1
|
Kim S, Liu TT, Ou F, Murphy TL, Murphy KM. Anatomy of a superenhancer. Adv Immunol 2024; 163:51-96. [PMID: 39271259 DOI: 10.1016/bs.ai.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Interferon regulatory factor-8 (IRF8) is the lineage determining transcription factor for the type one classical dendritic cell (cDC1) subset, a terminal selector for plasmacytoid dendritic cells and important for the function of monocytes. Studies of Irf8 gene regulation have identified several enhancers controlling its activity during development of progenitors in the bone marrow that precisely regulate expression at distinct developmental stages. Each enhancer responds to distinct transcription factors that are expressed at each stage. IRF8 is first expressed in early progenitors that form the monocyte dendritic cell progenitor (MDP) in response to induction of the transcription factor CCAAT/enhancer-binding protein alpha (C/EBPα) acting at the Irf8 +56 kb enhancer. IRF8 levels increase further as the MDP transits into the common dendritic cell progenitor (CDP) in response to E protein activity at the Irf8 +41 kb enhancer. Upon Nfil3-induction in CDPs leading to specification of the cDC1 progenitor, abrupt induction of BATF3 forms the JUN/BATF3/IRF8 heterotrimer that activates the Irf8 +32 kb enhancer that sustains Irf8 autoactivation throughout the cDC1 lifetime. Deletions of each of these enhancers has revealed their stage dependent activation. Surprisingly, studies of compound heterozygotes for each combination of enhancer deletions revealed that activation of each subsequent enhancer requires the successful activation of the previous enhancer in strictly cis-dependent mechanism. Successful progression of enhancer activation is finely tuned to alter the functional accessibility of subsequent enhancers to factors active in the next stage of development. The molecular basis for these phenomenon is still obscure but could have implications for genomic regulation in a broader developmental context.
Collapse
Affiliation(s)
- Sunkyung Kim
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States.
| | - Tian-Tian Liu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Feiya Ou
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Theresa L Murphy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
2
|
Xiao ZX, Liang R, Olsen N, Zheng SG. Roles of IRF4 in various immune cells in systemic lupus erythematosus. Int Immunopharmacol 2024; 133:112077. [PMID: 38615379 DOI: 10.1016/j.intimp.2024.112077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Interferon regulatory factor 4 (IRF4) is a member of IRF family of transcription factors which mainly regulates the transcription of IFN. IRF4 is restrictively expressed in immune cells such as T and B cells, macrophages, as well as DC. It is essential for the development and function of these cells. Since these cells take part in the homeostasis of the immune system and dysfunction of them contributes to the initiation and progress of systemic lupus erythematosus (SLE), the roles of IRF4 in the SLE development becomes an important topic. Here we systemically discuss the biological characteristics of IRF4 in various immune cells and analyze the pathologic effects of IRF4 alteration in SLE and the potential targeting therapeutics of SLE.
Collapse
Affiliation(s)
- Ze Xiu Xiao
- Department of Immunology, the School of Cell and Gene Therapy, Songjiang Research Institute and Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 201600, China; Department of Clinical Immunology, the Third Affiliated Hospital at the Sun Yat-sen University, Guangzhou 510630, China
| | - Rongzhen Liang
- Department of Immunology, the School of Cell and Gene Therapy, Songjiang Research Institute and Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 201600, China
| | - Nancy Olsen
- Division of Rheumatology, Department of Medicine, Penn State College of Medicine, Hershey, PA 17033, United States
| | - Song Guo Zheng
- Department of Immunology, the School of Cell and Gene Therapy, Songjiang Research Institute and Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 201600, China.
| |
Collapse
|
3
|
Dimitrakopoulou D, Khwatenge CN, James-Zorn C, Paiola M, Bellin EW, Tian Y, Sundararaj N, Polak EJ, Grayfer L, Barnard D, Ohta Y, Horb M, Sang Y, Robert J. Advances in the Xenopus immunome: Diversification, expansion, and contraction. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 145:104734. [PMID: 37172665 PMCID: PMC10230362 DOI: 10.1016/j.dci.2023.104734] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 03/18/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Xenopus is a genus of African clawed frogs including two species, X. tropicalis and X. laevis that are extensively used in experimental biology, immunology, and biomedical studies. The availability of fully sequenced and annotated Xenopus genomes is strengthening genome-wide analyses of gene families and transgenesis to model human diseases. However, inaccuracies in genome annotation for genes involved in the immune system (i.e., immunome) hamper immunogenetic studies. Furthermore, advanced genome technologies (e.g., single-cell and RNA-Seq) rely on well-annotated genomes. The annotation problems of Xenopus immunome include a lack of established orthology across taxa, merged gene models, poor representation in gene pages on Xenbase, misannotated genes and missing gene IDs. The Xenopus Research Resource for Immunobiology in collaboration with Xenbase and a group of investigators are working to resolve these issues in the latest versions of genome browsers. In this review, we summarize the current problems of previously misannotated gene families that we have recently resolved. We also highlight the expansion, contraction, and diversification of previously misannotated gene families.
Collapse
Affiliation(s)
- Dionysia Dimitrakopoulou
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Collins N Khwatenge
- Department of Agriculture and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, USA
| | - Christina James-Zorn
- Xenbase, Division of Developmental Biology, Cincinnti Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Matthieu Paiola
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Eleanor Wise Bellin
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Yun Tian
- Department of Agriculture and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, USA
| | - Nivitha Sundararaj
- Xenbase, Division of Developmental Biology, Cincinnti Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Emma J Polak
- Biology Department, Worcester State University, MA, USA
| | - Leon Grayfer
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Daron Barnard
- Biology Department, Worcester State University, MA, USA
| | - Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marko Horb
- National Xenopus Resource and Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - Yongming Sang
- Department of Agriculture and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, USA.
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
4
|
Chen M, Jia S, Xue M, Huang H, Xu Z, Yang D, Zhu W, Song Q. Dual-Stream Subspace Clustering Network for revealing gene targets in Alzheimer's disease. Comput Biol Med 2022; 151:106305. [PMID: 36401971 DOI: 10.1016/j.compbiomed.2022.106305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
The rapid development of scRNA-seq technology in recent years has enabled us to capture high-throughput gene expression profiles at single-cell resolution, reveal the heterogeneity of complex cell populations, and greatly advance our understanding of the underlying mechanisms in human diseases. Traditional methods for gene co-expression clustering are limited to discovering effective gene groups in scRNA-seq data. In this paper, we propose a novel gene clustering method based on convolutional neural networks called Dual-Stream Subspace Clustering Network (DS-SCNet). DS-SCNet can accurately identify important gene clusters from large scales of single-cell RNA-seq data and provide useful information for downstream analysis. Based on the simulated datasets, DS-SCNet successfully clusters genes into different groups and outperforms mainstream gene clustering methods, such as DBSCAN and DESC, across different evaluation metrics. To explore the biological insights of our proposed method, we applied it to real scRNA-seq data of patients with Alzheimer's disease (AD). DS-SCNet analyzed the single-cell RNA-seq data with 10,850 genes, and accurately identified 8 optimal clusters from 6673 cells. Enrichment analysis of these gene clusters revealed functional signaling pathways including the ILS signaling, the Rho GTPase signaling, and hemostasis pathways. Further analysis of gene regulatory networks identified new hub genes such as ELF4 as important regulators of AD, which indicates that DS-SCNet contributes to the discovery and understanding of the pathogenesis in Alzheimer's disease.
Collapse
Affiliation(s)
- Minghan Chen
- Department of Computer Science, Wake Forest University, Winston-Salem, NC, USA
| | - Shishen Jia
- School of Automation, Hangzhou Dianzi University, Hangzhou, Zhejiang, China
| | - Mengfan Xue
- School of Automation, Hangzhou Dianzi University, Hangzhou, Zhejiang, China; Zhejiang Lab, Hangzhou, Zhejiang, China
| | | | - Ziang Xu
- Department of Computer Science, Wake Forest University, Winston-Salem, NC, USA
| | - Defu Yang
- Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Wentao Zhu
- Zhejiang Lab, Hangzhou, Zhejiang, China.
| | - Qianqian Song
- Center for Cancer Genomics and Precision Oncology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston Salem, NC, USA; Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, USA.
| |
Collapse
|
5
|
Wu H, Li Y, Shi G, Du S, Wang X, Ye W, Zhang Z, Chu Y, Ma S, Wang D, Li Y, Chen Z, Birnbaumer L, Wang Z, Yang Y. Hepatic interferon regulatory factor 8 expression suppresses hepatocellular carcinoma progression and enhances the response to anti-programmed cell death protein-1 therapy. Hepatology 2022; 76:1602-1616. [PMID: 34989013 PMCID: PMC9256853 DOI: 10.1002/hep.32316] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 12/17/2021] [Accepted: 01/03/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Therapeutic blockade of the programmed cell death protein-1 (PD-1) immune checkpoint pathways has resulted in significant reactivation of T cell-mediated antitumor immunity and is a promising clinical anticancer treatment modality in several tumor types, but the durable response rate remains relatively low (15%-20%) in most patients with HCC for unknown reasons. Evidence reveals that the interferon signaling pathway plays a critical role in modulating the efficacy and sensitivity of anti-PD-1 therapy against multiple tumor types, but the mechanisms are unclear. APPROACH AND RESULTS Using Kaplan-Meier survival analysis based on HCC databases, we found that deceased expression of interferon regulatory factor (IRF) 8 in HCC, among all the nine IRF members that regulate interferon signals, was associated with poor prognosis of patients with HCC. Moreover, gene set enrichment analysis identified the interferon-gamma and PD-1 signaling signatures as the top suppressed pathways in patients with IRF8-low HCC. Contrarily, overexpression of IRF8 in HCC cells significantly enhanced antitumor effects in immune-competent mice, modulating infiltration of tumor-associated macrophages (TAMs) and T cell exhaustion in tumor microenvironment. We further demonstrated that IRF8 regulated recruitment of TAMs by inhibiting the expression of chemokine (C-C motif) ligand 20 (CCL20). Mechanically, IRF8-mediated repression of c-fos transcription resulted in decreased expression of CCL20, rather than directly bound to CCL20 promoter region. Importantly, adeno-associated virus 8-mediated hepatic IRF8 rescue significantly suppressed HCC progression and enhanced the response to anti-PD-1 therapy. CONCLUSIONS This work identified IRF8 as an important prognostic biomarker in patients with HCC that predicted the response and sensitivity to anti-PD-1 therapy and uncovered it as a therapeutic target for enhancing the efficacy of immune therapy.
