1
|
Griffiths KK, Wang A, Jonas EA, Levy RJ. Sulfide quinone oxidoreductase contributes to voltage sensing of the mitochondrial permeability transition pore. FASEB J 2024; 38:e23494. [PMID: 38376922 PMCID: PMC11082757 DOI: 10.1096/fj.202301280r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/18/2023] [Accepted: 02/02/2024] [Indexed: 02/21/2024]
Abstract
Pathological opening of the mitochondrial permeability transition pore (mPTP) is implicated in the pathogenesis of many disease processes such as myocardial ischemia, traumatic brain injury, Alzheimer's disease, and diabetes. While we have gained insight into mPTP biology over the last several decades, the lack of translation of this knowledge into successful clinical therapies underscores the need for continued investigation and use of different approaches to identify novel regulators of the mPTP with the hope of elucidating new therapeutic targets. Although the mPTP is known to be a voltage-gated channel, the identity of its voltage sensor remains unknown. Here we found decreased gating potential of the mPTP and increased expression and activity of sulfide quinone oxidoreductase (SQOR) in newborn Fragile X syndrome (FXS) mouse heart mitochondria, a model system of coenzyme Q excess and relatively decreased mPTP open probability. We further found that pharmacological inhibition and genetic silencing of SQOR increased mPTP open probability in vitro in adult murine cardiac mitochondria and in the isolated-perfused heart, likely by interfering with voltage sensing. Thus, SQOR is proposed to contribute to voltage sensing by the mPTP and may be a component of the voltage sensing apparatus that modulates the gating potential of the mPTP.
Collapse
Affiliation(s)
- Keren K. Griffiths
- Department of Anesthesiology, Columbia University Medical Center, NY, USA 10032
| | - Aili Wang
- Department of Anesthesiology, Columbia University Medical Center, NY, USA 10032
| | - Elizabeth A. Jonas
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Richard J. Levy
- Department of Anesthesiology, Columbia University Medical Center, NY, USA 10032
| |
Collapse
|
2
|
Mondal R, Banerjee C, Nandy S, Roy M, Chakraborty J. Calcineurin inhibition protects against dopamine toxicity and attenuates behavioral decline in a Parkinson's disease model. Cell Biosci 2023; 13:140. [PMID: 37528492 PMCID: PMC10394860 DOI: 10.1186/s13578-023-01068-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/12/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD), a highly prevalent neuro-motor disorder is caused due to progressive loss of dopaminergic (DAergic) neurons at substantia nigra region of brain. This leads to depleted dopamine (DA) content at striatum, thus affecting the fine tuning of basal ganglia. In patients, this imbalance is manifested by akinesia, catalepsy and tremor. PD associated behavioral dysfunctions are frequently mitigated by l-DOPA (LD) therapy, a precursor for DA synthesis. Due to progressive neurodegeneration, LD eventually loses applicability in PD. Although DA is cytotoxic, it is unclear whether LD therapy can accelerate PD progression or not. LD itself does not lead to neurodegeneration in vivo, but previous reports demonstrate that LD treatment mediated excess DA can potentiate neurotoxicity when PD associated genetic or epigenetic aberrations are involved. So, minimizing DA toxicity during the therapy is an absolute necessity to halt or slowdown PD progression. The two major contributing factors associated with DA toxicity are: degradation by Monoamine oxidase and DAquinone (DAQ) formation. RESULTS Here, we report that apoptotic mitochondrial fragmentation via Calcineurin (CaN)-DRP1 axis is a common downstream event for both these initial cues, inhibiting which can protect cells from DA toxicity comprehensively. No protective effect is observed, in terms of cell survival when only PxIxIT domain of CaN is obstructed, demonstrating the importance to block DRP1-CaN axis specifically. Further, evaluation of the impact of DA exposure on PD progression in a mice model reveal that LD mediated behavioral recovery diminishes with time, mostly because of continued DAergic cell death and dendritic spine loss at striatum. CaN inhibition, alone or in combination with LD, offer long term behavioral protection. This protective effect is mediated specifically by hindering CaN-DRP1 axis, whereas inhibiting interaction between CaN and other substrates, including proteins involved in neuro-inflammation, remained ineffective when LD is co-administered. CONCLUSIONS In this study, we conclude that DA toxicity can be circumvented by CaN inhibition and it can mitigate PD related behavioral aberrations by protecting neuronal architecture at striatum. We propose that CaN inhibitors might extend the therapeutic efficacy of LD treatment.
Collapse
Affiliation(s)
- Rupsha Mondal
- CSIR-Indian Institute of Chemical Biology, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Chayan Banerjee
- CSIR-Indian Institute of Chemical Biology, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sumangal Nandy
- CSIR-Indian Institute of Chemical Biology, Kolkata, 700032, India
| | - Moumita Roy
- CSIR-Indian Institute of Chemical Biology, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Joy Chakraborty
- CSIR-Indian Institute of Chemical Biology, Kolkata, 700032, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Rottenberg H. The Reduction in the Mitochondrial Membrane Potential in Aging: The Role of the Mitochondrial Permeability Transition Pore. Int J Mol Sci 2023; 24:12295. [PMID: 37569671 PMCID: PMC10418870 DOI: 10.3390/ijms241512295] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/22/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
It is widely reported that the mitochondrial membrane potential, ∆Ψm, is reduced in aging animals. It was recently suggested that the lower ∆Ψm in aged animals modulates mitochondrial bioenergetics and that this effect is a major cause of aging since artificially increased ∆Ψm in C. elegans increased lifespan. Here, I critically review studies that reported reduction in ∆Ψm in aged animals, including worms, and conclude that many of these observations are best interpreted as evidence that the fraction of depolarized mitochondria is increased in aged cells because of the enhanced activation of the mitochondrial permeability transition pore, mPTP. Activation of the voltage-gated mPTP depolarizes the mitochondria, inhibits oxidative phosphorylation, releases large amounts of calcium and mROS, and depletes cellular NAD+, thus accelerating degenerative diseases and aging. Since the inhibition of mPTP was shown to restore ∆Ψm and to retard aging, the reported lifespan extension by artificially generated ∆Ψm in C. elegans is best explained by inhibition of the voltage-gated mPTP. Similarly, the reported activation of the mitochondrial unfolded protein response by reduction in ∆Ψm and the reported preservation of ∆Ψm in dietary restriction treatment in C. elegans are best explained as resulting from activation or inhibition of the voltage-gated mPTP, respectively.
Collapse
Affiliation(s)
- Hagai Rottenberg
- New Hope Biomedical R&D, 23 W. Bridge Street, New Hope, PA 18938, USA
| |
Collapse
|
4
|
Eto K, Suemoto T. Identification of reactive oxygen species that induce spoptosis, a novel and distinctive mode of regulated cell death. Exp Cell Res 2023; 430:113713. [PMID: 37422059 DOI: 10.1016/j.yexcr.2023.113713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 06/28/2023] [Accepted: 07/02/2023] [Indexed: 07/10/2023]
Abstract
Using some solutions activated by irradiation with non-thermal atmospheric pressure plasma (NTAPP), we had discovered that a new and distinctive mode of cell death, named spoptosis, exists in cells, the induction of which involves the action of reactive oxygen species (ROS). However, it was unknown what types of ROS and how they trigger the cell death. When cells were treated with a higher dose of Ascorbic acid (AA) generating O2- and H2O2 or Antimycin A (AM) generating O2-, cell death occurred along with cellular shrinkage, Pdcd4 disappearance, and vesicle formation. Only in cells treated with AA, genomic DNA was digested irregularly and membrane permeability increased aberrantly. On the other hand, cells treated with a higher dose of H2O2 displayed cell death and cellular shrinkage but not the other events, and those treated with a lower dose of H2O2 displayed cell death but not the other events. Strikingly, when cells underwent double treatment with AM and H2O2, the events, which had not been observed by their single treatment, became compensated. All the events were suppressed with an antioxidant, confirming that they were mediated by ROS. Thus, the mode of cell death induced by AA or combination of AM and H2O2 was consistent with that of cell death by NTAPP-activated solutions. These results suggested that O2- and H2O2 collaboratively trigger spoptotic cell death with the associated events, and that AA and combination of AM and H2O2 are functionally alternative in place of NTAPP-activated solutions.
Collapse
Affiliation(s)
- Ko Eto
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Japan.
| | - Takuya Suemoto
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Japan
| |
Collapse
|
5
|
Kharechkina ES, Nikiforova AB, Kruglov AG. Regulation of Mitochondrial Permeability Transition Pore Opening by Monovalent Cations in Liver Mitochondria. Int J Mol Sci 2023; 24:ijms24119237. [PMID: 37298189 DOI: 10.3390/ijms24119237] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
The opening of the permeability transition pore (PTP) in mitochondria is a key event in the initiation of cell death in various pathologic states, including ischemia/reperfusion. The activation of K+ transport into mitochondria protects cells from ischemia/reperfusion. However, the role of K+ transport in PTP regulation is unclear. Here, we studied the role of K+ and other monovalent cations in the regulation of the PTP opening in an in vitro model. The registration of the PTP opening, membrane potential, Ca2+-retention capacity, matrix pH, and K+ transport was performed using standard spectral and electrode techniques. We found that the presence of all cations tested in the medium (K+, Na+, choline+, and Li+) strongly stimulated the PTP opening compared with sucrose. Several possible reasons for this were examined: the effect of ionic strength, the influx of cations through selective and non-selective channels and exchangers, the suppression of Ca2+/H+ exchange, and the influx of anions. The data obtained indicate that the mechanism of PTP stimulation by cations includes the suppression of K+/H+ exchange and acidification of the matrix, which facilitates the influx of phosphate. Thus, the K+/H+ exchanger and the phosphate carrier together with selective K+ channels compose a PTP regulatory triad, which might operate in vivo.
Collapse
Affiliation(s)
- Ekaterina S Kharechkina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino, 142290 Moscow, Russia
| | - Anna B Nikiforova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino, 142290 Moscow, Russia
| | - Alexey G Kruglov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino, 142290 Moscow, Russia
| |
Collapse
|
6
|
Bizerra PFV, Itou da Silva FS, Gilglioni EH, Nanami LF, Klosowski EM, de Souza BTL, Raimundo AFG, Paulino Dos Santos KB, Mewes JM, Constantin RP, Mito MS, Ishii-Iwamoto EL, Constantin J, Mingatto FE, Esquissato GNM, Marchiosi R, Dos Santos WD, Ferrarese-Filho O, Constantin RP. The harmful acute effects of clomipramine in the rat liver: impairments in mitochondrial bioenergetics. Toxicol Lett 2023:S0378-4274(23)00184-4. [PMID: 37217012 DOI: 10.1016/j.toxlet.2023.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/14/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
Clomipramine, a tricyclic antidepressant used to treat depression and obsessive-compulsive disorder, has been linked to a few cases of acute hepatotoxicity. It is also recognized as a compound that hinders the functioning of mitochondria. Hence, the effects of clomipramine on mitochondria should endanger processes that are somewhat connected to energy metabolism in the liver. For this reason, the primary aim of this study was to examine how the effects of clomipramine on mitochondrial functions manifest in the intact liver. For this purpose, we used the isolated perfused rat liver, but also isolated hepatocytes and isolated mitochondria as experimental systems. According to the findings, clomipramine harmed metabolic processes and the cellular structure of the liver, especially the membrane structure. The considerable decrease in oxygen consumption in perfused livers strongly suggested that the mechanism of clomipramine toxicity involves the disruption of mitochondrial functions. Coherently, it could be observed that clomipramine inhibited both gluconeogenesis and ureagenesis, two processes that rely on ATP production within the mitochondria. Half-maximal inhibitory concentrations for gluconeogenesis and ureagenesis ranged from 36.87μM to 59.64μM. The levels of ATP as well as the ATP/ADP and ATP/AMP ratios were reduced, but distinctly, between the livers of fasted and fed rats. The results obtained from experiments conducted on isolated hepatocytes and isolated mitochondria unambiguously confirmed previous propositions about the effects of clomipramine on mitochondrial functions. These findings revealed at least three distinct mechanisms of action, including uncoupling of oxidative phosphorylation, inhibition of the FoF1-ATP synthase complex, and inhibition of mitochondrial electron flow. The elevation in activity of cytosolic and mitochondrial enzymes detected in the effluent perfusate from perfused livers, coupled with the increase in aminotransferase release and trypan blue uptake observed in isolated hepatocytes, provided further evidence of the hepatotoxicity of clomipramine. It can be concluded that impaired mitochondrial bioenergetics and cellular damage are important factors underlying the hepatotoxicity of clomipramine and that taking excessive amounts of clomipramine can lead to several risks including decreased ATP production, severe hypoglycemia, and potentially fatal outcomes.
