P(2)X ligand-gated ion channels. Possible in vivo roles for each ion channel type are discussed. Ion channel expression in culture could have a special function in driving or controlling cell proliferation and recent evidence indicates that some Ca(2+) channel and Kir channel expression in culture is dependent upon the presence of neurones and local electrical activity.
Collapse
Affiliation(s)
- Mark D Baker
- Molecular Nociception Group, Department of Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
22
|
Shah BS, Stevens EB, Pinnock RD, Dixon AK, Lee K. Developmental expression of the novel voltage-gated sodium channel auxiliary subunit beta3, in rat CNS. J Physiol 2001; 534:763-76. [PMID: 11483707 PMCID: PMC2278751 DOI: 10.1111/j.1469-7793.2001.t01-1-00763.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
1. We have compared the mRNA distribution of sodium channel alpha subunits known to be expressed during development with the known auxiliary subunits Nabeta1.1 and Nabeta2.1 and the novel, recently cloned subunit, beta3. 2. In situ hybridisation studies demonstrated high levels of Nav1.2, Nav1.3, Nav1.6 and beta3 mRNA at embryonic stages whilst Nabeta1.1 and Nabeta2.1 mRNA was absent throughout this period. 3. Nabeta1.1 and Nabeta2.1 expression occurred after postnatal day 3 (P3), increasing steadily in most brain regions until adulthood. beta3 expression differentially decreased after P3 in certain areas but remained high in the hippocampus and striatum. 4. Emulsion-dipped slides showed co-localisation of beta3 with Nav1.3 mRNA in areas of the CNS suggesting that these subunits may be capable of functional interaction. 5. Co-expression in Xenopus oocytes revealed that beta3 could modify the properties of Nav1.3; beta3 changed the equilibrium of Nav1.3 between the fast and slow gating modes and caused a negative shift in the voltage dependence of activation and inactivation. 6. In conclusion, beta3 is shown to be the predominant beta subunit expressed during development and is capable of modulating the kinetic properties of the embryonic Nav1.3 subunit. These findings provide new information regarding the nature and properties of voltage-gated sodium channels during development.
Collapse
Affiliation(s)
- B S Shah
- Parke Davis Neuroscience Research Centre, Cambridge University Forvie Site, Cambridge CB2 2QB, UK
| | | | | | | | | |
Collapse
|
23
|
Dhar Malhotra J, Chen C, Rivolta I, Abriel H, Malhotra R, Mattei LN, Brosius FC, Kass RS, Isom LL. Characterization of sodium channel alpha- and beta-subunits in rat and mouse cardiac myocytes. Circulation 2001; 103:1303-10. [PMID: 11238277 DOI: 10.1161/01.cir.103.9.1303] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Sodium channels isolated from mammalian brain are composed of alpha-, beta(1)-, and beta(2)-subunits. The composition of sodium channels in cardiac muscle, however, has not been defined, and disagreement exists over which beta-subunits are expressed in the myocytes. Some investigators have demonstrated beta(1) expression in heart. Others have not detected any auxiliary subunits. On the basis of Northern blot analysis of total RNA, beta(2) expression has been thought to be exclusive to neurons and absent from cardiac muscle. METHODS AND RESULTS The goal of this study was to define the subunit composition of cardiac sodium channels in myocytes. We show that cardiac sodium channels are composed of alpha-, beta(1)-, and beta(2)-subunits. Nav1.5 and Nav1.1 are expressed in myocytes and are associated with beta(1)- and beta(2)-subunits. Immunocytochemical localization of Nav1.1, beta(1), and beta(2) in adult heart sections showed that these subunits are expressed at the Z lines, as shown previously for Nav1.5. Coexpression of Nav1.5 with beta(2) in transfected cells resulted in no detectable changes in sodium current. CONCLUSIONS Cardiac sodium channels are composed of alpha- (Nav1.1 or Nav1.5), beta(1)-, and beta(2)-subunits. Although beta(1)-subunits modulate cardiac sodium channel current, beta(2)-subunit function in heart may be limited to cell adhesion.