Collapse
Affiliation(s)
- Hongxi Wu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Yan Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Guangjiang Shi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Shijia Du
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Xiaobin Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Wanli Ye
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Zixuan Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Ya Chu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Shuqian Ma
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Dajia Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Yuan Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Zhen Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Lutz Birnbaumer
- Institute of Biomedical Research (BIOMED), Catholic University of Argentina, Buenos Aires C1107AFF, Argentina, and Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | - Zhuo Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, 210023 Nanjing, China
| | - Yong Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| |
Collapse
|
6
|
Gao Y, Li J, Cai G, Wang Y, Yang W, Li Y, Zhao X, Li R, Gao Y, Tuo W, Baldwin RL, Li CJ, Fang L, Liu GE. Single-cell transcriptomic and chromatin accessibility analyses of dairy cattle peripheral blood mononuclear cells and their responses to lipopolysaccharide. BMC Genomics 2022; 23:338. [PMID: 35501711 PMCID: PMC9063233 DOI: 10.1186/s12864-022-08562-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/13/2022] [Indexed: 11/24/2022] Open
Abstract
Background Gram-negative bacteria are important pathogens in cattle, causing severe infectious diseases, including mastitis. Lipopolysaccharides (LPS) are components of the outer membrane of Gram-negative bacteria and crucial mediators of chronic inflammation in cattle. LPS modulations of bovine immune responses have been studied before. However, the single-cell transcriptomic and chromatin accessibility analyses of bovine peripheral blood mononuclear cells (PBMCs) and their responses to LPS stimulation were never reported. Results We performed single-cell RNA sequencing (scRNA-seq) and single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq) in bovine PBMCs before and after LPS treatment and demonstrated that seven major cell types, which included CD4 T cells, CD8 T cells, and B cells, monocytes, natural killer cells, innate lymphoid cells, and dendritic cells. Bioinformatic analyses indicated that LPS could increase PBMC cell cycle progression, cellular differentiation, and chromatin accessibility. Gene analyses further showed significant changes in differential expression, transcription factor binding site, gene ontology, and regulatory interactions during the PBMC responses to LPS. Consistent with the findings of previous studies, LPS induced activation of monocytes and dendritic cells, likely through their upregulated TLR4 receptor. NF-κB was observed to be activated by LPS and an increased transcription of an array of pro-inflammatory cytokines, in agreement that NF-κB is an LPS-responsive regulator of innate immune responses. In addition, by integrating LPS-induced differentially expressed genes (DEGs) with large-scale GWAS of 45 complex traits in Holstein, we detected trait-relevant cell types. We found that selected DEGs were significantly associated with immune-relevant health, milk production, and body conformation traits. Conclusion This study provided the first scRNAseq and scATAC-seq data for cattle PBMCs and their responses to the LPS stimulation to the best of our knowledge. These results should also serve as valuable resources for the future study of the bovine immune system and open the door for discoveries about immune cell roles in complex traits like mastitis at single-cell resolution. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08562-0.
Collapse
Affiliation(s)
- Yahui Gao
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, No.202, Gongyebei Road, Jinan, 250100, China.,Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Beltsville, MD, 20705, USA
| | - Jianbin Li
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, No.202, Gongyebei Road, Jinan, 250100, China.
| | - Gaozhan Cai
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, No.202, Gongyebei Road, Jinan, 250100, China.,Shandong Ox Livestock Breeding Co., Ltd, Jinan, 250100, China
| | - Yujiao Wang
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, No.202, Gongyebei Road, Jinan, 250100, China
| | - Wenjing Yang
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yanqin Li
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, No.202, Gongyebei Road, Jinan, 250100, China
| | - Xiuxin Zhao
- Shandong Ox Livestock Breeding Co., Ltd, Jinan, 250100, China
| | - Rongling Li
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, No.202, Gongyebei Road, Jinan, 250100, China
| | - Yundong Gao
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, No.202, Gongyebei Road, Jinan, 250100, China
| | - Wenbin Tuo
- Animal Parasitic Diseases Laboratory, BARC, USDA-ARS, Beltsville, MD, 20705, USA
| | - Ransom L Baldwin
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Beltsville, MD, 20705, USA
| | - Cong-Jun Li
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Beltsville, MD, 20705, USA.
| | - Lingzhao Fang
- MRC Human Genetics Unit at the Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK.
| | - George E Liu
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Beltsville, MD, 20705, USA.
| |
Collapse
|
7
|
Cai M, Chen N. The Roles of IRF-8 in Regulating IL-9-Mediated Immunologic Mechanisms in the Development of DLBCL: A State-of-the-Art Literature Review. Front Oncol 2022; 12:817069. [PMID: 35211408 PMCID: PMC8860898 DOI: 10.3389/fonc.2022.817069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/18/2022] [Indexed: 01/05/2023] Open
Abstract
Interferon regulatory factor 8 (IRF-8) is a transcription suppressor that functions through associations with other transcription factors, contributing to the growth and differentiation of bone marrow cells and the activation of macrophages. IRF-8 expression profoundly affects pathogenic processes ranging from infections to blood diseases. Interleukin-9 (IL-9) is a multipotent cytokine that acts on a variety of immune cells by binding to the IL-9 receptor (IL-9R) and is involved in a variety of diseases such as cancer, autoimmune diseases, and other pathogen-mediated immune regulatory diseases. Studies have shown that IL-9 levels are significantly increased in the serum of patients with diffuse large B-cell lymphoma (DLBCL), and IL-9 levels are correlated with the DLBCL prognostic index. The activator protein-1 (AP-1) complex is a dimeric transcription factor that plays a critical role in cellular proliferation, apoptosis, angiogenesis, oncogene-induced transformation, and invasion by controlling basic and induced transcription of several genes containing the AP-1 locus. The AP-1 complex is involved in many cancers, including hematological tumors. In this report, we systematically review the precise roles of IL-9, IRF-8, and AP-1 in tumor development, particularly with regard to DLBCL. Finally, the recent progress in IRF-8 and IL-9 research is presented; the possible relationship among IRF-8, IL-9, and AP-1 family members is analyzed; and future research prospects are discussed.
Collapse
Affiliation(s)
- Mingyue Cai
- Provincial Hospital Affiliated to Shandong First Medical University, Department of Hematology, Jinan, China
| | - Na Chen
- Provincial Hospital Affiliated to Shandong First Medical University, Department of Hematology, Jinan, China.,School of Medicine, Shandong University, Jinan, China
| |
Collapse
|
8
|
Chang K, Han K, Qiu W, Hu Z, Chen X, Chen X, Xie X, Wang S, Hu C, Mao H. Grass carp (Ctenopharyngodon idella) interferon regulatory factor 8 down-regulates interferon1 expression via interaction with interferon regulatory factor 2 in vitro. Mol Immunol 2021; 137:202-211. [PMID: 34280770 DOI: 10.1016/j.molimm.2021.04.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/13/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023]
Abstract
Interferon regulatory factor 8 (IRF8), also known as interferon consensus sequence-binding protein (ICSBP), is a negative regulatory factor of interferon (IFN) and plays an important role in cell differentiation and innate immunity in mammals. In recent years, some irf8 homologous genes have been cloned and confirmed to take part in innate immune response in fish, but the mechanism still remains unclear. In this paper, a grass carp (Ctenopharyngodon idella) irf8 gene (Ciirf8) was cloned and characterized. The deduced protein (CiIRF8) possesses a highly conserved N-terminal DNA binding domain but a less well-conserved C-terminal IRF association domain (IAD). Ciirf8 was widely expressed in all tested tissues of grass carp and up-regulated following poly(I:C) stimulation. Ciirf8 expression was also up-regulated in CIK cells upon treatment with poly(I:C). To explore the molecular mechanism of how fish IRF8 regulates ifn1 expression, the similarities and differences of grass carp IRF8 and IRF2 were compared and contrasted. Subcellular localization analysis showed that CiIRF8 is located both in the cytoplasm and nucleus; however, CiIRF2 is only located in the nucleus. The nuclear-cytoplasmic translocation of CiIRF8 was observed in CIK cells under stimulation with poly(I:C). The interaction of CiIRF8 and CiIRF2 was further confirmed by a co-immunoprecipitation assay in the nucleus. Dual-luciferase reporter assays showed that the promoter activity of Ciifn1 was significantly inhibited by co-transfection with CiIRF2 and CiIRF8. The transcription inhibition of Ciifn1 was alleviated by competitive binding of CiIRF2 and CiIRF8 to CiIRF1. In conclusion, CiIRF8 down-regulates Ciifn1 expression via interaction with CiIRF2 in cells.
Collapse
Affiliation(s)
- Kaile Chang
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Kun Han
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Weihua Qiu
- Teaching Material Research Office of Jiangxi Provincial Education Department, China
| | - Zhizhen Hu
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Xingxing Chen
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Xin Chen
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Xiaofen Xie
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Shanghong Wang
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Chengyu Hu
- School of Life Science, Nanchang University, Nanchang, 330031, China.
| | - Huiling Mao
- School of Life Science, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
9
|
Yanai H, Negishi H, Taniguchi T. The IRF family of transcription factors: Inception, impact and implications in oncogenesis. Oncoimmunology 2021; 1:1376-1386. [PMID: 23243601 PMCID: PMC3518510 DOI: 10.4161/onci.22475] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Members of the interferon-regulatory factor (IRF) proteins family were originally identified as transcriptional regulators of the Type I interferon system. Thanks to consistent advances made in our understanding of the immunobiology of innate receptors, it is now clear that several IRFs are critical for the elicitation of innate pattern recognition receptors, and—as a consequence—for adaptive immunity. In addition, IRFs have attracted great attentions as they modulate cellular responses that are involved in tumorigenesis. The regulation of oncogenesis by IRFs has important implications for understanding the host susceptibility to several Types of cancers, their progression, as well as the potential for therapeutic interventions.
Collapse
Affiliation(s)
- Hideyuki Yanai
- Department of Molecular Immunology; Institute of Industrial Science; The University of Tokyo; Tokyo, Japan ; Core Research for Evolution Science and Technology; Japan Science and Technology Agency; Chiyoda-ku, Tokyo, Japan
| | | | | |
Collapse
|
10
|
Gou Y, Sun W, Liu L, Zhang M, Du J, Wang R, Xu X. Construction of irf4a Transgenic Zebrafish Using Tol2 System and Its Potential Application. Dose Response 2020; 18:1559325820926733. [PMID: 32489338 PMCID: PMC7241208 DOI: 10.1177/1559325820926733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/05/2020] [Accepted: 04/10/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose: Interferon regulatory factor 4 (IRF4) is identified as a transcriptional factor and plays an important role in the immune response in mammals; however, there are few reports about the function of zebrafish IRF4. Methods: We first amplified the coding sequence of irf4a from the testis of zebrafish. Besides, the fragments of irf4a, P2A, EGFP, and Tol2 vector were added for homologous recombination. By sequencing, we can get the Tol2-ef1α-irf4a-EGFP recombinant plasmid and it was microinjected into zebrafish embryos. Fluorescence observation was proceeded at days 3 post fertilization; F0 generations expressing green fluorescence in multiple tissues throughout the body were screened as the founder and raised them to sexual maturity. After mating with WT zebrafish to generate F1 offspring, polymerase chain reaction was used to identify whether irf4a was integrated into the zebrafish genome. Conclusion: We obtained the systematic overexpressed irf4a transgenic zebrafish with green fluorescence labeled in spine, eyes, heart, brain, and other tissues. The transgenic zebrafish will be used as a tool for the role of IRF4a in the immune response to the inflammation preconditioning in the future study.