Collapse
Affiliation(s)
- Paulo Francisco Veiga Bizerra
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá 87020-900, Paraná, Brazil.
| | - Fernanda Sayuri Itou da Silva
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá 87020-900, Paraná, Brazil.
| | - Eduardo Hideo Gilglioni
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá 87020-900, Paraná, Brazil.
| | - Letícia Fernanda Nanami
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá 87020-900, Paraná, Brazil.
| | - Eduardo Makiyama Klosowski
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá 87020-900, Paraná, Brazil.
| | - Byanca Thais Lima de Souza
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá 87020-900, Paraná, Brazil.
| | - Ana Flávia Gatto Raimundo
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá 87020-900, Paraná, Brazil.
| | - Karina Borba Paulino Dos Santos
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá 87020-900, Paraná, Brazil.
| | - Juliana Moraes Mewes
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá 87020-900, Paraná, Brazil.
| | - Renato Polimeni Constantin
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá 87020-900, Paraná, Brazil.
| | - Márcio Shigueaki Mito
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá 87020-900, Paraná, Brazil.
| | - Emy Luiza Ishii-Iwamoto
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá 87020-900, Paraná, Brazil.
| | - Jorgete Constantin
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá 87020-900, Paraná, Brazil.
| | - Fábio Ermínio Mingatto
- Laboratory of Metabolic and Toxicological Biochemistry, São Paulo State University, Dracena 17900-000, São Paulo, Brazil.
| | | | - Rogério Marchiosi
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá 87020-900, Paraná, Brazil.
| | - Wanderley Dantas Dos Santos
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá 87020-900, Paraná, Brazil.
| | - Osvaldo Ferrarese-Filho
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá 87020-900, Paraná, Brazil.
| | - Rodrigo Polimeni Constantin
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá 87020-900, Paraná, Brazil; Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá 87020-900, Paraná, Brazil.
| |
Collapse
|
7
|
Waddell J, Khatoon R, Kristian T. Cellular and Mitochondrial NAD Homeostasis in Health and Disease. Cells 2023; 12:1329. [PMID: 37174729 PMCID: PMC10177113 DOI: 10.3390/cells12091329] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
The mitochondrion has a unique position among other cellular organelles due to its dynamic properties and symbiotic nature, which is reflected in an active exchange of metabolites and cofactors between the rest of the intracellular compartments. The mitochondrial energy metabolism is greatly dependent on nicotinamide adenine dinucleotide (NAD) as a cofactor that is essential for both the activity of respiratory and TCA cycle enzymes. The NAD level is determined by the rate of NAD synthesis, the activity of NAD-consuming enzymes, and the exchange rate between the individual subcellular compartments. In this review, we discuss the NAD synthesis pathways, the NAD degradation enzymes, and NAD subcellular localization, as well as NAD transport mechanisms with a focus on mitochondria. Finally, the effect of the pathologic depletion of mitochondrial NAD pools on mitochondrial proteins' post-translational modifications and its role in neurodegeneration will be reviewed. Understanding the physiological constraints and mechanisms of NAD maintenance and the exchange between subcellular compartments is critical given NAD's broad effects and roles in health and disease.
Collapse
Affiliation(s)
- Jaylyn Waddell
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Rehana Khatoon
- Department of Anesthesiology and the Center for Shock, Trauma and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Tibor Kristian
- Department of Anesthesiology and the Center for Shock, Trauma and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, Baltimore, MD 21201, USA;
- Veterans Affairs Maryland Health Center System, 10 North Greene Street, Baltimore, MD 21201, USA
| |
Collapse
|
8
|
Dumbali SP, Wenzel PL. Mitochondrial Permeability Transition in Stem Cells, Development, and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1409:1-22. [PMID: 35739412 DOI: 10.1007/5584_2022_720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The mitochondrial permeability transition (mPT) is a process that permits rapid exchange of small molecules across the inner mitochondrial membrane (IMM) and thus plays a vital role in mitochondrial function and cellular signaling. Formation of the pore that mediates this flux is well-documented in injury and disease but its regulation has also emerged as critical to the fate of stem cells during embryonic development. The precise molecular composition of the mPTP has been enigmatic, with far more genetic studies eliminating molecular candidates than confirming them. Rigorous studies in the recent decade have implicated central involvement of the F1Fo ATP synthase, or complex V of the electron transport chain, and continue to confirm a regulatory role for Cyclophilin D (CypD), encoded by Ppif, in modulating the sensitivity of the pore to opening. A host of endogenous molecules have been shown to trigger flux characteristic of mPT, including positive regulators such as calcium ions, reactive oxygen species, inorganic phosphate, and fatty acids. Conductance of the pore has been described as low or high, and reversibility of pore opening appears to correspond with the relative abundance of negative regulators of mPT such as adenine nucleotides, hydrogen ion, and divalent cations that compete for calcium-binding sites in the mPTP. Current models suggest that distinct pores could be responsible for differing reversibility and conductance depending upon cellular context. Indeed, irreversible propagation of mPT inevitably leads to collapse of transmembrane potential, arrest of ATP synthesis, mitochondrial swelling, and cell death. Future studies should clarify ambiguities in mPTP structure and reveal new roles for mPT in dictating specialized cellular functions beyond cell survival that are tied to mitochondrial fitness including stem cell self-renewal and fate. The focus of this review is to describe contemporary models of the mPTP and highlight how pore activity impacts stem cells and development.
Collapse
Affiliation(s)
- Sandeep P Dumbali
- Department of Integrative Biology & Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Pamela L Wenzel
- Department of Integrative Biology & Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Immunology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
9
|
CKII Control of Axonal Plasticity Is Mediated by Mitochondrial Ca 2+ via Mitochondrial NCLX. Cells 2022; 11:cells11243990. [PMID: 36552754 PMCID: PMC9777275 DOI: 10.3390/cells11243990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial Ca2+ efflux by NCLX is a critical rate-limiting step in mitochondria signaling. We previously showed that NCLX is phosphorylated at a putative Casein Kinase 2 (CKII) site, the serine 271 (S271). Here, we asked if NCLX is regulated by CKII and interrogated the physiological implications of this control. We found that CKII inhibitors down-regulated NCLX-dependent Ca2+ transport activity in SH-SY5Y neuronal cells and primary hippocampal neurons. Furthermore, we show that the CKII phosphomimetic mutants on NCLX inhibited (S271A) and constitutively activated (S271D) NCLX transport, respectively, rendering it insensitive to CKII inhibition. These phosphomimetic NCLX mutations also control the allosteric regulation of NCLX by mitochondrial membrane potential (ΔΨm). Since the omnipresent CKII is necessary for modulating the plasticity of the axon initial segment (AIS), we interrogated, in hippocampal neurons, if NCLX is required for this process. Similarly to WT neurons, NCLX-KO neurons can exhibit homeostatic plasticity following M-channel block. However, while WT neurons utilize a CKII-sensitive distal relocation of AIS Na+ and Kv7 channels to decrease their intrinsic excitability, we did not observe such translocation in NCLX-KO neurons. Thus, our results indicate that NCLX is regulated by CKII and is a crucial link between CKII signaling and fast neuronal plasticity.
Collapse
|
10
|
Bernardi P, Carraro M, Lippe G. The mitochondrial permeability transition: Recent progress and open questions. FEBS J 2022; 289:7051-7074. [PMID: 34710270 PMCID: PMC9787756 DOI: 10.1111/febs.16254] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/27/2021] [Indexed: 01/13/2023]
Abstract
Major progress has been made in defining the basis of the mitochondrial permeability transition, a Ca2+ -dependent permeability increase of the inner membrane that has puzzled mitochondrial research for almost 70 years. Initially considered an artefact of limited biological interest by most, over the years the permeability transition has raised to the status of regulator of mitochondrial ion homeostasis and of druggable effector mechanism of cell death. The permeability transition is mediated by opening of channel(s) modulated by matrix cyclophilin D, the permeability transition pore(s) (PTP). The field has received new impulse (a) from the hypothesis that the PTP may originate from a Ca2+ -dependent conformational change of F-ATP synthase and (b) from the reevaluation of the long-standing hypothesis that it originates from the adenine nucleotide translocator (ANT). Here, we provide a synthetic account of the structure of ANT and F-ATP synthase to discuss potential and controversial mechanisms through which they may form high-conductance channels; and review some intriguing findings from the wealth of early studies of PTP modulation that still await an explanation. We hope that this review will stimulate new experiments addressing the many outstanding problems, and thus contribute to the eventual solution of the puzzle of the permeability transition.
Collapse
Affiliation(s)
- Paolo Bernardi
- Department of Biomedical Sciences and CNR Neuroscience InstituteUniversity of PadovaItaly
| | - Michela Carraro
- Department of Biomedical Sciences and CNR Neuroscience InstituteUniversity of PadovaItaly
| | | |
Collapse
|
11
|
Pan Y, Cai W, Cheng A, Wang M, Chen S, Huang J, Yang Q, Wu Y, Sun D, Mao S, Zhu D, Liu M, Zhao X, Zhang S, Gao Q, Ou X, Tian B, Yin Z, Jia R. Duck Tembusu virus infection induces mitochondrial-mediated and death receptor-mediated apoptosis in duck embryo fibroblasts. Vet Res 2022; 53:53. [PMID: 35799206 PMCID: PMC9264590 DOI: 10.1186/s13567-022-01070-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/28/2022] [Indexed: 11/18/2022] Open
Abstract
Duck Tembusu virus (DTMUV) is a pathogenic flavivirus that has caused enormous economic losses in Southeast Asia. Our previous study showed that DTMUV could induce duck embryo fibroblast (DEF) apoptosis, but the specific mechanism was not clear. In this study, we confirmed that DTMUV could induce the apoptosis of DEFs by DAPI staining and TUNEL staining. Furthermore, we found that the expression levels of cleaved-caspase-3/7/8/9 were significantly upregulated after DTMUV infection. After treatment of cells with an inhibitor of caspase-8 or caspase-9, DTMUV-induced apoptosis rates were significantly decreased, indicating that the caspase-8-mediated death receptor apoptotic pathway and caspase-9-mediated mitochondrial apoptotic pathway were involved in DTMUV-induced apoptosis. Moreover, we found that DTMUV infection not only caused the release of mitochondrial cytochrome C (Cyt C) and the downregulation of the apoptosis-inhibiting protein Bcl-2 but also reduced the mitochondrial membrane potential (MMP) and the accumulation of intracellular reactive oxygen species (ROS). Key genes in the mitochondrial apoptotic pathway and death receptor apoptotic pathway were upregulated to varying degrees, indicating the activation of the mitochondrial apoptosis pathway and death receptor apoptosis pathway. In conclusion, this study clarifies the molecular mechanism of DTMUV-induced apoptosis and provides a theoretical basis for revealing the pathogenic mechanism of DTMUV infection.
Collapse
Affiliation(s)
- Yuhong Pan
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Wenjun Cai
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China. .,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China.
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Juan Huang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Qiao Yang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Ying Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Di Sun
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Sai Mao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Mafeng Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Xinxin Zhao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Shaqiu Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Qun Gao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Xumin Ou
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Bin Tian
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China. .,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
12
|
Ali MZ, Dholaniya PS. Oxidative phosphorylation mediated pathogenesis of Parkinson's disease and its implication via Akt signaling. Neurochem Int 2022; 157:105344. [PMID: 35483538 DOI: 10.1016/j.neuint.2022.105344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 12/21/2022]
Abstract
Substantia Nigra Pars-compacta (SNpc), in the basal ganglion region, is a primary source of dopamine release. These dopaminergic neurons require more energy than other neurons, as they are highly arborized and redundant. Neurons meet most of their energy demand (∼90%) from mitochondria. Oxidative phosphorylation (OxPhos) is the primary pathway for energy production. Many genes involved in Parkinson's disease (PD) have been associated with OxPhos, especially complex I. Abrogation in complex I leads to reduced ATP formation in these neurons, succumbing to death by inducing apoptosis. This review discusses the interconnection between complex I-associated PD genes and specific mitochondrial metabolic factors (MMFs) of OxPhos. Interestingly, all the complex I-associated PD genes discussed here have been linked to the Akt signaling pathway; thus, neuron survival is promoted and smooth mitochondrial function is ensured. Any changes in these genes disrupt the Akt pathway, which hampers the opening of the permeability transition pore (PTP) via GSK3β dephosphorylation; promotes destabilization of OxPhos; and triggers the release of pro-apoptotic factors.
