1
|
Bozic I, Lavrnja I. Thiamine and benfotiamine: Focus on their therapeutic potential. Heliyon 2023; 9:e21839. [PMID: 38034619 PMCID: PMC10682628 DOI: 10.1016/j.heliyon.2023.e21839] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Thiamine, also known as vitamin B1, is an essential nutrient that plays a crucial role in energy metabolism and overall health. It is a water-soluble vitamin that plays an important role in the conversion of carbohydrates into energy in the body. Thiamine is essential for the proper functioning of the nervous system, heart and muscles. Thiamine deficiency is a life-threatening disease that leads to various disorders and lesions in the nerves and brain, at least in vertebrates. Several thiamine precursors with higher bioavailability have been developed to compensate for thiamine deficiency, including benfotiamine. Benfotiamine is more bioavailable and has higher tissue penetration than thiamine. Studies have shown its antioxidant and anti-inflammatory potential in activated immune and glial cells. It also improves complications observed in type 2 diabetes and has beneficial effects in mouse models of neurodegenerative disease. Benfotiamine represents an off-the-shelf agent used to support nerve health, promote healthy aging and support glucose metabolism. Accordingly, the present review aimed to provide an overview of the neuroprotective effects of thiamine/benfotiamine in the context of inflammation and oxidative stress.
Collapse
Affiliation(s)
- Iva Bozic
- Institute for Biological Research "Sinisa Stankovic"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Irena Lavrnja
- Institute for Biological Research "Sinisa Stankovic"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
2
|
Jung E, Capel R, Jiang C, Venturi E, Neagu G, Pearcey S, Zhou Y, Zhang Y, Lei M. Cardiac deficiency of P21-activated kinase 1 promotes atrial arrhythmogenesis in mice following adrenergic challenge. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220168. [PMID: 37122217 PMCID: PMC10150202 DOI: 10.1098/rstb.2022.0168] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/24/2022] [Indexed: 05/02/2023] Open
Abstract
P21-activated kinase 1 (Pak1) signalling plays a vital and overall protective role in the heart. However, the phenotypes of Pak1 deficiency in the cardiac atria have not been well explored. In this study, Pak1 cardiac-conditional knock-out (cKO) mice were studied under baseline and adrenergic challenge conditions. Pak1 cKO mice show atrial arrhythmias including atrial fibrillation (AF) in vivo, detected during anaesthetized electrocardiography without evidence of interstitial fibrosis upon Masson's trichrome staining. Optical mapping of left atrial preparations from Pak1 cKO mice revealed a higher incidence of Ca2+ and action potential alternans under isoprenaline challenge and differences in baseline action potential and calcium transient characteristics. Type-2 ryanodine receptor (RyR2) channels from Pak1 cKO hearts had a higher open probability than those from wild-type. Reverse transcription-quantitative polymerase chain reaction and Western blotting indicated that pCamkIIδ and RyR2 are highly phosphorylated at baseline in the atria of Pak1 cKO mice, while the expression of Slc8a2 and Slc8a3 as a Na+-Ca2+ exchanger, controlling the influx of Ca2+ from outside of the cell and efflux of Na+ from the cytoplasm, are augmented. Chromatin immunoprecipitation study showed that pCreb1 interacts with Slc8a2 and Slc8a3. Our study thus demonstrates that deficiency of Pak1 promotes atrial arrhythmogenesis under adrenergic stress, probably through post-translational and transcriptional modifications of key molecules that are critical to Ca2+ homeostasis. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.
Collapse
Affiliation(s)
- Eunjeong Jung
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Rebecca Capel
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Congshan Jiang
- National Regional Children's Medical Center (Northwest); Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province; Xi'an Key Laboratory of Children's Health and Diseases, Shaanxi Institute for Pediatric Diseases; Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University. No. 69, Xijuyuan Lane, Xi'an 710003, People's Republic of China
| | - Elisa Venturi
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Georgiana Neagu
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Sarah Pearcey
- Paediatric Intensive Care, Addenbrooke's Hospital, Cambridge CB2 1QY, UK
| | - Yafei Zhou
- National Regional Children's Medical Center (Northwest); Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province; Xi'an Key Laboratory of Children's Health and Diseases, Shaanxi Institute for Pediatric Diseases; Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University. No. 69, Xijuyuan Lane, Xi'an 710003, People's Republic of China
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China
| | - Yanmin Zhang
- National Regional Children's Medical Center (Northwest); Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province; Xi'an Key Laboratory of Children's Health and Diseases, Shaanxi Institute for Pediatric Diseases; Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University. No. 69, Xijuyuan Lane, Xi'an 710003, People's Republic of China
- Institute of Cardiovascular Sciences, Faculty of Medicine and Human Science, University of Manchester, Manchester, M13, 9GB UK
| | - Ming Lei
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China
| |
Collapse
|
3
|
Wei J, Joshi S, Speransky S, Crowley C, Jayathilaka N, Lei X, Wu Y, Gai D, Jain S, Hoosien M, Gao Y, Chen L, Bishopric NH. Reversal of pathological cardiac hypertrophy via the MEF2-coregulator interface. JCI Insight 2017; 2:91068. [PMID: 28878124 DOI: 10.1172/jci.insight.91068] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 07/19/2017] [Indexed: 11/17/2022] Open
Abstract
Cardiac hypertrophy, as a response to hemodynamic stress, is associated with cardiac dysfunction and death, but whether hypertrophy itself represents a pathological process remains unclear. Hypertrophy is driven by changes in myocardial gene expression that require the MEF2 family of DNA-binding transcription factors, as well as the nuclear lysine acetyltransferase p300. Here we used genetic and small-molecule probes to determine the effects of preventing MEF2 acetylation on cardiac adaptation to stress. Both nonacetylatable MEF2 mutants and 8MI, a molecule designed to interfere with MEF2-coregulator binding, prevented hypertrophy in cultured cardiac myocytes. 8MI prevented cardiac hypertrophy in 3 distinct stress models, and reversed established hypertrophy in vivo, associated with normalization of myocardial structure and function. The effects of 8MI were reversible, and did not prevent training effects of swimming. Mechanistically, 8MI blocked stress-induced MEF2 acetylation, nuclear export of class II histone deacetylases HDAC4 and -5, and p300 induction, without impeding HDAC4 phosphorylation. Correspondingly, 8MI transformed the transcriptional response to pressure overload, normalizing almost all 232 genes dysregulated by hemodynamic stress. We conclude that MEF2 acetylation is required for development and maintenance of pathological cardiac hypertrophy, and that blocking MEF2 acetylation can permit recovery from hypertrophy without impairing physiologic adaptation.
Collapse
Affiliation(s)
| | - Shaurya Joshi
- Department of Molecular and Cellular Pharmacology, and
| | | | | | - Nimanthi Jayathilaka
- Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, California, USA
| | - Xiao Lei
- Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, California, USA
| | - Yongqing Wu
- Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, California, USA
| | - David Gai
- Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, California, USA
| | - Sumit Jain
- Department of Molecular and Cellular Pharmacology, and
| | | | | | - Lin Chen
- Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, California, USA
| | - Nanette H Bishopric
- Department of Medicine.,Department of Molecular and Cellular Pharmacology, and.,Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
4
|
Ye N, Ding Y, Wild C, Shen Q, Zhou J. Small molecule inhibitors targeting activator protein 1 (AP-1). J Med Chem 2014; 57:6930-48. [PMID: 24831826 PMCID: PMC4148154 DOI: 10.1021/jm5004733] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
Activator
protein 1 (AP-1) is a pivotal transcription factor that
regulates a wide range of cellular processes including proliferation,
apoptosis, differentiation, survival, cell migration, and transformation.
Accumulating evidence supports that AP-1 plays an important role in
several severe disorders including cancer, fibrosis, and organ injury,
as well as inflammatory disorders such as asthma, psoriasis, and rheumatoid
arthritis. AP-1 has emerged as an actively pursued drug discovery
target over the past decade. Excitingly, a selective AP-1 inhibitor
T-5224 (51) has been investigated in phase II human clinical
trials. Nevertheless, no effective AP-1 inhibitors have yet been approved
for clinical use. Despite significant advances achieved in understanding
AP-1 biology and function, as well as the identification of small
molecules modulating AP-1 associated signaling pathways, medicinal
chemistry efforts remain an urgent need to yield selective and efficacious
AP-1 inhibitors as a viable therapeutic strategy for human diseases.
Collapse
Affiliation(s)
- Na Ye
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | | | | | | | | |
Collapse
|
5
|
Windak R, Müller J, Felley A, Akhmedov A, Wagner EF, Pedrazzini T, Sumara G, Ricci R. The AP-1 transcription factor c-Jun prevents stress-imposed maladaptive remodeling of the heart. PLoS One 2013; 8:e73294. [PMID: 24039904 PMCID: PMC3769267 DOI: 10.1371/journal.pone.0073294] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 07/18/2013] [Indexed: 11/27/2022] Open
Abstract
Systemic hypertension increases cardiac workload and subsequently induces signaling networks in heart that underlie myocyte growth (hypertrophic response) through expansion of sarcomeres with the aim to increase contractility. However, conditions of increased workload can induce both adaptive and maladaptive growth of heart muscle. Previous studies implicate two members of the AP-1 transcription factor family, junD and fra-1, in regulation of heart growth during hypertrophic response. In this study, we investigate the function of the AP-1 transcription factors, c-jun and c-fos, in heart growth. Using pressure overload-induced cardiac hypertrophy in mice and targeted deletion of Jun or Fos in cardiomyocytes, we show that c-jun is required for adaptive cardiac hypertrophy, while c-fos is dispensable in this context. c-jun promotes expression of sarcomere proteins and suppresses expression of extracellular matrix proteins. Capacity of cardiac muscle to contract depends on organization of principal thick and thin filaments, myosin and actin, within the sarcomere. In line with decreased expression of sarcomere-associated proteins, Jun-deficient cardiomyocytes present disarrangement of filaments in sarcomeres and actin cytoskeleton disorganization. Moreover, Jun-deficient hearts subjected to pressure overload display pronounced fibrosis and increased myocyte apoptosis finally resulting in dilated cardiomyopathy. In conclusion, c-jun but not c-fos is required to induce a transcriptional program aimed at adapting heart growth upon increased workload.