Collapse
Affiliation(s)
- Yawei Gou
- China-Japan Union Hospital, Jilin University, Changchun, Jilin, China.,Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Wei Sun
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Lingling Liu
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Mingming Zhang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jianan Du
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Ruonan Wang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xuesong Xu
- China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| |
Collapse
|
11
|
Mao F, Lin Y, Zhou Y, He Z, Li J, Zhang Y, Yu Z. Structural and functional analysis of interferon regulatory factors (IRFs) reveals a novel regulatory model in an invertebrate, Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 89:14-22. [PMID: 30077552 DOI: 10.1016/j.dci.2018.07.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 07/30/2018] [Accepted: 07/30/2018] [Indexed: 06/08/2023]
Abstract
Interferon regulatory factors (IRF), a family of transcription factors, are involved in the regulation of interferon to response the pathogen infection. Here, three IRF-like genes including CgIRF1a, CgIRF1b and CgIRF8 were identified in the genome of the oyster C. gigas. Among these genes, CgIRF1a and CgIRF1b, which are tandemly located in adjacent loci of scaffold 4, share the same domains. Phylogenetic analysis indicated that CgIRF1a and CgIRF1b were two paralogs that may originate from duplication of the same ancestral IRF gene. Subcellular localization analysis confirmed the nuclear distribution of CgIRF1a and CgIRF1b. Dual-luciferase reporter assay showed that CgIRF1a significantly activated the ISRE reporter gene, whereas CgIRF1b did not. Additionally, overexpression of CgIRF1b could significantly suppress the activation effect of CgIRF1a, which strongly suggests that CgIRF1b may serve as a regulator of the IRF signaling pathway. Furthermore, the result of native page revealed that CgIRF1a would form homologous dimers, and CgIRF1b would interact with CgIRF1a to inhibit the activity of the latter. Taken together, one novel regulatory model of IRF signaling pathways has been raised one paralog of IRF has evolved and appears to be a regulator of IRF.
Collapse
Affiliation(s)
- Fan Mao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingli Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiying He
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China
| | - Yang Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China.
| | - Ziniu Yu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China.
| |
Collapse
|
12
|
Moassass F, Wafa A, Liehr T, Al-Ablog A, Al Achkar W. Down syndrome associated childhood myeloid leukemia with yet unreported acquired chromosomal abnormalities and a new potential adverse marker: dup(1)(q25q44). Mol Cytogenet 2018; 11:22. [PMID: 29563973 PMCID: PMC5851247 DOI: 10.1186/s13039-018-0370-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/07/2018] [Indexed: 01/17/2023] Open
Abstract
Background Children with constitutional trisomy 21, i.e. Down syndrome (DS, OMIM #190685) have a 10 to 20-fold increased risk for a hematopoietic malignancy. They may suffer from acute lymphoblastic leukemia or acute myeloid leukemia (AML). AML referred to as myeloid leukemia of Down syndrome (ML-DS) is observed especially after birth at an early gestational age and characterized by enhanced white blood cell count, failure of spontaneous remission, liver fibrosis or liver dysfunction, and is significantly associated with early death. There are only few studies yet focusing on the clonal cytogenetic changes during evolution of ML-DS. Case presentation In a 1.4-year-old boy with DS an immunophenotype consistent with AML-M1 according to French-American-British (FAB) classification was diagnoses. Cytogenetic and molecular cytogenetic analyses revealed, besides constitutional free trisomy 21, an unbalanced translocation as der(16)t(1;16)(q25.3;q24), plus a balanced translocation t(3;20)(q25;q13.1). A poor clinical outcome was observed here. Conclusions To the best of our knowledge, an ML-DS case associated with identical acquired chromosomal abnormalities was not previously reported. Our findings suggest that especially partial trisomy 1q25 to 1q44 may be indicative for a poor prognosis in ML-DS.
Collapse
Affiliation(s)
- Faten Moassass
- 1Molecular Biology and Biotechnology Department, Human Genetics Division, Chromosomes Laboratory, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus, Syria
| | - Abdulsamad Wafa
- 1Molecular Biology and Biotechnology Department, Human Genetics Division, Chromosomes Laboratory, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus, Syria
| | - Thomas Liehr
- 2Jena University Hospital, Institute of Human Genetics, Am Klinikum 1, 07747 Jena, Germany
| | - Ayman Al-Ablog
- 1Molecular Biology and Biotechnology Department, Human Genetics Division, Chromosomes Laboratory, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus, Syria
| | - Walid Al Achkar
- 1Molecular Biology and Biotechnology Department, Human Genetics Division, Chromosomes Laboratory, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus, Syria
| |
Collapse
|
13
|
Villa TG, Feijoo-Siota L, Rama JLR, Ageitos JM. Antivirals against animal viruses. Biochem Pharmacol 2017; 133:97-116. [PMID: 27697545 PMCID: PMC7092833 DOI: 10.1016/j.bcp.2016.09.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/29/2016] [Indexed: 01/19/2023]
Abstract
Antivirals are compounds used since the 1960s that can interfere with viral development. Some of these antivirals can be isolated from a variety of sources, such as animals, plants, bacteria or fungi, while others must be obtained by chemical synthesis, either designed or random. Antivirals display a variety of mechanisms of action, and while some of them enhance the animal immune system, others block a specific enzyme or a particular step in the viral replication cycle. As viruses are mandatory intracellular parasites that use the host's cellular machinery to survive and multiply, it is essential that antivirals do not harm the host. In addition, viruses are continually developing new antiviral resistant strains, due to their high mutation rate, which makes it mandatory to continually search for, or develop, new antiviral compounds. This review describes natural and synthetic antivirals in chronological order, with an emphasis on natural compounds, even when their mechanisms of action are not completely understood, that could serve as the basis for future development of novel and/or complementary antiviral treatments.
Collapse
Affiliation(s)
- T G Villa
- Department of Microbiology, Biotechnology Unit, Faculty of Pharmacy, University of Santiago de Compostela 15706, Spain
| | - L Feijoo-Siota
- Department of Microbiology, Biotechnology Unit, Faculty of Pharmacy, University of Santiago de Compostela 15706, Spain
| | - J L R Rama
- Department of Microbiology, Biotechnology Unit, Faculty of Pharmacy, University of Santiago de Compostela 15706, Spain
| | - J M Ageitos
- Department of Microbiology, Biotechnology Unit, Faculty of Pharmacy, University of Santiago de Compostela 15706, Spain.
| |
Collapse
|
14
|
Blewett MM, Xie J, Zaro BW, Backus KM, Altman A, Teijaro JR, Cravatt BF. Chemical proteomic map of dimethyl fumarate-sensitive cysteines in primary human T cells. Sci Signal 2016; 9:rs10. [PMID: 27625306 DOI: 10.1126/scisignal.aaf7694] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dimethyl fumarate (DMF) is an electrophilic drug that is used to treat autoimmune conditions, including multiple sclerosis and psoriasis. The mechanism of action of DMF is unclear but may involve the covalent modification of proteins or DMF serving as a prodrug that is converted to monomethyl fumarate (MMF). We found that DMF, but not MMF, blocked the activation of primary human and mouse T cells. Using a quantitative, site-specific chemical proteomic platform, we determined the DMF sensitivity of >2400 cysteine residues in human T cells. Cysteines sensitive to DMF, but not MMF, were identified in several proteins with established biochemical or genetic links to T cell function, including protein kinase Cθ (PKCθ). DMF blocked the association of PKCθ with the costimulatory receptor CD28 by perturbing a CXXC motif in the C2 domain of this kinase. Mutation of these DMF-sensitive cysteines also impaired PKCθ-CD28 interactions and T cell activation, designating the C2 domain of PKCθ as a key functional, electrophile-sensing module important for T cell biology.
Collapse
Affiliation(s)
- Megan M Blewett
- Department of Chemical Physiology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jiji Xie
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Balyn W Zaro
- Department of Chemical Physiology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Keriann M Backus
- Department of Chemical Physiology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Amnon Altman
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - John R Teijaro
- Department of Chemical Physiology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA. Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Benjamin F Cravatt
- Department of Chemical Physiology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
15
|
Xavier AL, Menezes JRL, Goldman SA, Nedergaard M. Fine-tuning the central nervous system: microglial modelling of cells and synapses. Philos Trans R Soc Lond B Biol Sci 2015; 369:20130593. [PMID: 25225087 DOI: 10.1098/rstb.2013.0593] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Microglia constitute as much as 10-15% of all cells in the mammalian central nervous system (CNS) and are the only glial cells that do not arise from the neuroectoderm. As the principal CNS immune cells, microglial cells represent the first line of defence in response to exogenous threats. Past studies have largely been dedicated to defining the complex immune functions of microglial cells. However, our understanding of the roles of microglia has expanded radically over the past years. It is now clear that microglia are critically involved in shaping neural circuits in both the developing and adult CNS, and in modulating synaptic transmission in the adult brain. Intriguingly, microglial cells appear to use the same sets of tools, including cytokine and chemokine release as well as phagocytosis, whether modulating neural function or mediating the brain's innate immune responses. This review will discuss recent developments that have broadened our views of neuro-glial signalling to include the contribution of microglial cells.
Collapse
Affiliation(s)
- Anna L Xavier
- Laboratório de Neuroanatomia Celular, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-902, Brazil Center for Translational Neuromedicine, University of Rochester Medical School, Rochester, NY 14642, USA
| | - João R L Menezes
- Laboratório de Neuroanatomia Celular, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Steven A Goldman
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical School, Rochester, NY 14642, USA
| |
Collapse
|
16
|
Shin GW, White SL, Dahms HU, Jeong HD, Kim JH. Disease resistance and immune-relevant gene expression in golden mandarin fish, Siniperca scherzeri Steindachner, infected with infectious spleen and kidney necrosis virus-like agent. JOURNAL OF FISH DISEASES 2014; 37:1041-1054. [PMID: 24111797 DOI: 10.1111/jfd.12182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/19/2013] [Accepted: 08/20/2013] [Indexed: 06/02/2023]
Abstract
Infectious spleen and kidney necrosis virus (ISKNV), family Iridoviridae, genus Megalocytivirus, may cause high mortality rates such as those seen in mandarin fish, Siniperca chuatsi. ISKNV has attracted much attention due to the possible environmental threat and economic losses it poses on both cultured and wild populations. We have investigated the pathogenicity of ISKNV-like agent Megalocytivirus, isolated from infected pearl gourami, in golden mandarin fish, Siniperca scherzeri - a member of the Percichthyidae family - and in another Percichthyidae species, S. chuatsi. Fish were challenged with four different doses of ISKNV-like agent Megalocytivirus (1, 10, 100 or 1000 μg per fish) over a 30-day period, and cumulative fish mortalities were calculated for each group. No significant mortality was observed for fish challenged with the lowest dose (1 μg per fish) relative to a control group. However, all other challenged groups showed 100% mortality over a 30-day period in proportion to the challenge dose. Quantitative real-time PCR was performed to measure mRNA expression levels for six immune-related genes in golden mandarin fish following ISKNV-like agent challenge. mRNA expression levels for IRF1, Mx, viperin and interleukin 8 significantly increased, while mRNA levels for IRF2 and IRF7 remained constant or declined during the challenge period.
Collapse
Affiliation(s)
- G W Shin
- Fundamental Research Department, National Fisheries Research and Development Institute, Busan, Korea
| | | | | | | | | |
Collapse
|
17
|
Messmer MN, Netherby CS, Banik D, Abrams SI. Tumor-induced myeloid dysfunction and its implications for cancer immunotherapy. Cancer Immunol Immunother 2014; 64:1-13. [PMID: 25432147 DOI: 10.1007/s00262-014-1639-3] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 11/19/2014] [Indexed: 01/27/2023]
Abstract
Immune function relies on an appropriate balance of the lymphoid and myeloid responses. In the case of neoplasia, this balance is readily perturbed by the dramatic expansion of immature or dysfunctional myeloid cells accompanied by a reciprocal decline in the quantity/quality of the lymphoid response. In this review, we seek to: (1) define the nature of the atypical myelopoiesis observed in cancer patients and the impact of this perturbation on clinical outcomes; (2) examine the potential mechanisms underlying these clinical manifestations; and (3) explore potential strategies to restore normal myeloid cell differentiation to improve activation of the host antitumor immune response. We posit that fundamental alterations in myeloid homeostasis triggered by the neoplastic process represent critical checkpoints that govern therapeutic efficacy, as well as offer novel cellular-based biomarkers for tracking changes in disease status or relapse.
