1
|
Puvvula PK, Martinez-Medina L, Cinar M, Feng L, Pisarev A, Johnson A, Bernal-Mizrachi L. A retrotransposon-derived DNA zip code internalizes myeloma cells through Clathrin-Rab5a-mediated endocytosis. Front Oncol 2024; 14:1288724. [PMID: 38463228 PMCID: PMC10920344 DOI: 10.3389/fonc.2024.1288724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/29/2024] [Indexed: 03/12/2024] Open
Abstract
Introduction We have demonstrated that transposons derived from ctDNA can be transferred between cancer cells. The present research aimed to investigate the cellular uptake and intracellular trafficking of Multiple Myeloma-zip code (MM-ZC), a cell-specific zip code, in myeloma cell lines. We demonstrated that MM-ZC uptake by myeloma cells was concentration-, time- and cell-type-dependent. Methods Flow cytometry and confocal microscopy methods were used to identify the level of internalization of the zip codes in MM cells. To screen for the mechanism of internalization, we used multiple inhibitors of endocytosis. These experiments were followed by biotin pulldown and confocal microscopy for validation. Single interference RNA (siRNA) targeting some of the proteins involved in endocytosis was used to validate the role of this pathway in ZC cell internalization. Results Endocytosis inhibitors identified that Monensin and Chlorpromazine hydrochloride significantly reduced MM-ZC internalization. These findings suggested that Clathrin-mediated endocytosis and endosomal maturation play a crucial role in the cellular uptake of MM-ZC. Biotin pulldown and confocal microscopic studies revealed the involvement of proteins such as Clathrin, Rab5a, Syntaxin-6, and RCAS1 in facilitating the internalization of MM-ZC. Knockdown of Rab5a and Clathrin proteins reduced cellular uptake of MM-ZC and conclusively demonstrated the involvement of Clathrin-Rab5a pathways in MM-ZC endocytosis. Furthermore, both Rab5a and Clathrin reciprocally affected their association with MM-ZC when we depleted their proteins by siRNAs. Additionally, the loss of Rab5a decreased the Syntaxin-6 association with MMZC but not vice versa. Conversely, MM-ZC treatment enhanced the association between Clathrin and Rab5a. Conclusion Overall, the current study provides valuable insights into the cellular uptake and intracellular trafficking of MM-ZC in myeloma cells. Identifying these mechanisms and molecular players involved in MM-ZC uptake contributes to a better understanding of the delivery and potential applications of cell-specific Zip-Codes in gene delivery and drug targeting in cancer research.
Collapse
Affiliation(s)
| | | | - Munevver Cinar
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, United States
| | - Lei Feng
- Kodikaz Therapeutic Solutions, New York, NY, United States
| | - Andrey Pisarev
- Kodikaz Therapeutic Solutions, New York, NY, United States
| | | | - Leon Bernal-Mizrachi
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, United States
| |
Collapse
|
2
|
Caffeine and MDMA (Ecstasy) Exacerbate ER Stress Triggered by Hyperthermia. Int J Mol Sci 2022; 23:ijms23041974. [PMID: 35216090 PMCID: PMC8880705 DOI: 10.3390/ijms23041974] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
Drugs of abuse can cause local and systemic hyperthermia, a known trigger of endoplasmic reticulum (ER) stress and the unfolded protein response (UPR). Another trigger of ER stress and UPR is ER calcium depletion, which causes ER exodosis, the secretion of ER-resident proteins. In rodent models, club drugs such as 3,4-methylenedioxymethamphetamine (MDMA, ‘ecstasy’) can create hyperthermic conditions in the brain and cause toxicity that is affected by the environmental temperature and the presence of other drugs, such as caffeine. In human studies, MDMA stimulated an acute, dose-dependent increase in core body temperature, but an examination of caffeine and MDMA in combination remains a topic for clinical research. Here we examine the secretion of ER-resident proteins and activation of the UPR under combined exposure to MDMA and caffeine in a cellular model of hyperthermia. We show that hyperthermia triggers the secretion of normally ER-resident proteins, and that this aberrant protein secretion is potentiated by the presence of MDMA, caffeine, or a combination of the two drugs. Hyperthermia activates the UPR but the addition of MDMA or caffeine does not alter the canonical UPR gene expression despite the drug effects on ER exodosis of UPR-related proteins. One exception was increased BiP/GRP78 mRNA levels in MDMA-treated cells exposed to hyperthermia. These findings suggest that club drug use under hyperthermic conditions exacerbates disruption of ER proteostasis, contributing to cellular toxicity.
Collapse
|
3
|
Trychta KA, Xie B, Verma RK, Xu M, Shi L, Harvey BK. Computational Modeling of C-Terminal Tails to Predict the Calcium-Dependent Secretion of Endoplasmic Reticulum Resident Proteins. Front Chem 2021; 9:689608. [PMID: 34268295 PMCID: PMC8276033 DOI: 10.3389/fchem.2021.689608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/03/2021] [Indexed: 12/29/2022] Open
Abstract
The lumen of the endoplasmic reticulum (ER) has resident proteins that are critical to perform the various tasks of the ER such as protein maturation and lipid metabolism. These ER resident proteins typically have a carboxy-terminal ER retention/retrieval sequence (ERS). The canonical ERS that promotes ER retrieval is Lys-Asp-Glu-Leu (KDEL) and when an ER resident protein moves from the ER to the Golgi, KDEL receptors (KDELRs) in the Golgi recognize the ERS and return the protein to the ER lumen. Depletion of ER calcium leads to the mass departure of ER resident proteins in a process termed exodosis, which is regulated by KDELRs. Here, by combining computational prediction with machine learning-based models and experimental validation, we identify carboxy tail sequences of ER resident proteins divergent from the canonical “KDEL” ERS. Using molecular modeling and simulations, we demonstrated that two representative non-canonical ERS can stably bind to the KDELR. Collectively, we developed a method to predict whether a carboxy-terminal sequence acts as a putative ERS that would undergo secretion in response to ER calcium depletion and interacts with the KDELRs. The interaction between the ERS and the KDELR extends beyond the final four carboxy terminal residues of the ERS. Identification of proteins that undergo exodosis will further our understanding of changes in ER proteostasis under physiological and pathological conditions where ER calcium is depleted.
Collapse
Affiliation(s)
- Kathleen A Trychta
- Molecular Mechanisms of Cellular Stress and Inflammation Unit, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Bing Xie
- Computational Chemistry and Molecular Biophysics Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Ravi Kumar Verma
- Computational Chemistry and Molecular Biophysics Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Min Xu
- Computational Chemistry and Molecular Biophysics Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Lei Shi
- Computational Chemistry and Molecular Biophysics Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Brandon K Harvey
- Molecular Mechanisms of Cellular Stress and Inflammation Unit, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
4
|
Zang S, Kong X, Cui J, Su S, Shu W, Jing J, Zhang X. Revealing the redox status in endoplasmic reticulum by a selenium fluorescence probe. J Mater Chem B 2021; 8:2660-2665. [PMID: 32140692 DOI: 10.1039/c9tb02919b] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
As an important organelle, the endoplasmic reticulum (ER) participates in the synthesis and secretion of various proteins, glycogen, lipids and cholesterol in eukaryotic cells. In this work, an endoplasmic reticulum-targeted reversible fluorescent probe (ER-Se) was designed and synthesized. The probe, based on a selenide group, shows high sensitivity and good selectivity toward HClO (LOD = 0.85 μM). In addition, the probe has reversible capability towards HClO/GSH. Most importantly, co-location experiment results indicated that the probe exhibited a great ability to target the endoplasmic reticulum. Furthermore, the probe was successfully applied to detect exogenous and endogenous HClO in ER and monitored the redox status changes during ER stress.
Collapse
Affiliation(s)
- Shunping Zang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Xiangxue Kong
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Jie Cui
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Sa Su
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Wei Shu
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Jing Jing
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Xiaoling Zhang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| |
Collapse
|
5
|
Komatsu K, Kumon K, Arita M, Onitsuka M, Omasa T, Yohda M. Effect of the disulfide isomerase PDIa4 on the antibody production of Chinese hamster ovary cells. J Biosci Bioeng 2020; 130:637-643. [PMID: 32878739 DOI: 10.1016/j.jbiosc.2020.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/22/2020] [Accepted: 08/02/2020] [Indexed: 12/30/2022]
Abstract
Therapeutic monoclonal antibodies recognize and bind specific molecules on the surface of target cells, stimulating the immune system, which can attack these targeted cells. These antibodies are produced by mammalian cells, including Chinese hamster ovary (CHO) cells, because the formation of antibodies requires complicated posttranslational modifications, including peptidyl-prolyl cis/trans isomerization, disulfide bond formation, and glycosylation. Currently, it is thought that the efficient production of secretory proteins is limited by posttranslational processes. The ER is the biosynthesis site of all secreted and membrane proteins. The accumulation of unfolded proteins in the ER causes the ER stress response. During the ER stress state, various molecular chaperones are expressed to prevent proteins from the aggregate formation. The molecular chaperone involved in ER stress likely plays an essential role in the production of secretory proteins. The purpose of this study was to improve the production of monoclonal antibodies by cells. We elucidated the function of ER chaperones in the production of a monoclonal antibody. First, we quantitatively measured the mRNA expression levels of protein disulfide-isomerase family members. In CHO HcD6 cells treated with tunicamycin, the expression level of pdia4 was significantly increased. Second, we investigated the relationship between PDIa4 and antibody productivity in pdia4-knockdown cells. Both a decrease in the amount of secreted antibody and the accumulation of immature antibodies inside the cells were observed. Recombinant PDIa4 was able to refold the antibodies and Fabs. These results indicate that PDIa4 affects the production of monoclonal antibodies by catalyzing disulfide bond formation in these antibodies in CHO cells.
