1
|
Chowdhury MAR, Haq MM, Lee JH, Jeong S. Multi-faceted regulation of CREB family transcription factors. Front Mol Neurosci 2024; 17:1408949. [PMID: 39165717 PMCID: PMC11333461 DOI: 10.3389/fnmol.2024.1408949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/12/2024] [Indexed: 08/22/2024] Open
Abstract
cAMP response element-binding protein (CREB) is a ubiquitously expressed nuclear transcription factor, which can be constitutively activated regardless of external stimuli or be inducibly activated by external factors such as stressors, hormones, neurotransmitters, and growth factors. However, CREB controls diverse biological processes including cell growth, differentiation, proliferation, survival, apoptosis in a cell-type-specific manner. The diverse functions of CREB appear to be due to CREB-mediated differential gene expression that depends on cAMP response elements and multi-faceted regulation of CREB activity. Indeed, the transcriptional activity of CREB is controlled at several levels including alternative splicing, post-translational modification, dimerization, specific transcriptional co-activators, non-coding small RNAs, and epigenetic regulation. In this review, we present versatile regulatory modes of CREB family transcription factors and discuss their functional consequences.
Collapse
Affiliation(s)
- Md Arifur Rahman Chowdhury
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Molecular Biology, and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Republic of Korea
| | - Md Mazedul Haq
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Molecular Biology, and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Republic of Korea
| | - Jeong Hwan Lee
- Division of Life Sciences, Jeonbuk National University, Jeonju, Republic of Korea
| | - Sangyun Jeong
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Molecular Biology, and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
2
|
Kanemoto S. G protein-coupled receptor 84 gene expression is regulated by the ER stress response in the liver. J Biochem 2024; 176:55-68. [PMID: 38471516 DOI: 10.1093/jb/mvae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/22/2024] [Accepted: 03/06/2024] [Indexed: 03/14/2024] Open
Abstract
G protein-coupled receptor 84 (Gpr84) is reportedly activated by medium-chain fatty acids and is involved in the pathology of liver fibrosis. Inflammatory stimulants, such as lipopolysaccharide and tumor necrosis factor-α, upregulate Gpr84 expression. However, the detailed molecular mechanism by which Gpr84 is induced remains unknown. Inflammatory stimulation also evokes endoplasmic reticulum (ER) stress, but there has been no direct evidence to link Gpr84 expression and the ER stress response. Administration of tunicamycin (Tm) provokes ER stress and acute steatosis in the liver tissue of mice. Here, in situ hybridization analysis revealed that induction of Gpr84 expression occurred in parenchymal cells in the liver tissue following Tm administration. Gene expression analysis using a reporter assay showed that the intron 1 region of Gpr84 was involved in induction of the gene under ER stress conditions. Furthermore, Tm-dependent upregulation of Gpr84 was blocked by the small chemical compound AEBSF, an inhibitor of ER stress transducers, in vitro and in vivo. In conclusion, the current study marks the discovery that the ER stress agent Tm induces the expression of Gpr84.
Collapse
Affiliation(s)
- Soshi Kanemoto
- Department of Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Midorigaoka-higashi 2-1-1-1, Asahikawa, Hokkaido, 078-8510, Japan
| |
Collapse
|
3
|
Tran TT, Huang WJ, Lin H, Chen HH. New Synthesized Activating Transcription Factor 3 Inducer SW20.1 Suppresses Resistin-Induced Metabolic Syndrome. Biomedicines 2023; 11:1509. [PMID: 37371606 DOI: 10.3390/biomedicines11061509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
Obesity is an emerging concern globally with increasing prevalence. Obesity is associated with many diseases, such as cardiovascular disease, dyslipidemia, and cancer. Thus, effective new antiobesity drugs should be urgently developed. We synthesized SW20.1, a compound that induces activating transcription factor 3 (ATF3) expression. The results of Oil Red O staining and quantitative real-time polymerase chain reaction revealed that SW20.1 was more effective in reducing lipid accumulation in 3T3-L1 preadipocytes than the previously synthesized ST32db, and that it inhibited the expression of the genes involved in adipogenesis and lipogenesis. A chromatin immunoprecipitation assay indicated that SW20.1 inhibited adipogenesis and lipogenesis by binding to the upstream promoter region of resistin at two sites (-2861/-2854 and -241/-234). In mice, the intraperitoneal administration of SW20.1 reduced body weight, white adipocyte weight in different regions, serum cholesterol levels, adipogenesis-related gene expression, hepatic steatosis, and serum resistin levels. Overall, SW20.1 exerts antiobesity effects by inhibiting resistin through the ATF3 pathway. Our study results indicate that SW20.1 is a promising therapeutic drug for diet-induced obesity.
Collapse
Affiliation(s)
- Tu T Tran
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Internal Medicine, Thai Nguyen University of Medicine and Pharmacy, Thai Nguyen 241-17, Vietnam
| | - Wei-Jan Huang
- School of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Heng Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Hsi-Hsien Chen
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 110, Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| |
Collapse
|
4
|
The regulatory role of AP-2β in monoaminergic neurotransmitter systems: insights on its signalling pathway, linked disorders and theragnostic potential. Cell Biosci 2022; 12:151. [PMID: 36076256 PMCID: PMC9461128 DOI: 10.1186/s13578-022-00891-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/28/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractMonoaminergic neurotransmitter systems play a central role in neuronal function and behaviour. Dysregulation of these systems gives rise to neuropsychiatric and neurodegenerative disorders with high prevalence and societal burden, collectively termed monoamine neurotransmitter disorders (MNDs). Despite extensive research, the transcriptional regulation of monoaminergic neurotransmitter systems is not fully explored. Interestingly, certain drugs that act on these systems have been shown to modulate central levels of the transcription factor AP-2 beta (AP-2β, gene: TFAP2Β). AP-2β regulates multiple key genes within these systems and thereby its levels correlate with monoamine neurotransmitters measures; yet, its signalling pathways are not well understood. Moreover, although dysregulation of TFAP2Β has been associated with MNDs, the underlying mechanisms for these associations remain elusive. In this context, this review addresses AP-2β, considering its basic structural aspects, regulation and signalling pathways in the controlling of monoaminergic neurotransmitter systems, and possible mechanisms underpinning associated MNDS. It also underscores the significance of AP-2β as a potential diagnostic biomarker and its potential and limitations as a therapeutic target for specific MNDs as well as possible pharmaceutical interventions for targeting it. In essence, this review emphasizes the role of AP-2β as a key regulator of the monoaminergic neurotransmitter systems and its importance for understanding the pathogenesis and improving the management of MNDs.