Collapse
Affiliation(s)
- Renata Windak
- Institute of Cell Biology, Eidgenössische Technische Hochschule Zurich (ETHZ), Zurich, Switzerland
| | - Julius Müller
- Institute of Cell Biology, Eidgenössische Technische Hochschule Zurich (ETHZ), Zurich, Switzerland
| | - Allison Felley
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| | - Alexander Akhmedov
- Cardiovascular Research, Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Erwin F. Wagner
- Genes, Development and Disease Group, F-BBVA Cancer Cell Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Thierry Pedrazzini
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| | - Grzegorz Sumara
- Institute of Cell Biology, Eidgenössische Technische Hochschule Zurich (ETHZ), Zurich, Switzerland
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Université de Strasbourg, Illkirch, France
- * E-mail: (RR); (GS)
| | - Romeo Ricci
- Institute of Cell Biology, Eidgenössische Technische Hochschule Zurich (ETHZ), Zurich, Switzerland
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Université de Strasbourg, Illkirch, France
- Laboratoire de Biochimie et de Biologie Moléculaire, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, Strasbourg, France
- * E-mail: (RR); (GS)
| |
Collapse
|
6
|
Tsai YS, Aguan K, Pal NR, Chung IF. Identification of single- and multiple-class specific signature genes from gene expression profiles by group marker index. PLoS One 2011; 6:e24259. [PMID: 21909426 PMCID: PMC3164723 DOI: 10.1371/journal.pone.0024259] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 08/06/2011] [Indexed: 01/06/2023] Open
Abstract
Informative genes from microarray data can be used to construct prediction model and investigate biological mechanisms. Differentially expressed genes, the main targets of most gene selection methods, can be classified as single- and multiple-class specific signature genes. Here, we present a novel gene selection algorithm based on a Group Marker Index (GMI), which is intuitive, of low-computational complexity, and efficient in identification of both types of genes. Most gene selection methods identify only single-class specific signature genes and cannot identify multiple-class specific signature genes easily. Our algorithm can detect de novo certain conditions of multiple-class specificity of a gene and makes use of a novel non-parametric indicator to assess the discrimination ability between classes. Our method is effective even when the sample size is small as well as when the class sizes are significantly different. To compare the effectiveness and robustness we formulate an intuitive template-based method and use four well-known datasets. We demonstrate that our algorithm outperforms the template-based method in difficult cases with unbalanced distribution. Moreover, the multiple-class specific genes are good biomarkers and play important roles in biological pathways. Our literature survey supports that the proposed method identifies unique multiple-class specific marker genes (not reported earlier to be related to cancer) in the Central Nervous System data. It also discovers unique biomarkers indicating the intrinsic difference between subtypes of lung cancer. We also associate the pathway information with the multiple-class specific signature genes and cross-reference to published studies. We find that the identified genes participate in the pathways directly involved in cancer development in leukemia data. Our method gives a promising way to find genes that can involve in pathways of multiple diseases and hence opens up the possibility of using an existing drug on other diseases as well as designing a single drug for multiple diseases.
Collapse
Affiliation(s)
- Yu-Shuen Tsai
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Kripamoy Aguan
- Department of Biotechnology & Bioinformatics, North Eastern Hill University, Shillong, India
| | - Nikhil R. Pal
- Electronics & Communication Sciences Unit, Indian Statistical Institute, Calcutta, India
- * E-mail: (I-FC); (NRP)
| | - I-Fang Chung
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
- Center for Systems and Synthetic Biology, National Yang-Ming University, Taipei, Taiwan
- * E-mail: (I-FC); (NRP)
| |
Collapse
|
7
|
Caldow MK, Steinberg GR, Cameron-Smith D. Impact of SOCS3 overexpression on human skeletal muscle development in vitro. Cytokine 2011; 55:104-9. [PMID: 21478033 DOI: 10.1016/j.cyto.2011.03.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 03/14/2011] [Accepted: 03/15/2011] [Indexed: 12/26/2022]
Abstract
The Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling cascade has been identified as a crucial factor for myogenesis. The STAT3 isoform is essential for satellite cell migration and myogenic differentiation as it mediates the expression of muscle specific myogenic factors. The SOCS (suppressors of cytokine signaling) family of proteins down-regulates STAT activation. Primary human skeletal muscle cells were isolated and cultured to investigate the effect of SOCS3 adenoviral overexpression on myotube maturation. It was demonstrated that STAT3 inhibition did not influence myotube development or survival. Moreover, SOCS3 overexpression enhances the mRNA expression of downstream targets of STAT3, c-FOS and VEGF. These increases were correlated with enhanced mRNA expression of genes associated with muscle maturation and hypertrophy. Thus SOCS3 influences myoblast differentiation and SOCS3 may be significant in regulating the activity of genes previously identified as transcriptionally regulated by STAT3.
Collapse
Affiliation(s)
- Marissa K Caldow
- Molecular Nutrition Unit, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia.
| | | | | |
Collapse
|
8
|
Singal T, Dhalla NS, Tappia PS. Reciprocal regulation of transcription factors and PLC isozyme gene expression in adult cardiomyocytes. J Cell Mol Med 2009; 14:1824-35. [PMID: 19538471 PMCID: PMC3829042 DOI: 10.1111/j.1582-4934.2009.00812.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
By employing a pharmacological approach, we have shown that phospholipase C (PLC) activity is involved in the regulation of gene expression of transcription factors such as c-Fos and c-Jun in cardiomyocytes in response to norepinephrine (NE). However, there is no information available regarding the identity of specific PLC isozymes involved in the regulation of c-Fos and c-Jun or on the involvement of these transcription factors in PLC isozyme gene expression in adult cardiomyocytes. In this study, transfection of cardiomyocytes with PLC isozyme specific siRNA was found to prevent the NE-mediated increases in the corresponding PLC isozyme gene expression, protein content and activity. Unlike PLC gamma(1) gene, silencing of PLC beta(1), beta(3) and delta(1) genes with si RNA prevented the increases in c-Fos and c-Jun gene expression in response to NE. On the other hand, transfection with c-Jun si RNA suppressed the NE-induced increase in c-Jun as well as PLC beta(1), beta(3) and delta(1) gene expression, but had no effect on PLC gamma(1) gene expression. Although transfection of cardiomyocytes with c-Fos si RNA prevented NE-induced expression of c-Fos, PLC beta(1) and PLC beta(3) genes, it did not affect the increases in PLC delta(1) and PLC gamma(1) gene expression. Silencing of either c-Fos or c-Jun also depressed the NE-mediated increases in PLC beta(1), beta(3) and gamma(1) protein content and activity in an isozyme specific manner. Furthermore, silencing of all PLC isozymes as well as of c-Fos and c-Jun resulted in prevention of the NE-mediated increase in atrial natriuretic factor gene expression. These findings, by employing gene silencing techniques, demonstrate that there occurs a reciprocal regulation of transcription factors and specific PLC isozyme gene expression in cardiomyocytes.
Collapse
Affiliation(s)
- Tushi Singal
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre & Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | | | | |
Collapse
|
9
|
Spruill LS, Baicu CF, Zile MR, McDermott PJ. Selective translation of mRNAs in the left ventricular myocardium of the mouse in response to acute pressure overload. J Mol Cell Cardiol 2007; 44:69-75. [PMID: 18036610 DOI: 10.1016/j.yjmcc.2007.10.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 10/02/2007] [Accepted: 10/16/2007] [Indexed: 10/22/2022]
Abstract
During pressure overload hypertrophy, selective changes in cardiac gene expression occur that regulate growth and modify the structural and functional properties of the myocardium. To determine the role of translational mechanisms, a murine model of transverse aortic constriction was used to screen a set of specified mRNAs for changes in translational activity by measuring incorporation into polysomes in response to acute pressure overload. Candidate mRNAs were selected on the basis of two main criteria: (1) the 5'-untranslated region of the mRNA contains an excessive amount of secondary structure (DeltaG<-50 kCal/mol), which is postulated to regulate efficiency of translation, and (2) the protein product has been implicated in the regulation of cardiac hypertrophy. After 24 h of transverse aortic constriction, homogenates derived from the left ventricle were layered onto 15-50% linear sucrose gradients and resolved into monosome fractions (messenger ribonucleoprotein particles) and polysome fractions by density gradient ultracentrifugation. The levels of mRNA in each fraction were quantified by real-time RT-PCR. The screen revealed that pressure overload increased translational activity of 6 candidate mRNAs as determined by a significant increase in the percentage of total mRNA incorporated into the polysome fractions. The mRNAs code for several functional classes of proteins linked to cardiac hypertrophy: the transcription factors c-myc, c-jun and MEF2D, growth factors VEGF and FGF-2 and the E3 ubiquitin ligase MDM2. These studies demonstrate that acute pressure overload alters cardiac gene expression by mechanisms that selectively regulate translational activity of specific mRNAs.
Collapse
Affiliation(s)
- Laura S Spruill
- Gazes Cardiac Research Institute, Department of Medicine, Medical University of South Carolina, Charleston, SC 29403, USA
| | | | | | | |
Collapse
|
10
|
Freire G, Ocampo C, Ilbawi N, Griffin AJ, Gupta M. Overt expression of AP-1 reduces alpha myosin heavy chain expression and contributes to heart failure from chronic volume overload. J Mol Cell Cardiol 2007; 43:465-78. [PMID: 17720185 DOI: 10.1016/j.yjmcc.2007.07.046] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 06/26/2007] [Accepted: 07/11/2007] [Indexed: 11/22/2022]
Abstract
Reduced expression of alpha-MHC plays a significant role in cardiac contractile dysfunction from hemodynamic overload. Previously, Pur proteins and YY1 have been shown to play a role in alpha-MHC repression during heart failure induced by pressure overload and by spontaneous hypertension, respectively. This was not observed in volume-overload-induced heart failure, suggesting additional regulatory mechanisms for alpha-MHC repression. The present study was performed to identify volume overload responsive transcription factors involved in alpha-MHC gene regulation. DNA binding activity of several transcription factors was evaluated in a functionally characterized rat model of heart failure induced by aorto-caval shunt. After 10 weeks of shunt, severe LV dilatation and reduced LV function were accompanied by increased expression of ANF and beta-MHC, and decreased expression of alpha-MHC. This was associated with dramatic (10-fold) activation of AP-1 together with increased expression of c-fos and c-jun. AP-1 activation was not observed following 4 weeks of shunt when cardiac function was preserved. In cultured cardiomyocytes, induction of AP-1 by PMA attenuated alpha-MHC mRNA by 60%. Transient transfection assays mapped PMA responsive sequence to -582 to -588 bp of alpha-MHC promoter. Deletion or mutation of these nucleotides had minimal effect on basal promoter activity but played a dominant role in PMA-mediated repression of alpha-MHC promoter activity. Over-expression of c-fos and c-jun in cardiomyocytes inhibited alpha-MHC promoter activity in a concentration dependent manner. Data suggest a repressive role of AP-1 in alpha-MHC expression and its possible involvement in the transition from compensatory hypertrophy to heart failure in chronic volume overload.