Collapse
Affiliation(s)
- Md Zainul Ali
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500 046, India
| | - Pankaj Singh Dholaniya
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500 046, India.
| |
Collapse
|
13
|
Ho KL, Karwi QG, Wagg C, Zhang L, Vo K, Altamimi T, Uddin GM, Ussher JR, Lopaschuk GD. Ketones can become the major fuel source for the heart but do not increase cardiac efficiency. Cardiovasc Res 2021; 117:1178-1187. [PMID: 32402081 PMCID: PMC7982999 DOI: 10.1093/cvr/cvaa143] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/16/2020] [Accepted: 05/07/2020] [Indexed: 12/18/2022] Open
Abstract
AIMS Ketones have been proposed to be a 'thrifty' fuel for the heart and increasing cardiac ketone oxidation can be cardioprotective. However, it is unclear how much ketone oxidation can contribute to energy production in the heart, nor whether increasing ketone oxidation increases cardiac efficiency. Therefore, our goal was to determine to what extent high levels of the ketone body, β-hydroxybutyrate (βOHB), contributes to cardiac energy production, and whether this influences cardiac efficiency. METHODS AND RESULTS Isolated working mice hearts were aerobically perfused with palmitate (0.8 mM or 1.2 mM), glucose (5 mM) and increasing concentrations of βOHB (0, 0.6, 2.0 mM). Subsequently, oxidation of these substrates, cardiac function, and cardiac efficiency were assessed. Increasing βOHB concentrations increased myocardial ketone oxidation rates without affecting glucose or fatty acid oxidation rates where normal physiological levels of glucose (5 mM) and fatty acid (0.8 mM) are present. Notably, ketones became the major fuel source for the heart at 2.0 mM βOHB (at both low or high fatty acid concentrations), with the elevated ketone oxidation rates markedly increasing tricarboxylic acid (TCA) cycle activity, producing a large amount of reducing equivalents and finally, increasing myocardial oxygen consumption. However, the marked increase in ketone oxidation at high concentrations of βOHB was not accompanied by an increase in cardiac work, suggesting that a mismatch between excess reduced equivalents production from ketone oxidation and cardiac adenosine triphosphate production. Consequently, cardiac efficiency decreased when the heart was exposed to higher ketone levels. CONCLUSIONS We demonstrate that while ketones can become the major fuel source for the heart, they do not increase cardiac efficiency, which also underscores the importance of recognizing ketones as a major fuel source for the heart in times of starvation, consumption of a ketogenic diet or poorly controlled diabetes.
Collapse
Affiliation(s)
- Kim L Ho
- Cardiovascular Research Centre Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Qutuba G Karwi
- Cardiovascular Research Centre Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
- Department of Pharmacology, College of Medicine, University of Diyala, Diyala, Iraq
| | - Cory Wagg
- Cardiovascular Research Centre Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Liyan Zhang
- Cardiovascular Research Centre Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Katherina Vo
- Cardiovascular Research Centre Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Tariq Altamimi
- Diabetes and Obesity Center, University of Louisville, Louisville, KT, USA
| | - Golam M Uddin
- Cardiovascular Research Centre Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - John R Ussher
- Cardiovascular Research Centre Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Gary D Lopaschuk
- Cardiovascular Research Centre Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| |
Collapse
|
14
|
Strubbe-Rivera JO, Schrad JR, Pavlov EV, Conway JF, Parent KN, Bazil JN. The mitochondrial permeability transition phenomenon elucidated by cryo-EM reveals the genuine impact of calcium overload on mitochondrial structure and function. Sci Rep 2021; 11:1037. [PMID: 33441863 PMCID: PMC7806632 DOI: 10.1038/s41598-020-80398-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 12/16/2020] [Indexed: 12/19/2022] Open
Abstract
Mitochondria have a remarkable ability to uptake and store massive amounts of calcium. However, the consequences of massive calcium accumulation remain enigmatic. In the present study, we analyzed a series of time-course experiments to identify the sequence of events that occur in a population of guinea pig cardiac mitochondria exposed to excessive calcium overload that cause mitochondrial permeability transition (MPT). By analyzing coincident structural and functional data, we determined that excessive calcium overload is associated with large calcium phosphate granules and inner membrane fragmentation, which explains the extent of mitochondrial dysfunction. This data also reveals a novel mechanism for cyclosporin A, an inhibitor of MPT, in which it preserves cristae despite the presence of massive calcium phosphate granules in the matrix. Overall, these findings establish a mechanism of calcium-induced mitochondrial dysfunction and the impact of calcium regulation on mitochondrial structure and function.
Collapse
Affiliation(s)
| | - Jason R Schrad
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Evgeny V Pavlov
- Basic Science and Craniofacial Biology, New York University, New York, NY, 10010, USA
| | - James F Conway
- Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Kristin N Parent
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Jason N Bazil
- Physiology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
15
|
Gordan R, Fefelova N, Gwathmey JK, Xie LH. Iron Overload, Oxidative Stress and Calcium Mishandling in Cardiomyocytes: Role of the Mitochondrial Permeability Transition Pore. Antioxidants (Basel) 2020; 9:E758. [PMID: 32824344 PMCID: PMC7465659 DOI: 10.3390/antiox9080758] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022] Open
Abstract
Iron (Fe) plays an essential role in many physiological processes. Hereditary hemochromatosis or frequent blood transfusions often cause iron overload (IO), which can lead to cardiomyopathy and arrhythmias; however, the underlying mechanism is not well defined. In the present study, we assess the hypothesis that IO promotes arrhythmias via reactive oxygen species (ROS) production, mitochondrial membrane potential (∆Ψm) depolarization, and disruption of cytosolic Ca dynamics. In ventricular myocytes isolated from wild type (WT) mice, both cytosolic and mitochondrial Fe levels were elevated following perfusion with the Fe3+/8-hydroxyquinoline (8-HQ) complex. IO promoted mitochondrial superoxide generation (measured using MitoSOX Red) and induced the depolarization of the ΔΨm (measured using tetramethylrhodamine methyl ester, TMRM) in a dose-dependent manner. IO significantly increased the rate of Ca wave (CaW) formation measured in isolated ventricular myocytes using Fluo-4. Furthermore, in ex-vivo Langendorff-perfused hearts, IO increased arrhythmia scores as evaluated by ECG recordings under programmed S1-S2 stimulation protocols. We also carried out similar experiments in cyclophilin D knockout (CypD KO) mice in which the mitochondrial permeability transition pore (mPTP) opening is impaired. While comparable cytosolic and mitochondrial Fe load, mitochondrial ROS production, and depolarization of the ∆Ψm were observed in ventricular myocytes isolated from both WT and CypD KO mice, the rate of CaW formation in isolated cells and the arrhythmia scores in ex-vivo hearts were significantly lower in CypD KO mice compared to those observed in WT mice under conditions of IO. The mPTP inhibitor cyclosporine A (CsA, 1 µM) also exhibited a protective effect. In conclusion, our results suggest that IO induces mitochondrial ROS generation and ∆Ψm depolarization, thus opening the mPTP, thereby promoting CaWs and cardiac arrhythmias. Conversely, the inhibition of mPTP ameliorates the proarrhythmic effects of IO.
Collapse
Affiliation(s)
| | | | | | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ 07103, USA; (R.G.); (N.F.); (J.K.G.)
| |
Collapse
|
16
|
Zhu N, Guo X, Pang S, Chang Y, Liu X, Shi Z, Feng S. Mitochondria-Immobilized Unimolecular Fluorescent Probe for Multiplexing Imaging of Living Cancer Cells. Anal Chem 2020; 92:11103-11110. [DOI: 10.1021/acs.analchem.0c01046] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Nansong Zhu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xiaolei Guo
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Shirui Pang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yulei Chang
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Xiaomin Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Zhan Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
17
|
Mnatsakanyan N, Jonas EA. The new role of F 1F o ATP synthase in mitochondria-mediated neurodegeneration and neuroprotection. Exp Neurol 2020; 332:113400. [PMID: 32653453 DOI: 10.1016/j.expneurol.2020.113400] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/23/2020] [Accepted: 07/07/2020] [Indexed: 02/08/2023]
Abstract
The mitochondrial F1Fo ATP synthase is one of the most abundant proteins of the mitochondrial inner membrane, which catalyzes the final step of oxidative phosphorylation to synthesize ATP from ADP and Pi. ATP synthase uses the electrochemical gradient of protons (ΔμH+) across the mitochondrial inner membrane to synthesize ATP. Under certain pathophysiological conditions, ATP synthase can run in reverse to hydrolyze ATP and build the necessary ΔμH+ across the mitochondrial inner membrane. Tight coupling between these two processes, proton translocation and ATP synthesis, is achieved by the unique rotational mechanism of ATP synthase and is necessary for efficient cellular metabolism and cell survival. The uncoupling of these processes, dissipation of mitochondrial inner membrane potential, elevated levels of ROS, low matrix content of ATP in combination with other cellular malfunction trigger the opening of the mitochondrial permeability transition pore in the mitochondrial inner membrane. In this review we will discuss the new role of ATP synthase beyond oxidative phosphorylation. We will highlight its function as a unique regulator of cell life and death and as a key target in mitochondria-mediated neurodegeneration and neuroprotection.
Collapse
Affiliation(s)
- Nelli Mnatsakanyan
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, USA.
| | - Elizabeth Ann Jonas
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
18
|
Assali EA, Jones AE, Veliova M, Acín-Pérez R, Taha M, Miller N, Shum M, Oliveira MF, Las G, Liesa M, Sekler I, Shirihai OS. NCLX prevents cell death during adrenergic activation of the brown adipose tissue. Nat Commun 2020; 11:3347. [PMID: 32620768 PMCID: PMC7334226 DOI: 10.1038/s41467-020-16572-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 05/06/2020] [Indexed: 01/30/2023] Open
Abstract
A sharp increase in mitochondrial Ca2+ marks the activation of brown adipose tissue (BAT) thermogenesis, yet the mechanisms preventing Ca2+ deleterious effects are poorly understood. Here, we show that adrenergic stimulation of BAT activates a PKA-dependent mitochondrial Ca2+ extrusion via the mitochondrial Na+/Ca2+ exchanger, NCLX. Adrenergic stimulation of NCLX-null brown adipocytes (BA) induces a profound mitochondrial Ca2+ overload and impaired uncoupled respiration. Core body temperature, PET imaging of glucose uptake and VO2 measurements confirm a thermogenic defect in NCLX-null mice. We show that Ca2+ overload induced by adrenergic stimulation of NCLX-null BAT, triggers the mitochondrial permeability transition pore (mPTP) opening, leading to a remarkable mitochondrial swelling and cell death. Treatment with mPTP inhibitors rescue mitochondrial function and thermogenesis in NCLX-null BAT, while calcium overload persists. Our findings identify a key pathway through which BA evade apoptosis during adrenergic stimulation of uncoupling. NCLX deletion transforms the adrenergic pathway responsible for thermogenesis activation into a death pathway.
Collapse
Affiliation(s)
- Essam A Assali
- Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Clinical Biochemistry, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, 84103, Israel
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, 84105, Israel
| | - Anthony E Jones
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Michaela Veliova
- Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Rebeca Acín-Pérez
- Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Mahmoud Taha
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, 84105, Israel
| | - Nathanael Miller
- Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Michaël Shum
- Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Marcus F Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Guy Las
- Department of Clinical Biochemistry, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, 84103, Israel
| | - Marc Liesa
- Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Israel Sekler
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, 84105, Israel.
| | - Orian S Shirihai
- Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Clinical Biochemistry, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, 84103, Israel.