Collapse
|
5
|
Le C, Ren X, Wang H, Yu S. Experimental and Numerical Study on the Failure Characteristics of Brittle Solids with a Circular Hole and Internal Cracks. MATERIALS 2022; 15:ma15041406. [PMID: 35207947 PMCID: PMC8875381 DOI: 10.3390/ma15041406] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 01/27/2023]
Abstract
A stress analysis of a circular hole is one of the classical problems in mechanics. Internal cracks are inherent properties of materials, and they are mostly three-dimensional in form. However, studies on hole problems with three-dimensional internal cracks are still lacking. In this paper, internal cracks were generated in brittle materials containing circular holes based on 3D internal laser-engraved crack technology. Then, uniaxial compression tests were performed. The experimental results were compared with the existing literature, and theoretical and numerical simulation studies were carried out. The results show that: (1) The main crack shapes are the primary cracks and remote cracks. (2) The dynamic fracture characteristics existed in the formation of primary cracks and the surface of remote cracks. The tips of primary cracks were arc-shaped, and the surfaces of the remote cracks were curved. Remote cracks were tangential to the orifice where type III spear-like characteristics appeared. (3) The stress birefringence technology can be combined with 3D internal laser-engraved crack technology for internal crack stress information monitoring, the moire around the orifice was “flamboyant”, and the moire at the tip of the prefabricated crack was “petallike”. (4) The existence of internal cracks reduced the cracking and breaking load of the specimen, and compared with the intact orifice specimen, the upper primary crack, the lower primary crack, the remote crack and the failure load were reduced by 41.2%, 31.7%, 15.9%, and 32.3%, respectively. (5) The results of qualitative stress analysis of the orifice specimen were consistent with the initiation law of primary cracks and remote cracks. The K distribution based on M integral and the numerical simulation of crack propagation process based on the maximum tensile stress criterion were consistent with the law of primary crack growth. Compared with the current mainstream method of transparent rock research, 3D internal laser-engraved crack technology has certain advantages in terms of brittleness, crack authenticity, stress field visualization, and fracture characteristics, and the result will provide experimental and theoretical references for research on three-dimensional problems and internal cracks in fracture mechanics.
Collapse
Affiliation(s)
- Chengjun Le
- College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China; (C.L.); (X.R.); (S.Y.)
- Sichuan Woneng Investment Group Co., Ltd. Chengdu 610000, China
| | - Xuhua Ren
- College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China; (C.L.); (X.R.); (S.Y.)
| | - Haijun Wang
- Nanjing Hydraulic Research Institute, Nanjing 210098, China
- Correspondence: ; Tel.: +86-158-9599-2360
| | - Shuyang Yu
- College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China; (C.L.); (X.R.); (S.Y.)
| |
Collapse
|
6
|
Ku HC, Chan TY, Chung JF, Kao YH, Cheng CF. The ATF3 inducer protects against diet-induced obesity via suppressing adipocyte adipogenesis and promoting lipolysis and browning. Biomed Pharmacother 2022; 145:112440. [PMID: 34839254 DOI: 10.1016/j.biopha.2021.112440] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 12/22/2022] Open
Abstract
In this study, we investigated whether the activating transcription factor 3 (ATF3) inducer ST32db, a synthetic compound with a chemical structure similar to that of native Danshen compounds, exerts an anti-obesity effect in 3T3-L1 white preadipocytes, D16 beige cells, and mice with obesity induced by a high-fat diet (HFD). The results showed that ST32db inhibited 3T3-L1 preadipocyte differentiation by inhibiting adipogenesis/lipogenesis-related gene (and protein levels) and enhancing lipolysis-related gene (and protein levels) via the activation of β3-adrenoceptor (β3-AR)/PKA/p38, AMPK, and ERK pathways. Furthermore, ST32db inhibited triacylglycerol accumulation in D16 adipocytes by suppressing adipogenesis/lipogenesis-related gene (and protein levels) and upregulating browning gene expression by suppressing the β3-AR/PKA/p38, and AMPK pathways. Intraperitoneally injected ST32db (1 mg kg-1 twice weekly) inhibited body weight gain and reduced the weight of inguinal white adipose tissue (iWAT), epididymal WAT (eWAT), and mesenteric WAT, with no effects on food intake by the obese mice. The adipocyte diameter and area of iWAT and eWAT were decreased in obese mice injected with ST32db compared with those administered only HFD. In addition, ST32db significantly suppressed adipogenesis and activated lipolysis, browning, mitochondrial oxidative phosphorylation, and β-oxidation-related pathways by suppressing the p38 pathway in the iWAT of the obese mice. These results indicated that the ATF3 inducer ST32db has therapeutic potential for reducing obesity.
Collapse
Affiliation(s)
- Hui-Chen Ku
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan
| | - Tsai-Yun Chan
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan
| | - Jia-Fang Chung
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan
| | - Yung-Hsi Kao
- Department of Life Sciences, National Central University, Taoyuan 320, Taiwan
| | - Ching-Feng Cheng
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan; Department of Pediatrics, Tzu Chi University, Hualien 97004, Taiwan.
| |
Collapse
|
7
|
Gledhill LJ, Babey AM. Synthesis of the Mechanisms of Opioid Tolerance: Do We Still Say NO? Cell Mol Neurobiol 2021; 41:927-948. [PMID: 33704603 DOI: 10.1007/s10571-021-01065-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/12/2021] [Indexed: 10/21/2022]
Abstract
The use of morphine as a first-line agent for moderate-to-severe pain is limited by the development of analgesic tolerance. Initially opioid receptor desensitization in response to repeated stimulation, thought to underpin the establishment of tolerance, was linked to a compensatory increase in adenylate cyclase responsiveness. The subsequent demonstration of cross-talk between N-methyl-D-aspartate (NMDA) glutamate receptors and opioid receptors led to the recognition of a role for nitric oxide (NO), wherein blockade of NO synthesis could prevent tolerance developing. Investigations of the link between NO levels and opioid receptor desensitization implicated a number of events including kinase recruitment and peroxynitrite-mediated protein regulation. Recent experimental advances and the identification of new cellular constituents have expanded the potential signaling candidates to include unexpected, intermediary compounds not previously linked to this process such as zinc, histidine triad nucleotide-binding protein 1 (HINT1), micro-ribonucleic acid (mi-RNA) and regulator of G protein signaling Z (RGSZ). A further complication is a lack of consistency in the protocols used to create tolerance, with some using acute methods measured in minutes to hours and others using days. There is also an emphasis on the cellular changes that are extant only after tolerance has been established. Although a review of the literature demonstrates a lack of spatio-temporal detail, there still appears to be a pivotal role for nitric oxide, as well as both intracellular and intercellular cross-talk. The use of more consistent approaches to verify these underlying mechanism(s) could provide an avenue for targeted drug development to rescue opioid efficacy.
Collapse
Affiliation(s)
- Laura J Gledhill
- CURA Pharmacy, St. John of God Hospital, Bendigo, VIC, 3550, Australia
| | - Anna-Marie Babey
- Faculty of Medicine and Health, University of New England, Armidale, NSW, 2351, Australia.
| |
Collapse
|
8
|
Katagiri T, Kameda H, Nakano H, Yamazaki S. Regulation of T cell differentiation by the AP-1 transcription factor JunB. Immunol Med 2021; 44:197-203. [PMID: 33470914 DOI: 10.1080/25785826.2021.1872838] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
JunB, a component of the activator protein-1 (AP-1) transcription factor, is known to exhibit an important role in bone formation and bone marrow cell proliferation. During T helper type 2 (Th2) cell differentiation, JunB contributes to the regulation of interleukin (IL)-4 expression, and AP-1 and nuclear factor of activated T cell (NFAT) constitute a heteromer and contribute to IL-2 production. However, the role of JunB in other T cells has not been investigated. In 2017, it was revealed that JunB, in collaboration with basic leucine zipper ATF-like transcription factor (BATF), regulates the expression of Th17-related genes. Furthermore, JunB was found to play an important role in regulatory T (Treg) cell differentiation, contributing to CD25 expression and IL-2 production. IL-2 is a T cell activator and has been shown as a necessary factor for Treg proliferation. Here, we review the role of JunB in T cells based on basic research data and discuss the potential for its clinical applications.