Collapse
Affiliation(s)
- Michelle N Messmer
- Department of Immunology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | | | | | | |
Collapse
|
18
|
Xiang M, Wang L, Guo S, Lu YY, Lei H, Jiang DS, Zhang Y, Liu Y, Zhou Y, Zhang XD, Li H. Interferon regulatory factor 8 protects against cerebral ischaemic-reperfusion injury. J Neurochem 2014; 129:988-1001. [PMID: 24528256 DOI: 10.1111/jnc.12682] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 02/07/2014] [Accepted: 02/12/2014] [Indexed: 12/26/2022]
Affiliation(s)
- Mei Xiang
- Department of Cardiology; Renmin Hospital of Wuhan University; Wuhan China
- Cardiovascular Research Institute of Wuhan University; Wuhan China
| | - Lang Wang
- Department of Cardiology; Renmin Hospital of Wuhan University; Wuhan China
- Cardiovascular Research Institute of Wuhan University; Wuhan China
| | - Sen Guo
- Department of Cardiology; Renmin Hospital of Wuhan University; Wuhan China
- Cardiovascular Research Institute of Wuhan University; Wuhan China
| | - Yan-Yun Lu
- Department of Cardiology; Renmin Hospital of Wuhan University; Wuhan China
- Cardiovascular Research Institute of Wuhan University; Wuhan China
| | - Hao Lei
- Wuhan Center for Magnetic Resonance; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics; Wuhan Institute of Physics and Mathematics; Chinese Academy of Sciences; Wuhan China
| | - Ding-Sheng Jiang
- Department of Cardiology; Renmin Hospital of Wuhan University; Wuhan China
- Cardiovascular Research Institute of Wuhan University; Wuhan China
| | - Yan Zhang
- Department of Cardiology; Renmin Hospital of Wuhan University; Wuhan China
- Cardiovascular Research Institute of Wuhan University; Wuhan China
| | - Yi Liu
- College of Life Sciences; Wuhan University; Wuhan China
| | - Yan Zhou
- College of Life Sciences; Wuhan University; Wuhan China
| | | | - Hongliang Li
- Department of Cardiology; Renmin Hospital of Wuhan University; Wuhan China
- Cardiovascular Research Institute of Wuhan University; Wuhan China
| |
Collapse
|
19
|
Massanella M, Singhania A, Beliakova-Bethell N, Pier R, Lada SM, White CH, Pérez-Santiago J, Blanco J, Richman DD, Little SJ, Woelk CH. Differential gene expression in HIV-infected individuals following ART. Antiviral Res 2013; 100:420-8. [PMID: 23933117 DOI: 10.1016/j.antiviral.2013.07.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 07/23/2013] [Accepted: 07/25/2013] [Indexed: 01/13/2023]
Abstract
Previous studies of the effect of ART on gene expression in HIV-infected individuals have identified small numbers of modulated genes. Since these studies were underpowered or cross-sectional in design, a paired analysis of peripheral blood mononuclear cells (PBMCs), isolated before and after ART, from a robust number of HIV-infected patients (N=32) was performed. Gene expression was assayed by microarray and 4157 differentially expressed genes (DEGs) were identified following ART using multivariate permutation tests. Pathways and gene ontology (GO) terms over-represented for DEGs reflected the transition from a period of active virus replication before ART to one of viral suppression (e.g., repression of JAK-STAT signaling) and possible prolonged drug exposure (e.g., oxidative phosphorylation pathway) following ART. CMYC was the DEG whose product made the greatest number of interactions at the protein level in protein interaction networks (PINs), which has implications for the increased incidence of Hodgkin's lymphoma (HL) in HIV-infected patients. The differential expression of multiple genes was confirmed by RT-qPCR including well-known drug metabolism genes (e.g., ALOX12 and CYP2S1). Targets not confirmed by RT-qPCR (i.e., GSTM2 and RPL5) were significantly confirmed by droplet digital (ddPCR), which may represent a superior method when confirming DEGs with low fold changes. In conclusion, a paired design revealed that the number of genes modulated following ART was an order of magnitude higher than previously recognized.
Collapse
Affiliation(s)
- Marta Massanella
- Fundació irsiCaixa-HIVACAT, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol (IGTP), Hospital Germans Trias, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Dunlap WC, Starcevic A, Baranasic D, Diminic J, Zucko J, Gacesa R, van Oppen MJH, Hranueli D, Cullum J, Long PF. KEGG orthology-based annotation of the predicted proteome of Acropora digitifera: ZoophyteBase - an open access and searchable database of a coral genome. BMC Genomics 2013; 14:509. [PMID: 23889801 PMCID: PMC3750612 DOI: 10.1186/1471-2164-14-509] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 07/15/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Contemporary coral reef research has firmly established that a genomic approach is urgently needed to better understand the effects of anthropogenic environmental stress and global climate change on coral holobiont interactions. Here we present KEGG orthology-based annotation of the complete genome sequence of the scleractinian coral Acropora digitifera and provide the first comprehensive view of the genome of a reef-building coral by applying advanced bioinformatics. DESCRIPTION Sequences from the KEGG database of protein function were used to construct hidden Markov models. These models were used to search the predicted proteome of A. digitifera to establish complete genomic annotation. The annotated dataset is published in ZoophyteBase, an open access format with different options for searching the data. A particularly useful feature is the ability to use a Google-like search engine that links query words to protein attributes. We present features of the annotation that underpin the molecular structure of key processes of coral physiology that include (1) regulatory proteins of symbiosis, (2) planula and early developmental proteins, (3) neural messengers, receptors and sensory proteins, (4) calcification and Ca2+-signalling proteins, (5) plant-derived proteins, (6) proteins of nitrogen metabolism, (7) DNA repair proteins, (8) stress response proteins, (9) antioxidant and redox-protective proteins, (10) proteins of cellular apoptosis, (11) microbial symbioses and pathogenicity proteins, (12) proteins of viral pathogenicity, (13) toxins and venom, (14) proteins of the chemical defensome and (15) coral epigenetics. CONCLUSIONS We advocate that providing annotation in an open-access searchable database available to the public domain will give an unprecedented foundation to interrogate the fundamental molecular structure and interactions of coral symbiosis and allow critical questions to be addressed at the genomic level based on combined aspects of evolutionary, developmental, metabolic, and environmental perspectives.
Collapse
Affiliation(s)
- Walter C Dunlap
- Centre for Marine Microbiology and Genetics, Australian Institute of Marine Science, PMB No. 3 Townsville MC, Townsville 4810, Queensland, Australia
- Institute of Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Antonio Starcevic
- Section for Bioinformatics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Damir Baranasic
- Section for Bioinformatics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Janko Diminic
- Section for Bioinformatics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Jurica Zucko
- Section for Bioinformatics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Ranko Gacesa
- Section for Bioinformatics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Madeleine JH van Oppen
- Centre for Marine Microbiology and Genetics, Australian Institute of Marine Science, PMB No. 3 Townsville MC, Townsville 4810, Queensland, Australia
| | - Daslav Hranueli
- Section for Bioinformatics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - John Cullum
- Department of Genetics, University of Kaiserslautern, Postfach 3049, 67653 Kaiserslautern, Germany
| | - Paul F Long
- Institute of Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
- Department of Chemistry King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| |
Collapse
|
21
|
Uhm TG, Kim BS, Chung IY. Eosinophil development, regulation of eosinophil-specific genes, and role of eosinophils in the pathogenesis of asthma. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2011; 4:68-79. [PMID: 22379601 PMCID: PMC3283796 DOI: 10.4168/aair.2012.4.2.68] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Accepted: 08/31/2011] [Indexed: 12/16/2022]
Abstract
Eosinophils arise from hematopoietic CD34+ stem cells in the bone marrow. They acquire IL-5Rα on their surface at a very early stage during eosinophilopoiesis, and differentiate under the strong influence of interleukin (IL)-5. They then exit to the bloodstream, and enter the lung upon exposure to airway inflammatory signals, including eotaxins. In inflamed tissues, eosinophils act as key mediators of terminal effector functions and innate immunity and in linking to adaptive immune responses. Transcription factors GATA-1, CCAAT/enhancer-binding protein, and PU.1 play instructive roles in eosinophil specification from multipotent stem cells through a network of cooperative and antagonistic interactions. Not surprisingly, the interplay of these transcription factors is instrumental in forming the regulatory circuit of expression of eosinophil-specific genes, encoding eosinophil major basic protein and neurotoxin, CC chemokine receptor 3 eotaxin receptor, and IL-5 receptor alpha. Interestingly, a common feature is that the critical cis-acting elements for these transcription factors are clustered in exon 1 and intron 1 of these genes rather than their promoters. Elucidation of the mechanism of eosinophil development and activation may lead to selective elimination of eosinophils in animals and human subjects. Furthermore, availability of a range of genetically modified mice lacking or overproducing eosinophil-specific genes will facilitate evaluation of the roles of eosinophils in the pathogenesis of asthma. This review summarizes eosinophil biology, focusing on development and regulation of eosinophil-specific genes, with a heavy emphasis on the causative link between eosinophils and pathological development of asthma using genetically modified mice as models of asthma.
Collapse
Affiliation(s)
- Tae Gi Uhm
- Division of Molecular and Life Sciences, College of Science and Technology, Hanyang University, Ansan, Korea
| | | | | |
Collapse
|
22
|
Taaffe JE, Bosinger SE, Del Prete GQ, Else JG, Ratcliffe S, Ward CD, Migone T, Paiardini M, Silvestri G. CCR5 blockade is well tolerated and induces changes in the tissue distribution of CCR5+ and CD25+ T cells in healthy, SIV-uninfected rhesus macaques. J Med Primatol 2011; 41:24-42. [PMID: 22077380 DOI: 10.1111/j.1600-0684.2011.00521.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND CCR5 is a main co-receptor for HIV, but also homes lymphocytes to sites of inflammation. We hypothesized that inhibition of CCR5 signaling would reduce HIV-associated chronic immune activation. METHODS To test this hypothesis, we administered an antagonistic anti-CCR5 monoclonal antibody (HGS101) to five uninfected rhesus macaques (RMs) and monitored lymphocyte dynamics in blood and tissue. RESULTS CCR5 blockade resulted in decreased levels of CCR5+ T cells in blood and, at later timepoints, in lymph nodes. Additionally, the levels of CD25+ T cells increased in lymph nodes, but decreased in blood, bone marrow, and rectal mucosa. Finally, a profile of gene expression from HGS101-treated RMs revealed a subtle, but consistent, in vivo signature of CCR5 blockade that suggests a mild immune-modulatory effect. CONCLUSIONS Treatment with anti-CCR5 antibody induces changes in the tissue distribution of CCR5+ and CD25+ T cells that may impact on the overall levels of immune activation during HIV and SIV infection.