Collapse
Affiliation(s)
- Grace Freire
- The Heart Institute for Children, Advocate Hope Children's Hospital, Oak Lawn, IL, USA
| | | | | | | | | |
Collapse
|
11
|
Osadchii OE. Cardiac hypertrophy induced by sustained β-adrenoreceptor activation: pathophysiological aspects. Heart Fail Rev 2007; 12:66-86. [PMID: 17387610 DOI: 10.1007/s10741-007-9007-4] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Accepted: 02/21/2007] [Indexed: 10/23/2022]
Abstract
Cardiac hypertrophy is promoted by adrenergic over-activation and represents an independent risk factor for cardiovascular morbidity and mortality. The basic knowledge about mechanisms by which sustained adrenergic activation promotes myocardial growth, as well as understanding how structural changes in hypertrophied myocardium could affect myocardial function has been acquired from studies using an animal model of chronic systemic beta-adrenoreceptor agonist administration. Sustained beta-adrenoreceptor activation was shown to enhance the synthesis of myocardial proteins, an effect mediated via stimulation of myocardial growth factors, up-regulation of nuclear proto-oncogenes, induction of cardiac oxidative stress, as well as activation of mitogen-activated protein kinases and phosphatidylinositol 3-kinase. Sustained beta-adrenoreceptor activation contributes to impaired cardiac autonomic regulation as evidenced by blunted parasympathetically-mediated cardiovascular reflexes as well as abnormal storage of myocardial catecholamines. Catecholamine-induced cardiac hypertrophy is associated with reduced contractile responses to adrenergic agonists, an effect attributed to downregulation of myocardial beta-adrenoreceptors, uncoupling of beta-adrenoreceptors and adenylate cyclase, as well as modifications of downstream cAMP-mediated signaling. In compensated cardiac hypertrophy, these changes are associated with preserved or even enhanced basal ventricular systolic function due to increased sarcoplasmic reticulum Ca(2+) content and Ca(2+)-induced sarcoplasmic reticulum Ca(2+) release. The increased availability of Ca(2+) to maintain cardiomyocyte contraction is attributed to prolongation of the action potential due to inhibition of the transient outward potassium current as well as stimulation of the reverse mode of the Na(+)-Ca(2+) exchange. Further progression of cardiac hypertrophy towards heart failure is due to abnormalities in Ca(2+) handling, necrotic myocardial injury, and increased myocardial stiffness due to interstitial fibrosis.
Collapse
Affiliation(s)
- Oleg E Osadchii
- Cardiology Group, School of Clinical Sciences, University Clinical Departments, University of Liverpool, The Duncan Building, Daulby Street, Liverpool, L69 3GA, UK.
| |
Collapse
|
12
|
Cardiac Development: Toward a Molecular Basis for Congenital Heart Disease. CARDIOVASCULAR MEDICINE 2007. [DOI: 10.1007/978-1-84628-715-2_52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
13
|
Waetzig V, Czeloth K, Hidding U, Mielke K, Kanzow M, Brecht S, Goetz M, Lucius R, Herdegen T, Hanisch UK. c-Jun N-terminal kinases (JNKs) mediate pro-inflammatory actions of microglia. Glia 2005; 50:235-46. [PMID: 15739188 DOI: 10.1002/glia.20173] [Citation(s) in RCA: 230] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The activation and function of c-Jun N-terminal kinases (JNKs) were investigated in primary microglia cultures from neonatal rat brain, which express all three JNK isoforms. Lipopolysaccharide (LPS), tumor necrosis factor-alpha (TNF-alpha), and thrombin preparations induced a rapid and lasting activation of JNKs in the cytoplasm. In the nucleus, the activation patterns were rather complex. In untreated microglia, the small pool of nuclear JNKs was strongly activated, while the high-affinity JNK substrate c-Jun was only weakly phosphorylated. Stimulation with LPS increased the total amount of nuclear JNKs and the phosphorylation of the transcription factor c-Jun. Levels of activated JNKs in the nucleus, however, rapidly decreased. Analysis of the nuclear JNK isoforms revealed that the amount of JNK1 declined, while JNK2 increased, and the weakly expressed JNK3 did not vary. This observation suggests that JNK2 is mainly responsible for the activation of c-Jun in this context. Upstream of JNKs, LPS induced a lasting activation of the constitutively present JNK kinase MKK4. The function of JNKs in LPS-triggered cellular reactions was investigated using SP600125 (0.5-5 microM), a direct inhibitor of JNKs. Inhibition of JNKs reduced the LPS-induced metabolic activity and induction of the AP-1 target genes cyclooxygenase-2 (Cox-2), TNF-alpha, monocyte chemoattractant protein-1 (MCP-1), and interleukin-6 (IL-6) in response to LPS, while ERK1/2 and p38 alpha had a more pronounced effect on LPS-induced cellular enlargement than JNKs. In summary, JNKs are essential mediators of relevant pro-inflammatory functions in microglia with different contributions of the JNK isoforms.
Collapse
Affiliation(s)
- Vicki Waetzig
- Institute of Pharmacology, University Hospital Kiel, 24105 Kiel, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Jeong MY, Kinugawa K, Vinson C, Long CS. AFos dissociates cardiac myocyte hypertrophy and expression of the pathological gene program. Circulation 2005; 111:1645-51. [PMID: 15795322 PMCID: PMC1201436 DOI: 10.1161/01.cir.0000160367.99928.87] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Although induction of activator protein-1 (AP-1) transcription factor activity has been observed in cardiac hypertrophy, a direct role for AP-1 in myocardial growth and gene expression remains obscure. METHODS AND RESULTS Hypertrophy was induced in cultured neonatal rat cardiomyocytes with phenylephrine or overexpression of a constitutively active MAP3K, MKK6. In both treatment groups, induction of the pathological gene profile was observed, ie, expression of beta-myosin heavy chain (betaMHC), atrial/brain natriuretic peptides (ANP/BNP), and skeletal alpha-actin (sACT) was increased, whereas expression for alpha-myosin heavy chain (alphaMHC) and the sarcoplasmic reticulum Ca2+-ATPase (SERCA) genes was repressed. The role of AP-1 in the hypertrophic phenotype was evaluated with the use of an adenoviral construct expressing a dominant negative mutant of the c-Fos proto-oncogene (AdAFos). Although AFos did not change the myocyte growth response, it abrogated the gene profile to both agonists, including the upregulation of both alphaMHC and SERCA expression. CONCLUSIONS Although c-Fos/AP-1 is necessary for induction of the pathological/fetal gene program, it does not appear to be critical for cardiomyocyte hypertrophy.
Collapse
Affiliation(s)
| | | | | | - Carlin S. Long
- Correspondence to Carlin S. Long, MD, Cardiology Section, Denver Health Medical Center, 777 Bannock St, Mailstop 0960, Denver, CO 80204. E-mail
| |
Collapse
|
15
|
Coutinho EL, Gomes ARS, França CN, Oishi J, Salvini TF. Effect of passive stretching on the immobilized soleus muscle fiber morphology. Braz J Med Biol Res 2004; 37:1853-61. [PMID: 15558192 DOI: 10.1590/s0100-879x2004001200011] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The aim of the present study was to determine the effect of stretching applied every 3 days to the soleus muscle immobilized in the shortened position on muscle fiber morphology. Eighteen 16-week-old Wistar rats were used and divided into three groups of 6 animals each: a) the left soleus muscle was immobilized in the shortened position for 3 weeks; b) during immobilization, the soleus was stretched for 40 min every 3 days; c) the non-immobilized soleus was only stretched. Left and right soleus muscles were examined. One portion of the soleus was frozen for histology and muscle fiber area evaluation, while the other portion was used to identify the number and length of serial sarcomeres. Immobilized muscles (group A) showed a significant decrease in weight (44 +/- 6%), length (19 +/- 7%), serial sarcomere number (23 +/- 15%), and fiber area (37 +/- 31%) compared to the contralateral muscles (P < 0.05, paired Student t-test). The immobilized and stretched soleus (group B) showed a similar reduction but milder muscle fiber atrophy compared to the only immobilized group (22 +/- 40 vs 37 +/- 31%, respectively; P < 0.001, ANOVA test). Muscles submitted only to stretching (group C) significantly increased the length (5 +/- 2%), serial sarcomere number (4 +/- 4%), and fiber area (16 +/- 44%) compared to the contralateral muscles (P < 0.05, paired Student t-test). In conclusion, stretching applied every 3 days to immobilized muscles did not prevent the muscle shortening, but reduced muscle atrophy. Stretching sessions induced hypertrophic effects in the control muscles. These results support the use of muscle stretching in sports and rehabilitation.
Collapse
Affiliation(s)
- E L Coutinho
- Unidade de Plasticidade Muscular, Laboratório de Neurociências, Departamento de Fisioterapia, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | | | | | | | | |
Collapse
|
16
|
Coronella-Wood J, Terrand J, Sun H, Chen QM. c-Fos phosphorylation induced by H2O2 prevents proteasomal degradation of c-Fos in cardiomyocytes. J Biol Chem 2004; 279:33567-74. [PMID: 15136564 DOI: 10.1074/jbc.m404013200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Oxidants cause activation of the AP-1 transcription factor in cardiomyocytes. c-Fos, a component of the AP-1 transcription factor, is transiently induced by H2O2 and the induction is sensitive to the protein synthesis inhibitor cycloheximide. With high percentage gel electrophoresis, multiple c-Fos bands were resolved by Western blot analyses, indicating post-translational modification of newly synthesized c-Fos protein after H2O2 exposure. Treatment of immunoprecipitated c-Fos protein with the type 2 serine/threonine phosphatase A (PP2A) and immunoblotting of c-Fos protein with antibodies against phosphorylated serine or threonine demonstrated that c-Fos was phosphorylated at serine residues. A pharmacological inhibitor of JNKs inhibited the formation of multiple c-Fos bands without affecting c-fos transcription. The proteasomal inhibitor MG132 and Proteasome Inhibitor I extended the time course of c-Fos protein elevation. An increase in ubiquitin was detectable in c-Fos protein from H2O2-treated cells. Interestingly, treating the whole cell lysates with PP2A, but not calcineurin (i.e. PP2B), resulted in disappearance of c-Fos protein and MG132 was able to prevent this loss. H2O2 caused an elevation of PP2B and total phosphatase activity. The phosphatase inhibitor okadaic acid, but not PP2B inhibiter cypermethrin, extended the time course of c-Fos protein elevation after H2O2 exposure. These data suggest that JNK-mediated phosphorylation of newly synthesized c-Fos protects the protein from being degraded by the proteasome. PP2B independent dephosphorylation contributes to degradation of c-Fos protein during oxidative stress response of cardiomyocytes.
Collapse
Affiliation(s)
- June Coronella-Wood
- Department of Pharmacology, University of Arizona, College of Medicine, Tucson, Arizona 85724, USA
| | | | | | | |
Collapse
|
17
|
Nadruz W, Kobarg CB, Kobarg J, Franchini KG. c-Jun is regulated by combination of enhanced expression and phosphorylation in acute-overloaded rat heart. Am J Physiol Heart Circ Physiol 2003; 286:H760-7. [PMID: 14512277 DOI: 10.1152/ajpheart.00430.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The transient increase in the expression of transcription factors encoded by immediate-early genes has been considered to play a critical role in the coordination of early gene expression during the hypertrophic growth of cardiac myocytes. Here, we investigated the regulation of c-Jun and its upstream activators JNKs in the myocardium of rats subjected to acute pressure overload induced by transverse aortic constriction. Western blotting and immunohistochemistry analysis demonstrated that both JNK1 and JNK2 were transiently activated by pressure overload, but only JNK1 was activated at the nuclei of cardiac myocytes. JNK1 activation was paralleled by phosphorylation of c-Jun at serine-63 in the myocardial nuclear fraction and by an increase in c-Jun expression in cardiac myocytes. A consistent increase in DNA binding of activator protein-1 (AP-1) complex was observed after 10 and 30 min of pressure overload and Supershift assays confirmed that c-Jun was a major component of activated AP-1 complex. Moreover, experiments performed with the specific JNK inhibitor SP-600125 abolished c-Jun phosphorylation and markedly attenuated its expression as well as the expression of the fetal gene beta-myosin heavy chain. Overall, these findings demonstrate a molecular basis for load-induced activation of c-Jun in cardiac myocytes and its connection with the regulation of fetal gene, characteristic of the acute response to pressure overload.