Collapse
Affiliation(s)
- Kei Komatsu
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Kento Kumon
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Mayuno Arita
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Masayoshi Onitsuka
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8513, Japan
| | - Takeshi Omasa
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masafumi Yohda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
6
|
Ghosh S, Guimaraes JC, Lanzafame M, Schmidt A, Syed AP, Dimitriades B, Börsch A, Ghosh S, Mittal N, Montavon T, Correia AL, Danner J, Meister G, Terracciano LM, Pfeffer S, Piscuoglio S, Zavolan M. Prevention of dsRNA-induced interferon signaling by AGO1x is linked to breast cancer cell proliferation. EMBO J 2020; 39:e103922. [PMID: 32812257 PMCID: PMC7507497 DOI: 10.15252/embj.2019103922] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 06/27/2020] [Accepted: 07/07/2020] [Indexed: 01/05/2023] Open
Abstract
Translational readthrough, i.e., elongation of polypeptide chains beyond the stop codon, was initially reported for viral RNA, but later found also on eukaryotic transcripts, resulting in proteome diversification and protein‐level modulation. Here, we report that AGO1x, an evolutionarily conserved translational readthrough isoform of Argonaute 1, is generated in highly proliferative breast cancer cells, where it curbs accumulation of double‐stranded RNAs (dsRNAs) and consequent induction of interferon responses and apoptosis. In contrast to other mammalian Argonaute protein family members with primarily cytoplasmic functions, AGO1x exhibits nuclear localization in the vicinity of nucleoli. We identify AGO1x interaction with the polyribonucleotide nucleotidyltransferase 1 (PNPT1) and show that the depletion of this protein further augments dsRNA accumulation. Our study thus uncovers a novel function of an Argonaute protein in buffering the endogenous dsRNA‐induced interferon responses, different than the canonical function of AGO proteins in the miRNA effector pathway. As AGO1x expression is tightly linked to breast cancer cell proliferation, our study thus suggests a new direction for limiting tumor growth.
Collapse
Affiliation(s)
- Souvik Ghosh
- Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Joao C Guimaraes
- Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Manuela Lanzafame
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Afzal Pasha Syed
- Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Beatrice Dimitriades
- Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Anastasiya Börsch
- Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Shreemoyee Ghosh
- Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Nitish Mittal
- Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Thomas Montavon
- Architecture et Réactivité de l'ARN, Institut de biologie moléculaire et cellulaire du CNRS, Université de Strasbourg, Strasbourg, France
| | - Ana Luisa Correia
- Department of Biomedicine, University of Basel/University Hospital Basel, Basel, Switzerland
| | - Johannes Danner
- Department of Biochemistry, Department of Biology and Preclinical Medicine, University of Regensburg, Regensburg, Germany
| | - Gunter Meister
- Department of Biochemistry, Department of Biology and Preclinical Medicine, University of Regensburg, Regensburg, Germany
| | | | - Sébastien Pfeffer
- Architecture et Réactivité de l'ARN, Institut de biologie moléculaire et cellulaire du CNRS, Université de Strasbourg, Strasbourg, France
| | - Salvatore Piscuoglio
- Institute of Pathology, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel/University Hospital Basel, Basel, Switzerland
| | - Mihaela Zavolan
- Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
7
|
Abstract
The site of protein folding and maturation for the majority of proteins that are secreted, localized to the plasma membrane or targeted to endomembrane compartments is the endoplasmic reticulum (ER). It is essential that proteins targeted to the ER are properly folded in order to carry out their function, as well as maintain protein homeostasis, as accumulation of misfolded proteins could lead to the formation of cytotoxic aggregates. Because protein folding is an error-prone process, the ER contains protein quality control networks that act to optimize proper folding and trafficking of client proteins. If a protein is unable to reach its native state, it is targeted for ER retention and subsequent degradation. The protein quality control networks of the ER that oversee this evaluation or interrogation process that decides the fate of maturing nascent chains is comprised of three general types of families: the classical chaperones, the carbohydrate-dependent system, and the thiol-dependent system. The cooperative action of these families promotes protein quality control and protein homeostasis in the ER. This review will describe the families of the ER protein quality control network and discuss the functions of individual members.
Collapse
Affiliation(s)
- Benjamin M Adams
- Department of Biochemistry and Molecular Biology, University of Massachusetts, 240 Thatcher Road, Amherst, MA, 01003, USA
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, 01003, USA
| | - Michela E Oster
- Department of Biochemistry and Molecular Biology, University of Massachusetts, 240 Thatcher Road, Amherst, MA, 01003, USA
| | - Daniel N Hebert
- Department of Biochemistry and Molecular Biology, University of Massachusetts, 240 Thatcher Road, Amherst, MA, 01003, USA.
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
8
|
Abstract
The concept of cell signaling in the context of nonenzyme-assisted protein modifications by reactive electrophilic and oxidative species, broadly known as redox signaling, is a uniquely complex topic that has been approached from numerous different and multidisciplinary angles. Our Review reflects on five aspects critical for understanding how nature harnesses these noncanonical post-translational modifications to coordinate distinct cellular activities: (1) specific players and their generation, (2) physicochemical properties, (3) mechanisms of action, (4) methods of interrogation, and (5) functional roles in health and disease. Emphasis is primarily placed on the latest progress in the field, but several aspects of classical work likely forgotten/lost are also recollected. For researchers with interests in getting into the field, our Review is anticipated to function as a primer. For the expert, we aim to stimulate thought and discussion about fundamentals of redox signaling mechanisms and nuances of specificity/selectivity and timing in this sophisticated yet fascinating arena at the crossroads of chemistry and biology.
Collapse
Affiliation(s)
- Saba Parvez
- Department of Pharmacology and Toxicology, College of
Pharmacy, University of Utah, Salt Lake City, Utah, 84112, USA
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Marcus J. C. Long
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Jesse R. Poganik
- Ecole Polytechnique Fédérale de Lausanne,
Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Yimon Aye
- Ecole Polytechnique Fédérale de Lausanne,
Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
- Department of Biochemistry, Weill Cornell Medicine, New
York, New York, 10065, USA
| |
Collapse
|
9
|
Abstract
INTRODUCTION The protein disulfide isomerase (PDI) family of thiol isomerases are intracellular enzymes known to catalyze the oxidation, reduction and isomerization of disulfide bonds during protein synthesis in the endoplasmic reticulum. PDI and related members of the thiol isomerase family are known to localize extracellularly where they possess various functions. Among these, the role of PDI in the initiation of thrombus formation is best characterized. PDI is secreted within seconds from activated platelets and endothelial cells at the site of vascular injury and accumulates in the developing platelet-fibrin thrombus. Inhibition of PDI by antibodies or small molecule inhibitors blocks thrombus formation. Efforts are underway to identify extracellular substrates of PDI that participate in the network pathways linking thiol isomerases to thrombus formation. ERp57, ERp5 and ERp72 also play a role in initiation of thrombus formation but their specific extracellular substrates are unknown. Areas covered: The following review gives an overview of biochemistry of vascular thiol isomerases followed by a detailed description of their role in thrombosis and its clinical implications. Expert commentary: The thiol isomerase system, by controlling the initiation of thrombus formation, provides the regulatory switch by which the normal vasculature is protected under physiologic conditions from thrombi generation.
Collapse
Affiliation(s)
- Anish Sharda
- a Division of Hemostasis and Thrombosis , Beth Israel Deaconess Medical Center, Harvard Medical School , Boston , MA USA
| | - Bruce Furie
- a Division of Hemostasis and Thrombosis , Beth Israel Deaconess Medical Center, Harvard Medical School , Boston , MA USA
| |
Collapse
|
10
|
Holbrook L, Sandhar GK, Sasikumar P, Schenk MP, Stainer AR, Sahli KA, Flora GD, Bicknell AB, Gibbins JM. A humanized monoclonal antibody that inhibits platelet-surface ERp72 reveals a role for ERp72 in thrombosis. J Thromb Haemost 2018; 16:367-377. [PMID: 29052936 PMCID: PMC5838528 DOI: 10.1111/jth.13878] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Indexed: 11/26/2022]
Abstract
Essentials ERp72 is a thiol isomerase enzyme. ERp72 levels increase at the platelet surface during platelet activation. We generated a humanized monoclonal antibody which blocks ERp72 enzyme activity (anti-ERp72). Anti-ERp72 inhibits platelet functional responses and thrombosis. SUMMARY Background Within the endoplasmic reticulum, thiol isomerase enzymes modulate the formation and rearrangement of disulfide bonds in newly folded proteins entering the secretory pathway to ensure correct protein folding. In addition to their intracellular importance, thiol isomerases have been recently identified to be present on the surface of a number of cell types where they are important for cell function. Several thiol isomerases are known to be present on the resting platelet surface, including PDI, ERp5 and ERp57, and levels are increased following platelet activation. Inhibition of the catalytic activity of these enzymes results in diminished platelet function and thrombosis. Aim We previously determined that ERp72 is present at the resting platelet surface and levels increase upon platelet activation; however, its functional role on the cell surface was unclear. We aimed to investigate the role of ERp72 in platelet function and its role in thrombosis. Methods Using HuCAL technology, fully humanized Fc-null anti-ERp72 antibodies were generated. Eleven antibodies were screened for their ability to inhibit ERp72 activity and the most potent inhibitory antibody (anti-ERp72) selected for further testing in platelet functional assays. Results and conclusions Anti-ERp72 inhibited platelet aggregation, granule secretion, calcium mobilisation and integrin activation, revealing an important role for extracellular ERp72 in the regulation of platelet activation. Consistent with this, infusion of anti-ERp72 into mice protected against thrombosis.