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
19
|
Carraro M, Carrer A, Urbani A, Bernardi P. Molecular nature and regulation of the mitochondrial permeability transition pore(s), drug target(s) in cardioprotection. J Mol Cell Cardiol 2020; 144:76-86. [DOI: 10.1016/j.yjmcc.2020.05.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/28/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022]
|
20
|
Mnatsakanyan N, Jonas EA. ATP synthase c-subunit ring as the channel of mitochondrial permeability transition: Regulator of metabolism in development and degeneration. J Mol Cell Cardiol 2020; 144:109-118. [PMID: 32461058 PMCID: PMC7877492 DOI: 10.1016/j.yjmcc.2020.05.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/07/2020] [Accepted: 05/20/2020] [Indexed: 12/29/2022]
Abstract
The mitochondrial permeability transition pore (mPTP) or mitochondrial megachannel is arguably one of the most mysterious phenomena in biology today. mPTP has been at the center of ongoing extensive scientific research for the last several decades. In this review we will discuss recent advances in the field that enhance our understanding of the molecular composition of mPTP, its regulatory mechanisms and its pathophysiological role. We will describe our recent findings on the role of ATP synthase c-subunit ring as a central player in mitochondrial permeability transition and as an important metabolic regulator during development and in degenerative diseases.
Collapse
Affiliation(s)
- Nelli Mnatsakanyan
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, USA.
| | - Elizabeth Ann Jonas
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
21
|
Bround MJ, Bers DM, Molkentin JD. A 20/20 view of ANT function in mitochondrial biology and necrotic cell death. J Mol Cell Cardiol 2020; 144:A3-A13. [PMID: 32454061 DOI: 10.1016/j.yjmcc.2020.05.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/16/2020] [Accepted: 05/20/2020] [Indexed: 12/25/2022]
Abstract
The adenosine nucleotide translocase (ANT) family of proteins are inner mitochondrial membrane proteins involved in energy homeostasis and cell death. The primary function of ANT proteins is to exchange cytosolic ADP with matrix ATP, facilitating the export of newly synthesized ATP to the cell while providing new ADP substrate to the mitochondria. As such, the ANT proteins are central to maintaining energy homeostasis in all eukaryotic cells. Evidence also suggests that the ANTs constitute a pore-forming component of the mitochondrial permeability transition pore (MPTP), a structure that forms in the inner mitochondrial membrane that is thought to underlie regulated necrotic cell death. Additionally, emerging studies suggest that ANT proteins are also critical for mitochondrial uncoupling and for promoting mitophagy. Thus, the ANTs are multifunctional proteins that are poised to participate in several aspects of mitochondrial biology and the greater regulation of cell death, which will be discussed here.
Collapse
Affiliation(s)
- Michael J Bround
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | - Jeffery D Molkentin
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA; Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
22
|
Allosteric Regulation of NCLX by Mitochondrial Membrane Potential Links the Metabolic State and Ca 2+ Signaling in Mitochondria. Cell Rep 2019; 25:3465-3475.e4. [PMID: 30566870 DOI: 10.1016/j.celrep.2018.11.084] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/24/2018] [Accepted: 11/21/2018] [Indexed: 12/19/2022] Open
Abstract
Calcium is a key regulator of mitochondrial function under both normal and pathological conditions. The mechanisms linking metabolic activity to mitochondrial Ca2+ signaling remain elusive, however. Here, by monitoring mitochondrial Ca2+ transients while manipulating mitochondrial membrane potential (ΔΨm), we found that mild fluctuations in ΔΨm, which do not affect Ca2+ influx, are sufficient to strongly regulate NCLX, the major efflux pathway of Ca2+ from the mitochondria. Phosphorylation of NCLX or expression of phosphomimicking mutant (S258D) rescued NCLX activity from ΔΨm-driven allosteric inhibition. By screening ΔΨm sensitivity of NCLX mutants, we also identified amino acid residues that, through functional interaction with Ser258, control NCLX regulation. Finally, we find that glucose-driven ΔΨm changes in pancreatic β-cells control mitochondrial Ca2+ signaling primarily via NCLX regulation. Our results identify a feedback control between metabolic activity and mitochondrial Ca2+ signaling and the "safety valve" NCLX phosphorylation that can rescue Ca2+ efflux in depolarized mitochondria.
Collapse
|
23
|
Cecatto C, Amaral AU, Wajner A, Wajner SM, Castilho RF, Wajner M. Disturbance of mitochondrial functions associated with permeability transition pore opening induced by cis-5-tetradecenoic and myristic acids in liver of adolescent rats. Mitochondrion 2019; 50:1-13. [PMID: 31655165 DOI: 10.1016/j.mito.2019.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/11/2019] [Accepted: 09/23/2019] [Indexed: 12/30/2022]
Abstract
Patients affected by very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency commonly present liver dysfunction whose pathogenesis is poorly known. We demonstrate here that major metabolites accumulating in this disorder, namely cis-5-tetradecenoic acid (Cis-5) and myristic acid (Myr), markedly impair mitochondrial respiration, decreasing ATP production in liver mitochondrial preparations from adolescent rats. Other parameters of mitochondrial homeostasis such as membrane potential (ΔΨm) and Ca2+retention capacity were strongly compromised by these fatty acids, involving induction of mitochondrial permeability transition. The present data indicate that disruption of mitochondrial bioenergetics and Ca2+homeostasis may contribute to the liver dysfunction of VLCAD deficient patients.
Collapse
Affiliation(s)
- Cristiane Cecatto
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alexandre Umpierrez Amaral
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Ciências Biológicas, Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, RS, Brazil
| | - Alessandro Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Simone Magagnin Wajner
- Departamento de Medicina Interna, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Roger Frigério Castilho
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| |
Collapse
|
24
|
Lambert JP, Luongo TS, Tomar D, Jadiya P, Gao E, Zhang X, Lucchese AM, Kolmetzky DW, Shah NS, Elrod JW. MCUB Regulates the Molecular Composition of the Mitochondrial Calcium Uniporter Channel to Limit Mitochondrial Calcium Overload During Stress. Circulation 2019; 140:1720-1733. [PMID: 31533452 DOI: 10.1161/circulationaha.118.037968] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The mitochondrial calcium uniporter (mtCU) is an ≈700-kD multisubunit channel residing in the inner mitochondrial membrane required for mitochondrial Ca2+ (mCa2+) uptake. Here, we detail the contribution of MCUB, a paralog of the pore-forming subunit MCU, in mtCU regulation and function and for the first time investigate the relevance of MCUB to cardiac physiology. METHODS We created a stable MCUB knockout cell line (MCUB-/-) using CRISPR-Cas9n technology and generated a cardiac-specific, tamoxifen-inducible MCUB mutant mouse (CAG-CAT-MCUB x MCM; MCUB-Tg) for in vivo assessment of cardiac physiology and response to ischemia/reperfusion injury. Live-cell imaging and high-resolution spectrofluorometery were used to determine intracellular Ca2+ exchange and size-exclusion chromatography; blue native page and immunoprecipitation studies were used to determine the molecular function and impact of MCUB on the high-molecular-weight mtCU complex. RESULTS Using genetic gain- and loss-of-function approaches, we show that MCUB expression displaces MCU from the functional mtCU complex and thereby decreases the association of mitochondrial calcium uptake 1 and 2 (MICU1/2) to alter channel gating. These molecular changes decrease MICU1/2-dependent cooperative activation of the mtCU, thereby decreasing mCa2+ uptake. Furthermore, we show that MCUB incorporation into the mtCU is a stress-responsive mechanism to limit mCa2+ overload during cardiac injury. Indeed, overexpression of MCUB is sufficient to decrease infarct size after ischemia/reperfusion injury. However, MCUB incorporation into the mtCU does come at a cost; acute decreases in mCa2+ uptake impair mitochondrial energetics and contractile function. CONCLUSIONS We detail a new regulatory mechanism to modulate mtCU function and mCa2+ uptake. Our results suggest that MCUB-dependent changes in mtCU stoichiometry are a prominent regulatory mechanism to modulate mCa2+ uptake and cellular physiology.
Collapse
Affiliation(s)
- Jonathan P Lambert
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | - Timothy S Luongo
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | - Dhanendra Tomar
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | - Pooja Jadiya
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | - Erhe Gao
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | - Xueqian Zhang
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | - Anna Maria Lucchese
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | - Devin W Kolmetzky
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | - Neil S Shah
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | - John W Elrod
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| |
Collapse
|
25
|
Duncan GJ, Manesh SB, Hilton BJ, Assinck P, Plemel JR, Tetzlaff W. The fate and function of oligodendrocyte progenitor cells after traumatic spinal cord injury. Glia 2019; 68:227-245. [PMID: 31433109 DOI: 10.1002/glia.23706] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/24/2019] [Accepted: 08/01/2019] [Indexed: 12/27/2022]
Abstract
Oligodendrocyte progenitor cells (OPCs) are the most proliferative and dispersed population of progenitor cells in the adult central nervous system, which allows these cells to rapidly respond to damage. Oligodendrocytes and myelin are lost after traumatic spinal cord injury (SCI), compromising efficient conduction and, potentially, the long-term health of axons. In response, OPCs proliferate and then differentiate into new oligodendrocytes and Schwann cells to remyelinate axons. This culminates in highly efficient remyelination following experimental SCI in which nearly all intact demyelinated axons are remyelinated in rodent models. However, myelin regeneration comprises only one role of OPCs following SCI. OPCs contribute to scar formation after SCI and restrict the regeneration of injured axons. Moreover, OPCs alter their gene expression following demyelination, express cytokines and perpetuate the immune response. Here, we review the functional contribution of myelin regeneration and other recently uncovered roles of OPCs and their progeny to repair following SCI.
Collapse
Affiliation(s)
- Greg J Duncan
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, Oregon
| | - Sohrab B Manesh
- Graduate Program in Neuroscience, International Collaboration on Repair Discoveries (ICORD), University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Brett J Hilton
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Peggy Assinck
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Jason R Plemel
- Department of Medicine, Division of Neurology, Neuroscience and Mental Health Institute, University of Alberta, Calgary, Alberta, Canada
| | - Wolfram Tetzlaff
- Graduate Program in Neuroscience, International Collaboration on Repair Discoveries (ICORD), University of British Columbia (UBC), Vancouver, British Columbia, Canada.,Departments of Zoology and Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
26
|
Antonucci S, Mulvey JF, Burger N, Di Sante M, Hall AR, Hinchy EC, Caldwell ST, Gruszczyk AV, Deshwal S, Hartley RC, Kaludercic N, Murphy MP, Di Lisa F, Krieg T. Selective mitochondrial superoxide generation in vivo is cardioprotective through hormesis. Free Radic Biol Med 2019; 134:678-687. [PMID: 30731114 PMCID: PMC6607027 DOI: 10.1016/j.freeradbiomed.2019.01.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 01/14/2023]
Abstract
Reactive oxygen species (ROS) have an equivocal role in myocardial ischaemia reperfusion injury. Within the cardiomyocyte, mitochondria are both a major source and target of ROS. We evaluate the effects of a selective, dose-dependent increase in mitochondrial ROS levels on cardiac physiology using the mitochondria-targeted redox cycler MitoParaquat (MitoPQ). Low levels of ROS decrease the susceptibility of neonatal rat ventricular myocytes (NRVMs) to anoxia/reoxygenation injury and also cause profound protection in an in vivo mouse model of ischaemia/reperfusion. However higher doses of MitoPQ resulted in a progressive alteration of intracellular [Ca2+] homeostasis and mitochondrial function in vitro, leading to dysfunction and death at high doses. Our data show that a primary increase in mitochondrial ROS can alter cellular function, and support a hormetic model in which low levels of ROS are cardioprotective while higher levels of ROS are cardiotoxic.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Apoptosis
- Disease Models, Animal
- Herbicides/pharmacology
- Hormesis
- Male
- Mice
- Mice, Inbred C57BL
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Myocardial Reperfusion Injury/metabolism
- Myocardial Reperfusion Injury/pathology
- Myocardial Reperfusion Injury/prevention & control
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Paraquat/pharmacology
- Rats
- Rats, Wistar
- Superoxides/metabolism
Collapse
Affiliation(s)
- Salvatore Antonucci
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
| | - John F Mulvey
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
| | - Nils Burger
- Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
| | - Moises Di Sante
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
| | - Andrew R Hall
- Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
| | - Elizabeth C Hinchy
- Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
| | | | - Anja V Gruszczyk
- Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
| | - Soni Deshwal
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
| | | | - Nina Kaludercic
- Neuroscience Institute, National Research Council of Italy (CNR), 35131, Padova, Italy
| | - Michael P Murphy
- Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
| | - Fabio Di Lisa
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy; Neuroscience Institute, National Research Council of Italy (CNR), 35131, Padova, Italy.