Collapse
Affiliation(s)
- Wilson Nadruz
- Department of Internal Medicine, School of Medicine, State University of Campinas, São Paulo, Brazil
| | | | | | | |
Collapse
|
18
|
Hosokawa H, Aiuchi S, Kambe T, Hagiwara Y, Kubo T. Mechanical stretch-induced mitogen-activated protein kinase activation is mediated via angiotensin and endothelin systems in vascular smooth muscle cells. Biol Pharm Bull 2002; 25:1588-92. [PMID: 12499645 DOI: 10.1248/bpb.25.1588] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We previously reported that pressure loading of the vascular wall can activate mitogen-activated protein kinases (MAPKs), enzymes believed to be involved in the pathway for cell proliferation, partly via the vascular angiotensin system in isolated perfused rat aorta. In this study, we examined whether cyclic stretching of vascular smooth muscle cells (VSMC) also produces activation of p42 and p44 MAPKs in cultured rat VSMC and whether stretch-induced MAPK activation is mediated via angiotensin and endothelin systems in VSMC. Cyclic stretching of VSMC produced an elongation-dependent and frequency-dependent increase in p42 and p44 MAPK activity. The stretch-induced p42 and p44 MAPK activation was inhibited by the angiotensin receptor antagonist losartan and by the angiotensin-converting enzyme inhibitor, captopril. The MAPK activation was also inhibited by the endothelin receptor antagonist cyclo(D-alpha-aspartyl-L-prolyl-D-valyl-L-leucyl-D-tryptophyl) (BQ123) and by the endothelin-converting enzyme inhibitor phosphoramidon. Replacement of medium with culture medium of stretched cells caused MAPK activation, which was inhibited by losartan and BQ123. The results of the present study suggest that cyclic stretching of VSMC can activate p42 and p44 MAPKs and that the MAPK activation is mediated via angiotensin and endothelin systems in VSMC.
Collapse
Affiliation(s)
- Hiroyuki Hosokawa
- Department of Pharmacology, Showa Pharmaceutical University, Machida, Japan
| | | | | | | | | |
Collapse
|
19
|
Andreucci JJ, Grant D, Cox DM, Tomc LK, Prywes R, Goldhamer DJ, Rodrigues N, Bédard PA, McDermott JC. Composition and function of AP-1 transcription complexes during muscle cell differentiation. J Biol Chem 2002; 277:16426-32. [PMID: 11877423 DOI: 10.1074/jbc.m110891200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role of activating protein-1 (AP-1) in muscle cells is currently equivocal. While some studies propose that AP-1 is inhibitory for myogenesis, others implicate a positive role in this process. We tested whether this variation may be due to different properties of the AP-1 subunit composition in differentiating cells. Using Western analysis we show that c-Jun, Fra-2, and JunD are expressed throughout the time course of differentiation. Phosphatase assays indicate that JunD and Fra-2 are phosphorylated in muscle cells and that at least two isoforms of each are expressed in muscle cells. Electrophoretic mobility shift assays combined with antibody supershifts indicate the appearance of Fra-2 as a major component of the AP-1 DNA binding complex in differentiating cells. In this context it appears that Fra-2 heterodimerizes with c-Jun and JunD. Studying the c-jun enhancer in reporter gene assays we observed that the muscle transcription factors MEF2A and MyoD can contribute to robust transcriptional activation of the c-jun enhancer. In differentiating muscle cells mutation of the MEF2 site reduces transactivation of the c-jun enhancer and MEF2A is the predominant MEF2 isoform binding to this cis element. Transcriptional activation of an AP-1 site containing reporter gene (TRE-Luc) is enhanced under differentiation conditions compared with growth conditions in C2C12 muscle cells. Further studies indicate that Fra-2 containing AP-1 complexes can transactivate the MyoD enhancer/promoter. Thus, an AP-1 complex containing Fra-2 and c-Jun or JunD is consistent with muscle differentiation, indicating that AP-1 function during myogenesis is dependent on its subunit composition.
Collapse
Affiliation(s)
- John J Andreucci
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Eriksson M, Leppä S. Mitogen-activated protein kinases and activator protein 1 are required for proliferation and cardiomyocyte differentiation of P19 embryonal carcinoma cells. J Biol Chem 2002; 277:15992-6001. [PMID: 11884386 DOI: 10.1074/jbc.m107340200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Mitogen-activated protein kinases (MAPKs) have been implicated as regulators of differentiation. The biological effect of MAPK signaling in the nucleus is achieved by signal-responsive transcription factors. Here we have investigated MAPK signaling and activation of AP-1 transcription factors in P19 embryonal carcinoma cells undergoing cardiomyocyte differentiation. We show that aggregation and Me(2)SO treatment, which trigger the differentiation response, result in sustained activation of JNK1, p38, and ERK1/2 MAPKs and acquisition of AP-1 DNA binding activity. The induced AP-1 activity consists of c-Jun, JunD, and Fra-2 proteins and is accompanied with the increased expression of these proteins. JNK is involved in c-Jun phosphorylation, whereas ERK and p38 activities are essential for maximal c-Jun and Fra-2 expression, and AP-1 DNA binding activity. While the inhibition of ERK can partially prevent the formation of beating cardiomyocytes, the activity of p38 is absolutely required for the differentiation. Expression of dominant negative c-Jun(bZIP) in P19 cells can also inhibit the differentiation response. Surprisingly, however, expression of dominant negative SEK or JNK causes an inhibition of P19 cell proliferation. Taken together, the results show that ERK, JNK, p38, and AP-1 are activated in a coordinated and sustained manner, and contribute to proliferation and cardiomyocyte differentiation of P19 cells.
Collapse
Affiliation(s)
- Minna Eriksson
- Molecular Cancer Biology Research Program, Biomedicum Helsinki and Haartman Institute, University of Helsinki, P. O. Box 63, FIN-00014 Helsinki, Finland
| | | |
Collapse
|
21
|
Makhlouf AA, Namboodiri AM, McDermott PJ. Transcriptional regulation of the rat eIF4E gene in cardiac muscle cells: the role of specific elements in the promoter region. Gene 2001; 267:1-12. [PMID: 11311550 DOI: 10.1016/s0378-1119(01)00399-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Eukaryotic initiation factor 4E (eIF4E) binds to the 7-methylguanosine cap of mRNA and facilitates binding of mRNA to the 40 S ribosome, a rate-limiting step in translation initiation. The expression of eIF4E mRNA and protein increases during growth of cardiac muscle cells (cardiocytes) in vitro. To examine transcriptional regulation of the rat eIF4E gene, 2.1 kB of the rat eIF4E promoter region was cloned and the contribution of specific elements in regulating transcription was determined in primary cultures of rat cardiocytes and in a murine C(2)C(12) myoblast cell line. Sequence analysis of the rat eIF4E promoter revealed 80% sequence similarity with human eIF4E. A putative distal E-box was found at -230 bp and a proximal E-box was located at -77 bp upstream of the transcription start site. Consensus AP-1 motifs were found at -839 and -901 bp and designated as the proximal AP-1 site and distal AP-1 site, respectively. Transfection of reporter gene constructs into cardiocytes showed that deletion of the region between -633 and -318 bp produced a 3-fold increase in basal transcription as compared to the 2.1 kB eIF4E promoter construct. Further deletion of the distal E-box region had no effect on transcription as compared with the 2.1 kB promoter, but deletion of both E-boxes eliminated transcriptional activity. Similar results were obtained in C(2)C(12) myoblasts. To further investigate transcriptional regulation, point mutations were made in the 2.1 kB eIF4E promoter. Mutation of either the distal or proximal E-box had minimal effects on activity in either cell type, but mutation of the distal AP-1 site significantly reduced eIF4E promoter activity by 66+/-4% in cardiocytes. In C(2)C(12) myoblasts, mutating the distal AP-1 site reduced activity by 30+/-4% We conclude that both E-boxes are required for maximal basal activity of the eIF4E promoter, and that the distal AP-1 motif may activate transcription.
Collapse
Affiliation(s)
- A A Makhlouf
- Department of Medicine and the Gazes Cardiac Research Institute, Medical University of South Carolina, USA
| | | | | |
Collapse
|
22
|
Zhang X, Azhar G, Chai J, Sheridan P, Nagano K, Brown T, Yang J, Khrapko K, Borras AM, Lawitts J, Misra RP, Wei JY. Cardiomyopathy in transgenic mice with cardiac-specific overexpression of serum response factor. Am J Physiol Heart Circ Physiol 2001; 280:H1782-92. [PMID: 11247792 DOI: 10.1152/ajpheart.2001.280.4.h1782] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Serum response factor (SRF), a member of the MCM1, agamous, deficiens, SRF (MADS) family of transcriptional activators, has been implicated in the transcriptional control of a number of cardiac muscle genes, including cardiac alpha-actin, skeletal alpha-actin, alpha-myosin heavy chain (alpha-MHC), and beta-MHC. To better understand the in vivo role of SRF in regulating genes responsible for maintenance of cardiac function, we sought to test the hypothesis that increased cardiac-specific SRF expression might be associated with altered cardiac morphology and function. We generated transgenic mice with cardiac-specific overexpression of the human SRF gene. The transgenic mice developed cardiomyopathy and exhibited increased heart weight-to-body weight ratio, increased heart weight, and four-chamber dilation. Histological examination revealed cardiomyocyte hypertrophy, collagen deposition, and interstitial fibrosis. SRF overexpression altered the expression of SRF-regulated genes and resulted in cardiac muscle dysfunction. Our results demonstrate that sustained overexpression of SRF, in the absence of other stimuli, is sufficient to induce cardiac change and suggest that SRF is likely to be one of the downstream effectors of the signaling pathways involved in mediating cardiac hypertrophy.
Collapse
Affiliation(s)
- X Zhang
- Department of Medicine, Beth Israel Deaconess Medical Center, and Division on Aging, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Yoshiyama M, Omura T, Takeuchi K, Kim S, Shimada K, Yamagishi H, Teragaki M, Akioka K, Iwao H, Yoshikawa J. Angiotensin blockade inhibits increased JNKs, AP-1 and NF- kappa B DNA-binding activities in myocardial infarcted rats. J Mol Cell Cardiol 2001; 33:799-810. [PMID: 11273732 DOI: 10.1006/jmcc.2001.1351] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inhibition of the renin-angiotensin system has been shown to prevent left ventricular remodeling after myocardial infarction. However, the effect of angiotensin on the signal transduction pathway of left ventricular remodeling after myocardial infarction is as yet unknown. The purpose of this study was to measure myocardial MAPKs and AP-1, NF- kappa B, and Sp-1 DNA-binding activities after myocardial infarction. Moreover, we evaluated the effects of angiotensin converting enzyme (ACE) inhibitor and angiotensin receptor blocker (ARB) on signal transduction pathway. Myocardial infarction was produced by ligation of the coronary artery in Wistar rats. Temocapril (ACE inhibitor) (3 and 30 mg/kg/day) and candesartan cilexitil (ARB) (1 and 10 mg/kg/day) were orally administered once a day. After ligation of the left descending coronary artery, JNKs (p46JNK and p55JNK) increased to 2.0- (P<0.01) and 2.8-fold (P<0.01) at 7 days, respectively. ERKs (p44ERK and p42ERK) and p38 activities did not increase significantly. AP-1 and NF- kappa B binding activities increased at 5 days, reached their peak 2.2- and 2.0-fold at 7 days. Sp-1 did not change. ACE inhibitor and ARB inhibited JNKs, NF- kappa B and AP-1 activities. Increased JNKs, AP-1, NF- kappa B, and Sp-1 DNA-binding activities were suppressed by both drugs in the infarcted region. Doppler-echocardiography showed that ACE inhibitor and ARB prevented the dilatation of left ventricular cavity at 14 days and improved diastolic filling pattern. JNKs, AP-1 and NF- kappa B activation in myocardial infarcted rats could be responsible for left ventricular remodeling after myocardial infarction and angiotensin may be related to the activation of these signals.