Collapse
Affiliation(s)
- L.‐M. Holbrook
- School of Biological SciencesInstitute for Cardiovascular and Metabolic ResearchUniversity of ReadingReadingBerkshireUK
| | - G. K. Sandhar
- School of Biological SciencesInstitute for Cardiovascular and Metabolic ResearchUniversity of ReadingReadingBerkshireUK
| | - P. Sasikumar
- School of Biological SciencesInstitute for Cardiovascular and Metabolic ResearchUniversity of ReadingReadingBerkshireUK
| | - M. P. Schenk
- School of Biological SciencesInstitute for Cardiovascular and Metabolic ResearchUniversity of ReadingReadingBerkshireUK
| | - A. R. Stainer
- School of Biological SciencesInstitute for Cardiovascular and Metabolic ResearchUniversity of ReadingReadingBerkshireUK
| | - K. A. Sahli
- School of Biological SciencesInstitute for Cardiovascular and Metabolic ResearchUniversity of ReadingReadingBerkshireUK
| | - G. D. Flora
- School of Biological SciencesInstitute for Cardiovascular and Metabolic ResearchUniversity of ReadingReadingBerkshireUK
| | - A. B. Bicknell
- School of Biological SciencesInstitute for Cardiovascular and Metabolic ResearchUniversity of ReadingReadingBerkshireUK
| | - J. M. Gibbins
- School of Biological SciencesInstitute for Cardiovascular and Metabolic ResearchUniversity of ReadingReadingBerkshireUK
| |
Collapse
|
11
|
N-Glycosylation is required for FDNC5 stabilization and irisin secretion. Biochem J 2017; 474:3167-3177. [PMID: 28733331 DOI: 10.1042/bcj20170241] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/03/2017] [Accepted: 07/20/2017] [Indexed: 12/21/2022]
Abstract
Irisin, a myokine derived from the extracellular domain of FNDC5, has been shown to mediate thermogenesis of white adipose tissue. Biochemical data have shown that N-glycosylation of FNDC5 is unlikely to affect ligand or receptor activation of irisin. The N-glycosylation of FNDC5 remains poorly understood. In the present study, we analysed N-glycosylation sites of FNDC5 and found that two potential N-glycosylation sites (Asn36 and Asn81) could indeed be occupied by N-glycan. Furthermore we showed that the lack of N-glycosylation decreases the secretion of irisin, which is relevant to the instability of FNDC5 and the deficiency of cleavage of the signal peptide. We also found that the expression level of N-glycosylated FNDC5 was elevated after myoblast differentiation. These findings show that the secretion of irisin is modulated by N-glycosylation, which in turn enhances our understanding of the secretion of glycosylated irisin.
Collapse
|
12
|
The disulfide isomerase ERp72 supports arterial thrombosis in mice. Blood 2017; 130:817-828. [PMID: 28576878 DOI: 10.1182/blood-2016-12-755587] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 05/30/2017] [Indexed: 01/01/2023] Open
Abstract
Several CGHC motif-containing disulfide isomerases support thrombosis. We here report that endoplasmic reticulum protein 72 (ERp72), with 3 CGHC redox-active sites (ao, a, and a'), supports thrombosis. We generated a new conditional knockout mouse model and found that Tie2-Cre/ERp72fl/fl mice with blood and endothelial cells lacking ERp72 had prolonged tail bleeding times and decreased platelet accumulation in laser-induced cremaster arteriole injury and FeCl3-induced mesenteric arterial injury. Fibrin deposition was decreased in the laser injury model. Both platelet and fibrin accumulation defects were fully rescued by infusion of recombinant ERp72 containing functional a and a' CGHC motifs (ERp72(oo-ss-ss)). Infusion of ERp72 containing inactivated a and a' CGHC motifs (ERp72(ss-oo-oo)) inhibited platelet accumulation and fibrin deposition in wild-type mice. Infusion of ERp72(oo-ss-ss) into β3-null mice increased fibrin deposition in the absence of platelets. ERp72-null platelets had defective aggregation, JON/A binding, P-selectin expression, and adenosine triphosphate (ATP) secretion. The aggregation and ATP secretion defects were fully rescued by ERp72(oo-ss-ss) but partially rescued by ERp72(ss-oo-ss) and ERp72(ss-ss-oo). Aggregation and ATP secretion of human platelets was potentiated by ERp72(oo-ss-ss) but inhibited by ERp72(ss-oo-ss) and ERp72(ss-ss-oo). These data suggest that both the a and a' active sites are required for platelet function. ERp72 bound poorly to β3-null mouse platelets, and the addition of ERp72(oo-ss-ss) to human platelets generated thiols in αIIbβ3, suggesting a direct interaction of ERp72 with αIIbβ3. Defective aggregation of ERp72-null platelets was recovered by ERp72, but not other thiol isomerases. In summary, ERp72 plays a critical role in platelet function and coagulation through the a and a' CGHC motifs.
Collapse
|
13
|
Winship AL, Sorby K, Correia J, Rainczuk A, Yap J, Dimitriadis E. Interleukin-11 up-regulates endoplasmic reticulum stress induced target, PDIA4 in human first trimester placenta and in vivo in mice. Placenta 2017; 53:92-100. [PMID: 28487027 DOI: 10.1016/j.placenta.2017.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/06/2017] [Accepted: 04/10/2017] [Indexed: 01/05/2023]
Abstract
Interleukin (IL)11 is a crucial factor for human trophoblast function and placentation. Elevated levels are associated with pregnancy complications including preeclampsia, intrauterine growth restriction (IUGR) and preterm birth. However, the regulation of IL11 in the placenta has not been investigated. We examined the effect of pro-inflammatory cytokines IL1β and TNFα, as well as low oxygen tension (2%) on IL11 levels in first trimester placental villous explants. IL1β upregulated IL11 mRNA and protein, while TNFα and low oxygen had no effect. Using mass spectrometry, we identified protein disulfide isomerase 4 (PDIA4) in IL11-treated first trimester human placental explants (100 ng/ml, 24 h, n = 3), but not PBS control tissues. PDIA4 is a member of the PDI family, also known as endoplasmic reticulum (ER) stress protein (ERP)72. We previously identified GRP78 (a master regulator for ER stress) in human placenta for the first time and demonstrated that IL11 up-regulates GRP78 in the placenta. In this report, we demonstrated that IL11 upregulates PDIA4 protein in human placental villous tissue, HTR8-SVneo trophoblasts (cell line) and in vivo in IL11-treated mouse placenta. We aimed to determine whether IL11 upregulates other ER stress proteins in human first trimester placental villous. IL11 stimulated ERP44, but not GRP94, or PDI. Placental endoplasmic reticulum stress has been postulated in the pathophysiology of preeclampsia and IUGR, but its activation remains elusive. Together, these data suggest that IL11 could trigger an ER stress response in the placenta, which may contribute to obstetric complications such as preeclampsia.
Collapse
Affiliation(s)
- A L Winship
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Medicine, Monash University, Clayton, VIC, Australia
| | - K Sorby
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Medicine, Monash University, Clayton, VIC, Australia
| | - J Correia
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - A Rainczuk
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - J Yap
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - E Dimitriadis
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Medicine, Monash University, Clayton, VIC, Australia; Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
14
|
Perri E, Parakh S, Atkin J. Protein Disulphide Isomerases: emerging roles of PDI and ERp57 in the nervous system and as therapeutic targets for ALS. Expert Opin Ther Targets 2016; 21:37-49. [PMID: 27786579 DOI: 10.1080/14728222.2016.1254197] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION There is increasing evidence that endoplasmic reticulum (ER) chaperones Protein Disulphide Isomerase (PDI) and ERp57 (endoplasmic reticulum protein 57) are protective against neurodegenerative diseases related to protein misfolding, including Amyotrophic Lateral Sclerosis (ALS). PDI and ERp57 also possess disulphide interchange activity, in which protein disulphide bonds are oxidized, reduced and isomerized, to form their native conformation. Recently, missense and intronic variants of PDI and ERp57 were associated with ALS, implying that PDI proteins are relevant to ALS pathology. Areas covered: Here, we discuss possible implications of the PDI and ERp57 variants, as well as recent studies describing previously unrecognized roles for PDI and ERp57 in the nervous system. Therapeutics based on PDI may therefore be attractive candidates for ALS. However, in addition to its protective functions, aberrant, toxic roles for PDI have recently been described. These functions need to be fully characterized before effective therapeutic strategies can be designed. Expert opinion: These disease-associated variants of PDI and ERp57 provide additional evidence for an important role for PDI proteins in ALS. However, there are many questions remaining unanswered that need to be addressed before the potential of the PDI family in relation to ALS can be fully realized.
Collapse
Affiliation(s)
- Emma Perri
- a Department of Biomedical Sciences, Faculty of Medicine and Health Sciences , Macquarie University , Sydney , Australia
| | - Sonam Parakh
- a Department of Biomedical Sciences, Faculty of Medicine and Health Sciences , Macquarie University , Sydney , Australia
| | - Julie Atkin
- a Department of Biomedical Sciences, Faculty of Medicine and Health Sciences , Macquarie University , Sydney , Australia.,b Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science , La Trobe University , Melbourne , Australia
| |
Collapse
|
15
|
Hernández-Castellano LE, Ferreira AM, Nanni P, Grossmann J, Argüello A, Capote J, Cai G, Lippolis J, Castro N, de Almeida AM. The goat (Capra hircus) mammary gland secretory tissue proteome as influenced by weight loss: A study using label free proteomics. J Proteomics 2016; 145:60-69. [DOI: 10.1016/j.jprot.2016.03.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/10/2016] [Accepted: 03/18/2016] [Indexed: 01/02/2023]
|
16
|
Arginine-induced insulin secretion in endoplasmic reticulum. Biochem Biophys Res Commun 2015; 466:717-22. [PMID: 26348775 DOI: 10.1016/j.bbrc.2015.09.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 09/03/2015] [Indexed: 01/31/2023]
Abstract
Arginine, a semi-essential amino acid, is known as one of the most strongest insulin secretagogues in a glucose-dependent manner, but major mechanism is unknown. Arginine induced insulin secretion in mice as well as β cell line, NIT-1, in which more than 90% of intracellular insulin is prionsulin without arginine cultivation. Arginine administration reduced prionsulin amount in 30 s, then insulin is secreted from NIT1 cells. These data indicated that the target factor(s) for arginine-induced insulin secretion located in endoplasmic reticulum (ER). We established the screening system for identifying the arginine mimetics. Brazilian propolis, not Chinese propolis, induced insulin secretion. To identify target factor(s) of arginine induced insulin secretion, our previous study was that nanobeads technology facilitated us to purify chemical-target factors. This time we chose the other way, proinsulin associating factor purification and arginine-immobilized agarose. Three proinsulin associating factors and 5 arginine interacting factors were identified. Among theses factors, Calnexin (CNX) was the only one factor, which belonged to both groups, suggesting that CNX might play a key role in arginine-induced insulin secretion in ER.