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK.
| |
Collapse
|
27
|
Villanueva-Paz M, Povea-Cabello S, Villalón-García I, Suárez-Rivero JM, Álvarez-Córdoba M, de la Mata M, Talaverón-Rey M, Jackson S, Sánchez-Alcázar JA. Pathophysiological characterization of MERRF patient-specific induced neurons generated by direct reprogramming. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:861-881. [PMID: 30797798 DOI: 10.1016/j.bbamcr.2019.02.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/19/2018] [Accepted: 02/15/2019] [Indexed: 12/13/2022]
Abstract
Mitochondrial diseases are a group of rare heterogeneous genetic disorders caused by total or partial mitochondrial dysfunction. They can be caused by mutations in nuclear or mitochondrial DNA (mtDNA). MERRF (Myoclonic Epilepsy with Ragged-Red Fibers) syndrome is one of the most common mitochondrial disorders caused by point mutations in mtDNA. It is mainly caused by the m.8344A > G mutation in the tRNALys (UUR) gene of mtDNA (MT-TK gene). This mutation affects the translation of mtDNA encoded proteins; therefore, the assembly of the electron transport chain (ETC) complexes is disrupted, leading to a reduced mitochondrial respiratory function. However, the molecular pathogenesis of MERRF syndrome remains poorly understood due to the lack of appropriate cell models, particularly in those cell types most affected in the disease such as neurons. Patient-specific induced neurons (iNs) are originated from dermal fibroblasts derived from different individuals carrying the particular mutation causing the disease. Therefore, patient-specific iNs can be used as an excellent cell model to elucidate the mechanisms underlying MERRF syndrome. Here we present for the first time the generation of iNs from MERRF dermal fibroblasts by direct reprograming, as well as a series of pathophysiological characterizations which can be used for testing the impact of a specific mtDNA mutation on neurons and screening for drugs that can correct the phenotype.
Collapse
Affiliation(s)
- Marina Villanueva-Paz
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain
| | - Suleva Povea-Cabello
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain
| | - Irene Villalón-García
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain
| | - Juan M Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain
| | - Mario de la Mata
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain
| | - Marta Talaverón-Rey
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain
| | - Sandra Jackson
- Department of Neurology, Uniklinikum C. G. Carus, Dresden, Germany
| | - José A Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain.
| |
Collapse
|
28
|
Regulation of permeability transition pore opening in mitochondria by external NAD(H). Biochim Biophys Acta Gen Subj 2019; 1863:771-783. [PMID: 30763605 DOI: 10.1016/j.bbagen.2019.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/18/2018] [Accepted: 01/07/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND The opening of the permeability transition pore (PTP) in mitochondria plays a critical role in the pathogenesis of numerous diseases. Mitochondrial matrix pyridine nucleotides are potent regulators of the PTP, but the role of extramitochondrial nucleotides is unclear. METHODS The PTP opening was explored in isolated mitochondria and mitochondria in permeabilized differentiated and undifferentiated cells in the presence of added NAD(P)(H) in combination with Mg2+, adenine nucleotides (AN), and the inhibitors of AN translocase (ANT), voltage-dependent anion channel (VDAC), and cyclophilin D. RESULTS Added NAD(H) and AN, but not NADP(H), inhibited the PTP opening with comparable potency. PTP suppression required neither NAD(H) oxidation nor reduction. The protective effects of NAD(H) and cyclosporin A were synergistic, and the effects of NAD(H) and millimolar AN were additive. The conformation-specific ANT inhibitors were unable to cancel the protective effect of NADH even under total ANT inhibition. Besides, NAD(H) activated the efflux of mitochondrial AN via ANT. VDAC ligand (Mg2+) and blockers (G3139 and 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid) potentiated and attenuated the protective effect of NAD(H), respectively. However, in embryonic and cancer (undifferentiated) cells, in contrast to isolated differentiated hepatocytes and cardiocytes, the suppression of PTP opening by NADH was negligible though all cells tested possessed a full set of VDAC isoforms. CONCLUSIONS The study revealed a novel mechanism of PTP regulation by external (cytosolic) NAD(H) through the allosteric site in the OM or the intermembrane space. GENERAL SIGNIFICANCE The mechanism might contribute to the resistance of differentiated cells under different pathological conditions including ischemia/reperfusion.
Collapse
|
29
|
He L, Zhang MF, Pan ZY, Wang KN, Zhao ZJ, Li Y, Mao ZW. A mitochondria-targeted iridium(iii)-based photoacid generator induces dual-mode photodynamic damage within cancer cells. Chem Commun (Camb) 2019; 55:10472-10475. [DOI: 10.1039/c9cc04871e] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An Ir(iii)-based photoacid generator was developed as a dual-mode photodynamic therapy agent to kill cancer cells under hypoxic conditions.
Collapse
Affiliation(s)
- Liang He
- Department of Applied Chemistry
- College of Materials and Energy
- South China Agricultural University
- Guangzhou 510642
- China
| | - Ming-Fang Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Zheng-Yin Pan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Kang-Nan Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Zi-Jian Zhao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Yi Li
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
- Xiangtan 411201
| | - Zong-Wan Mao
- Department of Applied Chemistry
- College of Materials and Energy
- South China Agricultural University
- Guangzhou 510642
- China
| |
Collapse
|
30
|
Zhou Z, Austin GL, Young LEA, Johnson LA, Sun R. Mitochondrial Metabolism in Major Neurological Diseases. Cells 2018; 7:E229. [PMID: 30477120 PMCID: PMC6316877 DOI: 10.3390/cells7120229] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 01/18/2023] Open
Abstract
Mitochondria are bilayer sub-cellular organelles that are an integral part of normal cellular physiology. They are responsible for producing the majority of a cell's ATP, thus supplying energy for a variety of key cellular processes, especially in the brain. Although energy production is a key aspect of mitochondrial metabolism, its role extends far beyond energy production to cell signaling and epigenetic regulation⁻functions that contribute to cellular proliferation, differentiation, apoptosis, migration, and autophagy. Recent research on neurological disorders suggest a major metabolic component in disease pathophysiology, and mitochondria have been shown to be in the center of metabolic dysregulation and possibly disease manifestation. This review will discuss the basic functions of mitochondria and how alterations in mitochondrial activity lead to neurological disease progression.
Collapse
Affiliation(s)
- Zhengqiu Zhou
- Molecular & Cellular Biochemistry Department, University of Kentucky, Lexington, KY 40536, USA.
| | - Grant L Austin
- Molecular & Cellular Biochemistry Department, University of Kentucky, Lexington, KY 40536, USA.
| | - Lyndsay E A Young
- Molecular & Cellular Biochemistry Department, University of Kentucky, Lexington, KY 40536, USA.
| | - Lance A Johnson
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA.
| | - Ramon Sun
- Molecular & Cellular Biochemistry Department, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
31
|
Georgieva ER. Non-Structural Proteins from Human T-cell Leukemia Virus Type 1 in Cellular Membranes-Mechanisms for Viral Survivability and Proliferation. Int J Mol Sci 2018; 19:ijms19113508. [PMID: 30413005 PMCID: PMC6274929 DOI: 10.3390/ijms19113508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/01/2018] [Accepted: 11/06/2018] [Indexed: 12/27/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the causative agent of illnesses, such as adult T-cell leukemia/lymphoma, myelopathy/tropical spastic paraparesis (a neurodegenerative disorder), and other diseases. Therefore, HTLV-1 infection is a serious public health concern. Currently, diseases caused by HTLV-1 cannot be prevented or cured. Hence, there is a pressing need to comprehensively understand the mechanisms of HTLV-1 infection and intervention in host cell physiology. HTLV-1-encoded non-structural proteins that reside and function in the cellular membranes are of particular interest, because they alter cellular components, signaling pathways, and transcriptional mechanisms. Summarized herein is the current knowledge about the functions of the membrane-associated p8I, p12I, and p13II regulatory non-structural proteins. p12I resides in endomembranes and interacts with host proteins on the pathways of signal transduction, thus preventing immune responses to the virus. p8I is a proteolytic product of p12I residing in the plasma membrane, where it contributes to T-cell deactivation and participates in cellular conduits, enhancing virus transmission. p13II associates with the inner mitochondrial membrane, where it is proposed to function as a potassium channel. Potassium influx through p13II in the matrix causes membrane depolarization and triggers processes that lead to either T-cell activation or cell death through apoptosis.
Collapse
Affiliation(s)
- Elka R Georgieva
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
32
|
Kasimova MA, Lindahl E, Delemotte L. Determining the molecular basis of voltage sensitivity in membrane proteins. J Gen Physiol 2018; 150:1444-1458. [PMID: 30150239 PMCID: PMC6168238 DOI: 10.1085/jgp.201812086] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 08/07/2018] [Indexed: 12/31/2022] Open
Abstract
The identification of voltage-sensing elements in membrane proteins is challenging due to the diversity of voltage-sensing mechanisms. Kasimova et al. present a computational approach to predict the elements involved in voltage sensing, which they validate using voltage-gated ion channels. Voltage-sensitive membrane proteins are united by their ability to transform changes in membrane potential into mechanical work. They are responsible for a spectrum of physiological processes in living organisms, including electrical signaling and cell-cycle progression. Although the mechanism of voltage-sensing has been well characterized for some membrane proteins, including voltage-gated ion channels, even the location of the voltage-sensing elements remains unknown for others. Moreover, the detection of these elements by using experimental techniques is challenging because of the diversity of membrane proteins. Here, we provide a computational approach to predict voltage-sensing elements in any membrane protein, independent of its structure or function. It relies on an estimation of the propensity of a protein to respond to changes in membrane potential. We first show that this property correlates well with voltage sensitivity by applying our approach to a set of voltage-sensitive and voltage-insensitive membrane proteins. We further show that it correctly identifies authentic voltage-sensitive residues in the voltage-sensor domain of voltage-gated ion channels. Finally, we investigate six membrane proteins for which the voltage-sensing elements have not yet been characterized and identify residues and ions that might be involved in the response to voltage. The suggested approach is fast and simple and enables a characterization of voltage sensitivity that goes beyond mere identification of charges. We anticipate that its application before mutagenesis experiments will significantly reduce the number of potential voltage-sensitive elements to be tested.
Collapse
Affiliation(s)
- Marina A Kasimova
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Erik Lindahl
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden.,Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Lucie Delemotte
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
33
|
Molecular Mechanisms of Apoptosis in HepaRG Cell Line Induced by Polyphyllin VI via the Fas Death Pathway and Mitochondrial-Dependent Pathway. Toxins (Basel) 2018; 10:toxins10050201. [PMID: 29762502 PMCID: PMC5983257 DOI: 10.3390/toxins10050201] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 12/27/2022] Open
Abstract
Polyphyllin VI, which is an active saponin, is mainly isolated from traditional medicinal plant Paris polyphylla, which causes liver damage in rats. In the present study, we aimed to explore the potential cytotoxicity of polyphyllin VI on the growth of HepaRG cells and to determine the molecular mechanism. The results revealed that polyphyllin VI changed cell morphology and induced apoptosis in HepaRG cells. Flow cytometric assay displayed that polyphyllin VI promoted the generation of reactive oxygen species (ROS), depolarized the mitochondrial membrane potential (MMP), and induced S phase cell cycle arrest by decreasing the expression of cyclin A2 and CDK2, while significantly increasing the expression of p21 protein. Polyphyllin VI induced the release of cytochrome c from the mitochondria to the cytosol and activated Fas, caspase-3, -8, -9, and PARP proteins. Pretreatment with NAC and Z-VAD-FMK (ROS scavenger and caspase inhibitor, respectively) on HepaRG cells increased the percentage of viable cells, which indicated that polyphyllin VI induced cell apoptosis through mitochondrial pathway by the generation of ROS and Fas death-dependent pathway. All of the effects are in dose- and time-dependent manners. Taken together, these findings emphasize the necessity of risk assessment to polyphyllin VI and offer an insight into polyphyllin VI-induced apoptosis of HepaRG cells.