Collapse
Affiliation(s)
- Takaharu Katagiri
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan.,Faculty of Medicine, Division of Rheumatology, Department of Internal Medicine, Ohashi Medical Center, Toho University, Tokyo, Japan
| | - Hideto Kameda
- Faculty of Medicine, Division of Rheumatology, Department of Internal Medicine, Ohashi Medical Center, Toho University, Tokyo, Japan
| | - Hiroyasu Nakano
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan
| | - Soh Yamazaki
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan
| |
Collapse
|
9
|
Ku HC, Cheng CF. Master Regulator Activating Transcription Factor 3 (ATF3) in Metabolic Homeostasis and Cancer. Front Endocrinol (Lausanne) 2020; 11:556. [PMID: 32922364 PMCID: PMC7457002 DOI: 10.3389/fendo.2020.00556] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/07/2020] [Indexed: 12/18/2022] Open
Abstract
Activating transcription factor 3 (ATF3) is a stress-induced transcription factor that plays vital roles in modulating metabolism, immunity, and oncogenesis. ATF3 acts as a hub of the cellular adaptive-response network. Multiple extracellular signals, such as endoplasmic reticulum (ER) stress, cytokines, chemokines, and LPS, are connected to ATF3 induction. The function of ATF3 as a regulator of metabolism and immunity has recently sparked intense attention. In this review, we describe how ATF3 can act as both a transcriptional activator and a repressor. We then focus on the role of ATF3 and ATF3-regulated signals in modulating metabolism, immunity, and oncogenesis. The roles of ATF3 in glucose metabolism and adipose tissue regulation are also explored. Next, we summarize how ATF3 regulates immunity and maintains normal host defense. In addition, we elaborate on the roles of ATF3 as a regulator of prostate, breast, colon, lung, and liver cancers. Further understanding of how ATF3 regulates signaling pathways involved in glucose metabolism, adipocyte metabolism, immuno-responsiveness, and oncogenesis in various cancers, including prostate, breast, colon, lung, and liver cancers, is then provided. Finally, we demonstrate that ATF3 acts as a master regulator of metabolic homeostasis and, therefore, may be an appealing target for the treatment of metabolic dyshomeostasis, immune disorders, and various cancers.
Collapse
Affiliation(s)
- Hui-Chen Ku
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei, Taiwan
| | - Ching-Feng Cheng
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Department of Pediatrics, Tzu Chi University, Hualien, Taiwan
- *Correspondence: Ching-Feng Cheng
| |
Collapse
|
10
|
Cha S, Shin DH, Seok JR, Myung JK. Differential proteome expression analysis of androgen-dependent and -independent pathways in LNCaP prostate cancer cells. Exp Cell Res 2017; 359:215-225. [DOI: 10.1016/j.yexcr.2017.07.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 12/11/2022]
|
11
|
Wu S, Wang B, Chen L, Xiong S, Zhuang F, Huang X, Wang M, Huang Z. Clinical efficacy of propranolol in the treatment of hemangioma and changes in serum VEGF, bFGF and MMP-9. Exp Ther Med 2015; 10:1079-1083. [PMID: 26622443 DOI: 10.3892/etm.2015.2650] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 06/12/2015] [Indexed: 12/17/2022] Open
Abstract
The aim of this study was to observe the clinical efficacy and safety of propranolol in the treatment of hemangioma, and to reveal its possible mechanism. A total of 129 cases of proliferative hemangioma were divided into two groups: i) Treatment (n=97), in which the patients received oral propranolol therapy and ii) observation (n=32), in which the patients underwent clinical observation. The changes in the hemangiomas were noted and compared between the two groups. In addition, the heart rate, blood glucose levels, liver, kidney and thyroid function of the patients in the treatment group were monitored prior to and following treatment; the ELISA method was used for the measurement of the patients' serum concentrations of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) and matrix metalloproteinase-9 (MMP-9) at the same time-points. A significant difference in curative effect was found between the treatment and observation group. The concentration of free thyroxine and sensitive thyroid-stimulating hormone and the heart rate of the treatment group exhibited significant changes prior to and following medication, but no statistical significance was found in the changes in blood glucose, liver and kidney function and free triiodothyronine concentration. Furthermore, the serum concentrations of VEGF, bFGF and MMP-9 in the treatment group 8 weeks after medication were decreased significantly compared with those before treatment. In conclusion, oral propranolol has a good curative effect in the treatment of proliferative hemangioma, with few side effects and a high level of safety. The mechanism underlying the effects of propranolol may be associated with the downregulation of VEGF, bFGF and MMP-9 expression.
Collapse
Affiliation(s)
- Shanying Wu
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Biao Wang
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Lifen Chen
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Shuyuan Xiong
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Fulian Zhuang
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Xunlei Huang
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Meishui Wang
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Zugen Huang
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
12
|
Sugo N, Morimatsu M, Arai Y, Kousoku Y, Ohkuni A, Nomura T, Yanagida T, Yamamoto N. Single-Molecule Imaging Reveals Dynamics of CREB Transcription Factor Bound to Its Target Sequence. Sci Rep 2015; 5:10662. [PMID: 26039515 PMCID: PMC4454023 DOI: 10.1038/srep10662] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 04/22/2015] [Indexed: 12/31/2022] Open
Abstract
Proper spatiotemporal gene expression is achieved by selective DNA binding of transcription factors in the genome. The most intriguing question is how dynamic interactions between transcription factors and their target sites contribute to gene regulation by recruiting the basal transcriptional machinery. Here we demonstrate individual binding and dissociation events of the transcription factor cAMP response element-binding protein (CREB), both in vitro and in living cells, using single-molecule imaging. Fluorescent–tagged CREB bound to its target sequence cAMP-response element (CRE) for a remarkably longer period (dissociation rate constant: 0.21 s-1) than to an unrelated sequence (2.74 s-1). Moreover, CREB resided at restricted positions in the living cell nucleus for a comparable period. These results suggest that CREB stimulates transcription by binding transiently to CRE in the time range of several seconds.
Collapse
Affiliation(s)
- Noriyuki Sugo
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | | | - Yoshiyuki Arai
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Yoshinori Kousoku
- Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Aya Ohkuni
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Taishin Nomura
- Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Toshio Yanagida
- 1] Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan [2] Riken Quantitative Biological Center (QBic), Osaka, Japan
| | - Nobuhiko Yamamoto
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| |
Collapse
|
13
|
PKA regulatory subunit expression in tooth development. Gene Expr Patterns 2014; 15:46-51. [PMID: 24755349 DOI: 10.1016/j.gep.2014.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 03/07/2014] [Accepted: 04/10/2014] [Indexed: 10/25/2022]
Abstract
Protein kinase A (PKA) plays critical roles in many biological processes including cell proliferation, cell differentiation, cellular metabolism and gene regulation. Mutation in PKA regulatory subunit, PRKAR1A has previously been identified in odontogenic myxomas, but it is unclear whether PKA is involved in tooth development. The aim of the present study was to assess the expression of alpha isoforms of PKA regulatory subunit (Prkar1a and Prkar2a) in mouse and human odontogenesis by in situ hybridization. PRKAR1A and PRKAR2A mRNA transcription was further confirmed in a human deciduous germ by qRT-PCR. Mouse Prkar1a and human PRKAR2A exhibited a dynamic spatio-temporal expression in tooth development, whereas neither human PRKAR1A nor mouse Prkar2a showed their expression in odontogenesis. These isoforms thus showed different expression pattern between human and mouse tooth germs.