Collapse
|
17
|
Nair-Gupta P, Baccarini A, Tung N, Seyffer F, Florey O, Huang Y, Banerjee M, Overholtzer M, Roche PA, Tampé R, Brown BD, Amsen D, Whiteheart SW, Blander JM. TLR signals induce phagosomal MHC-I delivery from the endosomal recycling compartment to allow cross-presentation. Cell 2015; 158:506-21. [PMID: 25083866 DOI: 10.1016/j.cell.2014.04.054] [Citation(s) in RCA: 252] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 01/08/2014] [Accepted: 04/23/2014] [Indexed: 11/16/2022]
Abstract
Adaptation of the endoplasmic reticulum (ER) pathway for MHC class I (MHC-I) presentation in dendritic cells enables cross-presentation of peptides derived from phagocytosed microbes, infected cells, or tumor cells to CD8 T cells. How these peptides intersect with MHC-I molecules remains poorly understood. Here, we show that MHC-I selectively accumulate within phagosomes carrying microbial components, which engage Toll-like receptor (TLR) signaling. Although cross-presentation requires Sec22b-mediated phagosomal recruitment of the peptide loading complex from the ER-Golgi intermediate compartment (ERGIC), this step is independent of TLR signaling and does not deliver MHC-I. Instead, MHC-I are recruited from an endosomal recycling compartment (ERC), which is marked by Rab11a, VAMP3/cellubrevin, and VAMP8/endobrevin and holds large reserves of MHC-I. While Rab11a activity stocks ERC stores with MHC-I, MyD88-dependent TLR signals drive IκB-kinase (IKK)2-mediated phosphorylation of phagosome-associated SNAP23. Phospho-SNAP23 stabilizes SNARE complexes orchestrating ERC-phagosome fusion, enrichment of phagosomes with ERC-derived MHC-I, and subsequent cross-presentation during infection.
Collapse
Affiliation(s)
- Priyanka Nair-Gupta
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alessia Baccarini
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Navpreet Tung
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Fabian Seyffer
- Institute of Biochemistry, Biocenter, Cluster of Excellence-Macromolecular Complexes, Goethe-University Frankfurt, Max-von-Laue Strasse 9, 60438 Frankfurt am Main, Germany
| | - Oliver Florey
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yunjie Huang
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Meenakshi Banerjee
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Michael Overholtzer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Paul A Roche
- Experimental Cell Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Cluster of Excellence-Macromolecular Complexes, Goethe-University Frankfurt, Max-von-Laue Strasse 9, 60438 Frankfurt am Main, Germany
| | - Brian D Brown
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Derk Amsen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Plesmanlaan 125, 1066CX Amsterdam, the Netherlands
| | - Sidney W Whiteheart
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - J Magarian Blander
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
18
|
Zhu J, Chen M, Chen N, Ma A, Zhu C, Zhao R, Jiang M, Zhou J, Ye L, Fu H, Zhang X. Glycyrrhetinic acid induces G1‑phase cell cycle arrest in human non‑small cell lung cancer cells through endoplasmic reticulum stress pathway. Int J Oncol 2015; 46:981-8. [PMID: 25573651 PMCID: PMC4324580 DOI: 10.3892/ijo.2015.2819] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 11/20/2014] [Indexed: 12/13/2022] Open
Abstract
Glycyrrhetinic acid (GA) is a natural compound extracted from liquorice, which is often used in traditional Chinese medicine. The purpose of the present study was to investigate the antitumor effect of GA in human non-small cell lung cancer (NSCLC), and its underlying mechanisms in vitro. We have shown that GA suppressed the proliferation of A549 and NCI-H460 cells. Flow cytometric analysis showed that GA arrested cell cycle in G0/G1 phase without inducing apoptosis. Western blot analysis indicated that GA mediated G1-phase cell cycle arrest by upregulation of cyclin-dependent kinase inhibitors (CKIs) (p18, p16, p27 and p21) and inhibition of cyclins (cyclin-D1, -D3 and -E) and cyclin-dependent kinases (CDKs) (CDK4, 6 and 2). GA also maintained pRb phosphorylation status, and inhibited E2F transcription factor 1 (E2F-1) in both cell lines. GA upregulated the unfolded proteins, Bip, PERK and ERP72. Accumulation of unfolded proteins in the endoplasmic reticulum (ER) triggered the unfolded protein response (UPR), which could be the mechanism by which GA inhibited cell proliferation in NSCLC cells. GA then coordinated the induction of ER chaperones, which decreased protein synthesis and induced cell cycle arrest in the G1 phase. This study provides experimental evidence to support the development of GA as a chemotherapeutic agent for NSCLC.
Collapse
Affiliation(s)
- Jie Zhu
- The First Clinical Medicine College, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Meijuan Chen
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Ning Chen
- The First Clinical Medicine College, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Aizhen Ma
- The First Clinical Medicine College, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Chunyan Zhu
- The First Clinical Medicine College, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Ruolin Zhao
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Miao Jiang
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Jing Zhou
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Lihong Ye
- The First Clinical Medicine College, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Haian Fu
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xu Zhang
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| |
Collapse
|
19
|
Arrojo E Drigo R, Egri P, Jo S, Gereben B, Bianco AC. The type II deiodinase is retrotranslocated to the cytoplasm and proteasomes via p97/Atx3 complex. Mol Endocrinol 2013; 27:2105-15. [PMID: 24196352 DOI: 10.1210/me.2013-1281] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The type II iodothyronine deiodinase (D2) is a type I endoplasmic reticulum (ER)-resident thioredoxin fold-containing selenoprotein that activates thyroid hormone. D2 is inactivated by ER-associated ubiquitination and can be reactivated by two ubiquitin-specific peptidase-class D2-interacting deubiquitinases (DUBs). Here, we used D2-expressing cell models to define that D2 ubiquitination (UbD2) occurs via K48-linked ubiquitin chains and that exposure to its natural substrate, T4, accelerates UbD2 formation and retrotranslocation to the cytoplasm via interaction with the p97-ATPase complex. D2 retrotranslocation also includes deubiquitination by the p97-associated DUB Ataxin-3 (Atx3). Inhibiting Atx3 with eeyarestatin-I did not affect D2:p97 binding but decreased UbD2 retrotranslocation and caused ER accumulation of high-molecular weight UbD2 bands possibly by interfering with the D2-ubiquitin-specific peptidases binding. Once in the cytosol, D2 is delivered to the proteasomes as evidenced by coprecipitation with 19S proteasome subunit S5a and increased colocalization with the 20S proteasome. We conclude that interaction between UbD2 and p97/Atx3 mediates retranslocation of UbD2 to the cytoplasm for terminal degradation in the proteasomes, a pathway that is accelerated by exposure to T4.
Collapse
|
20
|
Chaperone and foldase coexpression in the baculovirus-insect cell expression system. Cytotechnology 2012; 20:149-59. [PMID: 22358480 DOI: 10.1007/bf00350396] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
CONCLUSIONS The BEVS has become widely utilized for production of recombinant proteins. However, protein aggregation and inefficient processing often limit yields, especially for secreted and membrane proteins. Since many proteins of pharmaceutical interest require similar posttranslational processing steps, engineering the folding, assembly, and secretion pathway may enhance the production of a wide variety of valuable complex proteins. Efforts should be undertaken to coexpress the relevant chaperones or foldases at low levels in concert with the final product to ensure the ideal folding and assembly environment. In the future, expression of oligosaccharide modifying enzymes and secretion factors may further improve secretion rates of assembled proteins and provide heterologous proteins with altered glycoforms. Also significant is the use of BEVS as an in vivo eucaryotic laboratory to study the fundamental roles of differnt chaperones, foldases, and secretion factors. The coexpression of chaperones and foldases will complement other approaches such as the development of alternative insect cell lines, promoters, and signal peptides to optimize the baculovirus-insect cell expression system for generating high yields of valuable proteins.
Collapse
|
21
|
Galligan JJ, Petersen DR. The human protein disulfide isomerase gene family. Hum Genomics 2012; 6:6. [PMID: 23245351 PMCID: PMC3500226 DOI: 10.1186/1479-7364-6-6] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 05/14/2012] [Indexed: 01/27/2023] Open
Abstract
Enzyme-mediated disulfide bond formation is a highly conserved process affecting over one-third of all eukaryotic proteins. The enzymes primarily responsible for facilitating thiol-disulfide exchange are members of an expanding family of proteins known as protein disulfide isomerases (PDIs). These proteins are part of a larger superfamily of proteins known as the thioredoxin protein family (TRX). As members of the PDI family of proteins, all proteins contain a TRX-like structural domain and are predominantly expressed in the endoplasmic reticulum. Subcellular localization and the presence of a TRX domain, however, comprise the short list of distinguishing features required for gene family classification. To date, the PDI gene family contains 21 members, varying in domain composition, molecular weight, tissue expression, and cellular processing. Given their vital role in protein-folding, loss of PDI activity has been associated with the pathogenesis of numerous disease states, most commonly related to the unfolded protein response (UPR). Over the past decade, UPR has become a very attractive therapeutic target for multiple pathologies including Alzheimer disease, Parkinson disease, alcoholic and non-alcoholic liver disease, and type-2 diabetes. Understanding the mechanisms of protein-folding, specifically thiol-disulfide exchange, may lead to development of a novel class of therapeutics that would help alleviate a wide range of diseases by targeting the UPR.
Collapse
Affiliation(s)
- James J Galligan
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | |
Collapse
|
22
|
Fernandes MM, Cavaco-Paulo A. Protein disulphide isomerase-assisted functionalization of proteinaceous substrates. BIOCATAL BIOTRANSFOR 2012. [DOI: 10.3109/10242422.2012.646657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Sadighi Akha AA, Harper JM, Salmon AB, Schroeder BA, Tyra HM, Rutkowski DT, Miller RA. Heightened induction of proapoptotic signals in response to endoplasmic reticulum stress in primary fibroblasts from a mouse model of longevity. J Biol Chem 2011; 286:30344-30351. [PMID: 21757703 DOI: 10.1074/jbc.m111.220541] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Previous work from our laboratory has shown that primary fibroblasts from long-lived Snell dwarf mice display a higher sensitivity to the lethal effects of endoplasmic reticulum (ER) stressors, such as thapsigargin, than cells from normal mice. Here we show that thapsigargin induces higher expression of CHOP, enhanced cleavage of caspase-12, higher caspase-3 activity, and increased phosphorylation of c-JUN, all indicators of enhanced apoptosis, in dwarf fibroblasts. Dwarf and normal fibroblasts show no genotypic difference in up-regulating BiP, GRP94, and ERp72 proteins after exposure to thapsigargin. However, dwarf fibroblasts express lower basal levels of a number of putative XBP1 target genes including Armet, Edem1, Erdj3, p58(IPK) and Sec61a1, as well as Ire1α itself. Furthermore, when exposed to thapsigargin, dwarf fibroblasts display attenuated splicing of Xbp1, but similar phosphorylation of eIF2α, in comparison to normal fibroblasts. These data support the notion that IRE1/XBP1 signaling is set at a lower level in dwarf fibroblasts. Diminished Xbp1 splicing in dwarf-derived fibroblasts may tilt the balance between prosurvival and proapoptotic signals in favor of apoptosis, thereby leading to higher induction of proapoptotic signals in these cells and ultimately their increased sensitivity to ER stressors. These results, together with recent findings in Caenorhabditis elegans daf-2 mutants, point to a potential interplay between insulin/IGF-1 signals and unfolded protein response signaling.