Collapse
|
34
|
Berry BJ, Trewin AJ, Amitrano AM, Kim M, Wojtovich AP. Use the Protonmotive Force: Mitochondrial Uncoupling and Reactive Oxygen Species. J Mol Biol 2018; 430:3873-3891. [PMID: 29626541 DOI: 10.1016/j.jmb.2018.03.025] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/21/2018] [Accepted: 03/26/2018] [Indexed: 02/06/2023]
Abstract
Mitochondrial respiration results in an electrochemical proton gradient, or protonmotive force (pmf), across the mitochondrial inner membrane. The pmf is a form of potential energy consisting of charge (∆ψm) and chemical (∆pH) components, that together drive ATP production. In a process called uncoupling, proton leak into the mitochondrial matrix independent of ATP production dissipates the pmf and energy is lost as heat. Other events can directly dissipate the pmf independent of ATP production as well, such as chemical exposure or mechanisms involving regulated mitochondrial membrane electrolyte transport. Uncoupling has defined roles in metabolic plasticity and can be linked through signal transduction to physiologic events. In the latter case, the pmf impacts mitochondrial reactive oxygen species (ROS) production. Although capable of molecular damage, ROS also have signaling properties that depend on the timing, location, and quantity of their production. In this review, we provide a general overview of mitochondrial ROS production, mechanisms of uncoupling, and how these work in tandem to affect physiology and pathologies, including obesity, cardiovascular disease, and immunity. Overall, we highlight that isolated bioenergetic models-mitochondria and cells-only partially recapitulate the complex link between the pmf and ROS signaling that occurs in vivo.
Collapse
Affiliation(s)
- Brandon J Berry
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Box 711/604, 575 Elmwood Ave., Rochester, NY 14642, USA.
| | - Adam J Trewin
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Box 711/604, 575 Elmwood Ave., Rochester, NY 14642, USA.
| | - Andrea M Amitrano
- Department of Pathology, University of Rochester Medical Center, Box 609, 601 Elmwood Ave., Rochester, NY 14642, USA; Department of Microbiology and Immunology, University of Rochester Medical Center, Box 609, 601 Elmwood Ave., Rochester, NY 14642, USA.
| | - Minsoo Kim
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Box 711/604, 575 Elmwood Ave., Rochester, NY 14642, USA; Department of Pathology, University of Rochester Medical Center, Box 609, 601 Elmwood Ave., Rochester, NY 14642, USA; Department of Microbiology and Immunology, University of Rochester Medical Center, Box 609, 601 Elmwood Ave., Rochester, NY 14642, USA.
| | - Andrew P Wojtovich
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Box 711/604, 575 Elmwood Ave., Rochester, NY 14642, USA; Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Box 711/604, 575 Elmwood Ave., Rochester, NY 14642, USA.
| |
Collapse
|
35
|
Antoniel M, Jones K, Antonucci S, Spolaore B, Fogolari F, Petronilli V, Giorgio V, Carraro M, Di Lisa F, Forte M, Szabó I, Lippe G, Bernardi P. The unique histidine in OSCP subunit of F-ATP synthase mediates inhibition of the permeability transition pore by acidic pH. EMBO Rep 2018; 19:257-268. [PMID: 29217657 PMCID: PMC5797955 DOI: 10.15252/embr.201744705] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 11/09/2017] [Accepted: 11/14/2017] [Indexed: 01/19/2023] Open
Abstract
The permeability transition pore (PTP) is a Ca2+-dependent mitochondrial channel whose opening causes a permeability increase in the inner membrane to ions and solutes. The most potent inhibitors are matrix protons, with channel block at pH 6.5. Inhibition is reversible, mediated by histidyl residue(s), and prevented by their carbethoxylation by diethylpyrocarbonate (DPC), but their assignment is unsolved. We show that PTP inhibition by H+ is mediated by the highly conserved histidyl residue (H112 in the human mature protein) of oligomycin sensitivity conferral protein (OSCP) subunit of mitochondrial F1FO (F)-ATP synthase, which we also show to undergo carbethoxylation after reaction of mitochondria with DPC. Mitochondrial PTP-dependent swelling cannot be inhibited by acidic pH in H112Q and H112Y OSCP mutants, and the corresponding megachannels (the electrophysiological counterpart of the PTP) are insensitive to inhibition by acidic pH in patch-clamp recordings of mitoplasts. Cells harboring the H112Q and H112Y mutations are sensitized to anoxic cell death at acidic pH. These results demonstrate that PTP channel formation and its inhibition by H+ are mediated by the F-ATP synthase.
Collapse
Affiliation(s)
- Manuela Antoniel
- Consiglio Nazionale delle Ricerche Institute of Neuroscience, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Kristen Jones
- Vollum Institute, Oregon Health and Sciences University, Portland, OR, USA
| | - Salvatore Antonucci
- Consiglio Nazionale delle Ricerche Institute of Neuroscience, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Barbara Spolaore
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Federico Fogolari
- Department of Mathematics, Computer Sciences and Physics, University of Udine, Udine, Italy
| | - Valeria Petronilli
- Consiglio Nazionale delle Ricerche Institute of Neuroscience, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Valentina Giorgio
- Consiglio Nazionale delle Ricerche Institute of Neuroscience, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Michela Carraro
- Consiglio Nazionale delle Ricerche Institute of Neuroscience, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Fabio Di Lisa
- Consiglio Nazionale delle Ricerche Institute of Neuroscience, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Michael Forte
- Vollum Institute, Oregon Health and Sciences University, Portland, OR, USA
| | - Ildikó Szabó
- Department of Biology, University of Padova, Padova, Italy
| | - Giovanna Lippe
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Paolo Bernardi
- Consiglio Nazionale delle Ricerche Institute of Neuroscience, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
36
|
Vygodina TV, Mukhaleva E, Azarkina NV, Konstantinov AA. Cytochrome c oxidase inhibition by calcium at physiological ionic composition of the medium: Implications for physiological significance of the effect. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:982-990. [DOI: 10.1016/j.bbabio.2017.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 08/22/2017] [Accepted: 08/28/2017] [Indexed: 10/18/2022]
|
37
|
Kuang S, Liu G, Cao R, Zhang L, Yu Q, Sun C. Mansouramycin C kills cancer cells through reactive oxygen species production mediated by opening of mitochondrial permeability transition pore. Oncotarget 2017; 8:104057-104071. [PMID: 29262621 PMCID: PMC5732787 DOI: 10.18632/oncotarget.22004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 10/02/2017] [Indexed: 11/25/2022] Open
Abstract
Cancer is one of the deadliest diseases in the world and the search for novel anticancer agents is urgently required. Marine-derived isoquinolinequinones have exhibited promising anticancer activities. However, the exact mechanisms of cytotoxic activities of these isoquinolinequinones are poorly characterized. In this study, we investigated the anticancer effects and molecular mechanisms of mansouramycin C (Mm C), a cytotoxic isoquinolinequinone isolated from a marine streptomycete. We demonstrated that Mm C preferentially killed cancer cells and the cytotoxic effects were mediated by reactive oxygen species (ROS) generation. Mass spectrometry based proteomic analysis of Mm C-treated A549 cells revealed that many ROS-related proteins were differentially expressed. Proteomic-profiling after Mm C treatment identified oxidative phosphorylation as the most significant changes in pathways. Analysis also revealed extensive defects in mitochondrial structure and function. Furthermore, we disclosed that Mm C-induced ROS generation was caused by opening of mitochondrial permeability transition pore. Notably, Mm C synergized with sorafenib to induce cell death in A549 cells. Hence, we propose that the marine-derived natural compound Mm C is a potent inducer of the mitochondrial permeability transition and a promising anticancer drug candidate. Moreover, molecular mechanisms of Mm C shed new light on the understanding of the cytotoxic mechanisms of marine-derived isoquinolinequiones.
Collapse
Affiliation(s)
- Shan Kuang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ge Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth Science, University of Chinese Academy of Sciences, Beijing, China
| | - Ruobing Cao
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth Science, University of Chinese Academy of Sciences, Beijing, China
| | - Linlin Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth Science, University of Chinese Academy of Sciences, Beijing, China
| | - Qiang Yu
- Division of Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Chaomin Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
38
|
Rottenberg H, Hoek JB. The path from mitochondrial ROS to aging runs through the mitochondrial permeability transition pore. Aging Cell 2017; 16:943-955. [PMID: 28758328 PMCID: PMC5595682 DOI: 10.1111/acel.12650] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2017] [Indexed: 12/23/2022] Open
Abstract
Excessive production of mitochondrial reactive oxygen species (mROS) is strongly associated with mitochondrial and cellular oxidative damage, aging, and degenerative diseases. However, mROS also induces pathways of protection of mitochondria that slow aging, inhibit cell death, and increase lifespan. Recent studies show that the activation of the mitochondrial permeability transition pore (mPTP), which is triggered by mROS and mitochondrial calcium overloading, is enhanced in aged animals and humans and in aging-related degenerative diseases. mPTP opening initiates further production and release of mROS that damage both mitochondrial and nuclear DNA, proteins, and phospholipids, and also releases matrix NAD that is hydrolyzed in the intermembrane space, thus contributing to the depletion of cellular NAD that accelerates aging. Oxidative damage to calcium transporters leads to calcium overload and more frequent opening of mPTP. Because aging enhances the opening of the mPTP and mPTP opening accelerates aging, we suggest that mPTP opening drives the progression of aging. Activation of the mPTP is regulated, directly and indirectly, not only by the mitochondrial protection pathways that are induced by mROS, but also by pro-apoptotic signals that are induced by DNA damage. We suggest that the integration of these contrasting signals by the mPTP largely determines the rate of cell aging and the initiation of cell death, and thus animal lifespan. The suggestion that the control of mPTP activation is critical for the progression of aging can explain the conflicting and confusing evidence regarding the beneficial and deleterious effects of mROS on health and lifespan.
Collapse
Affiliation(s)
- Hagai Rottenberg
- New Hope Biomedical R&D; 23 W. Bridge Street New Hope PA 18038 USA
| | - Jan B. Hoek
- Department of Anatomy, Pathology and Cell Biology; MitoCare Center; Thomas Jefferson University; Philadelphia PA 19107 USA
| |
Collapse
|
39
|
Kovac S, Dinkova Kostova AT, Herrmann AM, Melzer N, Meuth SG, Gorji A. Metabolic and Homeostatic Changes in Seizures and Acquired Epilepsy-Mitochondria, Calcium Dynamics and Reactive Oxygen Species. Int J Mol Sci 2017; 18:E1935. [PMID: 28885567 PMCID: PMC5618584 DOI: 10.3390/ijms18091935] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 09/02/2017] [Accepted: 09/05/2017] [Indexed: 12/17/2022] Open
Abstract
Acquired epilepsies can arise as a consequence of brain injury and result in unprovoked seizures that emerge after a latent period of epileptogenesis. These epilepsies pose a major challenge to clinicians as they are present in the majority of patients seen in a common outpatient epilepsy clinic and are prone to pharmacoresistance, highlighting an unmet need for new treatment strategies. Metabolic and homeostatic changes are closely linked to seizures and epilepsy, although, surprisingly, no potential treatment targets to date have been translated into clinical practice. We summarize here the current knowledge about metabolic and homeostatic changes in seizures and acquired epilepsy, maintaining a particular focus on mitochondria, calcium dynamics, reactive oxygen species and key regulators of cellular metabolism such as the Nrf2 pathway. Finally, we highlight research gaps that will need to be addressed in the future which may help to translate these findings into clinical practice.
Collapse
Affiliation(s)
- Stjepana Kovac
- Department of Neurology, University of Münster, 48149 Münster, Germany.
| | - Albena T Dinkova Kostova
- Division of Cancer Research, School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK.
- Departments of Medicine and Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | - Nico Melzer
- Department of Neurology, University of Münster, 48149 Münster, Germany.
| | - Sven G Meuth
- Department of Neurology, University of Münster, 48149 Münster, Germany.
| | - Ali Gorji
- Department of Neurology, University of Münster, 48149 Münster, Germany.
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1996836111, Iran.
- Department of Neuroscience, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran.
- Department of Neurosurgery, University of Münster, 48149 Münster, Germany.