Collapse
|
14
|
Chen DH, Chang AYF, Liao BY, Yeang CH. Functional characterization of motif sequences under purifying selection. Nucleic Acids Res 2013; 41:2105-20. [PMID: 23303791 PMCID: PMC3575792 DOI: 10.1093/nar/gks1456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/13/2012] [Accepted: 12/13/2012] [Indexed: 11/14/2022] Open
Abstract
Diverse life forms are driven by the evolution of gene regulatory programs including changes in regulator proteins and cis-regulatory elements. Alterations of cis-regulatory elements are likely to dominate the evolution of the gene regulatory networks, as they are subjected to smaller selective constraints compared with proteins and hence may evolve quickly to adapt the environment. Prior studies on cis-regulatory element evolution focus primarily on sequence substitutions of known transcription factor-binding motifs. However, evolutionary models for the dynamics of motif occurrence are relatively rare, and comprehensive characterization of the evolution of all possible motif sequences has not been pursued. In the present study, we propose an algorithm to estimate the strength of purifying selection of a motif sequence based on an evolutionary model capturing the birth and death of motif occurrences on promoters. We term this measure as the 'evolutionary retention coefficient', as it is related yet distinct from the canonical definition of selection coefficient in population genetics. Using this algorithm, we estimate and report the evolutionary retention coefficients of all possible 10-nucleotide sequences from the aligned promoter sequences of 27 748. orthologous gene families in 34 mammalian species. Intriguingly, the evolutionary retention coefficients of motifs are intimately associated with their functional relevance. Top-ranking motifs (sorted by evolutionary retention coefficients) are significantly enriched with transcription factor-binding sequences according to the curated knowledge from the TRANSFAC database and the ChIP-seq data generated from the ENCODE Consortium. Moreover, genes harbouring high-scoring motifs on their promoters retain significantly coherent expression profiles, and those genes are over-represented in the functional classes involved in gene regulation. The validation results reveal the dependencies between natural selection and functions of cis-regulatory elements and shed light on the evolution of gene regulatory networks.
Collapse
Affiliation(s)
- De-Hua Chen
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan, ROC and Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli County, Taiwan, ROC
| | - Andrew Ying-Fei Chang
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan, ROC and Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli County, Taiwan, ROC
| | - Ben-Yang Liao
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan, ROC and Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli County, Taiwan, ROC
| | - Chen-Hsiang Yeang
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan, ROC and Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli County, Taiwan, ROC
| |
Collapse
|
15
|
Wang L, Jiang Z, Lin Y, Zheng C, Jiang S, Ma X. Effects of dibutyryl cAMP on growth performance and carcass traits in finishing pigs. Livest Sci 2012. [DOI: 10.1016/j.livsci.2012.02.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Haque R, Chong NW, Ali F, Chaurasia SS, Sengupta T, Chun E, Howell JC, Klein DC, Iuvone PM. Melatonin synthesis in retina: cAMP-dependent transcriptional regulation of chicken arylalkylamine N-acetyltransferase by a CRE-like sequence and a TTATT repeat motif in the proximal promoter. J Neurochem 2011; 119:6-17. [PMID: 21790603 DOI: 10.1111/j.1471-4159.2011.07397.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Arylalkylamine N-acetyltransferase (AANAT) is the key regulatory enzyme controlling the daily rhythm of melatonin biosynthesis. In chicken retinal photoreceptor cells, Aanat transcription and AANAT activity are regulated in part by cAMP-dependent mechanisms. The purpose of this study was to identify regulatory elements within the chicken Aanat promoter responsible for cAMP-dependent induction. Photoreceptor-enriched retinal cell cultures were transfected with a luciferase reporter construct containing up to 4 kb of 5'-flanking region and the first exon of Aanat. Forskolin treatment stimulated luciferase activity driven by the ∼4 kb promoter construct and by all 5'-deletion constructs except the smallest, Aanat (-217 to +120)luc. Maximal basal and forskolin-stimulated expression levels were generated by the Aanat (-484 to +120)luc construct. This construct lacks a canonical cyclic AMP-response element (CRE), but contains two other potentially important elements in its sequence: an eight times TTATT repeat (TTATT₈) and a CRE-like sequence. Electrophoretic mobility shift assays, luciferase reporter assays, chromatin immunoprecipitation, and siRNA experiments provide evidence that these elements bind c-Fos, JunD, and CREB to enhance basal and forskolin-stimulated Aanat transcription. We propose that the CRE-like sequence and TTATT₈ elements in the 484 bp proximal promoter interact to mediate cAMP-dependent transcriptional regulation of Aanat.
Collapse
Affiliation(s)
- Rashidul Haque
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ortiz V, Alemán G, Escamilla-Del-Arenal M, Recillas-Targa F, Torres N, Tovar AR. Promoter characterization and role of CRE in the basal transcription of the rat SNAT2 gene. Am J Physiol Endocrinol Metab 2011; 300:E1092-102. [PMID: 21386061 DOI: 10.1152/ajpendo.00459.2010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Small neutral amino acid transporter 2 (SNAT2) is the most abundant and ubiquitous transporter for zwitterionic short-chain amino acids. The activity of this amino acid transporter is stimulated in vivo or in vitro by glucagon or cAMP analogs. However, it is not known whether the increase in activity at the protein level is due to an increase in SNAT2 gene transcription. Thus, the aim of the present work was to study whether cAMP was able to stimulate SNAT2 gene expression and to localize and characterize the presence of cAMP response elements (CRE) in the promoter that controls the expression of the rat SNAT2 gene. We found that consumption of a high-protein diet that increased serum glucagon concentration or the administration of glucagon or incubation of hepatocytes with forskolin increased the SNAT2 mRNA level. We then isolated the 5' regulatory region of the SNAT2 gene and determined that the transcriptional start site was located 970 bp upstream of the translation start codon. We identified two potential CRE sites located at -354 and -48 bp. Our results, using deletion analysis of the 5' regulatory region of the SNAT2 gene, revealed that the CRE site located at -48 bp was fully responsible for SNAT2 regulation by cAMP. This evidence was strongly supported by mutation of the CRE site and EMSA and ChIP analysis. Alignment of rat, mouse, and human sequences revealed that this CRE site is highly conserved among species, indicating its essential role in the regulation of SNAT2 gene expression.