Collapse
Affiliation(s)
- M Yoshiyama
- Department of Medicine, Division of Cardiology, Osaka City University Medical School, Osaka, 545-8585, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Slepak TI, Webster KA, Zang J, Prentice H, O'Dowd A, Hicks MN, Bishopric NH. Control of cardiac-specific transcription by p300 through myocyte enhancer factor-2D. J Biol Chem 2001; 276:7575-85. [PMID: 11096067 DOI: 10.1074/jbc.m004625200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcriptional integrator p300 regulates gene expression by interaction with sequence-specific DNA-binding proteins and local remodeling of chromatin. p300 is required for cardiac-specific gene transcription, but the molecular basis of this requirement is unknown. Here we report that the MADS (MCM-1, agamous, deficiens, serum response factor) box transcription factor myocyte enhancer factor-2D (MEF-2D) acts as the principal conduit for cardiac transcriptional activation by p300. p300 activation of the native 2130-base pair human skeletal alpha-actin promoter required a single hybrid MEF-2/GATA-4 DNA motif centered at -1256 base pairs. Maximal expression of the promoter in cultured myocytes and in vivo correlated with binding of both MEF-2 and p300, but not GATA-4, to this AT-rich motif. p300 and MEF-2 were coprecipitated from cardiac nuclear extracts by an oligomer containing this element. p300 was found exclusively in a complex with MEF-2D at this and related sites in other cardiac-restricted promoters. MEF-2D, but not other MEFs, significantly potentiated cardiac-specific transcription by p300. No physical or functional interaction was observed between p300 and other factors implicated in skeletal actin transcription, including GATA-4, TEF-1, or SRF. These results show that, in the intact cell, p300 interactions with its protein targets are highly selective and that MEF-2D is the preferred channel for p300-mediated transcriptional control in the heart.
Collapse
Affiliation(s)
- T I Slepak
- Department of Molecular and Cellular Pharmacology, University of Miami, Florida 33101, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Persson K, Dean-Mckinney T, Steers WD, Tuttle JB. Activation of the transcription factors nuclear factor-kappaB and activator protein-1 in bladder smooth muscle exposed to outlet obstruction and mechanical stretching. J Urol 2001; 165:633-9. [PMID: 11176450 DOI: 10.1097/00005392-200102000-00086] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Transcriptional control of bladder genes in response to outlet obstruction, growth factors and mechanical force is poorly understood. We analyzed the effects of bladder obstruction, mechanical stretching and platelet derived growth factor on the activation of the major growth controlling transcription factors nuclear factor-kappaB and activator protein-1. MATERIALS AND METHODS Complete outlet obstruction was created in female rats by proximal urethral ligation and bladders were harvested 3, 6 and 24 hours later, respectively. Bladder cells were grown in culture and stimulated with 10 ng./ml. platelet derived growth factor or 10 cycles per minute of mechanical stretching for 0.5 to 4 hours. Nuclear proteins were high salt extracted and incubated with 32phosphorus double strand oligonucleotides containing a consensus binding sequence for activator protein-1 or nuclear factor-kappaB. The resulting DNA protein complexes were analyzed by electrophoretic mobility shift assay. RESULTS Nuclear extract isolated from obstructed bladders showed intense activator protein-1 binding activity 3, 6 and 24 hours after obstruction as well as increased nuclear factor-kappaB binding activity after 6 and 24 hours. Binding activity was absent or minimal in sham operated rats. Cultured cells exposed to mechanical stretching for 2 and 4 hours showed increased activator protein-1 and nuclear factor-kappaB DNA binding compared with unstretched cells. Likewise stimulation with platelet derived growth factor caused a consistent increase in activator protein-1 and nuclear factor-kappaB binding activity. The binding of nuclear proteins was abolished by a 40-fold excess of an unlabeled specific oligonucleotide but not by excess irrelevant oligonucleotide. Thus, the assays were specific for the factors involved. CONCLUSIONS Bladder obstruction and mechanical stretching cause the formation of activator protein-1 and nuclear factor-kappaB DNA complexes, consistent with a role of these transcription factors in the control of hypertrophy associated gene activation.
Collapse
Affiliation(s)
- K Persson
- Department of Clinical Pharmacology, Lund University Hospital, Lund, Sweden
| | | | | | | |
Collapse
|
26
|
Henning RJ, Silva J, Reddy V, Kamat S, Morgan MB, Li YX, Chiou S. Cocaine increases beta-myosin heavy-chain protein expression in cardiac myocytes. J Cardiovasc Pharmacol Ther 2000; 5:313-22. [PMID: 11150401 DOI: 10.1054/jcpt.2000.19331] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND As many as 47% of chronic cocaine users develop cardiac ventricular hypertrophy. The presence and degree of cocaine-induced ventricular hypertrophy is not correlated with the use of other substances of abuse such as alcohol or cigarettes. Moreover, this hypertrophy occurs in individuals without sustained increases in arterial blood pressure or heart rate, or increases in the plasma concentration of renin, aldosterone, norepinephrine, or cortisol. Therefore, we investigated whether cocaine, in concentrations commonly found in cocaine users, has any direct effects on the protein content in cardiac ventricular myocytes. We compared the effects of cocaine with norepinephrine, which increases the total protein content, especially beta-myosin heavy-chain contractile protein (beta-MHC), in cardiac ventricular myocytes. METHODS Experiments were performed on 30-day-old rat ventricular myocytes suspended in culture media and cultured in flasks. In 12 suspension-culture experiments, cocaine or norepinephrine, in doses of 0 (control) or 10(-6) mol/L was added to each culture and the cells were harvested on day 5. In 16 flask-culture experiments, cocaine or norepinephrine was added to each culture on day 7 in doses of 0 (control-vehicle), 10(-7), or 10(-6) mol/L and the cells were harvested on day 10. The total protein content and the myosin protein expression of the myocytes in each culture were determined. Juvenile and adult rat cardiac myosin protein is predominately alpha-myosin heavy-chain protein (alpha-MHC), whereas beta-MHC occurs primarily in fetal rat hearts. RESULTS In the suspension-culture experiments, cocaine, 10(-6) mol/L, increased the cardiomyocyte total protein concentration by 29% +/- 2% (P <.001) and the beta-MHC expression by 81% +/- 10% (P <.01) in comparison with the control myocytes. Cocaine slightly decreased cardiomyocyte alpha-MHC. Norepinephrine increased the total protein concentration by 21% +/- 3% (P <.001) and the beta-MHC expression by 59% +/- 10% (P <.01), but did not increase alpha-MHC expression. In the flask-culture experiments, cocaine, 10(-6) mol/L, maximally increased the total protein concentration by 28% (P <.001), the protein/cell ratio by 57% +/- 10% (P <.01), and the beta-MHC expression by 85% +/- 8% (P <.01). Cocaine slightly decreased alpha-MHC. Norepinephrine, 10(-6) mol/L, maximally increased the total protein concentration by 35%, the protein/cell ratio by 63% +/- 9% (P <.01), and the expression of beta-MHC by 78% +/- 11% (P <. 01). Norepinephrine did not increase alpha-MHC expression. In 18 separate flask-culture experiments, cocaine, 10(-6) mol/L, was added to the cardiomyocyte cultures after the addition of phentolamine (n = 9), in concentrations of 10(-7) to 10(-5) mol/L, or metoprolol (n = 9), in concentrations of 10(-7) to 10(-5) mol/L. Neither phentolamine nor metoprolol inhibited the cocaine-induced increase in cardiomyocyte total protein content or the expression of beta-MHC. CONCLUSION Cocaine, similar to norepinephrine, significantly increases the total protein content and the expression of beta-MHC in cardiac ventricular myocytes. In this manner, cocaine may cause cardiac ventricular hypertrophy. This process is not inhibited by alpha- or beta-adrenergic receptor blockade.
Collapse
Affiliation(s)
- R J Henning
- University of South Florida College of Medicine, Tampa, FL 33612, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Babu GJ, Lalli MJ, Sussman MA, Sadoshima J, Periasamy M. Phosphorylation of elk-1 by MEK/ERK pathway is necessary for c-fos gene activation during cardiac myocyte hypertrophy. J Mol Cell Cardiol 2000; 32:1447-57. [PMID: 10900171 DOI: 10.1006/jmcc.2000.1185] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac hypertrophy is associated with specific alterations in myocardial gene expression; however, the exact mechanisms responsible for altered gene expression are poorly defined. The goal of this study was to investigate whether signaling kinases that are activated during cardiac hypertrophy directly modulate transcription factor activity and regulate gene expression. In an effort to understand this process, we focused our studies on the transcriptional activation of c-fos gene through the serum response element (SRE)/ternary complex factor (TCF) element, during phenylephrine-induced myocyte hypertrophy. In this study, we show that phosphorylated Elk-1, a TCF, binds to c-fos SRE and its binding to SRE is increased upon phenylephrine stimulation. Phenylephrine treatment activates phosphorylation of Elk-1 in the nucleus within five minutes and Elk-1-dependent transcriptional activation is abolished by inhibitors selective for MEK/ERK kinases. These studies implicate that phosphorylation of Elk-1 by ERK kinase pathway is important for early gene activation during phenylephrine-induced myocyte hypertrophy.
Collapse
Affiliation(s)
- G J Babu
- Laboratory of Molecular Cardiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | | | | | | |
Collapse
|
28
|
Kubo T, Hosokawa H, Kambe T, Fukumori R. Angiotensin II mediates pressure loading-induced mitogen-activated protein kinase activation in isolated rat aorta. Eur J Pharmacol 2000; 391:281-7. [PMID: 10729370 DOI: 10.1016/s0014-2999(00)00072-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vascular hypertrophy occurs during chronic hypertension and contributes to the elevation of peripheral vascular resistance in hypertension. In this study, we examined whether acute pressure overloading of the vascular wall produces activation of mitogen-activated protein (MAP) kinases, enzymes believed to be involved in the pathway for cell proliferation, in isolated perfused rat aortae, and examined whether the mechanical overloading-induced MAP kinase activation is mediated via the vascular angiotensin system. Aortae were perfused with Tyrode solution. Increases in perfusion pressure caused a pressure-dependent increase in MAP kinase activity in endothelium-intact aortae and in endothelium-denuded aortae. The increase in MAP kinase activity induced by pressure loading was inhibited by the angiotensin receptor antagonist, losartan, the renin inhibitor, pepstatin A, and the angiotensin-converting enzyme inhibitor, captopril. Ca(2+) depletion and the Ca(2+) channel antagonist, nifedipine, did not affect the pressure loading-induced MAP kinase activation. The results of the present study suggest that pressure loading of the vascular wall per se can activate MAP kinases in the vasculature and that the MAP kinase activation is mediated at least partly via the vascular angiotensin system. It seems unlikely that the pressure loading-induced increase in MAP kinase activity is mainly mediated via increases in Ca(2+) influx in vascular cells.