- Epilepsy Research Center, University of Münster, 48149 Münster, Germany.
| |
Collapse
|
40
|
Optogenetic control of mitochondrial metabolism and Ca 2+ signaling by mitochondria-targeted opsins. Proc Natl Acad Sci U S A 2017; 114:E5167-E5176. [PMID: 28611221 DOI: 10.1073/pnas.1703623114] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Key mitochondrial functions such as ATP production, Ca2+ uptake and release, and substrate accumulation depend on the proton electrochemical gradient (ΔμH+) across the inner membrane. Although several drugs can modulate ΔμH+, their effects are hardly reversible, and lack cellular specificity and spatial resolution. Although channelrhodopsins are widely used to modulate the plasma membrane potential of excitable cells, mitochondria have thus far eluded optogenetic control. Here we describe a toolkit of optometabolic constructs based on selective targeting of channelrhodopsins with distinct functional properties to the inner mitochondrial membrane of intact cells. We show that our strategy enables a light-dependent control of the mitochondrial membrane potential (Δψm) and coupled mitochondrial functions such as ATP synthesis by oxidative phosphorylation, Ca2+ dynamics, and respiratory metabolism. By directly modulating Δψm, the mitochondria-targeted opsins were used to control complex physiological processes such as spontaneous beats in cardiac myocytes and glucose-dependent ATP increase in pancreatic β-cells. Furthermore, our optometabolic tools allow modulation of mitochondrial functions in single cells and defined cell regions.
Collapse
|
41
|
Alleviation by GABA B Receptors of Neurotoxicity Mediated by Mitochondrial Permeability Transition Pore in Cultured Murine Cortical Neurons Exposed to N-Methyl-D-aspartate. Neurochem Res 2017; 43:79-88. [PMID: 28608233 DOI: 10.1007/s11064-017-2311-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/19/2017] [Accepted: 05/24/2017] [Indexed: 01/25/2023]
Abstract
Mitochondrial permeability transition pore (PTP) is supposed to at least in part participate in molecular mechanisms underlying the neurotoxicity seen after overactivation of N-methyl-D-aspartate (NMDA) receptor (NMDAR) in neurons. In this study, we have evaluated whether activation of GABAB receptor (GABABR), which is linked to membrane G protein-coupled inwardly-rectifying K+ ion channels (GIRKs), leads to protection of the NMDA-induced neurotoxicity in a manner relevant to mitochondrial membrane depolarization in cultured embryonic mouse cortical neurons. The cationic fluorescent dye 3,3'-dipropylthiacarbocyanine was used for determination of mitochondrial membrane potential. The PTP opener salicylic acid induced a fluorescence increase with a vitality decrease in a manner sensitive to the PTP inhibitor ciclosporin, while ciclosporin alone was effective in significantly preventing both fluorescence increase and viability decrease by NMDA as seen with an NMDAR antagonist. The NMDA-induced fluorescence increase and viability decrease were similarly prevented by pretreatment with the GABABR agonist baclofen, but not by the GABAAR agonist muscimol, in a fashion sensitive to a GABABR antagonist. Moreover, the GIRK inhibitor tertiapin canceled the inhibition by baclofen of the NMDA-induced fluorescence increase. These results suggest that GABABR rather than GABAAR is protective against the NMDA-induced neurotoxicity mediated by mitochondrial PTP through a mechanism relevant to opening of membrane GIRKs in neurons.
Collapse
|
42
|
Giorgio V, Guo L, Bassot C, Petronilli V, Bernardi P. Calcium and regulation of the mitochondrial permeability transition. Cell Calcium 2017; 70:56-63. [PMID: 28522037 DOI: 10.1016/j.ceca.2017.05.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/05/2017] [Accepted: 05/05/2017] [Indexed: 12/11/2022]
Abstract
Recent years have seen renewed interest in the permeability transition pore, a high conductance channel responsible for permeabilization of the inner mitochondrial membrane, a process that leads to depolarization and Ca2+ release. Transient openings may be involved in physiological Ca2+ homeostasis while long-lasting openings may trigger and/or execute cell death. In this review we specifically focus (i) on the hypothesis that the PTP forms from the F-ATP synthase and (ii) on the mechanisms through which Ca2+ can reversibly switch this energy-conserving nanomachine into an energy-dissipating device.
Collapse
Affiliation(s)
- Valentina Giorgio
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padova, Italy
| | - Lishu Guo
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padova, Italy
| | - Claudio Bassot
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padova, Italy
| | - Valeria Petronilli
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padova, Italy
| | - Paolo Bernardi
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padova, Italy.
| |
Collapse
|
43
|
Marín-Prida J, Pardo Andreu GL, Rossignoli CP, Durruthy MG, Rodríguez EO, Reyes YV, Acosta RF, Uyemura SA, Alberici LC. The cytotoxic effects of VE-3N, a novel 1,4-dihydropyridine derivative, involve the mitochondrial bioenergetic disruption via uncoupling mechanisms. Toxicol In Vitro 2017; 42:21-30. [PMID: 28363597 DOI: 10.1016/j.tiv.2017.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 03/03/2017] [Accepted: 03/27/2017] [Indexed: 01/21/2023]
Abstract
Several 1,4-dihydropyridine derivatives overcome the multidrug resistance in tumors, but their intrinsic cytotoxic mechanisms remain unclear. Here we addressed if mitochondria are involved in the cytotoxicity of the novel 1,4-dihydropyridine derivative VE-3N [ethyl 6-chloro-5-formyl-2-methyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3-carboxylate] towards cancer cells by employing hepatic carcinoma (HepG2) cells and isolated rat liver mitochondria. In HepG2 cells, VE-3N induced mitochondrial membrane potential dissipation, ATP depletion, annexin V/propidium iodide double labeling, and Hoechst staining; events indicating apoptosis induction. In isolated rat liver mitochondria, VE-3N promoted mitochondrial uncoupling by exerting protonophoric actions and by increasing membrane fluidity. Mitochondrial uncoupling was evidenced by an increase in resting respiration, dissipation of mitochondrial membrane potential, inhibition of Ca2+ uptake, stimulation of Ca2+ release, decrease in ATP synthesis, and swelling of valinomycin-treated organelles in hyposmotic potassium acetate media. Furthermore, uncoupling concentrations of VE-3N in the presence of Ca2+ plus ruthenium red induced the mitochondrial permeability transition process. These results indicate that mitochondrial uncoupling is potentially involved in the VE-3N cytotoxic actions towards HepG2 cells. Considering that hepatocellular carcinoma is the most common form of liver cancer, our findings may open a new avenue for the development of VE-3N-based cancer therapies, and help to unravel the cytotoxic mechanisms of 1,4-dihydropyridines towards cancer cells.
Collapse
Affiliation(s)
- Javier Marín-Prida
- Center for Research and Biological Evaluations, Institute of Pharmacy and Food, University of Havana, 222 St. # 2317, La Coronela, La Lisa, Havana, Cuba
| | - Gilberto L Pardo Andreu
- Center for Research and Biological Evaluations, Institute of Pharmacy and Food, University of Havana, 222 St. # 2317, La Coronela, La Lisa, Havana, Cuba.
| | - Camila Pederiva Rossignoli
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Café s/n, 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Michael González Durruthy
- Center for Research and Biological Evaluations, Institute of Pharmacy and Food, University of Havana, 222 St. # 2317, La Coronela, La Lisa, Havana, Cuba
| | - Estael Ochoa Rodríguez
- Laboratory of Organic Synthesis, Faculty of Chemistry, University of Havana, Zapata st./G and Carlitos Aguirre, Vedado Plaza de la Revolución, PO 10400, Havana, Cuba
| | - Yamila Verdecia Reyes
- Laboratory of Organic Synthesis, Faculty of Chemistry, University of Havana, Zapata st./G and Carlitos Aguirre, Vedado Plaza de la Revolución, PO 10400, Havana, Cuba
| | - Roberto Fernández Acosta
- Department of Pharmacy, Institute of Pharmacy and Food, University of Havana, 222 St. # 2317, La Coronela, La Lisa, Havana, Cuba
| | - Sergio A Uyemura
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Café s/n, 14040-903 Ribeirão Preto, São Paulo, Brazil
| | - Luciane C Alberici
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Café s/n, 14040-903, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
44
|
Golovach NG, Cheshchevik VT, Lapshina EA, Ilyich TV, Zavodnik IB. Calcium-Induced Mitochondrial Permeability Transitions: Parameters of Ca 2+ Ion Interactions with Mitochondria and Effects of Oxidative Agents. J Membr Biol 2017; 250:225-236. [PMID: 28251264 DOI: 10.1007/s00232-017-9953-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/21/2017] [Indexed: 12/13/2022]
Abstract
We evaluated the parameters of Ca2+-induced mitochondrial permeability transition (MPT) pore formations, Ca2+ binding constants, stoichiometry, energy of activation, and the effect of oxidative agents, tert-butyl hydroperoxide (tBHP), and hypochlorous acid (HOCl), on Ca2+ -mediated process in rat liver mitochondria. From the Hill plot of the dependence of MPT rate on Ca2+ concentration, we determined the order of interaction of Ca2+ ions with the mitochondrial sites, n = 3, and the apparent Kd = 60 ± 12 µM. We also found the apparent Michaelis-Menten constant, Km, for Ca2+ interactions with mitochondria to be equal to 75 ± 20 µM, whereas that in the presence of 300 µM tBHP was 120 ± 20 µM. Using the Arrhenius plots of the temperature dependences of apparent mitochondrial swelling rate at various Ca2+ concentrations, we calculated the activation energy of the MPT process. ΔEa was 130 ± 20 kJ/mol at temperatures below the break point of the Arrhenius plot (30-34 °C) and 50 ± 9 kJ/mol at higher temperatures. Ca2+ ions induced rapid mitochondrial NADH depletion and membrane depolarization. Prevention of the pore formation by cyclosporin A inhibited Ca2+-dependent mitochondrial depolarization and Mg2+ ions attenuated the potential dissipation. tBHP (10-150 µM) dose-dependently enhanced the rate of MPT opening, whereas the effect of HOCl on MPT depended on the ratio of HOCl/Ca2+. The apparent Km of tBHP interaction with mitochondria in the swelling reaction was found to be Km = 11 ± 3 µM. The present study provides evidence that three calcium ions interact with mitochondrial site with high affinity during MPT. Ca2+-induced MPT pore formations due to mitochondrial membrane protein denaturation resulted in membrane potential dissipation. Oxidants with different mechanisms, tBHP and HOCl, reduced mitochondrial membrane potential and oxidized mitochondrial NADH in EDTA-free medium and had an effect on Ca2+-induced MPT onset.
Collapse
Affiliation(s)
- Nina G Golovach
- Department of Biochemistry, Yanka Kupala State University of Grodno, Blvd. Len. Kom. - 50, 230030, Grodno, Belarus
| | - Vitali T Cheshchevik
- Department of Biochemistry, Yanka Kupala State University of Grodno, Blvd. Len. Kom. - 50, 230030, Grodno, Belarus
| | - Elena A Lapshina
- Department of Biochemistry, Yanka Kupala State University of Grodno, Blvd. Len. Kom. - 50, 230030, Grodno, Belarus
| | - Tatsiana V Ilyich
- Department of Biochemistry, Yanka Kupala State University of Grodno, Blvd. Len. Kom. - 50, 230030, Grodno, Belarus
| | - Ilya B Zavodnik
- Department of Biochemistry, Yanka Kupala State University of Grodno, Blvd. Len. Kom. - 50, 230030, Grodno, Belarus.
| |
Collapse
|
45
|
Nakajima H, Itakura M, Kubo T, Kaneshige A, Harada N, Izawa T, Azuma YT, Kuwamura M, Yamaji R, Takeuchi T. Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH) Aggregation Causes Mitochondrial Dysfunction during Oxidative Stress-induced Cell Death. J Biol Chem 2017; 292:4727-4742. [PMID: 28167533 PMCID: PMC5377786 DOI: 10.1074/jbc.m116.759084] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/23/2017] [Indexed: 01/24/2023] Open
Abstract
Glycolytic glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a multifunctional protein that also mediates cell death under oxidative stress. We reported previously that the active-site cysteine (Cys-152) of GAPDH plays an essential role in oxidative stress-induced aggregation of GAPDH associated with cell death, and a C152A-GAPDH mutant rescues nitric oxide (NO)-induced cell death by interfering with the aggregation of wild type (WT)-GAPDH. However, the detailed mechanism underlying GAPDH aggregate-induced cell death remains elusive. Here we report that NO-induced GAPDH aggregation specifically causes mitochondrial dysfunction. First, we observed a correlation between NO-induced GAPDH aggregation and mitochondrial dysfunction, when GAPDH aggregation occurred at mitochondria in SH-SY5Y cells. In isolated mitochondria, aggregates of WT-GAPDH directly induced mitochondrial swelling and depolarization, whereas mixtures containing aggregates of C152A-GAPDH reduced mitochondrial dysfunction. Additionally, treatment with cyclosporin A improved WT-GAPDH aggregate-induced swelling and depolarization. In doxycycline-inducible SH-SY5Y cells, overexpression of WT-GAPDH augmented NO-induced mitochondrial dysfunction and increased mitochondrial GAPDH aggregation, whereas induced overexpression of C152A-GAPDH significantly suppressed mitochondrial impairment. Further, NO-induced cytochrome c release into the cytosol and nuclear translocation of apoptosis-inducing factor from mitochondria were both augmented in cells overexpressing WT-GAPDH but ameliorated in C152A-GAPDH-overexpressing cells. Interestingly, GAPDH aggregates induced necrotic cell death via a permeability transition pore (PTP) opening. The expression of either WT- or C152A-GAPDH did not affect other cell death pathways associated with protein aggregation, such as proteasome inhibition, gene expression induced by endoplasmic reticulum stress, or autophagy. Collectively, these results suggest that NO-induced GAPDH aggregation specifically induces mitochondrial dysfunction via PTP opening, leading to cell death.