Collapse
Affiliation(s)
- Amir A Sadighi Akha
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109.
| | - James M Harper
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Adam B Salmon
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Bethany A Schroeder
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Heather M Tyra
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - D Thomas Rutkowski
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Richard A Miller
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109; Geriatrics Center, University of Michigan Medical School, Ann Arbor, Michigan 48109; Ann Arbor Veterans Affairs Medical Center, Ann Arbor, Michigan 48105
| |
Collapse
|
24
|
CrossWork: software-assisted identification of cross-linked peptides. J Proteomics 2011; 74:1871-83. [PMID: 21600323 DOI: 10.1016/j.jprot.2011.04.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 04/19/2011] [Accepted: 04/22/2011] [Indexed: 11/23/2022]
Abstract
The increased interest in chemical cross-linking for probing protein structure and interaction has led to a large increase in literature describing new cross-linkers and search programs. However, this has not led to a corresponding increase in the analysis of large and complex proteins. A major obstacle is that the new cross-linkers are either not readily available and/or have a low reactivity. In combination with aging search programs that are slow and have low sensitivity, or new search programs that are described but not released, these efforts do little to advance the field of cross-linking. Here we present a method pipeline for chemical cross-linking, using two standard cross-linkers, BS3 and BS2G, combined with our freely available CrossWork search program. By this approach we generate cross-link data sufficient to derive structural information for large and complex proteins. CrossWork searches batches of tandem mass-spectrometric data, and identifies cross-linked and non-cross-linked peptides using a standard PC. We tested CrossWork by searching mass-spectrometric datasets of cross-linked complement factor C3 against small (1 protein) and large (1000 proteins) search spaces, and show that the resulting distance constraints agree with the established structures. We further investigated the structure of the multi-domain ERp72, and combined the individual domains of ERp72 into a single structure.
Collapse
|
25
|
Participation of lectin chaperones and thiol oxidoreductases in protein folding within the endoplasmic reticulum. Curr Opin Cell Biol 2010; 23:157-66. [PMID: 21094034 DOI: 10.1016/j.ceb.2010.10.011] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 10/05/2010] [Accepted: 10/21/2010] [Indexed: 01/21/2023]
Abstract
Protein folding within the endoplasmic reticulum occurs in conjunction with a complex array of molecular chaperones and folding catalysts that assist the folding process as well as function in quality control processes to monitor the outcome. In this review, we summarize recent advances in the calnexin/calreticulin chaperone system that is directed primarily toward Asn-linked glycoproteins, as well as the protein disulfide isomerase family of enzymes that catalyze disulfide formation, reduction, and isomerization. We highlight issues related to function and substrate specificity as well as the functional interplay between the two systems.
Collapse
|
26
|
Pedone E, Limauro D, D’Ambrosio K, De Simone G, Bartolucci S. Multiple catalytically active thioredoxin folds: a winning strategy for many functions. Cell Mol Life Sci 2010; 67:3797-814. [PMID: 20625793 PMCID: PMC11115506 DOI: 10.1007/s00018-010-0449-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 06/23/2010] [Accepted: 06/28/2010] [Indexed: 10/19/2022]
Abstract
The Thioredoxin (Trx) fold is a versatile protein scaffold consisting of a four-stranded β-sheet surrounded by three α-helices. Various insertions are possible on this structural theme originating different proteins, which show a variety of functions and specificities. During evolution, the assembly of different Trx fold domains has been used many times to build new multi-domain proteins able to perform a large number of catalytic functions. To clarify the interaction mode of the different Trx domains within a multi-domain structure and how their combination can affect catalytic performances, in this review, we report on a structural and functional analysis of the most representative proteins containing more than one catalytically active Trx domain: the eukaryotic protein disulfide isomerases (PDIs), the thermophilic protein disulfide oxidoreductases (PDOs) and the hybrid peroxiredoxins (Prxs).
Collapse
Affiliation(s)
- Emilia Pedone
- Istituto di Biostrutture e Bioimmagini-CNR, via Mezzocannone 16, 80134 Naples, Italy
| | - Danila Limauro
- Dipartimento di Biologia Strutturale e Funzionale, Università degli Studi di Napoli “Federico II”, Complesso Universitario Monte S. Angelo, Via Cinthia, 80126 Naples, Italy
| | - Katia D’Ambrosio
- Istituto di Biostrutture e Bioimmagini-CNR, via Mezzocannone 16, 80134 Naples, Italy
| | - Giuseppina De Simone
- Istituto di Biostrutture e Bioimmagini-CNR, via Mezzocannone 16, 80134 Naples, Italy
| | - Simonetta Bartolucci
- Dipartimento di Biologia Strutturale e Funzionale, Università degli Studi di Napoli “Federico II”, Complesso Universitario Monte S. Angelo, Via Cinthia, 80126 Naples, Italy
| |
Collapse
|
27
|
Structure of the Catalytic a0a Fragment of the Protein Disulfide Isomerase ERp72. J Mol Biol 2010; 401:618-25. [DOI: 10.1016/j.jmb.2010.06.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 06/19/2010] [Accepted: 06/22/2010] [Indexed: 11/21/2022]
|
28
|
Rutkevich LA, Cohen-Doyle MF, Brockmeier U, Williams DB. Functional relationship between protein disulfide isomerase family members during the oxidative folding of human secretory proteins. Mol Biol Cell 2010; 21:3093-105. [PMID: 20660153 PMCID: PMC2938376 DOI: 10.1091/mbc.e10-04-0356] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
To examine the relationship between protein disulfide isomerase family members within the mammalian endoplasmic reticulum, PDI, ERp57, ERp72, and P5 were depleted with high efficiency in human hepatoma cells, either singly or in combination. The impact was assessed on the oxidative folding of several well-characterized secretory proteins. We show that PDI plays a predominant role in oxidative folding because its depletion delayed disulfide formation in all secretory proteins tested. However, the phenotype was surprisingly modest suggesting that other family members are able to compensate for PDI depletion, albeit with reduced efficacy. ERp57 also exhibited broad specificity, overlapping with that of PDI, but with preference for glycosylated substrates. Depletion of both PDI and ERp57 revealed that some substrates require both enzymes for optimal folding and, furthermore, led to generalized protein misfolding, impaired export from the ER, and degradation. In contrast, depletion of ERp72 or P5, either alone or in combination with PDI or ERp57 had minimal impact, revealing a narrow substrate specificity for ERp72 and no detectable role for P5 in oxidative protein folding.
Collapse
Affiliation(s)
- Lori A Rutkevich
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | | | | | | |
Collapse
|
29
|
Abstract
Yip1A depletion leads to reorganization of the ER into stacked and concentrically whorled membranes as well as a slowing of cargo export. The network dispersal function of Yip1A depends on a conserved residue. Thus, a conserved Yip1A-mediated ER network dispersal mechanism may regulate the protein export function of the organelle. The structure of the endoplasmic reticulum (ER) undergoes highly regulated changes in specialized cell types. One frequently observed type of change is its reorganization into stacked and concentrically whorled membranes, but the underlying mechanisms and functional relevance for cargo export are unknown. Here, we identify Yip1A, a conserved membrane protein that cycles between the ER and early Golgi, as a key mediator of ER organization. Yip1A depletion led to restructuring of the network into multiple, micrometer-sized concentric whorls. Membrane stacking and whorl formation coincided with a marked slowing of coat protein (COP)II-mediated protein export. Furthermore, whorl formation driven by exogenous expression of an ER protein with no role in COPII function also delayed cargo export. Thus, the slowing of protein export induced by Yip1A depletion may be attributed to a proximal role for Yip1A in regulating ER network dispersal. The ER network dispersal function of Yip1A was blocked by alteration of a single conserved amino acid (E95K) in its N-terminal cytoplasmic domain. These results reveal a conserved Yip1A-mediated mechanism for ER membrane organization that may serve to regulate cargo exit from the organelle.
Collapse
Affiliation(s)
- Kaitlyn M Dykstra
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
30
|
Okada K, Hashimoto S, Imaoka S. Biological Functions of Protein Disulfide Isomerase as a Target of Phenolic Endocrine-disrupting Chemicals. ACTA ACUST UNITED AC 2010. [DOI: 10.1248/jhs.56.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kazushi Okada
- Nanobiotechnology Research Center and Department of Bioscience, School of Science and Technology, Kwansei Gakuin University
| | - Shoko Hashimoto
- Nanobiotechnology Research Center and Department of Bioscience, School of Science and Technology, Kwansei Gakuin University
| | - Susumu Imaoka
- Nanobiotechnology Research Center and Department of Bioscience, School of Science and Technology, Kwansei Gakuin University
| |
Collapse
|
31
|
Hatahet F, Ruddock LW. Protein disulfide isomerase: a critical evaluation of its function in disulfide bond formation. Antioxid Redox Signal 2009; 11:2807-50. [PMID: 19476414 DOI: 10.1089/ars.2009.2466] [Citation(s) in RCA: 514] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Disulfide bond formation is probably involved in the biogenesis of approximately one third of human proteins. A central player in this essential process is protein disulfide isomerase or PDI. PDI was the first protein-folding catalyst reported. However, despite more than four decades of study, we still do not understand much about its physiological mechanisms of action. This review examines the published literature with a critical eye. This review aims to (a) provide background on the chemistry of disulfide bond formation and rearrangement, including the concept of reduction potential, before examining the structure of PDI; (b) detail the thiol-disulfide exchange reactions that are catalyzed by PDI in vitro, including a critical examination of the assays used to determine them; (c) examine oxidation and reduction of PDI in vivo, including not only the role of ERo1 but also an extensive assessment of the role of glutathione, as well as other systems, such as peroxide, dehydroascorbate, and a discussion of vitamin K-based systems; (d) consider the in vivo reactions of PDI and the determination and implications of the redox state of PDI in vivo; and (e) discuss other human and yeast PDI-family members.