Collapse
Affiliation(s)
- T Kubo
- Department of Pharmacology, Showa College of Pharmaceutical Sciences, Machida, Japan
| | | | | | | |
Collapse
|
29
|
Sekiguchi K, Yokoyama T, Kurabayashi M, Okajima F, Nagai R. Sphingosylphosphorylcholine induces a hypertrophic growth response through the mitogen-activated protein kinase signaling cascade in rat neonatal cardiac myocytes. Circ Res 1999; 85:1000-8. [PMID: 10571530 DOI: 10.1161/01.res.85.11.1000] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The sphingolipid metabolites, sphingosine (SPH), SPH 1-phosphate (S1P), and sphingosylphosphorylcholine (SPC), can act as intracellular as well as extracellular signaling molecules. These compounds have been implicated in the regulation of cell growth, differentiation, and programmed cell death in nonmyocytes, but the effects of sphingolipid metabolites in cardiac myocytes are not known. Cultured neonatal rat cardiac myocytes were stimulated with SPH (1 to 10 micromol/L), S1P (1 to 10 micromol/L), or SPC (0.1 to 10 micromol/L) for 24 hours to determine the effects of sphingolipid metabolites on the rates of protein synthesis and degradation. Stimulation with SPC led to an increase in the total amount of protein, an accelerated rate of total protein synthesis, and a decrease in protein degradation in a dose-dependent manner. However, S1P had little effect and SPH had no effect on total protein synthesis. In addition, stimulation with SPC led to a 1.4-fold increase in myocardial cell size and enhanced atrial natriuretic factor gene expression. Pretreatment of the cardiac myocytes with pertussis toxin or PD98059 attenuated the SPC-induced hypertrophic growth response. Further, stimulation with SPC increased phosphorylation of mitogen-activated protein kinase (MAPK) and stimulated MAPK enzyme activity. Finally, endothelin-1 stimulated the generation of SPC in cardiac myocytes. The observation that SPC induces a hypertrophic growth response in cardiac myocytes suggests that SPC may play a critical role in the development of cardiac hypertrophy. The effects of SPC could be mediated, in part, by activation of a G protein-coupled receptor and a MAPK signaling cascade.
Collapse
Affiliation(s)
- K Sekiguchi
- Second Department of Internal Medicine, Gunma University School of Medicine, Maebashi, Japan
| | | | | | | | | |
Collapse
|
30
|
Takemoto Y, Yoshiyama M, Takeuchi K, Omura T, Komatsu R, Izumi Y, Kim S, Yoshikawa J. Increased JNK, AP-1 and NF-kappa B DNA binding activities in isoproterenol-induced cardiac remodeling. J Mol Cell Cardiol 1999; 31:2017-30. [PMID: 10591028 DOI: 10.1006/jmcc.1999.1033] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The in vivo signal transduction pathway, responsible for isoproterenol-induced cardiac hypertrophy or remodeling, remains to be clarified. The purpose of this study was to examine c-Jun NH2-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK), activator protein-1 (AP-1) and nuclear factor-kappa B (NK-kappa B) DNA binding activity, which seem to be important in a signal transduction cascade upstream of the increased level of mRNA expression observed in isoproterenol-induced cardiac remodeling. Rats were continuously infused with saline and isoproterenol by intravenous injection (a short period; 0.5 microgram/kg/min) and an osmotic minipump (a long period; 0.5 or 3 mg/kg/day). Cardiac morphology was measured by echocardiography. JNK and ERK were measured by in gel kinase assay. AP-1 and NF-kappa B DNA binding activity was determined using an electrophoretic mobility shift assay. Echocardiogram showed that the thickness of the left ventricular anterior wall (AW) and left ventricular posterior wall (PW) increased at day 1 in low doses, and at day 1 in high doses. Isoproterenol significantly increased ERK and JNK activity at 15 min after intravenous infusion of 0.5 microgram/kg/min isoproterenol. At late phase about JNK and ERK activity, only a high dose of isoproterenol increased JNK. AP-1 DNA binding activities spurred by low or high doses of isoproterenol administration increased at 12 h, reached their peak of 24.1- and 37.1-fold (P < 0.01), respectively, at 24 h, and thereafter decreased. Although low doses of isoproterenol did not change the level of NF-kappa B DNA binding activities, high doses increased it to 10.9-fold (P < 0.01) at day 2. This study showed increased JNK, ERK, AP-1 and NF-kappa B DNA binding activities in isoproterenol-induced cardiac remodeling. AP-1 may contribute to the isoproterenol-induced cardiac remodeling, and JNK or NF-kappa B may also play some roles in it.
Collapse
Affiliation(s)
- Y Takemoto
- First Department of Internal Medicine, Osaka City University Medical School, Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
1. Mechanical stimuli are thought to modulate the number of sarcomeres in series (sarcomere number) in skeletal muscle fibres. However, the mechanisms by which muscle cells transduce mechanical signals into serial sarcomere addition have not been explored. In this study, we test the hypothesis that nitric oxide positively modulates sarcomere addition. 2. The soleus muscle was cast-immobilized in a shortened position in 3-week-old female Wistar rats. After 4 weeks, the casts were removed, creating a period of rapid sarcomere addition. During the remobilization period, nitric oxide synthase (NOS) inhibitors or substrate were administered. 3. Rats treated with the non-isoform-specific NOS inhibitor L-nitro-arginine methyl ester during 3 weeks of remobilization had smaller soleus sarcomere numbers than control rats. Rats treated with 1-(2-trifluoromethyl-phenyl)-imidazole, which has greater specificity for the neuronal isoform than for the endothelial isoform of NOS, also had smaller soleus sarcomere numbers than control rats. These results suggest that inhibition of the neuronal isoform of NOS reduces sarcomere addition during remobilization. 4. Rats treated with L-arginine, the substrate for NOS, during 1 week of remobilization had soleus sarcomere numbers for the immobilized-remobilized muscle which were closer to that for the contralateral, non-immobilized muscle than did rats that were not treated with L-arginine. 5. These results support the hypothesis that nitric oxide derived from the neuronal isoform of NOS positively modulates sarcomere addition.
Collapse
Affiliation(s)
- T J Koh
- Department of Physiological Science, University of California, Los Angeles, CA 90095-1527, USA
| | | |
Collapse
|
32
|
Aronson D, Boppart MD, Dufresne SD, Fielding RA, Goodyear LJ. Exercise stimulates c-Jun NH2 kinase activity and c-Jun transcriptional activity in human skeletal muscle. Biochem Biophys Res Commun 1998; 251:106-10. [PMID: 9790915 DOI: 10.1006/bbrc.1998.9435] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exercise causes selective changes in gene expression leading to alterations in the structure and function of human skeletal muscle. However, little is known about the specific signaling pathways that enable exercise to modulate gene regulatory events. We determined the effects of exercise on c-Jun NH2-terminal kinase (JNK) activity, a signaling molecule involved in the regulation of transcription. Biopsies of vastus lateralis muscle were taken from eight subjects at rest and after 60 min of cycle ergometer exercise. Exercise increased JNK activity in all subjects (5.9 +/- 1.8 fold above basal). JNK activation was associated with an increased expression of its downstream nuclear target c-Jun mRNA. When two additional subjects were studied using a one-legged exercise protocol, JNK activity increased only in the exercising leg, indicating that exercise-induced JNK signaling represents an intrinsic response of the contracting muscle, rather than a systemic response to exercise. These studies demonstrate that the JNK pathway may serve as a link between contractile activity and transcriptional responses in human skeletal muscle.
Collapse
Affiliation(s)
- D Aronson
- Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, One Joslin Place, Boston, Massachusetts, 02215, USA
| | | | | | | | | |
Collapse
|
33
|
Yano M, Kim S, Izumi Y, Yamanaka S, Iwao H. Differential activation of cardiac c-jun amino-terminal kinase and extracellular signal-regulated kinase in angiotensin II-mediated hypertension. Circ Res 1998; 83:752-60. [PMID: 9758646 DOI: 10.1161/01.res.83.7.752] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Two subgroups of mitogen-activated protein kinases, c-jun NH2-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK), are thought to be involved in cultured cardiac myocyte hypertrophy and gene expression. To examine the in vivo activation of these kinases, we measured cardiac JNK and ERK activities in conscious rats subjected to acute or chronic angiotensin II (Ang II) infusion, by using in-gel kinase methods. About 50 mm Hg rise in blood pressure by Ang II (1000 ng . kg-1 . min-1) infusion caused larger activation of left ventricular JNK than ERK, via the AT1 receptor. In spite of short duration (about 30 minutes) of maximal blood pressure elevation by Ang II, JNK sustained the peak value (more than 5-fold increase) from 15 minutes up to at least 3 hours. Similar activation of JNK was seen in the right ventricle. Thus, cardiac JNK activation by Ang II seems to be in part mediated by its direct action via the AT1 receptor. The dose-response relationships for Ang II-induced rises in blood pressure and cardiac JNK and ERK activation indicated that cardiac JNK or ERK was not activated by a mild increase in blood pressure and that cardiac JNK was activated by Ang II-mediated hypertension in a more sensitive manner than ERK. Cardiac hypertrophy, induced by chronic Ang II infusion, was preceded by JNK activation without ERK activation. Furthermore, gel mobility shift analysis showed that cardiac JNK activation was followed by increased activator protein-1 DNA binding activity due to c-Fos and c-Jun. These results provided the first evidence for the preferential activation of cardiac JNK in Ang II-induced hypertension and suggested that JNK might play some role in Ang II-induced cardiac hypertrophic response in vivo. However, further study is needed to elucidate the role of JNK in cardiac hypertrophy in vivo.