Collapse
Affiliation(s)
- Jessica E Taaffe
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Interferon consensus sequence binding protein-induced cell proliferation is mediated by TGF-β signaling and p38 MAPK activation. J Transl Med 2011; 91:1304-13. [PMID: 21625229 DOI: 10.1038/labinvest.2011.90] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Interferon consensus sequence binding protein (ICSBP), also known as interferon regulatory factor (IRF)-8, is a member of the interferon (IFN)-γ regulatory transcription factors. Studies have suggested a connection between TGF-β signaling and IRFs. Thus, we investigated the effect of ICSBP on transforming growth factor (TGF)-β signaling in HL-60, an acute promyelocytic leukemia cell line. Stable expression of ICSBP in HL-60 cells resulted in strong induction of TGF-β receptor expression and activation of non-Smad as well as Smad pathways. ICSBP expression also augmented cell growth. ICSBP knockdown with small interfering RNA (siRNA) attenuated cell growth and decreased TGF-β receptor I (TGF-βRI) expression. In addition, reduction of TGF-βRI using siRNA or pharmacological inhibitor reduced growth of ICSBP-expressing cells. ICSBP expression also led to increased phosphorylation and activation of Akt and p38 MAPK. However, p38 MAPK, but not PI3K-Akt, inhibition abrogated ICSBP-mediated proliferation. Furthermore, siRNA knockdown of either ICSBP or TGF-βRI resulted in decreased p38 activation. Intriguingly, TGF-β-activated kinase 1 (TAK-1), which phosphorylates p38, was activated in ICSBP-expressing cells and its activity was reduced by TGF-βRI inhibition. Finally, siRNA knockdown of ICSBP or TGF-βRI reduced TAK-1 phosphorylation. This study identifies a novel role for ICSBP in regulating cell growth via TGF-β receptor upregulation and subsequent activation of the TGF-β receptor/TAK-1/p38 pathway.
Collapse
|
24
|
Otto N, Manukjan G, Göhring G, Hofmann W, Scherer R, Luna JC, Lehmann U, Ganser A, Welte K, Schlegelberger B, Steinemann D. ICSBP promoter methylation in myelodysplastic syndromes and acute myeloid leukaemia. Leukemia 2011; 25:1202-7. [PMID: 21475251 DOI: 10.1038/leu.2011.61] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
25
|
Smith MA, Wright G, Wu J, Tailor P, Ozato K, Chen X, Wei S, Piskurich JF, Ting JPY, Wright KL. Positive regulatory domain I (PRDM1) and IRF8/PU.1 counter-regulate MHC class II transactivator (CIITA) expression during dendritic cell maturation. J Biol Chem 2011; 286:7893-7904. [PMID: 21216962 DOI: 10.1074/jbc.m110.165431] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Dendritic cells (DCs) are key mediators of immune function through robust and tightly regulated presentation of antigen in the context of the MHC Class II. MHC Class II expression is controlled by the transactivator CIITA. CIITA expression in conventional DCs is uniquely dependent on an uncharacterized myeloid cell-specific promoter, CIITApI. We now identify in vivo the promoter structure and factors regulating CIITApI. In immature DCs transcription requires binding of PU.1, IRF8, NFκB, and Sp1 to the promoter. PU.1 binds independently at one site and in a required heterodimer with IRF8 at a composite element. DCs from IRF8-null mice have an unoccupied CIITApI promoter that can be rescued by reconstitution with IRF8 in vitro. Furthermore, mutation of either PU.1 site or the IFR8 site inhibits transcriptional activation. In vivo footprinting and chromatin immunoprecipitation reveals that DC maturation induces complete disassociation of the bound activators paralleled by recruitment of PRDM1/Blimp-1 to the promoter. PRDM1 is a transcriptional repressor with essential roles in B cells, T cells, NK cells, and DCs. We show that PRDM1 co-repressors, G9a and HDAC2, are recruited to CIITApI, leading to a loss of histone acetylation and acquisition of histone H3K9 dimethylation and heterochromatin protein 1γ (HP1γ). PRDM1 binding also blocks IRF8-mediated activation dependent on the PU.1/IRF composite element. Together these findings reveal the mechanisms regulating CIITA and, thus, antigen presentation in DCs, demonstrating that PRDM1 and IRF8/PU.1 counter-regulate expression. The activity of PRDM1 in silencing all three cell type-specific CIITA promoters places it as a central regulator of antigen presentation.
Collapse
Affiliation(s)
- Matthew A Smith
- From the H. Lee Moffitt Cancer Center and Research Institute, Department of Molecular Medicine and Department of Oncologic Sciences, University of South Florida, Tampa, Florida 33612
| | - Gabriela Wright
- From the H. Lee Moffitt Cancer Center and Research Institute, Department of Molecular Medicine and Department of Oncologic Sciences, University of South Florida, Tampa, Florida 33612
| | - Jian Wu
- From the H. Lee Moffitt Cancer Center and Research Institute, Department of Molecular Medicine and Department of Oncologic Sciences, University of South Florida, Tampa, Florida 33612
| | - Prafullakumar Tailor
- the Laboratory of Molecular Growth Regulation, NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | - Keiko Ozato
- the Laboratory of Molecular Growth Regulation, NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | - Xianghong Chen
- From the H. Lee Moffitt Cancer Center and Research Institute, Department of Molecular Medicine and Department of Oncologic Sciences, University of South Florida, Tampa, Florida 33612
| | - Sheng Wei
- From the H. Lee Moffitt Cancer Center and Research Institute, Department of Molecular Medicine and Department of Oncologic Sciences, University of South Florida, Tampa, Florida 33612
| | - Janet F Piskurich
- the Department of Medical Education, Texas Tech University Health Sciences Center, Paul L. Foster School of Medicine, El Paso, Texas 79905, and
| | - Jenny P-Y Ting
- the Department of Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Kenneth L Wright
- From the H. Lee Moffitt Cancer Center and Research Institute, Department of Molecular Medicine and Department of Oncologic Sciences, University of South Florida, Tampa, Florida 33612,.
| |
Collapse
|
26
|
Guilhot F, Roy L, Saulnier PJ, Guilhot J. Interferon in chronic myeloid leukaemia: past and future. Best Pract Res Clin Haematol 2009; 22:315-29. [DOI: 10.1016/j.beha.2009.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Letourneur M, Valentino L, Travagli-Gross J, Bertoglio J, Pierre J. Sp2 regulates interferon-gamma-mediated socs1 gene expression. Mol Immunol 2009; 46:2151-60. [PMID: 19482358 DOI: 10.1016/j.molimm.2009.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 05/04/2009] [Indexed: 11/26/2022]
Abstract
Suppressor of cytokine signalling (SOCS) proteins are inducible feedback inhibitors of Janus kinase (JAK) and signal transducers and activators of transcription signalling (STAT) pathways. Interferon (IFN)-gamma induces the expression of the socs1 gene in several cell types through several cis elements present in its promoter and their binding proteins. Socs1 expression is induced in the human keratinocytes HaCaT cell line through sequential activation of STAT1 and IRF-1. Comparison of the 5'-upstream sequences of the mouse and human socs1 genes identified conserved binding sites for IRF-1 regulatory elements. Although this response element is able to bind IRF-1 in human cells, no IFN-gamma responsiveness was observed with human socs1 promoter reporter constructs containing this element. In contrast the mouse socs1 promoter was fully responsive. The mouse promoter contains two cis-acting elements which modulate its expression and are recognized by IRF-1 and Sp2. Despite the absence of Sp2 in the 5'-upstream sequence of the human promoter, silencing of Sp2 by RNA interference clearly demonstrated that Sp2 is required for IFN-gamma-induced regulation of socs1 mRNA both in human and mouse.
Collapse
Affiliation(s)
- Martine Letourneur
- INSERM U749, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France
| | | | | | | | | |
Collapse
|
28
|
Milanovic M, Terszowski G, Struck D, Liesenfeld O, Carstanjen D. IFN consensus sequence binding protein (Icsbp) is critical for eosinophil development. THE JOURNAL OF IMMUNOLOGY 2008; 181:5045-53. [PMID: 18802108 DOI: 10.4049/jimmunol.181.7.5045] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
IFN consensus sequence binding protein (Icsbp) (IFN response factor-8) is a hematopoietic transcription factor with dual functions in myelopoiesis and immunity. In this study, we report a novel role of Icsbp in regulating the development of eosinophils. Loss of Icsbp in mice leads to a reduction of eosinophils in different tissues. During parasite infection with the nematode Nippostrongylus brasiliensis, Icsbp-deficient mice fail to mount eosinophilia despite a vigorous IL-5 response. Numbers of phenotypically defined eosinophil progenitors are decreased and those progenitors have, on a per-cell basis, reduced eosinophil differentiation potential. The transcription factor Gata1, crucial for eosinophil development, is reduced expressed in committed eosinophil progenitors in wells as mature eosinophils. These findings identify Icsbp as a novel transcription factor critical for the development of the eosinophil lineage.
Collapse
Affiliation(s)
- Maja Milanovic
- Leibniz-Forschungsinstitut fuer Molekulare Pharmakologie, Berlin, Germany
| | | | | | | | | |
Collapse
|
29
|
Honing H, van Rooijen N, van den Berg T. Manipulation of Macrophage Activities Using Liposomes. J Liposome Res 2008. [DOI: 10.3109/08982100009031105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
30
|
Leishmania major infection activates NF-kappaB and interferon regulatory factors 1 and 8 in human dendritic cells. Infect Immun 2008; 76:2138-48. [PMID: 18316378 DOI: 10.1128/iai.01252-07] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The salient feature of dendritic cells (DC) is the initiation of appropriate adaptive immune responses by discriminating between pathogens. Using a prototypic model of intracellular infection, we previously showed that Leishmania major parasites prime human DC for efficient interleukin-12 (IL-12) secretion. L. major infection is associated with self-limiting cutaneous disease and powerful immunity. In stark contrast, the causative agent of visceral leishmaniasis, Leishmania donovani, does not prime human DC for IL-12 production. Here, we report that DC priming by L. major infection results in the early activation of NF-kappaB transcription factors and the up-regulation and nuclear translocation of interferon regulatory factor 1 (IRF-1) and IRF-8. The inhibition of NF-kappaB activation by the pretreatment of DC with caffeic acid phenethyl ester blocks L. major-induced IRF-1 and IRF-8 activation and IL-12 expression. We further demonstrate that IRF-1 and IRF-8 obtained from L. major-infected human DC specifically bind to their consensus binding sites on the IL-12p35 promoter, indicating that L. major infection either directly stimulates a signaling cascade or induces an autocrine pathway that activates IRF-1 and IRF-8, ultimately resulting in IL-12 transcription.
Collapse
|
31
|
Takaoka A, Tamura T, Taniguchi T. Interferon regulatory factor family of transcription factors and regulation of oncogenesis. Cancer Sci 2008; 99:467-78. [PMID: 18190617 PMCID: PMC11159419 DOI: 10.1111/j.1349-7006.2007.00720.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 11/21/2007] [Accepted: 11/25/2007] [Indexed: 01/03/2023] Open
Abstract
A family of transcription factors, the interferon regulatory factors (IRF), was identified originally in the context of the regulation of the type I interferon (IFN)-alpha/beta system. The IRF family has now expanded to nine members, and gene-disruption studies have revealed the critical involvement of these members in multiple facets of host defense systems, such as innate and adaptive immune responses and tumor suppression. In the present review article, we aim at summarizing our current knowledge of the roles of IRF in host defense, with special emphasis on their involvement in the regulation of oncogenesis.