Collapse
Affiliation(s)
- J Dhar Malhotra
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109-0632, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Owens DF, Kriegstein AR. Maturation of channels and receptors: consequences for excitability. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2001; 45:43-87. [PMID: 11130909 DOI: 10.1016/s0074-7742(01)45006-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- D F Owens
- Department of Neurology, College of Physicians and Surgeons of Columbia University, New York, New York, USA
| | | |
Collapse
|
25
|
Wan X, Wang Q, Kirsch GE. Functional suppression of sodium channels by beta(1)-subunits as a molecular mechanism of idiopathic ventricular fibrillation. J Mol Cell Cardiol 2000; 32:1873-84. [PMID: 11013131 DOI: 10.1006/jmcc.2000.1223] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ventricular fibrillation leading to sudden cardiac death can occur even in the absence of structural heart disease. One form of this so-called idiopathic ventricular fibrillation (IVF) is characterized by ST segment elevation (STE) in the electrocardiogram. Recently we found that IVF with STE is linked to mutations of SCN5A, the gene encoding the cardiac sodium channel alpha -subunit. Two types of defects were identified: loss-of-function mutations that severely truncate channel proteins and missense mutations (e.g. a double mutation, R1232W and T1620M) that cause only minor changes in channel gating. Here we show that co-expression of the R1232W+T1620M missense mutant alpha -subunits in a mammalian cell line stably transfected with human sodium channel beta(1)-subunits results in a phenotype similar to that of the truncation mutants. In the presence of beta(1)subunits the expression of both ionic currents and alpha -subunit-specific, immunoreactive protein was markedly suppressed after transfection of mutant, but not wild-type alpha -subunits when cells were incubated at physiological temperature. Expression was partially restored by incubation at reduced temperatures. Our results reconcile two classes of IVF mutations and support the notion that a reduction in the amplitude of voltage-gated sodium conductance is the primary cause of IVF.
Collapse
Affiliation(s)
- X Wan
- Rammelkamp Center for Education and Research, Case Western Reserve University, Cleveland, OH 44109, USA
| | | | | |
Collapse
|
26
|
Xiao YF, Wright SN, Wang GK, Morgan JP, Leaf A. Coexpression with beta(1)-subunit modifies the kinetics and fatty acid block of hH1(alpha) Na(+) channels. Am J Physiol Heart Circ Physiol 2000; 279:H35-46. [PMID: 10899039 DOI: 10.1152/ajpheart.2000.279.1.h35] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Voltage-gated cardiac Na(+) channels are composed of alpha- and beta(1)-subunits. In this study beta(1)-subunit was cotransfected with the alpha-subunit of the human cardiac Na(+) channel (hH1(alpha)) in human embryonic kidney (HEK293t) cells. The effects of this coexpression on the kinetics and fatty acid-induced suppression of Na(+) currents were assessed. Current density was significantly greater in HEK293t cells coexpressing alpha- and beta(1)-subunits (I(Na,alpha beta)) than in HEK293t cells expressing alpha-subunit alone (I(Na,alpha)). Compared with I(Na,alpha), the voltage-dependent inactivation and activation of I(Na,alpha beta) were significantly shifted in the depolarizing direction. In addition, coexpression with beta(1)-subunit prolonged the duration of recovery from inactivation. Eicosapentaenoic acid [EPA, C20:5(n-3)] significantly reduced I(Na,alpha beta) in a concentration-dependent manner and at 5 microM shifted the midpoint voltage of the steady-state inactivation by -22 +/- 1 mV. EPA also significantly accelerated channel transition from the resting state to the inactivated state and prolonged the recovery time from inactivation. Docosahexaenoic acid [C22:6(n-3)], alpha-linolenic acid [C18:3(n-3)], and conjugated linoleic acid [C18:2(n-6)] at 5 microM significantly inhibited both I(Na,alpha beta) and I(Na,alpha.) In contrast, saturated and monounsaturated fatty acids had no effects on I(Na,alpha beta). This finding differs from the results for I(Na,alpha), which was significantly inhibited by both saturated and unsaturated fatty acids. Our data demonstrate that functional association of beta(1)-subunit with hH1(alpha) modifies the kinetics and fatty acid block of the Na(+) channel.
Collapse
Affiliation(s)
- Y F Xiao
- Charles A. Dana Research Institute and Harvard-Thorndike Laboratory, Cardiovascular Division, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA.
| | | | | | | | | |
Collapse
|
27
|
Isom LL. I. Cellular and molecular biology of sodium channel beta-subunits: therapeutic implications for pain? Am J Physiol Gastrointest Liver Physiol 2000; 278:G349-53. [PMID: 10712253 DOI: 10.1152/ajpgi.2000.278.3.g349] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Voltage-gated sodium channel alpha-subunits have been shown to be key mediators of the pathophysiology of pain. The present review considers the role of sodium channel auxiliary beta-subunits in channel modulation, channel protein expression levels, and interactions with extracellular matrix and cytoskeletal signaling molecules. Although beta-subunits have not yet been directly implicated in pain mechanisms, their intimate association with and ability to regulate alpha-subunits predicts that they may be a viable target for therapeutic intervention in the future. It is proposed that multifunctional sodium channel beta-subunits provide a critical link between extracellular and intracellular signaling molecules and thus have the ability to fine tune channel activity and electrical excitability.