Collapse
Affiliation(s)
- Feras Hatahet
- Department of Biochemistry, University of Oulu , Oulu, Finland
| | | |
Collapse
|
32
|
Desai BS, Shirolikar S, Ray K. F-actin-based extensions of the head cyst cell adhere to the maturing spermatids to maintain them in a tight bundle and prevent their premature release in Drosophila testis. BMC Biol 2009; 7:19. [PMID: 19416498 PMCID: PMC2683793 DOI: 10.1186/1741-7007-7-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 05/05/2009] [Indexed: 11/15/2022] Open
Abstract
Background In Drosophila, all the 64 clonally derived spermatocytes differentiate in syncytium inside two somatic-origin cyst cells. They elongate to form slender spermatids, which are individualized and then released into the seminal vesicle. During individualization, differentiating spermatids are organized in a tight bundle inside the cyst, which is expected to play an important role in sperm selection. However, actual significance of this process and its underlying mechanism are unclear. Results We show that dynamic F-actin-based processes extend from the head cyst cell at the start of individualization, filling the interstitial space at the rostral ends of the maturing spermatid bundle. In addition to actin, these structures contained lamin, beta-catenin, dynamin, myosin VI and several other filopodial components. Further, pharmacological and genetic analyses showed that cytoskeletal stability and dynamin function are essential for their maintenance. Disruption of these F-actin based processes was associated with spermatid bundle disassembly and premature sperm release inside the testis. Conclusion Altogether, our data suggests that the head cyst cell adheres to the maturing spermatid heads through F-actin-based extensions, thus maintaining them in a tight bundle. This is likely to regulate mature sperm release into the seminal vesicle. Overall, this process bears resemblance to mammalian spermiation.
Collapse
Affiliation(s)
- Bela S Desai
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, India.
| | | | | |
Collapse
|
33
|
Interaction of human protein disulfide isomerase and human P5 with drug compounds: Analysis using biosensor technology. Process Biochem 2008. [DOI: 10.1016/j.procbio.2008.07.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
A possible biochemical link between NADPH oxidase (Nox) 1 redox-signalling and ERp72. Biochem J 2008; 416:55-63. [PMID: 18620548 DOI: 10.1042/bj20071259] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Emerging evidence indicates that Nox (NADPH oxidase) 1-generated ROS (reactive oxygen species) play critical regulatory roles in various cellular processes, yet little is known of direct targets for the oxidase. In the present study we show that one of the proteins selectively oxidized in response to Nox1-generated ROS was ERp72 (endoplasmic reticulum protein 72 kDa) with TRX (thioredoxin) homology domains. Oxidation of ERp72 by Nox1 resulted in an inhibition of its reductase activity. EGF treatment of cells stimulated the Nox1 activity and the activated Nox1 subsequently mediated EGF-induced suppression of the ERp72 reductase activity. Co-immunoprecipitation, GST (glutathione transferase) pulldown assays and mutational analysis, indicated that Nox1 associates with ERp72, which involves its N-terminus encompassing a Ca(2+)-binding site and the first TRX-like motif. Furthermore, confocal microscopy showed co-localization between Nox1 and ERp72 at the plasma membrane. These results suggest that Nox1 functionally associates with ERp72, regulating redox-sensitive signalling pathways in a cellular context.
Collapse
|
35
|
McCoy J, Lavallie E. Expression and purification of thioredoxin fusion proteins. ACTA ACUST UNITED AC 2008; Chapter 16:Unit16.8. [PMID: 18265135 DOI: 10.1002/0471142727.mb1608s28] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This unit describes a gene fusion expression system that uses thioredoxin, the product of the Escherichia coli trxA gene, as the fusion partner. The system is particularly useful for high-level production of soluble fusion proteins in the E. coli cytoplasm; in many cases heterologous proteins produced as thioredoxin fusion proteins are correctly folded and display full biological activity. Protein fusions to His-patch Trx can usually be purified in a single step from cell lysates. Additional protocols describe E. coli cell lysis using a French pressure cell and fractionation, osmotic release of thioredoxin fusion proteins from the E. coli cytoplasm, and heat treatment to purify some thioredoxin fusion proteins.
Collapse
Affiliation(s)
- J McCoy
- Genetics Institute, Cambridge, Massachusetts, USA
| | | |
Collapse
|
36
|
Leighton MP, Nundlall S, Starborg T, Meadows RS, Suleman F, Knowles L, Wagener R, Thornton DJ, Kadler KE, Boot-Handford RP, Briggs MD. Decreased chondrocyte proliferation and dysregulated apoptosis in the cartilage growth plate are key features of a murine model of epiphyseal dysplasia caused by a matn3 mutation. Hum Mol Genet 2007; 16:1728-41. [PMID: 17517694 PMCID: PMC2674230 DOI: 10.1093/hmg/ddm121] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Disruption to endochondral ossification leads to delayed and irregular bone formation and can result in a heterogeneous group of genetic disorders known as the chondrodysplasias. One such disorder, multiple epiphyseal dysplasia (MED), is characterized by mild dwarfism and early-onset osteoarthritis and can result from mutations in the gene encoding matrilin-3 (MATN3). To determine the disease mechanisms that underpin the pathophysiology of MED we generated a murine model of epiphyseal dysplasia by knocking-in a matn3 mutation. Mice that are homozygous for the mutation develop a progressive dysplasia and have short-limbed dwarfism that is consistent in severity with the relevant human phenotype. Mutant matrilin-3 is retained within the rough endoplasmic reticulum of chondrocytes and is associated with an unfolded protein response. Eventually, there is reduced proliferation and spatially dysregulated apoptosis of chondrocytes in the cartilage growth plate, which is likely to be the cause of disrupted linear bone growth and the resulting short-limbed dwarfism in the mutant mice.
Collapse
Affiliation(s)
- Matthew P. Leighton
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Seema Nundlall
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Tobias Starborg
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Roger S. Meadows
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Farhana Suleman
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Lynette Knowles
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | | | - David J. Thornton
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Karl E. Kadler
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Raymond P. Boot-Handford
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Michael D. Briggs
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
- To whom correspondence should be addressed. Tel: +44 1612755642; Fax: +44 1612755082;
| |
Collapse
|
37
|
Chich JF, Schaeffer B, Bouin AP, Mouthon F, Labas V, Larramendy C, Deslys JP, Grosclaude J. Prion infection-impaired functional blocks identified by proteomics enlighten the targets and the curing pathways of an anti-prion drug. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1774:154-67. [PMID: 17174161 DOI: 10.1016/j.bbapap.2006.10.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Revised: 10/30/2006] [Accepted: 10/31/2006] [Indexed: 02/06/2023]
Abstract
Prion-induced neurodegeneration results from multiple cellular alterations among which the accumulation of a modified form of the host protein PrP is but a hallmark. Drug treatments need understanding of underlying mechanisms. Proteomics allows getting a comprehensive view of perturbations leading to neuronal death. Heparan sulfate mimetics has proved to be efficient to clear scrapie protein in cultured cells and in animals. To investigate the mechanisms of drug attack, protein profiles of the neuronal cell line GT1 and its chronically Chandler strain infected counterpart were compared, either in steady state cultures or after a 4-day drug treatment. Differentially expressed proteins were associated into functional blocks relevant to neurodegenerative diseases. Protein structure repair and modification, proteolysis, cell shape and energy/oxidation players were affected by infection, in agreement with prion biology. Unexpectedly, novel affected blocks related to translation, nucleus structure and DNA replication were unravelled displaying commonalities with proliferative processes. The drug had a double action in infected cells by reversing protein levels back to normal in some blocks and by heightening survival functions in others. This study emphasizes the interest of a proteomic approach to unravel novel networks involved in prion infection and curing.
Collapse
Affiliation(s)
- J-F Chich
- Biologie Physico-Chimique des Prions, Virologie et Immunologie Moléculaires, INRA, 78352 Jouy-en-Josas Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Fleck MW. Glutamate receptors and endoplasmic reticulum quality control: looking beneath the surface. Neuroscientist 2006; 12:232-44. [PMID: 16684968 DOI: 10.1177/1073858405283828] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Glutamate is the principal excitatory neurotransmitter in the mammalian central nervous system. The cellular regulation of glutamate receptor (GluR) ion channel function and expression is important for maintaining or adjusting target cell excitability to meet ever-changing demands, for example, in relation to developmental or use-dependent synaptic plasticity. Dysregulation of GluR function or expression may be a contributing factor in certain forms of epilepsy, stroke/ischemia, head trauma, cognitive impairments, and neurodegenerative disease. Recent years have seen substantial progress in understanding how GluRs operate in terms of their structural and functional properties, their synaptic targeting and membrane anchoring by PDZ-domain proteins, and their activity-dependent cycling at the plasma membrane. Yet precious little is known about the earliest events in GluR biogenesis or the mechanisms in place to ensure the GluRs that reach the cell surface are processed, folded, and oligomerized in an appropriate manner. Indeed, only a minor fraction of the GluR content of cells is expressed at any given time on the cell surface, whereas most of the remaining receptors exist in the endoplasmic reticulum (ER). The functional competence and significance of the ER fraction of receptors are presently unknown, but they are generally thought to represent immature, unassembled, or improperly assembled subunits. Some are ultimately destined for insertion in the plasma membrane. Others may be targeted for proteosomal degradation. Still others might provide a latent pool of fully functional receptors that can be recruited to enhance cell excitability in response to specific signals or under pathological conditions. This review will explore the structural and functional elements that regulate GluR assembly and export from the ER.