Collapse
Affiliation(s)
- Victor Ortiz
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Mexico
| | | | | | | | | | | |
Collapse
|
18
|
Gad A, Besenfelder U, Rings F, Ghanem N, Salilew-Wondim D, Hossain M, Tesfaye D, Lonergan P, Becker A, Cinar U, Schellander K, Havlicek V, Hölker M. Effect of reproductive tract environment following controlled ovarian hyperstimulation treatment on embryo development and global transcriptome profile of blastocysts: implications for animal breeding and human assisted reproduction. Hum Reprod 2011; 26:1693-707. [DOI: 10.1093/humrep/der110] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
19
|
Yamaguchi M. The transcriptional regulation of regucalcin gene expression. Mol Cell Biochem 2010; 346:147-71. [PMID: 20936536 DOI: 10.1007/s11010-010-0601-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 09/18/2010] [Indexed: 01/15/2023]
Abstract
Regucalcin, which is discovered as a calcium-binding protein in 1978, has been shown to play a multifunctional role in many tissues and cell types; regucalcin has been proposed to play a pivotal role in keeping cell homeostasis and function for cell response. Regucalcin and its gene are identified in over 15 species consisting of regucalcin family. Comparison of the nucleotide sequences of regucalcin from vertebrate species is highly conserved in their coding region with throughout evolution. The regucalcin gene is localized on the chromosome X in rat and human. The organization of rat regucalcin gene consists of seven exons and six introns and several consensus regulatory elements exist upstream of the 5'-flanking region. AP-1, NF1-A1, RGPR-p117, β-catenin, and other factors have been found to be a transcription factor in the enhancement of regucalcin gene promoter activity. The transcription activity of regucalcin gene is enhanced through intracellular signaling factors that are mediated through the phosphorylation and dephosphorylation of nuclear protein in vitro. Regucalcin mRNA and its protein are markedly expressed in the liver and kidney cortex of rats. The expression of regucalcin mRNA in the liver and kidney cortex has been shown to stimulate by hormonal factors (including calcium, calcitonin, parathyroid hormone, insulin, estrogen, and dexamethasone) in vivo. Regucalcin mRNA expression is enhanced in the regenerating liver after partial hepatectomy of rats in vivo. The expression of regucalcin mRNA in the liver and kidney with pathophysiological state has been shown to suppress, suggesting an involvement of regucalcin in disease. Liver regucalcin expression is down-regulated in tumor cells, suggesting a suppressive role in the development of carcinogenesis. Liver regucalcin is markedly released into the serum of rats with chemically induced liver injury in vivo. Serum regucalcin has a potential sensitivity as a specific biochemical marker of chronic liver injury with hepatitis. Regucalcin has been proposed to be a key molecule in cellular regulation and metabolic disease.
Collapse
Affiliation(s)
- Masayoshi Yamaguchi
- Division of Endocrinology and Metabolism and Lipids, Department of Medicine, Emory University School of Medicine, 101 Woodruff Circle, 1305 WMRB, Atlanta, GA 30322-0001, USA.
| |
Collapse
|
20
|
Kodeboyina S, Balamurugan P, Liu L, Pace BS. cJun modulates Ggamma-globin gene expression via an upstream cAMP response element. Blood Cells Mol Dis 2009; 44:7-15. [PMID: 19861239 DOI: 10.1016/j.bcmd.2009.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 09/28/2009] [Indexed: 02/08/2023]
Abstract
The upstream Ggamma-globin gene cAMP response element (G-CRE) was previously shown to play a role in drug-mediated fetal hemoglobin induction. This effect is achieved via p38 mitogen activated protein kinase (MAPK)-dependent CREB1 and ATF-2 phosphorylation and G-CRE transactivation. Since this motif is also a predicted consensus binding site for cJun we extended our analysis to determine the ability of cJun to transactivate gamma-globin through the G-CRE. Using chromatin immunoprecipitation assays we showed comparable in vivo cJun and CREB1 binding to the G-CRE region. Protein-protein interactions were confirmed between cJun/ATF-2 and CREB1/ATF-2 but not between CREB1 and cJun. However, we observed cJun and CREB1 binding to the G-CRE in vitro by electrophoretic mobility shift assay. Promoter pull-down assay followed by sequential western blot analysis confirmed co-localization of cJun, CREB1, and ATF-2 on the G-CRE. To show functional relevance, enforced expression studies with pLen-cJun and a Ggamma-promoter (-1500 to +36) luciferase reporter were completed; we observed a concentration-dependent increase in luciferase activity with pLen-cJun similar to that produced by CREB1 enforced expression. Moreover, the G/A mutation at -1225 in the G-CRE abolished cJun transactivation. Finally, enforced cJun expression in K562 cells and normal primary erythroid progenitors enhanced endogenous gamma-globin gene expression. We conclude that these data indicate that cJun activates the Ggamma-globin promoter via the G-CRE in a manner comparable with CREB1 and propose a model for gamma-globin activation based on DNA-protein interactions in the G-CRE.
Collapse
Affiliation(s)
- Sirisha Kodeboyina
- Department of Molecular and Cell Biology, University of Texas at Dallas, PO Box 830688, FO 3.1, Richardson, TX 75083, USA
| | | | | | | |
Collapse
|
21
|
Liu H, Enyeart JA, Enyeart JJ. ACTH inhibits bTREK-1 K+ channels through multiple cAMP-dependent signaling pathways. ACTA ACUST UNITED AC 2008; 132:279-94. [PMID: 18663135 PMCID: PMC2483331 DOI: 10.1085/jgp.200810003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Bovine adrenal zona fasciculata (AZF) cells express bTREK-1 K+ channels that set the resting membrane potential and function pivotally in the physiology of cortisol secretion. Inhibition of these K+ channels by adrenocorticotropic hormone (ACTH) or cAMP is coupled to depolarization and Ca2+ entry. The mechanism of ACTH and cAMP-mediated inhibition of bTREK-1 was explored in whole cell patch clamp recordings from AZF cells. Inhibition of bTREK-1 by ACTH and forskolin was not affected by the addition of both H-89 and PKI(6–22) amide to the pipette solution at concentrations that completely blocked activation of cAMP-dependent protein kinase (PKA) in these cells. The ACTH derivative, O-nitrophenyl, sulfenyl-adrenocorticotropin (NPS-ACTH), at concentrations that produced little or no activation of PKA, inhibited bTREK-1 by a Ca2+-independent mechanism. Northern blot analysis showed that bovine AZF cells robustly express mRNA for Epac2, a guanine nucleotide exchange protein activated by cAMP. The selective Epac activator, 8-pCPT-2′-O-Me-cAMP, applied intracellularly through the patch pipette, inhibited bTREK-1 (IC50 = 0.63 μM) at concentrations that did not activate PKA. Inhibition by this agent was unaffected by PKA inhibitors, including RpcAMPS, but was eliminated in the absence of hydrolyzable ATP. Culturing AZF cells in the presence of ACTH markedly reduced the expression of Epac2 mRNA. 8-pCPT-2′-O-Me-cAMP failed to inhibit bTREK-1 current in AZF cells that had been treated with ACTH for 3–4 d while inhibition by 8-br-cAMP was not affected. 8-pCPT-2′-O-Me-cAMP failed to inhibit bTREK-1 expressed in HEK293 cells, which express little or no Epac2. These findings demonstrate that, in addition to the well-described PKA-dependent TREK-1 inhibition, ACTH, NPS-ACTH, forskolin, and 8-pCPT-2′-O-Me-cAMP also inhibit these K+ channels by a PKA-independent signaling pathway. The convergent inhibition of bTREK-1 through parallel PKA- and Epac-dependent mechanisms may provide for failsafe membrane depolarization by ACTH.