Collapse
Affiliation(s)
- L L Isom
- Department of Pharmacology, The University of Michigan, Ann Arbor, Michigan 48109-0632, USA.
| |
Collapse
|
28
|
Kazen-Gillespie KA, Ragsdale DS, D'Andrea MR, Mattei LN, Rogers KE, Isom LL. Cloning, localization, and functional expression of sodium channel beta1A subunits. J Biol Chem 2000; 275:1079-88. [PMID: 10625649 DOI: 10.1074/jbc.275.2.1079] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Auxiliary beta1 subunits of voltage-gated sodium channels have been shown to be cell adhesion molecules of the Ig superfamily. Co-expression of alpha and beta1 subunits modulates channel gating as well as plasma membrane expression levels. We have cloned, sequenced, and expressed a splice variant of beta1, termed beta1A, that results from an apparent intron retention event. beta1 and beta1A are structurally homologous proteins with type I membrane topology; however, they contain little to no amino acid homology beyond the shared Ig loop region. beta1A mRNA expression is developmentally regulated in rat brain such that it is complementary to beta1. beta1A mRNA is expressed during embryonic development, and then its expression becomes undetectable after birth, concomitant with the onset of beta1 expression. In contrast, beta1A mRNA is expressed in adult adrenal gland and heart. Western blot analysis revealed beta1A protein expression in heart, skeletal muscle, and adrenal gland but not in adult brain or spinal cord. Immunocytochemical analysis of beta1A expression revealed selective expression in brain and spinal cord neurons, with high expression in heart and all dorsal root ganglia neurons. Co-expression of alphaIIA and beta1A subunits in Chinese hamster lung 1610 cells results in a 2.5-fold increase in sodium current density compared with cells expressing alphaIIA alone. This increase in current density reflected two effects of beta1A: 1) an increase in the proportion of cells expressing detectable sodium currents and 2) an increase in the level of functional sodium channels in expressing cells. [(3)H]Saxitoxin binding analysis revealed a 4-fold increase in B(max) with no change in K(D) in cells coexpressing alphaIIA and beta1A compared with cells expressing alphaIIA alone. beta1A-expressing cell lines also revealed subtle differences in sodium channel activation and inactivation. These effects of beta1A subunits on sodium channel function may be physiologically important events in the development of excitable cells.
Collapse
Affiliation(s)
- K A Kazen-Gillespie
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109-0632, USA
| | | | | | | | | | | |
Collapse
|
29
|
Makita N, Shirai N, Wang DW, Sasaki K, George AL, Kanno M, Kitabatake A. Cardiac Na(+) channel dysfunction in Brugada syndrome is aggravated by beta(1)-subunit. Circulation 2000; 101:54-60. [PMID: 10618304 DOI: 10.1161/01.cir.101.1.54] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Mutations in the gene encoding the human cardiac Na(+) channel alpha-subunit (hH1) are responsible for chromosome 3-linked congenital long-QT syndrome (LQT3) and idiopathic ventricular fibrillation (IVF). An auxiliary beta(1)-subunit, widely expressed in excitable tissues, shifts the voltage dependence of steady-state inactivation toward more negative potentials and restores normal gating kinetics of brain and skeletal muscle Na(+) channels expressed in Xenopus oocytes but has little if any functional effect on the cardiac isoform. Here, we characterize the altered effects of a human beta(1)-subunit (hbeta(1)) on the heterologously expressed hH1 mutation (T1620M) previously associated with IVF. METHODS AND RESULTS When expressed alone in Xenopus oocytes, T1620M exhibited no persistent currents, in contrast to the LQT3 mutant channels, but the midpoint of steady-state inactivation (V(1/2)) was significantly shifted toward more positive potentials than for wild-type hH1. Coexpression of hbeta(1) did not significantly alter current decay or recovery from inactivation of wild-type hH1; however, it further shifted the V(1/2) and accelerated the recovery from inactivation of T1620M. Oocyte macropatch analysis revealed that the activation kinetics of T1620M were normal. CONCLUSIONS It is suggested that coexpression of hbeta(1) exposes a more severe functional defect that results in a greater overlap in the relationship between channel inactivation and activation (window current) in T1620M, which is proposed to be a potential pathophysiological mechanism of IVF in vivo. One possible explanation for our finding is an altered alpha-/beta(1)-subunit association in the mutant.