Collapse
Affiliation(s)
- Akinori Takaoka
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
32
|
Greeneltch KM, Schneider M, Steinberg SM, Liewehr DJ, Stewart TJ, Liu K, Abrams SI. Host Immunosurveillance Controls Tumor Growth via IFN Regulatory Factor-8–Dependent Mechanisms. Cancer Res 2007; 67:10406-16. [DOI: 10.1158/0008-5472.can-07-1228] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Guilhot F, Roy L, Martineua G, Guilhot J, Millot F. Immunotherapy in chronic myelogenous leukemia. ACTA ACUST UNITED AC 2007; 7 Suppl 2:S64-70. [PMID: 17382015 DOI: 10.3816/clm.2007.s.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Chronic myelogenous leukemia is one of the leukemic disorders more responsive to immunotherapy. Interferon-based regimens were the first treatment to produce complete cytogenetic responses, and this agent has been classified as an immunotherapeutic agent. Although most patients are now treated with imatinib as first-line therapy, a combination of interferon and imatinib could increase the rate of molecular responses and prevent patients from experiencing relapse. Thus, large phase III trials are currently exploring this strategy. Allogeneic stem cell transplantation also involves the immune system, with fewer patients in relapse in case they experience graft-versushost disease. Vaccine strategies are also promising with phase II ongoing trials. These vaccine strategies include the use of oligopeptides derived from the Bcr-Abl junction. Initial results indicate a good safety profile of these therapies in patients exhibiting complete cytogenetic response and molecular responses. These 3 different approaches of immunotherapy are described herein. Although these results obtained with imatinib are promising, this tyrosine kinase inhibitor does not eradicate leukemic stem cells. Thus, immunotherapeutic strategies are still being investigated in chronic myelogenous leukemia.
Collapse
Affiliation(s)
- François Guilhot
- Department of Oncology-Hematology and Cell Therapy, Clinical Research Centre, Centre Hospitalier Universitaire de Poitiers, France. e-mail:
| | | | | | | | | |
Collapse
|
34
|
Yang D, Thangaraju M, Greeneltch K, Browning DD, Schoenlein PV, Tamura T, Ozato K, Ganapathy V, Abrams SI, Liu K. Repression of IFN Regulatory Factor 8 by DNA Methylation Is a Molecular Determinant of Apoptotic Resistance and Metastatic Phenotype in Metastatic Tumor Cells. Cancer Res 2007; 67:3301-9. [PMID: 17409439 DOI: 10.1158/0008-5472.can-06-4068] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Apoptotic resistance is often associated with metastatic phenotype in tumor cells and is considered a hallmark of tumor progression. In this study, IFN regulatory factor 8 (IRF8) expression was found to be inversely correlated with an apoptotic-resistant and metastatic phenotype in human colon carcinoma cell lines in vitro. This inverse correlation was further extended to spontaneously arising primary mammary carcinoma and lung metastases in a mouse tumor model in vivo. Exogenous expression of IRF8 in the metastatic tumor cell line restored, at least partially, the sensitivity of the tumor cells to Fas-mediated apoptosis, and disruption of IRF8 function conferred the poorly metastatic tumors with enhanced apoptotic resistance and metastatic capability. DNA demethylation restored IRF8 expression and sensitized the metastatic tumor cells to Fas-mediated apoptosis. Analysis of genomic DNA isolated from both primary and metastatic tumor cells with methylation-sensitive PCR revealed hypermethylation of the IRF8 promoter in metastatic tumor cells but not in primary tumor cells. Taken together, our data suggest that IRF8 is both an essential regulator in Fas-mediated apoptosis pathway and a metastasis suppressor in solid tumors and that metastatic tumor cells use DNA hypermethylation to repress IRF8 expression to evade apoptotic cell death and to acquire a metastatic phenotype.
Collapse
Affiliation(s)
- Dafeng Yang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Greene W, Kuhne K, Ye F, Chen J, Zhou F, Lei X, Gao SJ. Molecular biology of KSHV in relation to AIDS-associated oncogenesis. Cancer Treat Res 2007; 133:69-127. [PMID: 17672038 PMCID: PMC2798888 DOI: 10.1007/978-0-387-46816-7_3] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
KSHV has been established as the causative agent of KS, PEL, and MCD, malignancies occurring more frequently in AIDS patients. The aggressive nature of KSHV in the context of HIV infection suggests that interactions between the two viruses enhance pathogenesis. KSHV latent infection and lytic reactivation are characterized by distinct gene expression profiles, and both latency and lytic reactivation seem to be required for malignant progression. As a sophisticated oncogenic virus, KSHV has evolved to possess a formidable repertoire of potent mechanisms that enable it to target and manipulate host cell pathways, leading to increased cell proliferation, increased cell survival, dysregulated angiogenesis, evasion of immunity, and malignant progression in the immunocompromised host. Worldwide, approximately 40.3 million people are currently living with HIV infection. Of these, a significant number are coinfected with KSHV. The complex interplay between the two viruses dramatically elevates the risk for development of KSHV-induced malignancies, KS, PEL, and MCD. Although HAART significantly reduces HIV viral load, the entire T-cell repertoire and immune function may not be completely restored. In fact, clinically significant immune deficiency is not necessary for the induction of KSHV-related malignancy. Because of variables such as lack of access to therapy noncompliance with prescribed treatment, failure to respond to treatment and the development of drug-resistant strains of HIV, KSHV-induced malignancies will continue to present as major health concerns.
Collapse
Affiliation(s)
- Whitney Greene
- Tiumor Virology Program, Children's Cancer Research Institute, Department of Pediatrics, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Middleton MK, Zukas AM, Rubinstein T, Jacob M, Zhu P, Zhao L, Blair I, Puré E. Identification of 12/15-lipoxygenase as a suppressor of myeloproliferative disease. ACTA ACUST UNITED AC 2006; 203:2529-40. [PMID: 17043146 PMCID: PMC2118138 DOI: 10.1084/jem.20061444] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Though Abl inhibitors are often successful therapies for the initial stages of chronic myelogenous leukemia (CML), refractory cases highlight the need for novel molecular insights. We demonstrate that mice deficient in the enzyme 12/15-lipoxygenase (12/15-LO) develop a myeloproliferative disorder (MPD) that progresses to transplantable leukemia. Although not associated with dysregulation of Abl, cells isolated from chronic stage 12/15-LO–deficient (Alox15) mice exhibit increased activation of the phosphatidylinositol 3–kinase (PI3-K) pathway, as indicated by enhanced phosphorylation of Akt. Furthermore, the transcription factor interferon consensus sequence binding protein (ICSBP) is hyperphosphorylated and displays decreased nuclear accumulation, translating into increased levels of expression of the oncoprotein Bcl-2. The ICSBP defect, exaggerated levels of Bcl-2, and prolonged leukemic cell survival associated with chronic stage Alox15 MPD are all reversible upon treatment with a PI3-K inhibitor. Remarkably, the evolution of Alox15 MPD to leukemia is associated with additional regulation of ICSBP on an RNA level, highlighting the potential usefulness of the Alox15 model for understanding the transition of CML to crisis. Finally, 12/15-LO expression suppresses the growth of a human CML–derived cell line. These data identify 12/15-LO as an important suppressor of MPD via its role as a critical upstream effector in the regulation of PI3-K–dependent ICSBP phosphorylation.
Collapse
|
37
|
Dimberg A, Kårehed K, Nilsson K, Oberg F. Inhibition of Monocytic Differentiation by Phosphorylation-deficient Stat1 is Associated with Impaired Expression of Stat2, ICSBP/IRF8 and C/EBPɛ. Scand J Immunol 2006; 64:271-9. [PMID: 16918696 DOI: 10.1111/j.1365-3083.2006.01827.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Monocytic differentiation is coordinated through the ordered activation of multiple signalling pathways, controlling transcription of specific subsets of genes that regulate the development of the mature phenotype. To identify key transcription factors involved in this process, we used the human monoblastic U-937 cell line as a model of monocytic differentiation. U-937 cells can be differentiated by treatment with all-trans retinoic acid (ATRA) and 1,25alpha-dihydroxycholecalciferol (VitD3), resulting in G(0)/G(1)-arrested cells expressing monocytic surface markers. We have previously shown that ATRA-induced differentiation and cell cycle arrest specifically requires Stat1 activation, through phosphorylation of tyrosine 701 and serine 727. In this report, we used U-937 cells expressing phosphorylation-deficient mutants of Stat1 (Stat1Y701F and Stat1S727A) to determine myeloid-specific transcription factors that are activated downstream of Stat1 during induced monocytic differentiation. We demonstrate that ATRA-induced upregulation of Stat2, ICSBP/IRF8 and C/EBPepsilon, key transcription factors linked to myelomonocytic differentiation, is selectively impaired in cells expressing mutant Stat1. In contrast, ATRA-induced expression of PU.1, C/EBPalpha, C/EBPbeta and IRF-1 was unaffected. Taken together, our data suggest that ATRA-induced regulation of Stat2, ICSBP and C/EBPepsilon is dependent on active Stat1, and that a failure to correctly regulate these transcription factors is associated with the inhibition of monocytic differentiation.
Collapse
Affiliation(s)
- A Dimberg
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, S-751 85 Uppsala, Sweden
| | | | | | | |
Collapse
|
38
|
Hwang Y, Chen EY, Gu ZJ, Chuang WL, Yu ML, Lai MY, Chao YC, Lee CM, Wang JH, Dai CY, Shian-Jy Bey M, Liao YT, Chen PJ, Chen DS. Genetic predisposition of responsiveness to therapy for chronic hepatitis C. Pharmacogenomics 2006; 7:697-709. [PMID: 16886895 DOI: 10.2217/14622416.7.5.697] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background: A combination of interferon-α (IFN-α) and ribavirin has been the choice for treating chronic hepatitis C (CHC) patients. It achieves an overall sustained response rate of approximately 50%; however, the treatment takes 6–12 months and often brings significant adverse reactions to some patients. It would therefore be beneficial to include a pretreatment evaluation in order to maximize the efficacy. In addition to viral genotypes, we hypothesize that patient genotypes might also be useful for the prediction of treatment response. Methods: We retrospectively analyzed the genetic differences of CHC patients that are associated with IFN/ribavirin responses. The DNA polymorphisms among 195 sustained responders and 122 nonresponders of CHC patients of Taiwanese origin were compared. Statistical and algorithmic methods were used to select the genes associated with drug response and single nucleotide polymorphisms (SNPs) that permitted the construction of a predictive model. Results: Association studies and haplotype reconstruction revealed selection of seven genes: adenosine deaminase, RNA-specific (ADAR), caspase 5, apoptosis-related cysteine peptidase (CASP5), fibroblast growth factor 1 (FGF1), interferon consensus sequence binding protein 1 (ICSBP1), interferon-induced protein 44 (IFI44), transporter 2, ATP-binding cassette, subfamily B (TAP2) and transforming growth factor, β receptor associated protein 1 (TGFBRAP1) for the responsiveness trait. Based on confirmed linkage disequilibrium block in the population, a minimal set of 26 SNPs in the seven selected genes was inferred. To predict treatment outcome, a multiple logistic regression model was constructed using susceptible genotypes of SNPs. The performance of the resultant model had a sensitivity of 68.2% and specificity of 60.7% on 317 CHC patients treated with IFN-combined therapy. In addition, a prediction model with both the host genetic and viral genotype information was also constructed which enhanced the performance with a sensitivity of 80.7% and specificity of 67.2%. Conclusions: A genetic model was constructed to predict outcomes of the combination therapy in CHC patients with high sensitivity and specificity. Results also provide a possible process of selecting targets for predicting treatment outcomes and the basis for developing pharmacogenetic tests.