Collapse
Affiliation(s)
- Mark W Fleck
- Center for Neuropharmacology & Neuroscience, Albany Medical College, NY 12208, USA.
| |
Collapse
|
39
|
Cotterill SL, Jackson GC, Leighton MP, Wagener R, Mäkitie O, Cole WG, Briggs MD. Multiple epiphyseal dysplasia mutations in MATN3 cause misfolding of the A-domain and prevent secretion of mutant matrilin-3. Hum Mutat 2006; 26:557-65. [PMID: 16287128 PMCID: PMC2726956 DOI: 10.1002/humu.20263] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Multiple epiphyseal dysplasia (MED) is a relatively common skeletal dysplasia that can present in childhood with a variable phenotype of short stature and pain and stiffness in the large joints, and often progresses to early-onset osteoarthritis in adulthood. Mutations in the matrilin-3 gene (MATN3) have recently been shown to underlie some forms of autosomal dominant MED. To date all MED mutations in matrilin-3 cluster in the single A-domain, suggesting that they may disrupt the structure and/or function of this important domain. To determine the effects of MATN3 mutations on the structure and function of matrilin-3 we expressed both normal and mutant matrilin-3 in mammalian cells. Wild-type (wt) matrilin-3 was efficiently secreted into conditioned medium, whereas mutant matrilin-3 was retained and accumulated within the cell. Furthermore, when the mutant A-domains were examined individually, they existed primarily in an unfolded conformation. Co-immunoprecipitation experiments demonstrated that the mutant A-domains were specifically associated with ERp72, a chaperone protein known to be involved in mediating disulfide bond formation. Light microscopy of cartilage from an MED patient with a MATN3 mutation showed the presence of intracellular material within the chondrocytes, whilst the overall matrix appeared normal. On electron micrographs, the inclusions noted at the light microscopy level appeared to be dilated cisternae of rough endoplasmic reticulum and immunohistochemical analysis confirmed that the retained protein was matrilin-3. In summary, the data presented in this paper suggest that MED caused by MATN3 mutations is the result of an intracellular retention of the mutant protein.
Collapse
Affiliation(s)
- Sally L Cotterill
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of ManchesterManchester, United Kingdom
| | - Gail C Jackson
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of ManchesterManchester, United Kingdom
| | - Matthew P Leighton
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of ManchesterManchester, United Kingdom
| | - Raimund Wagener
- Center for Biochemistry, University of CologneCologne, Germany
| | - Outi Mäkitie
- Hospital for Children and Adolescents, University of HelsinkiHelsinki, Finland
| | | | - Michael D Briggs
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of ManchesterManchester, United Kingdom
- *Correspondence to: Michael D. Briggs, Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom. E-mail:
| |
Collapse
|
40
|
Nissom PM, Lo SL, Lo JCY, Ong PF, Lim JWE, Ou K, Liang RC, Seow TK, Chung MCM. Hcc-2, a novel mammalian ER thioredoxin that is differentially expressed in hepatocellular carcinoma. FEBS Lett 2006; 580:2216-26. [PMID: 16574106 DOI: 10.1016/j.febslet.2006.03.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2005] [Revised: 02/22/2006] [Accepted: 03/08/2006] [Indexed: 12/11/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary cancer of the liver. Thus there is great interest to identify novel HCC diagnostic markers for early detection of the disease and tumour specific associated proteins as potential therapeutic targets in the treatment of HCC. Currently, we are screening for early biomarkers as well as studying the development of HCC by identifying the differentially expressed proteins of HCC tissues during different stages of disease progression. We have isolated, by reverse transcriptase and polymerase chain reaction (RT-PCR), a 1741bp cDNA encoding a protein that is differentially expressed in HCC. This novel protein was initially identified by proteome analysis and we designate it as Hcc-2. The protein is upregulated in poorly-differentiated HCC but unchanged in well-differentiated HCC. The full-length transcript encodes a protein of 363 amino acids that has three thioredoxin (Trx) (CGHC) domains and an ER retention signal motif (KDEL). Fluorescence GFP tagging to this protein confirmed that it is localized predominantly to the cytoplasm when expressed in mammalian cells. Protein alignment analysis shows that it is a variant of the TXNDC5 gene, and the human variants found in Genbank all show close similarity in protein sequence. Functionally, it exhibits the anticipated reductase activity in the insulin disulfide reduction assay, but its other biological role in cell function remains to be elucidated. This work demonstrates that an integrated proteomics and genomics approach can be a very powerful means of discovering potential diagnostic and therapeutic protein targets for cancer therapy.
Collapse
Affiliation(s)
- Peter Morin Nissom
- Bioprocessing Technology Institute, #06-01, Centros, 20 Biopolis Way, Singapore 138668, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
An emerging concept is that disulfide bonds can act as a dynamic scaffold to present mature proteins in different conformational and functional states on the cell surface. Two examples are the conversion of the receptor, integrin alphaIIbbeta3, from a low affinity to a high affinity state, and the interaction of CD4 receptor with the HIV-1 envelope glycoprotein gp120 to promote virus-cell fusion. In both of these cases there is a remodeling of the protein disulfide bonding pattern. The formation and rearrangement of disulfide bonds is modulated by a family of enzymes known as the thiol isomerases, which include protein disulfide isomerase (PDI), ERp5, ERp57, and ERp72. While these enzymes were reported originally to be restricted in location to the endoplasmic reticulum, in some cells thiol isomerases are found on the cell surface. This may indicate a wider role for these enzymes in cell function. In platelets it has been shown that reagents that react with cell surface sulfhydryl groups are capable of blocking a number of functional responses, including integrin-mediated aggregation, adhesion, and granule secretion. Furthermore, the use of function blocking antibodies to either PDI or ERp5 causes inhibition of these functional responses. This review summarizes current knowledge of the extracellular regulation of disulfide exchange and the implications of this in the regulation of cell function.
Collapse
Affiliation(s)
- Peter A Jordan
- School of Animal and Microbial Sciences, University of Reading, Whiteknights, Reading, United Kingdom
| | | |
Collapse
|
42
|
van Anken E, Braakman I. Versatility of the endoplasmic reticulum protein folding factory. Crit Rev Biochem Mol Biol 2005; 40:191-228. [PMID: 16126486 DOI: 10.1080/10409230591008161] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The endoplasmic reticulum (ER) is dedicated to import, folding and assembly of all proteins that travel along or reside in the secretory pathway of eukaryotic cells. Folding in the ER is special. For instance, newly synthesized proteins are N-glycosylated and by default form disulfide bonds in the ER, but not elsewhere in the cell. In this review, we discuss which features distinguish the ER as an efficient folding factory, how the ER monitors its output and how it disposes of folding failures.
Collapse
Affiliation(s)
- Eelco van Anken
- Department of Cellular Protein Chemistry, Bijvoet Center, Utrecht University, The Netherlands
| | | |
Collapse
|
43
|
Satoh M, Shimada A, Kashiwai A, Saga S, Hosokawa M. Differential cooperative enzymatic activities of protein disulfide isomerase family in protein folding. Cell Stress Chaperones 2005; 10:211-20. [PMID: 16184766 PMCID: PMC1226019 DOI: 10.1379/csc-109r.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Endoplasmic reticulum (ER)p61, ERp72, and protein disulfide isomerase (PDI), which are members of the PDI family protein, are ubiquitously present in mammalian cells and are thought to participate in disulfide bond formation and isomerization. However, why the 3 different members need to be colocalized in the ER remains an enigma. We hypothesized that each PDI family protein might have different modes of enzymatic activity in disulfide bond formation and isomerization. We purified PDI, ERp61, and ERp72 proteins from rat liver microsomes and compared the effects of each protein on the folding of bovine pancreatic trypsin inhibitor (BPTI). ERp61 and ERp72 accelerated the initial steps more efficiently than did PDI. ERp61 and ERp72, however, accelerated the rate-limiting step less efficiently than did PDI. PDI or ERp72 did not impede the folding of BPTI by each other but rather catalyzed the folding reaction cooperatively with each other. These data suggest that differential enzymatic activities of ERp proteins and PDI represent a complementary contribution of these enzymes to protein folding in the ER.
Collapse
Affiliation(s)
- Mamoru Satoh
- Department of Pathology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Aichi 480-0392, Japan
| | | | | | | | | |
Collapse
|
44
|
Smith AM, Chan J, Oksenberg D, Urfer R, Wexler DS, Ow A, Gao L, McAlorum A, Huang SG. A high-throughput turbidometric assay for screening inhibitors of protein disulfide isomerase activity. ACTA ACUST UNITED AC 2005; 9:614-20. [PMID: 15475481 DOI: 10.1177/1087057104265292] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Protein disulfide isomerase (PDI) plays a key role in protein folding by catalyzing rearrangements of disulfide bonds in substrate proteins following their synthesis in eukaryotic cells. Besides its major role in the processing and maturation of secretory proteins in the endoplasmic reticulum, this enzyme and its homologs have been implicated in multiple important cellular processes; however, they have not served as targets for the development of therapeutic agents. The authors developed a high-throughput screening assay for PDI and its homologous enzymes in 384-well microplates. The method is based on the enzyme-catalyzed reduction of insulin in the presence of dithiothreitol and measures the aggregation of reduced insulin chains at 650 nm. This kinetic assay was converted to an end-point assay by using hydrogen peroxide as a stop reagent. The feasibility of this high-throughput assay for screening chemical libraries was demonstrated in a pilot screen. The authors show that this homogenous turbidometric assay is robust and cost-effective and can be applied to identify PDI inhibitors from chemical libraries, opening this class of enzymes for therapeutic exploration.