Collapse
Affiliation(s)
- N Makita
- Department of Cardiovascular Medicine, Hokkaido University School of Medicine, Sapporo, Japan.
| | | | | | | | | | | | | |
Collapse
|
30
|
Rossie S. Regulation of voltage-sensitive sodium and calcium channels by phosphorylation. ADVANCES IN SECOND MESSENGER AND PHOSPHOPROTEIN RESEARCH 1999; 33:23-48. [PMID: 10218113 DOI: 10.1016/s1040-7952(99)80004-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Affiliation(s)
- S Rossie
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
31
|
An RH, Wang XL, Kerem B, Benhorin J, Medina A, Goldmit M, Kass RS. Novel LQT-3 mutation affects Na+ channel activity through interactions between alpha- and beta1-subunits. Circ Res 1998; 83:141-6. [PMID: 9686753 DOI: 10.1161/01.res.83.2.141] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The congenital long-QT syndrome (LQT), an inherited cardiac arrhythmia characterized in part by prolonged ventricular repolarization, has been linked to 5 loci, 4 of which have been shown to harbor genes that encode ion channels. Previously studied LQT-3 mutations of SCN5A (or hH1), the gene that encodes the human Na+ channel alpha-subunit, have been shown to encode voltage-gated Na+ channels that reopen during prolonged depolarization and hence directly contribute to the disease phenotype: delayed repolarization. Here, we report the functional consequences of a novel SCN5A mutation discovered in an extended LQT family. The mutation, a single A-->G base substitution at nucleotide 5519 of the SCN5A cDNA, is expected to cause a nonconservative change from an aspartate to a glycine at position 1790 (D1790G) of the SCN5A gene product. We investigated ion channel activity in human embryonic kidney (HEK 293) cells transiently transfected with wild-type (hH1) or mutant (D1790G) cDNA alone or in combination with cDNA encoding the human Na+ channel beta1-subunit (hbeta1) using whole-cell patch-clamp procedures. Heteromeric channels formed by coexpression of alpha- and beta1-subunits are affected: steady-state inactivation is shifted by -16 mV, but there is no D1790G-induced sustained inward current. This effect is independent of the beta1-subunit isoform. We find no significant effect of D1790G on the biophysical properties of monomeric alpha- (hH1) channels. We conclude that the effects of the novel LQT-3 mutation on inactivation of heteromeric channels are due to D1790G-induced changes in alpha- and beta1-interactions.
Collapse
Affiliation(s)
- R H An
- Department of Pharmacology, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Giraud P, Alcaraz G, Jullien F, Sampo B, Jover E, Couraud F, Dargent B. Multiple pathways regulate the expression of genes encoding sodium channel subunits in developing neurons. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 56:238-55. [PMID: 9602139 DOI: 10.1016/s0169-328x(98)00067-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In primary cultures of fetal neurons, activation of sodium channels with either alpha-scorpion toxin or veratridine caused a rapid and persistent decrease of mRNAs encoding beta2 and different sodium channel alpha mRNAs. In contrast, beta1 subunit mRNA was up-regulated by sodium channel activation. This phenomenon was calcium-independent. The effects of activating toxins on mRNAs of different sodium channel subunits were mimicked by membrane depolarization. An important aspect of this study was the demonstration that cAMP also caused rapid reduction of alphaI, alphaII and alphaIII mRNA levels whereas beta1 subunit mRNA was up regulated and beta2 subunit mRNA was not affected. Sodium channel activation by veratridine was shown to increase cAMP immunoreactivity in cultured neurons, but alphaII mRNA down-regulation induced by activating toxins was not reversed by protein kinase A antagonists, indicating that this phenomenon is not protein kinase A dependent. The effects of cAMP and membrane depolarisation were antagonized by the PKA inhibitor H89. These results are indicative of the existence of multiple and independent regulatory pathways modulating the expression of sodium channel genes in the developing central nervous system.
Collapse
Affiliation(s)
- P Giraud
- Laboratoire de Neurobiologie des Canaux Ioniques INSERM U464, IFR Jean Roche, Faculté de Médecine Nord, 13916 Marseille Cedex 20, France.
| | | | | | | | | | | | | |
Collapse
|
33
|
Alcaraz G, Sampo B, Tricaud N, Giraud P, Martin-Eauclaire MF, Couraud F, Dargent B. Down-regulation of voltage-dependent sodium channels coincides with a low expression of alphabeta1 subunit complexes. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 51:143-53. [PMID: 9427516 DOI: 10.1016/s0169-328x(97)00232-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The association between the beta1 subunit and the alpha subunit of the sodium channel from rat brain was studied in hippocampus during postnatal development and in cultures of fetal rat forebrain neurons and cerebellar granule cells, using an anti-beta1 antipeptide antibody to specifically immunoprecipitate alphabeta1 complexes labeled with [3H]saxitoxin. In the hippocampus, the increase in beta1 RNA expression during development was accompanied by an increase in immunoprecipitated alphabeta1 complexes. Most of the alphabeta1 complexes were constituted during the first 3 postnatal weeks, with the steepest rise between postnatal days 5 and 12. In cultured fetal neurons, the amount of beta1 RNA and of alphabeta1 complexes was approximately 3-4% of that found in the adult, whereas it reached 60-70% in cultured cerebellar granule cells. We had previously described a neurotoxin-induced internalization of sodium channels which occurred in immature neurons but not in adult tissue. Internalization decreased during development in neurotoxin-treated hippocampal slices, and resistance of plasma membrane sodium channels to internalization followed the same time course than the appearance of alphabeta1 complexes. Similarly, neurotoxin activation resulted in sodium channel internalization in fetal neurons, while cerebellar granule cells, which express high levels of beta1 RNA and of alphabeta1 complexes, did not internalize their [3H]saxitoxin receptors in that same conditions. These data suggested that the association of the beta1 subunit with the alpha subunit could provide a suitable marker for the stabilization and anchoring of sodium channels in discrete membrane domains which occur during neuronal development.