Collapse
|
39
|
Ma SL, Sørensen AB, Kunder S, Sørensen KD, Quintanilla-Martinez L, Morris DW, Schmidt J, Pedersen FS. The Icsbp locus is a common proviral insertion site in mature B-cell lymphomas/plasmacytomas induced by exogenous murine leukemia virus. Virology 2006; 352:306-18. [PMID: 16780917 DOI: 10.1016/j.virol.2006.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 02/16/2006] [Accepted: 05/03/2006] [Indexed: 10/24/2022]
Abstract
ICSBP (interferon consensus sequence binding protein)/IRF8 (interferon regulatory factor 8) is an interferon gamma-inducible transcription factor expressed predominantly in hematopoietic cells, and down-regulation of this factor has been observed in chronic myelogenous leukemia and acute myeloid leukemia in man. By screening about 1200 murine leukemia virus (MLV)-induced lymphomas, we found proviral insertions at the Icsbp locus in 14 tumors, 13 of which were mature B-cell lymphomas or plasmacytomas. Only one was a T-cell lymphoma, although such tumors constituted about half of the samples screened. This indicates that the Icsbp locus can play a specific role in the development of mature B-lineage malignancies. Two proviral insertions in the last Icsbp exon were found to act by a poly(A)-insertion mechanism. The remaining insertions were found within or outside Icsbp. Since our results showed expression of Icsbp RNA and protein in all end-stage tumor samples, a simple tumor suppressor function of ICSBP is not likely. Interestingly, proviral insertions at Icsbp have not been reported from previous extensive screenings of mature B-cell lymphomas induced by endogenous MLVs. We propose that ICSBP might be involved in an early modulation of an immune response to exogenous MLVs that might also play a role in proliferation of the mature B-cell lymphomas.
Collapse
MESH Headings
- Animals
- Base Sequence
- Interferon Regulatory Factors/genetics
- Leukemia Virus, Murine/genetics
- Leukemia Virus, Murine/pathogenicity
- Lymphoma, B-Cell/etiology
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/pathology
- Lymphoma, B-Cell/virology
- Mice
- Plasmacytoma/etiology
- Plasmacytoma/genetics
- Plasmacytoma/pathology
- Plasmacytoma/virology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Virus Integration/genetics
Collapse
Affiliation(s)
- Shi Liang Ma
- Department of Molecular Biology, University of Aarhus, C.F. Møllers Alle, Bldg. 130, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Zhao J, Kong HJ, Li H, Huang B, Yang M, Zhu C, Bogunovic M, Zheng F, Mayer L, Ozato K, Unkeless J, Xiong H. IRF-8/Interferon (IFN) Consensus Sequence-binding Protein Is Involved in Toll-like Receptor (TLR) Signaling and Contributes to the Cross-talk between TLR and IFN-γ Signaling Pathways. J Biol Chem 2006; 281:10073-80. [PMID: 16484229 DOI: 10.1074/jbc.m507788200] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Toll-like receptor (TLR) and interferon-gamma (IFN-gamma) signaling pathways are important for both innate and adaptive immune responses. However, the cross-talk between these two signaling pathways is incompletely understood. Here we show that IFN-gamma and LPS synergistically induce the expression of proinflammatory factors, including interleukin-1 (IL-1), IL-6, IL-12, NO, and tumor necrosis factor-alpha (TNF-alpha). Comparable synergism was observed between IFN-gamma and peptidoglycan (PGN; a TLR2 ligand) and poly(I:C) (a TLR3 ligand) in the induction of IL-12 promoter activity. IFN-gamma enhanced lipopolysaccharide (LPS)-induced ERK and JNK phosphorylation but had no effect on LPS-induced NF-kappaB activation. Interestingly, we found that IRF-8-/- macrophages were impaired in the activation of LPS-induced ERK and JNK and the production of proinflammatory cytokines induced by LPS or IFN-gamma plus LPS. Retroviral transduction of IRF-8 into IRF-8-/- macrophages rescued ERK and JNK activation. Furthermore, co-immunoprecipitation experiments show that IRF-8 physically interacts with TRAF6 at a binding site between amino acid residues 356 and 305 of IRF-8. Transfection of IRF-8 enhanced TRAF6 ubiquitination, which is consistent with a physical interaction of IRF-8 with TRAF6. Taken together, the results suggest that the interaction of IRF-8 with TRAF6 modulates TLR signaling and may contribute to the cross-talk between IFN-gamma and TLR signal pathways.
Collapse
Affiliation(s)
- Jie Zhao
- Immunobiology Center, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Chronic myelogenous leukemia (CML) was the first human malignancy where a consistent chromosomal abnormality, the BCR-ABL translocation, was identified as the causative genetic aberration. There is a mounting body of evidence suggesting that CML cells are particularly good targets for immunological surveillance mechanisms, the most intriguing being the curative effect of allogeneic donor lymphocyte infusion given in relapsed disease after allogeneic bone marrow transplantation. Likewise, interferon alpha (IFN alpha), which has long been considered as the standard conservative therapy in CML, may exert its life-prolonging effect by activating immunological effector functions. This review will focus on the recent advances in the understanding of the contribution of IFN alpha in eliciting T-cell responses against self-antigens in CML.
Collapse
Affiliation(s)
- Andreas Burchert
- Klinikum der Philipps Universität Marburg, Klinik für Hämatologie, Onkologie und Immunologie, Marburg, Germany
| | | |
Collapse
|
42
|
Yang J, Bo XC, Yao J, Yang NM, Wang SQ. Differentially expressed cellular genes following HBV: potential targets of anti-HBV drugs? J Viral Hepat 2005; 12:357-63. [PMID: 15985005 DOI: 10.1111/j.1365-2893.2005.00611.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The aim of the study was to screen for cellular genes that are differentially expressed following hepatitis B virus (HBV) infection, in an attempt to identify potential targets of anti-HBV drugs. An oligonucleotide microarray containing 231 virus-infection-associated genes was prepared. Differential gene expression in HepG2.2.15 cells compared to control with HepG2 cells was analysed by this in-house microarray. The change in gene expression in HepG2.2.15 cells treated by lamivudine on days 4 and 8 after exposure was also studied. Semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) was used to comfirm the differentially expressed genes induced by HBV and lamivudine. There were 31 upregulated and four downregulated genes in HepG2.2.15 cells compared with the HepG2 control cells. Eleven genes were consistently altered by lamivudine at both time points. Of the 31 genes that were upregulated in HepG2.2.15 cells, there were seven genes which were downregulated by lamivudine. Of the four downregulated genes, there was one gene which was upregulated by lamivudine. Of the differentially expressed genes induced by HBV and lamivudine, the expression of five genes was confirmed by semi-quantitative RT-PCR. These results shed new light on the effects of HBV and lamivudine on cellular gene expression. Differentially expressed genes induced by HBV and lamivudine could potentially become new anti-HBV drug targets in novel therapies.
Collapse
Affiliation(s)
- J Yang
- Beijing Institute of Radiation Medicine, Beijing, China
| | | | | | | | | |
Collapse
|
43
|
Xiong H, Li H, Kong HJ, Chen Y, Zhao J, Xiong S, Huang B, Gu H, Mayer L, Ozato K, Unkeless JC. Ubiquitin-dependent degradation of interferon regulatory factor-8 mediated by Cbl down-regulates interleukin-12 expression. J Biol Chem 2005; 280:23531-9. [PMID: 15837792 DOI: 10.1074/jbc.m414296200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Interferon regulatory factor (IRF)-8/interferon consensus sequence-binding protein is regulated by both transcription and degradation. IRF-8 induced in peritoneal macrophages by interferon-gamma and lipopolysaccharide was degraded rapidly, and degradation of IRF-8 was blocked by MG132, the proteasome inhibitor, but inhibitors of calpain and lysosomal enzymes had no effect. The ubiquitination of IRF-8 was shown by co-immunoprecipitation from RAW264.7 macrophages retrovirally transduced with IRF-8 and hemagglutinin-ubiquitin. The dominant negative ubiquitin mutants K48R and K29R inhibited IRF-8 degradation in 293T cells, confirming the relationship between ubiquitination of IRF-8 and its degradation. IRF-8 carboxyl-terminal truncation mutants were not ubiquitinated and were consequently stable, indicating that the carboxyl-terminal domain of IRF-8 controls ubiquitination. The ubiquitin-protein isopeptide ligase (E3) that ubiquitinated IRF-8 was likely to be Cbl, which formed a complex with IRF-8, demonstrable by both immunoprecipitation and gel filtration. Furthermore, IRF-8 stability was increased by dominant negative Cbl, and IRF-8 ubiquitination was significantly attenuated in Cbl-/- cells. Reflecting increased stability and expression, the IRF-8 carboxyl-terminal deletion mutant induced interleukin (IL)-12 p40 promoter activity much more strongly than IRF-8 did. Furthermore, IRF-8-induced IL-12 p40 synthesis in RAW264.7 cells was enhanced by dominant negative Cbl, and peritoneal macrophages from Cbl-/- mice showed increased IL-12 p40 protein production. Taken together, these results suggest that the proteasomal degradation of IRF-8 mediated by the ubiquitin E3 ligase Cbl down-regulates IL-12 expression.
Collapse
Affiliation(s)
- Huabao Xiong
- Immunobiology Center, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Nakano N, Nishiyama C, Masuoka N, Nishiyama M, Yamane H, Okumura K, Ogawa H. Analysis of PU.1/ICSBP (IRF-8) complex formation with various PU.1 mutants: molecular cloning of rat Icsbp (Irf-8) cDNA. Immunogenetics 2005; 56:871-7. [PMID: 15688197 DOI: 10.1007/s00251-004-0754-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Revised: 11/18/2004] [Indexed: 11/28/2022]
Abstract
We isolated cDNA encoding a full-length Interferon (IFN) consensus sequence binding protein [Icsbp; also called IFN regulatory factor-8 (Irf-8)] from rat and analyzed interaction between ICSBP and PU.1, an Ets-family transcription factor regulating hematopoietic cell-specific promoters. Electrophoretic mobility shift assay indicated that PU.1 with deletion of the PEST domain could not bind to ICSBP, although loss of the PEST domain had no effect on DNA-binding ability of PU.1 itself. An amino-acid replacement of Ser147 by Ala of the PEST domain of PU.1 did not affect DNA-binding ability of PU.1 to form a binary complex, PU.1/DNA, but clearly decreased the ternary complex formation of PU.1/ICSBP/DNA. Phosphatase treatment of the ternary complex markedly decreased PU.1/ICSBP/DNA-complex formation. These results indicated that Ser147 of PU.1 is definitively required for forming a complex with ICSBP and phosphorylation of PU.1 and/or ICSBP is critical for formation of the ternary complex.