Collapse
Affiliation(s)
- M Yano
- Department of Pharmacology, Osaka City University Medical School, Osaka, Japan
| | | | | | | | | |
Collapse
|
34
|
Aronson D, Dufresne SD, Goodyear LJ. Contractile activity stimulates the c-Jun NH2-terminal kinase pathway in rat skeletal muscle. J Biol Chem 1997; 272:25636-40. [PMID: 9325285 DOI: 10.1074/jbc.272.41.25636] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Contractile activity plays a critical role in the regulation of gene transcription in skeletal muscle, which in turn determines muscle functional capabilities. However, little is known about the molecular signaling mechanisms that convert contractile activity into gene regulatory responses in skeletal muscle. In the current study we determined the effects of contractile activity in vivo on the c-Jun NH2-terminal kinase (JNK) pathway, a signaling cascade that has been implicated in the regulation of transcription. Electrical stimulation of the sciatic nerve to produce contractions in anaesthetized rats increased JNK activity by up to 7-fold above basal. Maximal enzyme activity occurred at 15 min of contraction and remained elevated at 60 min of contraction. The upstream activators of JNK, the mitogen-activated protein kinase kinase 4 and the mitogen-activated protein kinase kinase kinase 1 followed a similar time course of activation in response to contractile activity. In contrast, contraction induced a rapid and transient activation of the extracellular-regulated kinase pathway, indicating that the regulation of JNK signaling is distinct from that of extracellular-regulated kinase. The activation of the JNK signaling cascade was temporally associated with an increased expression of c-jun mRNA. These results demonstrate that contractile activity regulates JNK activity in skeletal muscle and suggest that activation of JNK may regulate contraction-induced gene expression in skeletal muscle.
Collapse
Affiliation(s)
- D Aronson
- Research Division, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
35
|
McDonough PM, Hanford DS, Sprenkle AB, Mellon NR, Glembotski CC. Collaborative roles for c-Jun N-terminal kinase, c-Jun, serum response factor, and Sp1 in calcium-regulated myocardial gene expression. J Biol Chem 1997; 272:24046-53. [PMID: 9295358 DOI: 10.1074/jbc.272.38.24046] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Electrical stimulation of contractions (pacing) of primary neonatal rat ventricular myocytes increases intracellular calcium and activates a hypertrophic growth program that includes expression of the cardiac-specific gene, atrial natriuretic factor (ANF). To investigate the mechanism whereby pacing increases ANF, pacing was tested for its ability to regulate mitogen-activated protein kinase family members, ANF promoter activity, and the trans-activation domain of the transcription factor, Sp1. Pacing and the calcium channel agonist BAYK 8644 activated c-Jun N-terminal kinase (JNK) but not extracellular signal-regulated kinase. Pacing stimulated ANF-promoter activity approximately 10-fold. Furthermore, transfection with an expression vector for c-Jun, a substrate for JNK, also activated the ANF promoter, and the combination of pacing and c-Jun was synergystic, consistent with roles for JNK and c-Jun in calcium-activated ANF expression. Proximal serum response factor and Sp1 binding sites were required for the effects of pacing or c-Jun on the ANF promoter. Pacing and c-Jun activated a GAL4-Sp1 fusion protein by 3- and 12-fold, respectively, whereas the two stimuli together activated GAL4-Sp1 synergistically, similar to their effect on the ANF promoter. Transfection with an expression vector for c-Fos inhibited the effects of c-Jun, suggesting that c-Jun acts independently of AP-1. These results demonstrate an interaction between c-Jun and Sp1 and are consistent with a novel mechanism of calcium-mediated transcriptional activation involving the collaborative actions of JNK, c-Jun, serum response factor, and Sp1.
Collapse
Affiliation(s)
- P M McDonough
- Department of Biology and the Molecular Biology Institute, San Diego State University, San Diego, California 92182, USA.
| | | | | | | | | |
Collapse
|
36
|
Yang Q, Hanesworth JM, Harding JW, Slinker BK. The AT4 receptor agonist [Nle1]-angiotensin IV reduces mechanically induced immediate-early gene expression in the isolated rabbit heart. REGULATORY PEPTIDES 1997; 71:175-83. [PMID: 9350976 DOI: 10.1016/s0167-0115(97)01033-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Angiotensin II (ANG II), acting principally at the AT1 receptor, modulates mechanically-induced cardiac growth. The ANG II metabolite Angiotensin IV (ANG IV) has been shown to inhibit ANG II-induced mRNA and protein synthesis in chick cardiomyocytes. This effect did not involve the AT1 receptor, but was likely an action at the AT4 receptor. To determine if ANG IV also modulates a mechanically-induced cardiac growth response, we studied the effects of two AT4 receptor ligands, [Nle1]-ANG IV and [divalinal]-ANG IV, on mechanically-induced immediate-early gene expression (c-fos, egr-1, and c-jun) in the buffer perfused (30 degrees C), ejecting, isolated rabbit heart. Mechanical load alone (high systolic pressure and high end-diastolic volume) induced approximately 23-, 49- and 5-fold increases in c-fos, egr-1 and c-jun mRNA (in comparison to control hearts). Perfusion with [Nle1]-ANG IV (10[-10] mol/l) reduced the mechanically-induced expression of c-/fos and egr-1 by 42% and 48%, respectively (P < 0.05). Mechanically-induced c-jun expression was not significantly reduced. Perfusion with [divalinal]-ANG IV (10[-8] mol/l) had no effect on mechanically-induced immediate-early gene expression. We conclude that AT4 receptor agonism influences mechanical immediate-early gene expression, and propose the hypothesis that AT1 and AT4 receptors initiate opposing effects on mechanically-induced immediate-early gene expression in the isolated rabbit left ventricle.
Collapse
Affiliation(s)
- Q Yang
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman 99164-6520, USA
| | | | | | | |
Collapse
|
37
|
Bishopric NH, Zeng GQ, Sato B, Webster KA. Adenovirus E1A inhibits cardiac myocyte-specific gene expression through its amino terminus. J Biol Chem 1997; 272:20584-94. [PMID: 9252373 DOI: 10.1074/jbc.272.33.20584] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Adenovirus E1A oncoproteins inhibit muscle-specific gene expression and myogenic differentiation by suppressing the transcriptional activating functions of basic helix-loop-helix proteins. As one approach to identifying cardiac-specific gene regulatory proteins, we analyzed the functional regions of E1A proteins that are required for muscle gene repression in cardiac cells. Myocyte-specific promoters, including the alpha-actins and alpha-myosin heavy chain, were selectively and potently inhibited (>90%) by E1A, while the ubiquitously expressed beta-actin promoter was only partially ( approximately 30%) repressed; endogenous gene expression was also affected. Distinct E1A protein binding sites mediated repression of muscle-specific and ubiquitous actin promoters. E1A-mediated inhibition of beta-actin required both an intact binding site for the tumor repressor proteins pRb and p107 and a second E1A domain (residues 15-35). In contrast, cardiac-specific promoter repression required the E1A amino-terminal residues 2-36. The proximal skeletal actin promoter (3' to base pair -153) was a target for repression by E1A. Although E1A binding to p300 was not required for inhibition of either promoter, co-expression of p300 partially reversed E1A-mediated transcriptional repression. We conclude that cardiac-specific and general promoter inhibition by E1A occurs by distinct mechanisms and that cardiac-specific gene expression is modulated by cellular factors interacting with the E1A p300/CBP-binding domain.
Collapse
Affiliation(s)
- N H Bishopric
- Molecular Cardiology Laboratory, SRI International, Menlo Park, California 94125, USA
| | | | | | | |
Collapse
|
38
|
Mizukami Y, Yoshioka K, Morimoto S, Yoshida KI. A novel mechanism of JNK1 activation. Nuclear translocation and activation of JNK1 during ischemia and reperfusion. J Biol Chem 1997; 272:16657-62. [PMID: 9195981 DOI: 10.1074/jbc.272.26.16657] [Citation(s) in RCA: 137] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cytokines and various cellular stresses are known to activate c-Jun NH2-terminal kinase (JNK), which plays a role in conveying signals from the cytosol to the nucleus. Here we investigate the translocation and activation of JNK1 during ischemia and reperfusion in perfused rat heart. Ischemia induces the translocation of JNK1 from the cytosol fraction to the nuclear fraction in a time-dependent manner. Immunohistochemical observation also shows that JNK1 staining in the nucleus is enhanced after ischemia. During reperfusion after ischemia, further nuclear translocation of JNK1 is apparently inhibited. In contrast, JNK1 activity in the nuclear fraction does not increased during ischemia but increases significantly during reperfusion with a peak at 10 min of reperfusion. The activation of JNK1 is confirmed by the phosphorylation of endogenous c-Jun (Ser-73) with similar kinetics. The level of c-jun mRNA also increases during reperfusion but not during ischemia. Based on fractionation and immunohistochemical analyses, an upstream kinase for JNK1, SAPK/ERK kinase 1 (SEK1), is constantly present in both the nucleus and cytoplasm throughout ischemia and reperfusion, whereas an upstream kinase for mitogen-activated protein kinase, MAPK/ERK kinase 1, remains in the cytosol. Furthermore, phosphorylation at Thr-223 of SEK1, necessary for its activation, rapidly increases in the nuclear fraction during postischemic reperfusion. These findings demonstrate that JNK1 translocates to the nucleus during ischemia without activation and is then activated during reperfusion, probably by SEK1 in the nucleus.
Collapse
Affiliation(s)
- Y Mizukami
- Department of Legal Medicine, Yamaguchi University School of Medicine, Yamaguchi, Japan.
| | | | | | | |
Collapse
|
39
|
Pollack PS, Pasquarello LM, Budjak R, Fernandez E, Soprano KJ, Redfern BG, Goldman B. Differential expression of c-jun and junD in end-stage human cardiomyopathy. J Cell Biochem 1997; 65:245-53. [PMID: 9136081 DOI: 10.1002/(sici)1097-4644(199705)65:2<245::aid-jcb9>3.0.co;2-u] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The proto-oncogenes c-jun and junD are closely related transcriptional factors with opposing actions on cell growth and division. Expression of c-jun rapidly increases as cells enter the cell cycle. Levels of c-jun are also increased in the early stages of experimental cardiac hypertrophy and failure but expression decreases with time. In contrast, junD accumulates in quiescent cells. Expression in end-stage cardiomyopathy has not been studied. Steady-state levels of c-jun and junD mRNA were determined in failing human myocardium (obtained at the time of cardiac transplantation) and in control myocardium from patients who died of noncardiac causes. Relative expression was normalized for glyceraldehyde-3-phosphate dehydrogenase expression. Levels of junD were almost four-fold depressed in myocardium from myopathic hearts (2.1 +/- 0.27, x +/- SE; n = 20) vs. the controls (7.7 +/- 1.1; n = 3). Levels of c-jun were similar in both myopathic and control hearts. Relative expression of beta-myosin heavy chain was the same in both myopathic and control hearts. Levels of junD were still found to be depressed in the myopathic hearts after normalization for myosin heavy chain gene expression. We conclude that c-jun and junD are differentially regulated in end-stage human cardiomyopathy with expression of junD being decreased while relative levels of c-jun mRNA remain unchanged. Further studies are needed to determine the role of junD down-regulation in the development and/or maintenance of the abnormalities present in end-stage heart disease.