Collapse
Affiliation(s)
- G Alcaraz
- INSERM U464, Institut Jean Roche, Faculté de Médecine Secteur Nord, Marseille, France.
| | | | | | | | | | | | | |
Collapse
|
34
|
Makita N, Bennett PB, George AL. Multiple domains contribute to the distinct inactivation properties of human heart and skeletal muscle Na+ channels. Circ Res 1996; 78:244-52. [PMID: 8575068 DOI: 10.1161/01.res.78.2.244] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Voltage-gated Na+ channels are essential for the normal electrical excitability of neuronal and striated muscle membranes. Distinct isoforms of the Na+ channel alpha-subunit have been identified by molecular cloning, and their functional attributes have been defined by heterologous expression coupled with electrophysiological recording. Two closely related Na+ channel alpha-subunit isoforms, hH1 (human heart) and hSkM1 (human skeletal muscle), exhibit differences in their inactivation properties and in their response to the coexpressed beta 1-subunit. To localize regions that contribute to inactivation and to beta 1-subunit response, we have exploited these functional differences by studying chimeric channels composed of segments from both hH1 and hSkM1. Chimeras in which one or more of the cytoplasmic interdomain regions (ID1-2, ID2-3, and ID3-4) were exchanged between hH1 and hSkM1 exhibit inactivation properties identical with the background channel isoform, suggesting that these regions are not sufficient to cause gating differences. In contrast, inactivation properties of chimeras composed of approximately equal halves of the two channel isoforms were intermediate between hH1 and hSkM1. Furthermore, the response to the coexpressed beta 1-subunit was dependent on structures located in the carboxy-terminal half of the alpha-subunit, although domains D3, D4, and the carboxy terminal are not singularly responsible for this effect. These data indicate that inactivation differences between hH1 and hSkM1 are determined by multiple alpha-subunit domains.
Collapse
Affiliation(s)
- N Makita
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tenn, USA
| | | | | |
Collapse
|
35
|
Sashihara S, Oh Y, Black JA, Waxman SG. Na+ channel beta 1 subunit mRNA expression in developing rat central nervous system. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1995; 34:239-50. [PMID: 8750827 DOI: 10.1016/0169-328x(95)00168-r] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The sodium channel beta 1 subunit (Na beta 1) is a component of the rat brain voltage-dependent sodium channel. We have used nonradioactive in situ hybridization cytochemical techniques to demonstrate that transcript levels of Na beta 1 are differentially upregulated during postnatal development of several CNS regions, with selective labeling of specific neuronal populations. In the hippocampus, labeling of the pyramidal cell layer (particularly in the CA3 region) and dentate granule cells was initially observed at postnatal day 2 (P2) and P10, respectively, and became progressively more intense with maturation. Labeled cells were first observed in the hilus at P10. In the developing cerebellum, transient labeling was observed in the external granule cell layer beginning at P1 while label increased in the internal granule cell layer up to P21. Purkinje cells showed significant label beginning at P4 and increasing up to P21. Weak signal was seen in neurons of deep nuclei at P1 and increased up to P21. Na beta 1 labeling in the spinal cord was first observed in the ventral horn at P2, and the intensity of labeling in these large motoneurons gradually increased. In addition, there was a ventral-dorsal gradient in this region, with label appearing subsequently in neurons of Rexed laminae IX, VII and VIII, and in the dorsal horn (Rexed laminae I-VI). In these regions, the labeling reached a plateau within the first 2-3 weeks after birth and persisted into the adult rat. The time course and regional heterogeneity of Na beta 1 expression are consistent with the hypothesis that the expression of mature Na+ channels, including Na beta 1, contributes to the development of circuitry that supports complex patterns of electrogenesis.