Collapse
Affiliation(s)
- Nobuhiro Nakano
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421 Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
Lohoff M, Mak TW. Roles of interferon-regulatory factors in T-helper-cell differentiation. Nat Rev Immunol 2005; 5:125-35. [PMID: 15688040 DOI: 10.1038/nri1552] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Members of the interferon-regulatory factor family of transcription factors have long been known to be intracellular mediators of the effects of interferons. In recent years, interferon-regulatory factors have also been shown to have an essential role in the differentiation of T helper cells, both by modulating the functions of antigen-presenting cells and by having direct effects on the T helper cells themselves. Depending on the interferon-regulatory factor involved, the differentiation of T helper cells to either T helper 1 cells or T helper 2 cells can be influenced. In this article, we provide an overview of this relatively new and still underappreciated role of interferon-regulatory factors.
Collapse
Affiliation(s)
- Michael Lohoff
- Institut für Medizinische Mikrobiologie, Pilgrimstein 2, 35037, Marburg, Germany.
| | | |
Collapse
|
46
|
van der Stoep N, Quinten E, Marcondes Rezende M, van den Elsen PJ. E47, IRF-4, and PU.1 synergize to induce B-cell-specific activation of the class II transactivator promoter III (CIITA-PIII). Blood 2004; 104:2849-57. [PMID: 15242870 DOI: 10.1182/blood-2004-03-0790] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractIn B cells, expression of CIITA and resulting major histocompatibility complex II (MHCII) is mediated exclusively by promoter III (CIITA-PIII) activation. Recent studies have established that CIITA-PIII also participates in the expression of CIITA in activated human T cells, dendritic cells, and monocytes. In this study we characterized the various regulatory elements and interacting factors of CIITA-PIII that account for specific activation in B lymphocytes. We identified 2 E-box motifs and an Ets/ISRE-consensus element (EICE) in CIITA-PIII as playing a crucial role in the B-cell-specific transcriptional regulation of CIITA. Abolishment of factor binding to these elements resulted in a strong reduction of CIITA-PIII activation in B cells only, whereas it did scarcely affect or not affect the activity of CIITA-PIII in activated T cells and monocytes. We show that in B cells, E47 and PU.1/IRF-4 interact with the E-box motifs and the EICE, respectively, and act synergistically in the activation of CIITA-PIII. Moreover, functional inhibition of either E47 or IRF-4 resulted in strong reduction of CIITA-PIII activity in B lymphocytes only. The finding that PU.1, IRF-4, and E47 play an important role in the B-cell-mediated activation of CIITA-PIII provides a link between antigen presentation functions and activation and differentiation events in B lymphocytes.
Collapse
Affiliation(s)
- Nienke van der Stoep
- Division of Molecular Biology, Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, E3-Q, PO Box 9600, 2300 RC Leiden, the Netherlands.
| | | | | | | |
Collapse
|
47
|
Alter-Koltunoff M, Ehrlich S, Dror N, Azriel A, Eilers M, Hauser H, Bowen H, Barton CH, Tamura T, Ozato K, Levi BZ. Nramp1-mediated innate resistance to intraphagosomal pathogens is regulated by IRF-8, PU.1, and Miz-1. J Biol Chem 2003; 278:44025-32. [PMID: 12904288 DOI: 10.1074/jbc.m307954200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Natural resistance-associated macrophage protein 1 (Nramp1) is a proton/divalent cation antiporter exclusively expressed in monocyte/macrophage cells with a unique role in innate resistance to intraphagosomal pathogens. In humans, it is linked to several infectious diseases, including leprosy, pulmonary tuberculosis, visceral leishmaniasis, meningococcal meningitis, and human immunodeficiency virus as well as to autoimmune diseases such as rheumatoid arthritis and Crohn's disease. Here we demonstrate that the restricted expression of Nramp1 is mediated by the macrophage-specific transcription factor IRF-8. This factor exerts its activity via protein-protein interaction, which facilitates its binding to target DNA. Using yeast two-hybrid screen we identified Myc Interacting Zinc finger protein 1 (Miz-1) as new interacting partner. This interaction is restricted to immune cells and takes place on the promoter Nramp1 in association with PU.1, a transcription factor essential for myelopoiesis. Consistent with these data, IRF-8 knockout mice are sensitive to a repertoire of intracellular pathogens. Accordingly, IRF-8-/- mice express low levels of Nramp1 that can not be induced any further. Thus, our results explain in molecular terms the role of IRF-8 in conferring innate resistance to intracellular pathogens and point to its possible involvement in autoimmune diseases.
Collapse
|
48
|
Lehtonen A, Lund R, Lahesmaa R, Julkunen I, Sareneva T, Matikainen S. IFN-α and IL-12 activate IFN regulatory factor 1 (IRF-1), IRF-4, and IRF-8 gene expression in human NK and T cells. Cytokine 2003; 24:81-90. [PMID: 14581002 DOI: 10.1016/j.cyto.2003.07.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
IFN-alpha and IL-12 are macrophage-derived cytokines that enhance innate and Th1 immune responses. However, there is little information regarding IFN-alpha and IL-12 target genes that would be involved in mediating the immunostimulatory effects of these cytokines. The interferon regulatory factor (IRF) family of transcription factors is known to be involved in controlling lymphocyte differentiation and functions. In this work we have studied the effect of IFN-alpha and IL-12 on the expression of IRF transcription factors in human NK and T cells. Both IFN-alpha and IL-12 strongly up-regulated IRF-1, IRF-4, and IRF-8 mRNA and protein expression. The binding of IRF-4 and IRF-8 to the lambdaB gene enhancer sequence was also increased following IFN-alpha- and IL-12-treatment of NK and T cells. A GAS element from the promoter region of the IRF-4 gene was identified. Following stimulation of cells with IFN-alpha or IL-12, Stat4 was found to bind to this IRF-4 GAS element, as detected by EMSA and DNA affinity binding, implying that the IRF-4 gene is directly activated by both cytokines. Our results suggest that IFN-alpha and IL-12 may enhance innate and Th1 immune responses by inducing IRF-1, IRF-4, and IRF-8 gene expression.
Collapse
Affiliation(s)
- Anne Lehtonen
- Department of Microbiology, National Public Health Institute, Mannerheimintie 166, FIN-00300 Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
49
|
Marden C, Cunninghame Graham D, Thrasher A, Casimir C. A functional ISRE is required for myeloid transcription of the p47phox gene. ACTA ACUST UNITED AC 2003; 1630:117-22. [PMID: 14654241 DOI: 10.1016/j.bbaexp.2003.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Expression of p47(phox), a component of the phagocytic NADPH oxidase, is both tissue-specific and developmentally regulated. We have investigated transcription from the p47(phox) gene promoter by reporter gene analysis of myeloid PLB985 cells stably transfected with a series of p47(phox) promoter constructs. Stable transfection with constructs containing up to 3100 bp of proximal promoter sequence demonstrated that as little as 144 bp of proximal promoter sequence was able to direct significant reporter gene activity in myeloid cells, but not in HeLa cells. Mutation of a previously uncharacterised interferon-stimulated response element (ISRE) consensus located at positions -104 to-116, or of an established binding site for the Ets family transcription factor, PU.1 (located at positions -39 to -44), abolished transcription in stably transfected myeloid cells. Electrophoretic mobility shift analysis (EMSA) with myeloid cell nuclear extracts demonstrated that an oligonucleotide containing the p47(phox) ISRE consensus was able to compete binding at another bona fide ISRE. Complexes formed on the p47(phox) ISRE itself were competed by other ISRE consensus sequences. We conclude that transcription of p47(phox) in myeloid cells requires a functional ISRE in addition to the previously identified PU.1 binding site.
Collapse
Affiliation(s)
- Chloe Marden
- Department of Haematology, Imperial College of Science, Technology and Medicine, St Mary's Campus, Norfolk Place, London, UK
| | | | | | | |
Collapse
|
50
|
Cuesta N, Salkowski CA, Thomas KE, Vogel SN. Regulation of lipopolysaccharide sensitivity by IFN regulatory factor-2. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:5739-47. [PMID: 12759457 DOI: 10.4049/jimmunol.170.11.5739] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IFN regulatory factors (IRFs) are a family of transcription factors and include several members that regulate expression of pro- and anti-inflammatory genes. Mice with a targeted mutation in IRF-2 (IRF-2(-/-)) were studied after injection of LPS to evaluate the importance of IRF-2 in the regulation of endotoxicity. IRF-2(-/-) mice were highly refractory to LPS-induced lethality. Although hepatic TNF-alpha mRNA and circulating TNF-alpha were significantly elevated in LPS-challenged IRF-2(-/-) mice, levels of IL-1, IL-12, and IFN-gamma mRNA and protein, as well as IL-6 protein, were significantly lower than levels seen in LPS-challenged IRF-2(+/+) mice. IRF-2(-/-) mice were also more refractory to TNF-alpha challenge than were control mice, which was consistent with their diminished sensitivity to LPS, yet no significant difference in the mRNA expression of TNFRs was observed. IL-12R beta 2 mRNA levels from LPS-challenged IRF-2(-/-) mice were significantly different after 1, 6, and 8 h, suggesting that both diminished IL-12 and altered IL-12R expression contribute to the paucity of IFN-gamma produced. IRF-2 knockout mice also failed to sustain LPS-inducible levels of IRF-1 and IFN consensus sequence binding protein mRNA expression, two transacting factors required for IL-12 transcription, perhaps as a result of diminished IL-1 beta, IL-6, and IFN-gamma levels. Liver sections from IRF-2(+/+) and IRF-2(-/-) mice were analyzed 6 h after a typically lethal injection of LPS. IRF-2(-/-) mice exhibited greater numbers of apoptotic Kupffer cells than did wild-type mice, suggesting a novel anti-apoptotic role for IRF-2. Collectively, these findings reveal a critical role for IRF-2 in endotoxicity, and point to a previously unappreciated role for IRF-2 in the regulation of apoptosis.
Collapse
MESH Headings
- Animals
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- Apoptosis/immunology
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Endotoxemia/genetics
- Endotoxemia/immunology
- Endotoxemia/mortality
- Gene Expression Regulation/immunology
- Immunity, Innate/genetics
- Injections, Intraperitoneal
- Interferon Regulatory Factor-2
- Interferon Regulatory Factors
- Interferon-gamma/antagonists & inhibitors
- Interferon-gamma/biosynthesis
- Interleukin-1/antagonists & inhibitors
- Interleukin-1/biosynthesis
- Interleukin-10/biosynthesis
- Interleukin-10/genetics
- Interleukin-12/antagonists & inhibitors
- Interleukin-12/biosynthesis
- Interleukin-12/metabolism
- Interleukin-6/antagonists & inhibitors
- Interleukin-6/biosynthesis
- Kupffer Cells/cytology
- Kupffer Cells/immunology
- Lipopolysaccharides/administration & dosage
- Lipopolysaccharides/toxicity
- Liver/immunology
- Liver/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- RNA, Messenger/biosynthesis
- Receptors, Interleukin/biosynthesis
- Receptors, Interleukin/genetics
- Receptors, Interleukin-12
- Receptors, Tumor Necrosis Factor/biosynthesis
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor, Type I
- Receptors, Tumor Necrosis Factor, Type II
- Recombinant Proteins/administration & dosage
- Recombinant Proteins/toxicity
- Repressor Proteins/biosynthesis
- Repressor Proteins/genetics
- Transcription Factors
- Tumor Necrosis Factor-alpha/administration & dosage
- Tumor Necrosis Factor-alpha/toxicity
Collapse
Affiliation(s)
- Natalia Cuesta
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|