Collapse
Affiliation(s)
| | | | - Takeya Kubo
- From the Laboratory of Veterinary Pharmacology
| | | | | | - Takeshi Izawa
- the Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Science, Osaka Prefecture University, Izumisano, Osaka 5988531, Japan
| | | | - Mitsuru Kuwamura
- the Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Science, Osaka Prefecture University, Izumisano, Osaka 5988531, Japan
| | | | | |
Collapse
|
46
|
Feng G, Liu B, Hou T, Wang X, Cheng H. Mitochondrial Flashes: Elemental Signaling Events in Eukaryotic Cells. Handb Exp Pharmacol 2017; 240:403-422. [PMID: 28233181 DOI: 10.1007/164_2016_129] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Mitochondrial flashes (mitoflashes) are recently discovered mitochondrial activity which reflects chemical and electrical excitation of the organelle. Emerging evidence indicates that mitoflashes represent highly regulated, elementary signaling events that play important roles in physiological and pathophysiological processes in eukaryotes. Furthermore, they are regulated by mitochondrial ROS, Ca2+, and protons, and are intertwined with mitochondrial metabolic processes. As such, targeting mitoflash activity may provide a novel means for the control of mitochondrial metabolism and signaling in health and disease. In this brief review, we summarize salient features and mechanisms of biogenesis of mitoflashes, and synthesize data on mitoflash biology in the context of metabolism, cell differentiation, stress response, disease, and ageing.
Collapse
Affiliation(s)
- Gaomin Feng
- Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Beibei Liu
- Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Tingting Hou
- Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Xianhua Wang
- Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Heping Cheng
- Institute of Molecular Medicine, Peking University, Beijing, 100871, China.
| |
Collapse
|
47
|
Zhang XG, Zhao L, Zhang Y, Li YY, Wang H, Duan GL, Xiao L, Li XR, Chen HP. Extracellular Cl --free-induced cardioprotection against hypoxia/reoxygenation is associated with attenuation of mitochondrial permeability transition pore. Biomed Pharmacother 2016; 86:637-644. [PMID: 28033580 DOI: 10.1016/j.biopha.2016.12.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/04/2016] [Accepted: 12/12/2016] [Indexed: 12/21/2022] Open
Abstract
The isotonic substitution of extracellular chloride by gluconate (extracellular Cl--free) has been demonstrated to elicit cardioprotection by attenuating ischaemia/reperfusion-induced elevation of intracellular chloride ion concentration ([Cl-]i). However, the downstream mechanism underlying the cardioprotective effect of extracellular Cl--free is not fully established. Here, it was investigated whether extracellular Cl--free attenuates mitochondrial dysfunction after hypoxia/reoxygenation (H/R) and whether mitochondrial permeability transition pore (mPTP) plays a key role in the extracellular Cl--free cardioprotection. H9c2 cells were incubated with or without Cl--free solution, in which Cl- was replaced with equimolar gluconate, during H/R. The involvement of mPTP was determined with atractyloside (Atr), a specific mPTP opener. The results showed that extracellular Cl--free attenuated H/R-induced the elevation of [Cl-]i, accompanied by increase of cell viability and reduction of lactate dehydrogenase release. Moreover, extracellular Cl--free inhibited mPTP opening, and improved mitochondria function, as indicated by preserved mitochondrial membrane potential and respiratory chain complex activities, decreased mitochondrial reactive oxygen species generation, and increased ATP content. Intriguingly, pharmacologically opening of the mPTP with Atr attenuated all the protective effects caused by extracellular Cl--free, including suppression of mPTP opening, maintenance of mitochondrial membrane potential, and subsequent improvement of mitochondrial function. These results indicated that extracellular Cl--free protects mitochondria from H/R injury in H9c2 cells and inhibition of mPTP opening is a crucial step in mediating the cardioprotection of extracellular Cl--free.
Collapse
Affiliation(s)
- Xian-Gui Zhang
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, People's Republic of China
| | - Le Zhao
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, People's Republic of China
| | - Yi Zhang
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, People's Republic of China
| | - Yuan-Yuan Li
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, People's Republic of China
| | - Huan Wang
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, People's Republic of China
| | - Guang-Ling Duan
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, People's Republic of China
| | - Lin Xiao
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, People's Republic of China
| | - Xiao-Ran Li
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, People's Republic of China
| | - He-Ping Chen
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, People's Republic of China.
| |
Collapse
|
48
|
Elustondo PA, Nichols M, Negoda A, Thirumaran A, Zakharian E, Robertson GS, Pavlov EV. Mitochondrial permeability transition pore induction is linked to formation of the complex of ATPase C-subunit, polyhydroxybutyrate and inorganic polyphosphate. Cell Death Discov 2016; 2:16070. [PMID: 27924223 PMCID: PMC5137186 DOI: 10.1038/cddiscovery.2016.70] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/10/2016] [Accepted: 08/19/2016] [Indexed: 12/25/2022] Open
Abstract
Mitochondrial permeability transition pore (mPTP) opening allows free movement of ions and small molecules leading to mitochondrial membrane depolarization and ATP depletion that triggers cell death. A multi-protein complex of the mitochondrial ATP synthase has an essential role in mPTP. However, the molecular identity of the central 'pore' part of mPTP complex is not known. A highly purified fraction of mammalian mitochondria containing C-subunit of ATPase (C-subunit), calcium, inorganic polyphosphate (polyP) and polyhydroxybutyrate (PHB) forms ion channels with properties that resemble the native mPTP. We demonstrate here that amount of this channel-forming complex dramatically increases in intact mitochondria during mPTP activation. This increase is inhibited by both Cyclosporine A, an inhibitor of mPTP and Ruthenium Red, an inhibitor of the Mitochondrial Calcium Uniporter. Similar increases in the amount of complex formation occurs in areas of mouse brain damaged by ischemia-reperfusion injury. These findings suggest that calcium-induced mPTP is associated with de novo assembly of a channel comprising C-subunit, polyP and PHB.
Collapse
Affiliation(s)
- P A Elustondo
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University , Halifax, NS, B3H 4R2 Canada
| | - M Nichols
- Departments of Psychiatry and Pharmacology, Brain Repair Centre, Faculty of Medicine Dalhousie University , Halifax, NS, B3H 4R2f Canada
| | - A Negoda
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University , Halifax, NS, B3H 4R2 Canada
| | - A Thirumaran
- Departments of Psychiatry and Pharmacology, Brain Repair Centre, Faculty of Medicine Dalhousie University , Halifax, NS, B3H 4R2f Canada
| | - E Zakharian
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine , 1 Illini Drive, Peoria, IL 61605, USA
| | - G S Robertson
- Departments of Psychiatry and Pharmacology, Brain Repair Centre, Faculty of Medicine Dalhousie University , Halifax, NS, B3H 4R2f Canada
| | - E V Pavlov
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, B3H 4R2 Canada; Department of Basic Sciences, New York University, College of Dentistry, 345 East 24th Street, New York, NY 10010, USA
| |
Collapse
|
49
|
Gordan R, Fefelova N, Gwathmey JK, Xie LH. Involvement of mitochondrial permeability transition pore (mPTP) in cardiac arrhythmias: Evidence from cyclophilin D knockout mice. Cell Calcium 2016; 60:363-372. [PMID: 27616659 PMCID: PMC5127715 DOI: 10.1016/j.ceca.2016.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 08/31/2016] [Accepted: 09/01/2016] [Indexed: 02/04/2023]
Abstract
In the present study, we have used a genetic mouse model that lacks cyclophilin D (CypD KO) to assess the cardioprotective effect of mitochondrial permeability transition pore (mPTP) inhibition on Ca2+ waves and Ca2+ alternans at the single cell level, and cardiac arrhythmias in whole-heart preparations. The protonophore carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (FCCP) caused mitochondrial membrane potential depolarization to the same extent in cardiomyocytes from both WT and CypD KO mice, however, cardiomyocytes from CypD KO mice exhibited significantly less mPTP opening than cardiomyocytes from WT mice (p<0.05). Consistent with these results, FCCP caused significant increases in CaW rate in WT cardiomyocytes (p<0.05) but not in CypD KO cardiomyocytes. Furthermore, the incidence of Ca2+ alternans after treatment with FCCP and programmed stimulation was significantly higher in WT cardiomyocytes (11 of 13), than in WT cardiomyocytes treated with CsA (2 of 8; p<0.05) or CypD KO cardiomyocytes (2 of 10; p<0.01). (Pseudo-)Lead II ECGs were recorded from ex vivo hearts. We observed ST-T-wave alternans (a precursor of lethal arrhythmias) in 5 of 7 WT hearts. ST-T-wave alternans was not seen in CypD KO hearts (n=5) and in only 1 of 6 WT hearts treated with CsA. Consistent with these results, WT hearts exhibited a significantly higher average arrhythmia score than CypD KO (p<0.01) hearts subjected to FCCP treatment or chemical ischemia-reperfusion (p<0.01). In conclusion, CypD deficiency- induced mPTP inhibition attenuates CaWs and Ca2+ alternans during mitochondrial depolarization, and thereby protects against arrhythmogenesis in the heart.
Collapse
Affiliation(s)
- Richard Gordan
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ 07103, USA
| | - Nadezhda Fefelova
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ 07103, USA
| | - Judith K Gwathmey
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ 07103, USA
| | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ 07103, USA.
| |
Collapse
|
50
|
Sasanquasaponin-induced cardioprotection involves inhibition of mPTP opening via attenuating intracellular chloride accumulation. Fitoterapia 2016; 116:1-9. [PMID: 27838499 DOI: 10.1016/j.fitote.2016.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/26/2016] [Accepted: 11/06/2016] [Indexed: 11/22/2022]
Abstract
Sasanquasaponin (SQS) has been reported to elicit cardioprotection by suppressing hypoxia/reoxygenation (H/R)-induced elevation of intracellular chloride ion concentration ([Cl-]i). Given that the increased [Cl-]i is involved to modulate the mitochondrial permeability transition pore (mPTP), we herein sought to further investigate the role of mPTP in the cardioprotective effect of SQS on H/R injury. H9c2 cells were incubated for 24h with or without 10μM SQS followed by H/R. The involvement of mPTP was determined with a specific mPTP agonist atractyloside (ATR). The results showed that SQS attenuated H/R-induced the elevation of [Cl-]i, accompanied by reduction of lactate dehydrogenase release and increase of cell viability. Moreover, SQS suppressed mPTP opening, and protected mitochondria, as indicated by preserved mitochondrial membrane potential and respiratory chain complex activities, decreased mitochondrial reactive oxygen species generation, and increased ATP content. Interestingly, extracellular Cl--free condition created by replacing Cl- with equimolar gluconate resulted in a decrease in [Cl-]i and induced protective effects similar to SQS preconditioning, whereas pharmacologically opening of the mPTP with ATR abolished all the protective effects induced by SQS or Cl--free, including suppression of mPTP opening, maintenance of mitochondrial membrane potential, and subsequent improvement of mitochondrial function. The above results allow us to conclude that SQS-induced cardioprotection may be mediated by preserving the mitochondrial function through preventing mPTP opening via inhibition of H/R-induced elevation of [Cl-]i.
Collapse
|