Collapse
Affiliation(s)
- S Sashihara
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | |
Collapse
|
36
|
England SK, Uebele VN, Kodali J, Bennett PB, Tamkun MM. A novel K+ channel beta-subunit (hKv beta 1.3) is produced via alternative mRNA splicing. J Biol Chem 1995; 270:28531-4. [PMID: 7499366 DOI: 10.1074/jbc.270.48.28531] [Citation(s) in RCA: 115] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Voltage-gated K+ channels can form multimeric complexes with accessory beta-subunits. We report here a novel K+ channel beta-subunit cloned from human heart, hKv beta 1.3, that has 74-83% overall identity with previously cloned beta-subunits. Comparison of hKv beta 1.3 with the previously cloned hKv beta 3 and rKv beta 1 proteins indicates that the carboxyl-terminal 328 amino acids are identical, while unique variable length amino termini exist. Analysis of human beta-subunit cDNA and genomic nucleotide sequences confirm that these three beta-subunits are alternatively spliced from a common beta-subunit gene. Co-expression of hKv beta 1.3 in Xenopus oocytes with the delayed rectifier hKv1.5 indicated that hKv beta 1.3 has unique functional effects. This novel beta-subunit induced a time-dependent inactivation during membrane voltage steps to positive potentials, induced a 13-mV hyperpolarizing shift in the activation curve, and slowed deactivation (tau = 13 +/- 0.5 ms versus 35 +/- 1.7 ms at -40 mV). Most notably, hKv beta 1.3 converted the Kv1.5 outwardly rectifying current voltage relationship to one showing strong inward rectification. These data suggest that Kv channel current diversity may arise from association with alternatively spliced Kv beta-subunits. A simplified nomenclature for the K+ channel beta-subunit subfamilies is suggested.
Collapse
Affiliation(s)
- S K England
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
37
|
Qu Y, Isom LL, Westenbroek RE, Rogers JC, Tanada TN, McCormick KA, Scheuer T, Catterall WA. Modulation of cardiac Na+ channel expression in Xenopus oocytes by beta 1 subunits. J Biol Chem 1995; 270:25696-701. [PMID: 7592748 DOI: 10.1074/jbc.270.43.25696] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Voltage-gated Na+ channels consist of a large alpha subunit of 260 kDa associated with beta 1 and/or beta 2 subunits of 36 and 33 kDa, respectively. alpha subunits of rat cardiac Na+ channels (rH1) are functional when expressed alone in Xenopus oocytes or mammalian cells. beta 1 subunits are present in the heart, and localization of beta 1 subunit mRNA by in situ hybridization shows expression in the perinuclear cytoplasm of cardiac myocytes. Coexpression of beta 1 subunits with rH1 alpha subunits in Xenopus oocytes increases Na+ currents up to 6-fold in a concentration-dependent manner. However, no effects of beta 1 subunit coexpression on the kinetics or voltage dependence of the rH1 Na+ current were detected. Increased expression of Na+ currents is not observed when an equivalent mRNA encoding a nonfunctional mutant beta 1 subunit is coexpressed. Our results show that beta 1 subunits are expressed in cardiac muscle cells and that they interact with alpha subunits to increase the expression of cardiac Na+ channels in Xenopus oocytes, suggesting that beta 1 subunits are important determinants of the level of excitability of cardiac myocytes in vivo.
Collapse
Affiliation(s)
- Y Qu
- Department of Pharmacology, University of Washington, Seattle 98195-7280, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Felts PA, Black JA, Waxman SG. Expression of sodium channel alpha- and beta-subunits in the nervous system of the myelin-deficient rat. JOURNAL OF NEUROCYTOLOGY 1995; 24:654-66. [PMID: 7500121 DOI: 10.1007/bf01179816] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Using subtype-specific riboprobes and a non-isotope in situ hybridization technique, the pattern of expression of the mRNAs for voltage dependent sodium channel alpha-subunits I, II, III and NaG, and the beta 1-subunit were compared in myelin-deficient rats and unaffected male littermates. Tissues examined included the hippocampus, cerebellum, spinal cord and dorsal root ganglia. Previous studies have demonstrated that the expression of sodium channel alpha- and beta 1-subunits follows a distinct temporal and spatial pattern during development, characterized in part by greater expression of alpha-subunit III and its mRNA during development than in the adult. We examined animals of 20-22 days of age, a time when, according to earlier reports, the unaffected animals should nearly have reached an adult expression pattern. Normal male littermates were indeed found to express a sodium channel subunit mRNA pattern generally consistent with previous reports on adult rats. Myelin-deficient animals exhibited an expression pattern identical to the unaffected littermates, indicating that myelination is not required for the progression from the embryonic to the adult expression pattern of sodium channel subunits.