Collapse
Affiliation(s)
- Haiyan Liu
- Department of Neuroscience, The Ohio State University College of Medicine and Public Health, Columbus, OH 43210, USA
| | | | | |
Collapse
|
22
|
Holmberg M, Leonardsson G, Tor NY. The Species-Specific Differences in the cAMP Regulation of the Tissue-Type Plasminogen Activator Gene between Rat, Mouse and Human is Caused by a One-Nucleotide Substitution in the cAMP-Responsive Element of the Promoters. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1432-1033.1995.0466e.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Kang I, Lindquist DG, Kinane TB, Ercolani L, Pritchard GA, Miller LG. Rapid Communication Isolation and Characterization of the Promoter of the Human GABAA Receptor α1 Subunit Gene. J Neurochem 2008. [DOI: 10.1046/j.1471-4159.1994.62041643.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Stasik I, Rapak A, Kalas W, Ziolo E, Strzadala L. Ionomycin-induced apoptosis of thymocytes is independent of Nur77 NBRE or NurRE binding, but is accompanied by Nur77 mitochondrial targeting. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:1483-90. [PMID: 17588685 DOI: 10.1016/j.bbamcr.2007.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Revised: 05/18/2007] [Accepted: 05/22/2007] [Indexed: 11/28/2022]
Abstract
The induction of thymocyte apoptosis through the Nur77-mediated intrinsic pathway can be of physiological importance in the clonal deletion of autoreactive thymocytes during negative selection in the thymus and/or in thymocytes undergoing oncogenic transformation. Ionomycin treatment induces endogenous Nur77 expression as well as apoptosis and cytochrome c release in thymocytes. Here it is shown for the first time that in normal thymocytes undergoing apoptosis, ionomycin induces translocation of endogenous Nur77 not only to the nucleus, but also to mitochondria. Immunosuppressant FK506 inhibits Nur77 NBRE and NurRE binding activity but has no effect on thymocytes apoptosis, the subcellular localization of Nur77, or cytochrome c release. This indicates that thymocytes can undergo apoptosis through the intrinsic Nur77-mediated mitochondrial pathway and that the transactivation activity of Nur77 monomers or dimers is not necessary for thymocyte apoptosis.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Cells, Cultured
- Cytochromes c/metabolism
- DNA-Binding Proteins/antagonists & inhibitors
- DNA-Binding Proteins/metabolism
- Immunosuppressive Agents/pharmacology
- Ionomycin/pharmacology
- Ionophores/pharmacology
- Mice
- Mice, Inbred C57BL
- Mitochondria/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 1
- Nuclear Receptor Subfamily 4, Group A, Member 2
- Protein Binding
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Steroid/antagonists & inhibitors
- Receptors, Steroid/metabolism
- Response Elements/genetics
- Tacrolimus/pharmacology
- Thymus Gland/cytology
- Thymus Gland/drug effects
- Thymus Gland/metabolism
- Transcription Factors/antagonists & inhibitors
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Izabela Stasik
- Department of Experimental Oncology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland
| | | | | | | | | |
Collapse
|
25
|
Jalvy S, Renault MA, Lam Shang Leen L, Belloc I, Reynaud A, Gadeau AP, Desgranges C. CREB mediates UTP-directed arterial smooth muscle cell migration and expression of the chemotactic protein osteopontin via its interaction with activator protein-1 sites. Circ Res 2007; 100:1292-9. [PMID: 17413042 DOI: 10.1161/01.res.0000266609.28312.de] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The transcription factor cAMP responsive element-binding protein (CREB) has been found to be involved in arterial smooth muscle cell (SMC) migration. We previously demonstrated that osteopontin (OPN) expression is a key step for UTP-mediated migration of arterial SMCs and that activator protein (AP)-1, nuclear factor kappaB, and upstream stimulatory transcription factors are involved in this OPN expression. The present study aims to determine the role of CREB in UTP-induced migration and OPN expression in cultured SMCs. We found that CREB is activated by UTP via extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase pathways but not by protein kinase A. Both overexpression of a dominant negative CREB and CREB small interfering RNA treatment suppressed UTP-induced OPN expression and SMC migration. Gel-shift and chromatin immunoprecipitation assays revealed that CREB binds 2 AP-1 sites (-1870 and -76) and a cAMP responsive element-like site (-1403) on the OPN promoter. Mutations of these sites showed that only the 2 AP-1 sites were required for UTP-induced OPN expression. Moreover, gel-supershift and sequential chromatin immunoprecipitation assays suggested that CREB was associated with c-Fos on the AP-1 sites of the OPN promoter. These results demonstrate that CREB participates in the induction of UTP-activated OPN expression via its binding to 2 AP-1 sites and is thus involved in UTP-mediated SMC migration.
Collapse
|
26
|
Mazzola S, Lira MG, Benedetti MD, Salviati A, Ottaviani S, Malerba G, Ortombina M, Pignatti PF. COX-2 promoter region polymorphisms in multiple sclerosis: lack of association of ?765G>C with disease risk. Int J Immunogenet 2007; 34:71-4. [PMID: 17373929 DOI: 10.1111/j.1744-313x.2007.00675.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cyclooxygenase-2 (COX-2) is extensively expressed in multiple sclerosis lesions suggesting that regulatory variants of the COX-2 gene could be implicated in multiple sclerosis (MS). Screening of the proximal 5' regulatory region and genotyping of -765G>C and -62C>G showed that polymorphisms in this COX-2 region are unlikely to be involved in MS susceptibility.
Collapse
Affiliation(s)
- S Mazzola
- Department of Mother and Child, Biology and Genetics, Section Biology and Genetics, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Yu CJ, Gao Y, Willis CL, Li P, Tiano JP, Nakamura PA, Hyde DR, Li L. Mitogen-associated protein kinase- and protein kinase A-dependent regulation of rhodopsin promoter expression in zebrafish rod photoreceptor cells. J Neurosci Res 2007; 85:488-96. [PMID: 17183589 DOI: 10.1002/jnr.21157] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Mitogen-associated protein kinase (MAPK)- and protein kinase A (PKA)-dependent signal transductions play important roles in the regulation of gene expression. Both MAPK and PKA pathways can be activated by light exposure. In this study, we investigated the effect of light on MAPK and PKA signal transduction and their roles in the regulation of rhodopsin promoter expression by using transgenic zebrafish [Tg(rhod::GFP)]. The Tg(rhod::GFP) fish express short half-life GFP that is under the transcriptional control of the zebrafish rhodopsin promoter and can therefore be used for in vivo studies of rhodopsin gene transcription in live cells. Blue light plays a role in the regulation of rhodopsin promoter expression via an MAPK-mediated signal transduction cascade. Blue light excites cryptochromes (CRY), which activate the downstream PKC-dependent MAPK signal pathway. White light, on the other hand, regulates rhodopsin promoter expression via a G-protein-coupled cAMP-dependent PKA pathway. White light promotes dopamine release in the retina, which activates dopamine receptors and the downstream PKA pathway. Blocking MAPK signaling diminishes the blue light-induced increases in rhodopsin promoter expression, but this treatment has no effect on white light-mediated rhodopsin promoter expression. Conversely, blocking the PKA pathway diminishes the white light-induced rhodopsin promoter expression but does not affect rhodopsin promoter expression regulated by blue light. Together, the data suggest that MAPK and PKA regulate rhodopsin transcription through parallel signal transduction pathways.