Collapse
Affiliation(s)
- Anthony M Smith
- Lead Discovery Department, AGY Therapeutics Inc, South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Zhou S, Chan E, Duan W, Huang M, Chen YZ. Drug bioactivation, covalent binding to target proteins and toxicity relevance. Drug Metab Rev 2005; 37:41-213. [PMID: 15747500 DOI: 10.1081/dmr-200028812] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A number of therapeutic drugs with different structures and mechanisms of action have been reported to undergo metabolic activation by Phase I or Phase II drug-metabolizing enzymes. The bioactivation gives rise to reactive metabolites/intermediates, which readily confer covalent binding to various target proteins by nucleophilic substitution and/or Schiff's base mechanism. These drugs include analgesics (e.g., acetaminophen), antibacterial agents (e.g., sulfonamides and macrolide antibiotics), anticancer drugs (e.g., irinotecan), antiepileptic drugs (e.g., carbamazepine), anti-HIV agents (e.g., ritonavir), antipsychotics (e.g., clozapine), cardiovascular drugs (e.g., procainamide and hydralazine), immunosupressants (e.g., cyclosporine A), inhalational anesthetics (e.g., halothane), nonsteroidal anti-inflammatory drugs (NSAIDSs) (e.g., diclofenac), and steroids and their receptor modulators (e.g., estrogens and tamoxifen). Some herbal and dietary constituents are also bioactivated to reactive metabolites capable of binding covalently and inactivating cytochrome P450s (CYPs). A number of important target proteins of drugs have been identified by mass spectrometric techniques and proteomic approaches. The covalent binding and formation of drug-protein adducts are generally considered to be related to drug toxicity, and selective protein covalent binding by drug metabolites may lead to selective organ toxicity. However, the mechanisms involved in the protein adduct-induced toxicity are largely undefined, although it has been suggested that drug-protein adducts may cause toxicity either through impairing physiological functions of the modified proteins or through immune-mediated mechanisms. In addition, mechanism-based inhibition of CYPs may result in toxic drug-drug interactions. The clinical consequences of drug bioactivation and covalent binding to proteins are unpredictable, depending on many factors that are associated with the administered drugs and patients. Further studies using proteomic and genomic approaches with high throughput capacity are needed to identify the protein targets of reactive drug metabolites, and to elucidate the structure-activity relationships of drug's covalent binding to proteins and their clinical outcomes.
Collapse
Affiliation(s)
- Shufeng Zhou
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore.
| | | | | | | | | |
Collapse
|
46
|
Shimazaki Y, Manabe T. Detection of activity and mass spectrometric identification of mouse liver carboxylesterase and aldehyde dehydrogenase separated by non-denaturing two-dimensional electrophoresis after extraction with detergents. BIOCHIMICA ET BIOPHYSICA ACTA 2005; 1749:95-101. [PMID: 15848140 DOI: 10.1016/j.bbapap.2005.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Revised: 02/23/2005] [Accepted: 02/23/2005] [Indexed: 11/19/2022]
Abstract
To examine the activities and identity of enzymes associated with organelles such as microsomes and mitochondria, proteins from mouse liver were extracted using the non-ionic detergents Nonidet P-40 (NP-40), polyoxyethylene sorbitan monooleate (Tween 80), polyoxyethylene isooctylphenyl ester (Triton X), n-octyl beta-D-glucoside (octyl glycoside) or anionic detergent sodium dodecylsulfate (SDS) after the removal of cytosolic proteins. The proteins extracted by detergents were separated by non-denaturing two-dimensional electrophoresis (2-DE). The activities of esterase and aldehyde dehydrogenase were retained by non-denaturing 2-DE after treatment with each non-ionic detergent, but the activities were reduced or lost when the proteins were extracted with more than 0.5% SDS. For proteomic analysis of the organelle-associated proteins in mouse liver, proteins were separated by non-denaturing 2-DE and were identified using electrospray ionization tandem mass spectrometry (ESI-MS/MS) after the proteins were solubilized by octyl glycoside, NP-40 and 0.1% SDS. Several organelle-associated proteins such as carboxylesterase, aldehyde dehydrogenase, glucose regulated protein and HSP60 were identified. These results indicate that the activities and identity of detergent-soluble enzymes can be examined by this non-denaturing 2-DE and mass spectrometry.
Collapse
Affiliation(s)
- Youji Shimazaki
- Department of Chemistry, Faculty of Science and Venture Business Laboratory, Ehime University, Matsuyama, Japan.
| | | |
Collapse
|
47
|
Helenius A, Marquardt T, Braakman I. The endoplasmic reticulum as a protein-folding compartment. Trends Cell Biol 2005; 2:227-31. [PMID: 14731479 DOI: 10.1016/0962-8924(92)90309-b] [Citation(s) in RCA: 220] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The lumen of the endoplasmic reticulum (ER) provides a dynamic and efficient environment for the folding of proteins destined for secretion and for a variety of cellular compartments and membranes. Usually, the folding process begins on the nascent chains and is completed minutes or hours later during assembly of oligomers. It is assisted by molecular chaperones and folding enzymes, some of which are unique to the ER. Quality control and selective degradation systems ensure only conformationally mature proteins are transported from the ER.
Collapse
Affiliation(s)
- A Helenius
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | | | | |
Collapse
|
48
|
Kimura T, Imaishi K, Hagiwara Y, Horibe T, Hayano T, Takahashi N, Urade R, Kato K, Kikuchi M. ERp57 binds competitively to protein disulfide isomerase and calreticulin. Biochem Biophys Res Commun 2005; 331:224-30. [PMID: 15845382 DOI: 10.1016/j.bbrc.2005.03.147] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Indexed: 11/27/2022]
Abstract
In this study, we screened for protein disulfide isomerase (PDI)-binding proteins in bovine liver microsomes under strict salt concentrations, using affinity column chromatography. One main band observed using SDS-PAGE was identified as ERp57 (one of the PDI family proteins) by LC-MS/MS analysis. The K(D) value of PDI binding to ERp57 was calculated as 5.46x10(-6)M with the BIACORE system. The interactions between PDI and ERp57 occurred specifically at their a and b domains, respectively. Interestingly, low concentrations of ERp57 enhanced the chaperone activity of PDI, while high concentrations interfered with chaperone activity. On the other hand, ERp57 did not affect the isomerase activity of PDI. Additionally, following pre-incubation of ERp57 with calreticulin (CRT), decreased interactions were observed between ERp57 and PDI, and vice versa. Based on the data, we propose that once ERp57 binds to PDI or CRT, the resultant complex inhibits further interactions. Therefore, ERp57 selectively forms a protein-folding complex with PDI or CRT in ER.
Collapse
Affiliation(s)
- Taiji Kimura
- Department of Bioscience and Technology, Faculty of Science and Engineering, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
May D, Itin A, Gal O, Kalinski H, Feinstein E, Keshet E. Ero1-L alpha plays a key role in a HIF-1-mediated pathway to improve disulfide bond formation and VEGF secretion under hypoxia: implication for cancer. Oncogene 2005; 24:1011-20. [PMID: 15592500 DOI: 10.1038/sj.onc.1208325] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Oxygen is the ultimate source of oxidizing power for disulfide bond formation, suggesting that under limiting oxygen proper protein folding might be compromised. We show that secretion of vascular endothelial growth factor (VEGF), a protein with multiple disulfide bonds, was indeed impeded under hypoxia and was partially restored by artificial increase of oxidizing equivalents with diamide. Physiologically, the oxireductase endoplasmic reticulum oxidoreductin-1 (Ero1)-L alpha, but not other proteins in the relay of disulfide formation, was strongly upregulated by hypoxia and independently by hypoglycemia, two known accompaniments of tumors. Further, we provide genetic evidence that induction of Ero1-L alpha by hypoxia and hypoglycemia is mediated by the transcription factor hypoxia-inducible factor 1 (HIF-1) but is independent of p53. In natural human tumors, Ero1-L alpha mRNA was specifically induced in hypoxic microenvironments coinciding with that of upregulated VEGF expression. To establish a physiological relevance to modulations in Ero1-L alpha levels, we showed that even a modest, two- to three-fold reduction in Ero1-L alpha production via siRNA leads to significant inhibition of VEGF secretion, a compromised proliferation capacity and enhanced apoptosis. Together, these findings demonstrate that hypoxic induction of Ero1-L alpha is the key adaptive response in a previously unrecognized HIF-1-mediated pathway that operates to improve protein secretion under hypoxia and might be harnessed for inhibiting tumor growth via inhibiting VEGF-driven angiogenesis.
Collapse
Affiliation(s)
- Dalit May
- Department of Molecular Biology, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | | | | | |
Collapse
|
50
|
Ma Y, Hendershot LM. ER chaperone functions during normal and stress conditions. J Chem Neuroanat 2004; 28:51-65. [PMID: 15363491 DOI: 10.1016/j.jchemneu.2003.08.007] [Citation(s) in RCA: 317] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2003] [Revised: 12/21/2003] [Accepted: 12/21/2003] [Indexed: 12/25/2022]
Abstract
Nearly all resident proteins of the organelles along the secretory pathway, as well as proteins that are expressed at the cell surface or secreted from the cell, are first co-translationally translocated into the lumen of the endoplasmic reticulum (ER) as unfolded polypeptide chains. Immediately after entering the ER, they are often modified with N-linked glycans, are folded into the appropriate secondary and tertiary structures, which are stabilized by disulfide bonds, and finally in many cases are assembled into multimeric complexes. These processes are aided and monitored by ER chaperones and folding enzymes. When cells experience conditions that alter the ER environment, protein folding can be dramatically affected and can lead to the accumulation of unfolded proteins in this organelle. This in turn activates a signaling response, which is shared among all eukaryotic organisms, termed the unfolded protein response (UPR). The hallmark of this response is the coordinate transcriptional up-regulation of ER chaperones and folding enzymes. A major role for the increased levels of chaperones and folding enzymes during conditions of ER stress is to provide the same functions they carry out during normal physiological conditions. This includes preventing unfolded and incompletely folded proteins from aggregating and promoting the proper folding and assembly of proteins in the ER. During conditions of ER stress, many proteins are unable to fold properly and the requirements for chaperones are therefore increased. However, more recently it has become clear that some ER chaperones are also involved in signaling the ER stress response, targeting misfolded proteins for degradation and perhaps even shutting down the UPR when the stress subsides. In addition, during some normal physiological conditions, like plasma cell differentiation where there is an increased demand in the secretory capacity of B cells, the levels of various ER chaperones are also up-regulated via at least part of the UPR pathway. In order to discuss these various functions of ER chaperones, we will begin with the roles of ER chaperones and folding enzymes during normal physiological conditions and then discuss their roles during ER stress.
Collapse
Affiliation(s)
- Yanjun Ma
- Department of Genetics and Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|