Collapse
Affiliation(s)
- P A Felts
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | |
Collapse
|
39
|
Zur KB, Oh Y, Waxman SG, Black JA. Differential up-regulation of sodium channel alpha- and beta 1-subunit mRNAs in cultured embryonic DRG neurons following exposure to NGF. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1995; 30:97-105. [PMID: 7609649 DOI: 10.1016/0169-328x(94)00283-k] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Although the pattern of expression of various sodium channel alpha- and beta-subunits changes as development proceeds, the mechanisms that control the expression of these subunits are not yet understood. To study the role of nerve growth factor (NGF) in modulating the expression of sodium channel subunits, we used in situ hybridization cytochemistry to examine the distribution of sodium channel alpha- and beta 1-subunit mRNAs in embryonic day 16 (E16) dorsal root ganglia (DRG) neurons cultured in the absence or presence of NGE. At 4 days in vitro in the absence of NGF, sodium channel alpha-subunit II mRNA was expressed at low-to-moderate levels in DRG neurons, but the transcripts for sodium channel alpha-subunits I, III and NaG and beta 1-subunit were not detectable. In the presence of NGF, DRG neurons expressed low-to-moderate levels of sodium channel alpha-I, high levels of alpha-II and low levels of alpha-III; NaG mRNA was not detectable. Sodium channel beta 1 mRNA was up-regulated and was expressed at high levels in DRG neurons in NGF-containing media. These observations demonstrate that the NGF exerts a differential up-regulation of sodium channel alpha- and beta-subunit mRNAs in DRG neurons derived from E16 embryos.
Collapse
Affiliation(s)
- K B Zur
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | |
Collapse
|
40
|
|
41
|
Fleig A, Ruben PC, Rayner MD. Kinetic mode switch of rat brain IIA Na channels in Xenopus oocytes excised macropatches. Pflugers Arch 1994; 427:399-405. [PMID: 7971138 DOI: 10.1007/bf00374253] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Na currents recorded from outside-out macropatches excised from Xenopus oocytes expressing the alpha subunit of the rat brain Na channel IIA show at least two distinguishable components in their inactivation time course, with time constants differing about tenfold (tau h1 = approx. 150 microseconds and tau h2 = approx. 2 ms). In excised patches, the inactivation properties of Na currents changed with time, favoring the faster inactivation kinetics. Analysis of the fast and slow current kinetics shows that only the relative magnitudes of tau h1 and tau h2 components are altered without significant changes in the time constants of activation or inactivation. In addition, voltage dependence of both activation and steady-state inactivation of Na currents are shifted to more negative potentials in patches with predominantly fast inactivation, although reversal potentials and valences remained unaltered. We conclude that the two inactivation modes discerned in this study are conferred by two states of Na channel the interconversion of which are regulated by an as yet unknown mechanism that seems to involve cytosolic factors.
Collapse
Affiliation(s)
- A Fleig
- Department of Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu 96822
| | | | | |
Collapse
|
42
|
The adult rat brain beta 1 subunit modifies activation and inactivation gating of multiple sodium channel alpha subunits. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32490-0] [Citation(s) in RCA: 157] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
43
|
Voltage-gated Na+ channel beta 1 subunit mRNA expressed in adult human skeletal muscle, heart, and brain is encoded by a single gene. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37325-8] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
44
|
Schreibmayer W, Wallner M, Lotan I. Mechanism of modulation of single sodium channels from skeletal muscle by the beta 1-subunit from rat brain. Pflugers Arch 1994; 426:360-2. [PMID: 8183650 DOI: 10.1007/bf00374796] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We studied the molecular mechanism of the rat skeletal muscle alpha-subunit (alpha microI) gating kinetics modulation by the brain beta 1-subunit by heterologous expression of single sodium channels from alpha microI and beta 1 in Xenopus laevis oocytes. Coexpression of beta 1 reduced mean open time at -10 mV to approximately 21% when compared to channels expressed by alpha microI alone. Channels formed by alpha microI exerted multiple openings per depolarization, which occurred in bursts, in contrast to the channels formed by the alpha microI/beta 1 complex that opened in average only once per depolarizing voltage pulse. Macroscopic current decay (mcd), as evidenced by reconstructed open probability vs. time (po(t)), was greatly accelerated by beta 1, closely resembling mcd of sodium currents from native skeletal muscle. Generally po(t) was larger for channels expressed from the pure alpha microI subunit. From our single channel data we conclude that beta 1 accelerates the inactivation process of the sodium channel complex.
Collapse
Affiliation(s)
- W Schreibmayer
- Institut für Medizinische Physik und Biophysik, Universität Graz, Austria
| | | | | |
Collapse
|
45
|
Affiliation(s)
- W A Catterall
- Department of Pharmacology, School of Medicine, University of Washington, Seattle 98195, USA
| |
Collapse
|
46
|
Yang JS, Bennett PB, Makita N, George AL, Barchi RL. Expression of the sodium channel beta 1 subunit in rat skeletal muscle is selectively associated with the tetrodotoxin-sensitive alpha subunit isoform. Neuron 1993; 11:915-22. [PMID: 8240813 DOI: 10.1016/0896-6273(93)90121-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Transcripts homologous to the rat brain sodium channel beta subunit (beta 1) are prominently expressed in both innervated and denervated adult skeletal muscle and in heart, but not in neonatal skeletal or cardiac muscle. Regulation of beta 1 mRNA expression closely parallels that of SkM1 alpha during development, after denervation in adult muscle, and in primary muscle culture, but does not follow SkM2 expression under any condition examined. In oocytes, beta 1 interacts functionally with SkM1 to modulate the abnormally slow inactivation kinetics observed with this alpha subunit expressed alone. We conclude that a common beta 1 subunit is expressed in skeletal muscle, heart, and brain and that in skeletal muscle, this subunit is specifically associated with the SkM1, rather than the SkM2, sodium channel isoform.