Collapse
Affiliation(s)
- Chuan-Jiang Yu
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Hanson RW, Patel YM. Phosphoenolpyruvate carboxykinase (GTP): the gene and the enzyme. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 69:203-81. [PMID: 7817869 DOI: 10.1002/9780470123157.ch6] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- R W Hanson
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH
| | | |
Collapse
|
29
|
Rodova M, Nguyen AN, Blanco G. The transcription factor CREMtau and cAMP regulate promoter activity of the Na,K-ATPase alpha4 isoform. Mol Reprod Dev 2006; 73:1435-47. [PMID: 16894555 DOI: 10.1002/mrd.20518] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Na,K-ATPase is an essential enzyme of the plasma membrane that plays a key role in numerous cell processes that depend on the transcellular gradients of Na(+) and K(+). Among the various isoforms of the catalytic subunit of the Na,K-ATPase, alpha4 exhibits the most limited pattern of expression, being restricted to male germ cells. Activity of alpha4 is essential for sperm function, and alpha4 is upregulated during spermatogenesis. The present study addressed the transcriptional control of the human Na,K-ATPase alpha4 gene, ATP1A4. We describe that a 5' untranslated region of the ATP1A4 gene (designated -339/+480 based on the ATP1A4 transcription initiation site) has promoter activity in luciferase reporter assays. Computer analysis of this promoter region revealed consensus sites (CRE) for the cyclic AMP (cAMP) response element modulator (CREM). Accordingly, dibutyryl cAMP (db-cAMP) and ectopic expression of CREMtau, a testis specific splice variant of CREM were able to activate the ATP1A4 promoter driven expression of luciferase in HEK 293 T, JEG-3 and GC-1 cells. Further characterization of the effect of db-cAMP and CREMtau on deleted constructs of the ATP1A4 promoter (-339/+80, and +25/+480), and on the -339/+480 region carrying mutations in the CRE sites showed that db-cAMP and CREMtau effect required the CRE motif located 263 bp upstream the transcription initiation site. EMSA experiments confirmed the CRE sequence as a bonafide CREMtau binding site. These results constitute the first demonstration of the transcriptional control of ATP1A4 gene expression by cAMP and by CREMtau, a transcription factor essential for male germ cell gene expression.
Collapse
Affiliation(s)
- Marianna Rodova
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | |
Collapse
|
30
|
Madhyastha HK, Radha KS, Sugiki M, Omura S, Maruyama M. C-phycocyanin transcriptionally regulates uPA mRNA through cAMP mediated PKA pathway in human fibroblast WI-38 cells. Biochim Biophys Acta Gen Subj 2006; 1760:1624-30. [PMID: 17029796 DOI: 10.1016/j.bbagen.2006.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 07/25/2006] [Accepted: 08/18/2006] [Indexed: 11/21/2022]
Abstract
We have previously demonstrated the efficacy of c-phycocyanin in up-regulation of urokinase-type plasminogen activator (uPA) in bovine endothelial cell line. However, the mechanism of action and pathway elucidation in uPA regulation is unclear. In experiments reported here, we have investigated the mechanism of action of c-phycocyanin (c-pc) induced uPA gene modulation in human fibroblast (WI-38) cell line. ELISA test confirmed that c-pc increased the uPA antigen whereas PAI-1 antigen level was unaffected. Treatment of cells with c-pc significantly (P<0.05) enhanced the uPA mRNA level in a dose (50 microg/ml) and time dependent (up to 4 h) manner. This effect of c-pc was abolished by treatment with dichloro-1-beta-D-ribofuranosyl benzamidazole (DRB) (10 microg/ml). Co-treatment of c-pc with 200 microg/ml cycloheximide (CHX), translation inhibitor, resulted in over accumulation of uPA mRNA. These results suggest that uPA induction by c-pc is transcriptionally regulated and does not require de novo protein synthesis. We also provide evidence that c-pc stimulates uPA gene through cAMP dependent pathway as adenylyl cyclase (AC) inhibitor, dideoxyadenosine (DDA) significantly inhibited the uPA mRNA expression and co-treatment with adenylyl cyclase analogue, dBcAMP recovered the effect of c-pc on gene activity. Furthermore, the present investigation provides evidence on the regulatory pathway involved in the c-pc stimulus. C-pc induced uPA expression was completely inhibited by PKA inhibitor (KT 5200), indicating the regulation is dependent on PKA pathway. Elimination of PKC pathway components by prolonged incubation with excess amount of phorbol 12-myristate 13-acetate (PMA) failed to abolish the c-pc effect on uPA expression indicating the regulation is independent of PKC pathway. Taken together, our data indicate that uPA gene regulation by c-pc is transcriptionally controlled through cAMP mediated PKA pathway.
Collapse
Affiliation(s)
- H K Madhyastha
- Department of Applied Physiology, Faculty of Medicine, University of Miyazaki, MIYAZAKI-889-1692, Japan
| | | | | | | | | |
Collapse
|
31
|
Guo MX, Wang D, Shao HJ, Qiu HL, Xue L, Zhao ZZ, Zhu CG, Shi YB, Li WX. Transcription of human zinc finger ZNF268 gene requires an intragenic promoter element. J Biol Chem 2006; 281:24623-36. [PMID: 16787922 DOI: 10.1074/jbc.m602753200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human ZNF268 gene is a typical Krüppel-associated box/C2H2 zinc finger gene whose homolog has been found only in higher mammals and not in lower mammals such as mouse. Its expression profiles have suggested that it plays a role in the differentiation of blood cells during early human embryonic development and the pathogenesis of leukemia. To gain additional insight into the molecular mechanisms controlling the expression of the ZNF268 gene and to provide the necessary tools for further genetic studies of leukemia, we have mapped the 5'-end of the human ZNF268 mRNA by reverse transcription-PCR and primer extension assays. We then cloned the 5'-flanking genomic DNA containing the putative ZNF268 gene promoter and analyzed its function in several different human and mouse tissue culture cell lines. Interestingly, our studies show that the ZNF268 gene lacks a typical eukaryotic promoter that is present upstream of the transcription start site and directs a basal level of transcription. Instead, the functional promoter requires an essential element that is located within the first exon of the gene. Deletion and mutational analysis reveals the requirement for a cAMP response-element-binding protein (CREB)-binding site within this element for promoter function. Gel mobility shift and chromatin immunoprecipitation assays confirm that CREB-2 binds to the site in vitro and in vivo. Furthermore, overexpression of CREB-2 enhances the promoter activity. These results demonstrate that the human ZNF268 gene promoter is atypical and requires an intragenic element located within the first exon that mediates the effect of CREB for its activity.
Collapse
Affiliation(s)
- Ming-Xiong Guo
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Weck J, Mayo KE. Switching of NR5A proteins associated with the inhibin alpha-subunit gene promoter after activation of the gene in granulosa cells. Mol Endocrinol 2006; 20:1090-103. [PMID: 16423880 DOI: 10.1210/me.2005-0199] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The inhibin alpha-subunit gene is transcriptionally activated by FSH in ovarian granulosa cells during follicular growth. We have investigated the roles of the NR5A family nuclear receptors steroidogenic factor 1 (SF-1) and liver receptor homolog 1 (LRH-1) in transcriptional activation of the inhibin alpha-subunit gene. Transfection assays using an inhibin alpha-subunit promoter reporter in GRMO2 granulosa cells show that LRH-1 and SF-1 act similarly to increase promoter activity, and that the activity of both transcription factors is augmented by the coactivators cAMP response element-binding protein-binding protein and steroid receptor coactivator 1. However, chromatin immunoprecipitation experiments illustrate differential dynamic association of LRH-1 and SF-1 with the alpha-subunit inhibin promoter in both primary cells and the GRMO2 granulosa cell line such that hormonal stimulation of transcription results in an apparent replacement of SF-1 with LRH-1. Transcriptional stimulation of the inhibin alpha-subunit gene is dependent on MAPK kinase activity, as is the dynamic association/disassociation of SF-1 and LRH-1 with the promoter. Inhibition of the phosphatidylinositol 3-kinase signaling pathway influences promoter occupancy and transcriptional activation by SF-1 but not LRH-1, suggesting a possible mechanistic basis for the distinct functions of these NR5A proteins in inhibin alpha-subunit gene regulation.