Collapse
Affiliation(s)
- P S Pollack
- Department of Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Abdellatif M, Schneider MD. An effector-like function of Ras GTPase-activating protein predominates in cardiac muscle cells. J Biol Chem 1997; 272:525-33. [PMID: 8995293 DOI: 10.1074/jbc.272.1.525] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In contrast to familiar role for Ras in proliferation, we and others previously suggested that Ras also mediates hypertrophy, the increase in cell mass characteristic of post-natal ventricular muscle. We showed that activated (G12R) and dominant-negative (S17N) Ha-Ras regulate "constitutive" and growth factor-responsive genes equivalently, in both cardiac myocytes and non-cardiac, Mv1Lu cells. Here, we attempt to delineate pathways by which Ras exerts this global effect. The E63K mutation, which impairs binding of guanine nucleotide releasing factor to Ras, alleviated suppression by S17N, consistent with sequestration of exchange factors as the mechanism for inhibition. To compare potential Ras effector proteins, we first engineered G12R/D38N, to abolish binding of Raf and phosphatidylinositol-3-kinase and established that this site was indispensable for augmenting gene expression. To distinguish between inhibition of Ras by Ras GTPase-activating protein (GAP) versus a potential effector function of GAP, we tested the effector domain substitution P34R: this mutation, which abolishes GAP binding, enhanced Ras-dependent transcription in Mv1Lu cells, yet interfered with Ras-dependent expression in ventricular myocytes. To examine the dichotomous role of Ras-GAP predicted from these P34R results, we transfected both cell types with full-length GAP, the C-terminal catalytic domain (cGAP), or N-terminal Src homology domains (nGAP). In Mv1Lu cells, cGAP markedly inhibited both reporter genes, whereas GAP and nGAP had little effect. Antithetically, in ventricular myocytes, GAP and nGAP activated gene expression, whereas cGAP was ineffective. Thus, Ras activates gene expression through differing effectors contingent on cell type, and an effector-like function of GAP predominates in ventricular muscle.
Collapse
Affiliation(s)
- M Abdellatif
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
41
|
Paradis P, MacLellan WR, Belaguli NS, Schwartz RJ, Schneider MD. Serum response factor mediates AP-1-dependent induction of the skeletal alpha-actin promoter in ventricular myocytes. J Biol Chem 1996; 271:10827-33. [PMID: 8631897 DOI: 10.1074/jbc.271.18.10827] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
"Fetal" gene transcription, including activation of the skeletal alpha-actin (SkA) promoter, is provoked in cardiac myocytes by mechanical stress and trophic ligands. Induction of the promoter by transforming growth factor beta or norepinephrine requires serum response factor (SRF) and TEF-1; expression is inhibited by YY1. We and others postulated that immediate-early transcription factors might couple trophic signals to this fetal program. However, multiple Fos/Jun proteins exist, and the exact relationship between control by Fos/Jun versus SRF, TEF-1, and YY1 is unexplained. We therefore cotransfected ventricular myocytes with Fos, Jun, or JunB, and SkA reporter genes. SkA transcription was augmented by Jun, Fos/Jun, Fos/JunB, and Jun/JunB; Fos and JunB alone were neutral or inhibitory. Mutation of the SRF site, SRE1, impaired activation by Jun; YY1, TEF-1, and Sp1 sites were dispensable. SRE1 conferred Jun activation to a heterologous promoter, as did the c-fos SRE. Deletions of DNA binding, dimerization, or trans-activation domains of Jun and SRF abolished activation by Jun and synergy with SRF. Neither direct binding of Fos/Jun to SREs, nor physical interaction between Fos/Jun and SRF, was detected in mobility-shift assays. Thus, AP-1 factors activate a hypertrophy-associated gene via SRF, without detectable binding to the promoter or to SRF.
Collapse
Affiliation(s)
- P Paradis
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
42
|
Tanaka M, Hiroe M, Ito H, Nishikawa T, Adachi S, Aonuma K, Marumo F. Differential localization of atrial natriuretic peptide and skeletal alpha-actin messenger RNAs in left ventricular myocytes of patients with dilated cardiomyopathy. J Am Coll Cardiol 1995; 26:85-92. [PMID: 7797780 DOI: 10.1016/0735-1097(95)00145-p] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVES This study was designed to determine whether atrial natriuretic peptide and skeletal alpha-actin messenger RNAs (mRNAs) are co-localized in ventricular myocytes of patients with dilated cardiomyopathy. BACKGROUND Atrial natriuretic peptide and skeletal alpha-actin are known as augmented genes with cardiac hypertrophy. However, the expression and localization of both genes in chronic failing heart remain unclear. METHODS Left ventricular biopsy specimens were obtained from 14 patients with dilated cardiomyopathy. Atrial natriuretic peptide and skeletal alpha-actin mRNAs were detected by in situ hybridization with specific sulfur-35 uridine triphosphate-labeled RNA probes in the serial sections. RESULTS Atrial natriuretic peptide mRNA was detected in 10 patients, and intense signals were localized in the myocytes located in the subendocardium and around the interstitial fibrous area. By contrast, skeletal alpha-actin mRNA was homogeneously detected in all myocytes in seven patients. By left ventriculography, patients with skeletal alpha-actin-positive findings had a lower ejection fraction (37.1 +/- 6.0%) than those with negative findings (46.3 +/- 5.8%, p < 0.05), but atrial natriuretic peptide mRNA expression was not related to left ventricular function. CONCLUSIONS These results indicate that the expression of atrial natriuretic peptide and skeletal alpha-actin mRNAs are not always co-localized in the left ventricle of patients with dilated cardiomyopathy and suggest that the mechanisms of the regulation of these two genes in the chronic failing heart are different.
Collapse
Affiliation(s)
- M Tanaka
- Second Department of Internal Medicine, Tokyo Medical and Dental University, Tokyo Women's Medical College, Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
Affiliation(s)
- P E Glennon
- Department of Cardiac Medicine, National Heart and Lung Institute, London
| | | | | |
Collapse
|
44
|
Affiliation(s)
- P S Pollack
- Department of Medicine, Temple University School of Medicine, Philadelphia, PA 19140
| |
Collapse
|
45
|
Gene Expression in Cardiac Hypertrophy. MOLECULAR BIOLOGY OF CARDIAC DEVELOPMENT AND GROWTH 1995. [DOI: 10.1007/978-3-662-22192-1_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
46
|
Miki N, Hamamori Y, Hirata K, Suematsu M, Kawashima S, Akita H, Yokoyama M. Transforming growth factor-beta 1 potentiated alpha 1-adrenergic and stretch-induced c-fos mRNA expression in rat myocardial cells. Circ Res 1994; 75:8-14. [PMID: 8013086 DOI: 10.1161/01.res.75.1.8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Since transforming growth factor-beta 1 (TGF-beta 1) has been recently shown to be expressed in the heart by mechanical stretch and ischemic injury, we examined the modulation of c-fos mRNA expression and amino acid uptake by TGF-beta 1 in rat myocardial cells. Pretreatment with TGF-beta 1 potentiated norepinephrine (NE)-induced and stretch-induced (+10% and +20% elongation, for 30 minutes) c-fos mRNA expression by 2.2-fold, whereas TGF-beta 1 alone did not induce c-fos mRNA expression in Northern blot analysis. NE-induced [14C]phenylalanine uptake was also potentiated with TGF-beta 1 pretreatment. The effect of TGF-beta 1 on the NE action was not blocked by propranolol but by prazosin. The protein kinase C activators (12-O-tetradecanoylphorbol 13-acetate [TPA], phorbol 12,13-dibutyrate, and 1-oleyl-2-acetyl-rac-glycerol) induced c-fos mRNA expression, which was also potentiated by TGF-beta 1. Cycloheximide (protein synthesis inhibitor) could not suppress the TGF-beta 1 actions. In nonmuscle cells, TGF-beta 1 modified neither adrenergic nor TPA-induced c-fos mRNA expression. These data suggested that TGF-beta 1 potentiated the c-fos mRNA expression and amino acid incorporation by modification of the alpha 1-adrenergic and stretch-activated protein kinase C pathway. This mechanism did not require protein synthesis.
Collapse
Affiliation(s)
- N Miki
- First Department of Internal Medicine, Kobe University School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
Goldspink PH, Russell B. The cAMP response element binding protein is expressed and phosphorylated in cardiac myocytes. Circ Res 1994; 74:1042-9. [PMID: 8187274 DOI: 10.1161/01.res.74.6.1042] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cardiac cells grow in response to a number of stimuli that activate intracellular signaling pathways. The cAMP-signaling pathway mediates the activation of gene transcription in other cell types by the cAMP response element binding protein (CREB-P). Our aim was to explore the physiological role of CREB-P in response to elevated cAMP in cardiac cells by determining if phosphorylation of CREB-P (to phosphoCREB-P) rapidly induces transcription in culture. Primary embryonic chick heart cultures were used in which cAMP was raised by forskolin (5 mumol/L) or isoproterenol (10 mumol/L) treatment. Since both these agents have inotropic effects, tension production was controlled with 2,3-butanedione monoxime (BDM). This allowed us to determine whether the cAMP-signaling pathway or the contractile state was regulating phosphorylation and transcription. The responses for time periods up to 2 hours were assayed with antibodies to detect phosphoCREB-P and by quantitative filter hybridization for creb gene expression. The staining intensity of the phosphoprotein increased in myocyte nuclei after 10 minutes and persisted for 1 hour with either forskolin or isoproterenol treatment. An increase in creb mRNA abundance was also detected, with the maximum level of expression being at 1 hour with forskolin treatment. These changes are independent of the contractile state, because BDM itself caused no change. BDM plus forskolin induced the same pattern of creb expression as observed with forskolin alone. Therefore, we conclude that elevation of cAMP leads to phosphorylation of CREB-P and an increase in creb mRNA abundance.
Collapse
Affiliation(s)
- P H Goldspink
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago 60612-7342
| | | |
Collapse
|
48
|
Jegadeesh Babu G, Selvamurugan N, Kartha C, Rajamanickam C. Expression of proto-oncogenes and muscle specific genes during cardiac hypertrophy and development in rats and humans. J Biosci 1994. [DOI: 10.1007/bf02703051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
49
|
Kariya K, Karns L, Simpson P. An enhancer core element mediates stimulation of the rat beta-myosin heavy chain promoter by an alpha 1-adrenergic agonist and activated beta-protein kinase C in hypertrophy of cardiac myocytes. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)41927-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
50
|
Pollack PS, Houser SR, Budjak R, Goldman B. c-myc gene expression is localized to the myocyte following hemodynamic overload in vivo. J Cell Biochem 1994; 54:78-84. [PMID: 8126088 DOI: 10.1002/jcb.240540109] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Expression of the proto-oncogene c-myc increases in the hemodynamically overloaded heart, but expression by cardiac myocytes has not been shown. To address this issue, right ventricular overload was induced in cats by pulmonary artery banding. Expression of c-myc and alpha-skeletal actin mRNA were determined by Northern analysis. Immuno-reactive Myc protein was identified by histochemical staining. Steady state levels of c-myc mRNA peaked within 2 h after banding. Levels of alpha-skeletal actin mRNA were maximally increased 48 h-1 week after banding and were still elevated at 1 month. Prominent staining of myocyte nuclei for immunoreactive Myc protein was detected 48 h after banding although a few interstitial nuclei were also positive. These studies show that c-myc and alpha-skeletal actin gene expression are upregulated in a large animal model of hemodynamic overload. The localization of the immunoreactive Myc protein to right ventricular myocyte nuclei after pulmonary artery banding supports the hypothesis that c-myc induction is part of a general response in cardiac hypertrophy that is common to many mammalian species.
Collapse
Affiliation(s)
- P S Pollack
- Department of Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | | | | | | |
Collapse
|