Collapse
Affiliation(s)
- J S Yang
- Mahoney Institute of Neurological Sciences, University of Pennsylvania School of Medicine, Philadelphia 19104
| | | | | | | | | |
Collapse
|
47
|
Cohen SA, Levitt LK. Partial characterization of the rH1 sodium channel protein from rat heart using subtype-specific antibodies. Circ Res 1993; 73:735-42. [PMID: 8396505 DOI: 10.1161/01.res.73.4.735] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Three subtype-specific antisera were generated against peptides corresponding to portions of the amino terminus, interdomain 1-2, and carboxy terminus of the rH1 sodium channel primary sequence to confirm the expression of this protein in the adult rat heart and to determine selected biochemical properties of this protein that might contribute to its subtype-specific characteristics. All three antisera identify a 240-kD band on Western blots of partially purified cardiac membrane proteins and by immunoprecipitation of iodinated partially purified membrane proteins. Unlike other characterized mammalian sodium channels, no beta subunit is detected in association with the rH1 alpha subunit. The rH1 alpha subunit is a complex sialoglycoprotein as evidenced by its interaction with wheat germ agglutinin-Sepharose and by reduction in its apparent molecular weight after treatment with neuraminidase; deglycosylation with N-glycanase confirms that the rH1 protein contains significantly less carbohydrate than other sodium channel proteins characterized to date (5% versus 25% to 30%). Consistent with electrophysiological studies indicating a role of phosphorylation in channel regulation, the rH1 alpha subunit can be phosphorylated by the catalytic subunit of cAMP-dependent protein kinase A. The possible functional significance of these findings is discussed.
Collapse
Affiliation(s)
- S A Cohen
- Department of Medicine, University of Pennsylvania, School of Medicine, Philadelphia 19104-6060
| | | |
Collapse
|
48
|
Kallen RG, Cohen SA, Barchi RL. Structure, function and expression of voltage-dependent sodium channels. Mol Neurobiol 1993; 7:383-428. [PMID: 8179845 DOI: 10.1007/bf02769184] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Voltage-dependent sodium channels control the transient inward current responsible for the action potential in most excitable cells. Members of this multigene family have been cloned, sequenced, and functionally expressed from various tissues and species, and common features of their structure have clearly emerged. Site-directed mutagenesis coupled with in vitro expression has provided additional insight into the relationship between structure and function. Subtle differences between sodium channel isoforms are also important, and aspects of the regulation of sodium channel gene expression and the modulation of channel function are becoming topics of increasing importance. Finally, sodium channel mutations have been directly linked to human disease, yielding insight into both disease pathophysiology and normal channel function. After a brief discussion of previous work, this review will focus on recent advances in each of these areas.
Collapse
Affiliation(s)
- R G Kallen
- Mahoney Institute of Neurological Sciences, University of Pennsylvania School of Medicine, Philadelphia
| | | | | |
Collapse
|
49
|
Abstract
Recent studies have shown that the accessory subunits of the voltage-gated sodium channel can modify its inactivation properties. Other studies have demonstrated that the cytoplasmic linker between domains III and IV is critical for fast inactivation. Future work should help to define the mechanisms by which these processes occur, and how mutations affecting sodium channel inactivation result in human neurological diseases.
Collapse
Affiliation(s)
- A L Goldin
- Department of Microbiology and Molecular Genetics, University of California, Irvine 92717-4025
| |
Collapse
|
50
|
Mandel G. Sodium channel regulation in the nervous system: how the action potential keeps in shape. Curr Opin Neurobiol 1993; 3:278-82. [PMID: 8396473 DOI: 10.1016/0959-4388(93)90118-i] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Multiple Na+ channel types, differing in functional properties, have been identified in the nervous system. The role of distinct alpha subunits in generating this functional diversity is discussed in light of the recent finding that the beta 1 subunit modulates Na+ channel function. Possible mechanisms involved in the regulation of the genes coding for the different subunits are also discussed.
Collapse
Affiliation(s)
- G Mandel
- Department of Neurobiology and Behavior, State University of New York, Stony Brook 11794
| |
Collapse
|