Collapse
Affiliation(s)
- Jennifer Weck
- Department of Biochemistry, Molecular Biology, and Cell Biology, and Center for Reproductive Science, 2205 Tech Drive, Northwestern University, Evanston, Illinois 60208, USA
| | | |
Collapse
|
33
|
Damberg M. Transcription factor AP-2 and monoaminergic functions in the central nervous system. J Neural Transm (Vienna) 2005; 112:1281-96. [PMID: 15959839 DOI: 10.1007/s00702-005-0325-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Accepted: 04/25/2005] [Indexed: 10/25/2022]
Abstract
In the central nervous system, transcription factor AP-2 family is one of the critical regulatory factors for neural gene expression and neuronal development. Several genes in the monoaminergic systems display AP-2 binding sites in regulatory regions. In addition, brainstem levels of transcription factor AP-2alpha and AP-2beta are positively correlated to monoamine measures in rat forebrain, suggesting a regulatory role of AP-2 also in the adult brain. Great changes in psychiatric phenotypes due to genetic factors are seldom the result of a single gene polymorphism. Recently, identification of combinations of candidate genes that are all linked to one disease or psychiatric phenotype has been discussed. The expression of these candidate genes might be regulated by the same transcription factors, e.g. AP-2. Recent data on transcription factor AP-2 family in relation to monoaminergic functions are described in this paper. Transcription factor AP-2beta genotype has been studied in relation to personality, platelet monoamine oxidase (MAO) activity, CSF-levels of monoamine metabolites, binge-eating disorder, premenstrual dysphoric disorder, and schizophrenia. Furthermore, the involvement of AP-2 in the molecular mechanism of antidepressant drugs is discussed. Altogether, this paper discusses data supporting a notion that the transcription factor AP-2 family is involved in the regulation of the monoaminergic systems both pre- and postnatally, and, therefore, might be involved in the pathophysiology of neuropsychiatric disorders.
Collapse
Affiliation(s)
- M Damberg
- Department of Neuroscience, Unit of Pharmacology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
34
|
Akatsuka N, Komatsuzaki E, Ishikawa A, Suzuki I, Yamane N, Miyata S. Expression of the gonadal p450 aromatase gene of Xenopus and characterization of the 5'-flanking region of the aromatase gene. J Steroid Biochem Mol Biol 2005; 96:45-50. [PMID: 15888381 DOI: 10.1016/j.jsbmb.2005.01.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Accepted: 01/17/2005] [Indexed: 10/25/2022]
Abstract
Investigation by RQ-RT-PCR revealed that transcription of the p450 aromatase gene is activated at stage 50, when sex determination of the female begins, and that aromatase gene expression is also activated by exogenously administrated estradiol. In order to determine the molecular basis underlying the specific activation of aromatase gene expression during sex differentiation and in response to exogenous estradiol, we isolated the 5'-flanking fragment of the gene and characterized the promoter sequence. We demonstrated binding sequences to a specific trans-activating factor upstream of the p450 aromatase promoter II, the cAMP response element binding protein/activating transcription factor family, and steroidogenic factor-1. An estrogen response element half-site sequence that recognize an estrogen receptors, was also found.
Collapse
Affiliation(s)
- Naoya Akatsuka
- Laboratory of Biochemistry, Department of Chemistry, College of Humanities and Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Han S, Ritzenthaler JD, Rivera HN, Roman J. Peroxisome proliferator-activated receptor-gamma ligands suppress fibronectin gene expression in human lung carcinoma cells: involvement of both CRE and Sp1. Am J Physiol Lung Cell Mol Physiol 2005; 289:L419-28. [PMID: 15908479 DOI: 10.1152/ajplung.00002.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lung carcinoma often occurs in patients with chronic lung disease such as tobacco-related emphysema and asbestos-related pulmonary fibrosis. These diseases are characterized by dramatic alterations in the content and composition of the lung extracellular matrix, and we believe this "altered" matrix has the ability to promote lung carcinoma cell growth. One extracellular matrix molecule shown to be altered in these lung diseases is fibronectin (Fn). We previously reported increased growth and survival of non-small cell lung carcinoma (NSCLC) cells exposed to Fn. Thus Fn may serve as a mitogen/survival factor for NSCLC and therefore represents a novel target for anti-cancer strategies. To this end, we studied the effects of the PPARgamma ligands 15d-PGJ(2), rosiglitazone (BRL49653), and troglitazone on Fn expression in NSCLC cells and found that they were able to inhibit Fn gene transcription. Inhibition of Fn expression by BRL49653 and troglitazone, but not by 15d-PGJ(2), was prevented by the specific PPARgamma antagonist GW-9662 and by PPARgamma small interfering RNA. Working with Fn deletion and mutated promoter constructs, we found that the region between -170 and -50 bp downstream from the transcriptional start site of the promoter was involved in PPARgamma ligand inhibition. PPARgamma ligands also diminished the phosphorylation of CREB, diminished Sp1 nuclear protein expression, and prevented the binding of these transcription factors to CRE and Sp1 sites, respectively, within the Fn promoter. In summary, our results demonstrate that PPARgamma ligands inhibit Fn gene expression in NSCLC cells through PPARgamma-dependent and -independent pathways that affect both CREB and Sp1.
Collapse
Affiliation(s)
- Shouwei Han
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
36
|
Poch MT, Cutler NS, Yost GS, Hines RN. Molecular mechanisms regulating human CYP4B1 lung-selective expression. Drug Metab Dispos 2005; 33:1174-84. [PMID: 15900016 DOI: 10.1124/dmd.105.004523] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lung-selective cytochrome P450 expression is well recognized; however, little is known regarding regulatory mechanisms. To address this knowledge gap, transient expression of CYP4B1/luciferase constructs was used to identify a proximal, positively acting regulatory element, position -139 to -45, that functioned in all cells examined; a negatively acting element, position -457 to -216, that only functioned in HepG2 hepatoblastoma cells; and a distal, positively acting element, position -1087 to -1008, that functioned in A549 or BEAS-2B lung-derived cells but not HepG2 cells or 293 kidney-derived cells. Competitive electrophoretic mobility shift assays further localized specific A549, but not HepG2, nuclear protein binding to two sites within the distal element, CYP4B1 position -1052 to -1042 and -1026 to -1008. Several potential lung-selective transcription factor recognition sequences were identified within these elements. However, attempts to identify specific factor(s) were unsuccessful. In contrast, in vitro DNA/protein binding assays combined with transient expression and mutagenesis studies identified two functional Sephadex protein/Krüppel-like factor families of transcription factor sites within the proximal element (position -118 to -114 and position -77 to -73) that bound both Sephadex protein 1 (Sp1) and Sephadex protein 3 (Sp3) in vitro. Furthermore, Sp1-dependent synergistic regulation was observed in A549 cells involving the proximal and distal regulatory elements. Chromatin immunoprecipitation assays demonstrated binding of neither Sp1 nor Sp3 to the CYP4B1 proximal element in human liver tissue, whereas selective Sp1 binding was observed in human lung tissue. Thus, the composite findings are consistent with both the proximal Sp1 elements and the distal regulatory element acting to synergistically control CYP4B1 lung-selective expression.
Collapse
Affiliation(s)
- Mark T Poch
- Department of Pediatrics, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA.
| | | | | | | |
Collapse
|
37
|
Zinger O, Zhao G, Schwartz Z, Simpson J, Wieland M, Landolt D, Boyan B. Differential regulation of osteoblasts by substrate microstructural features. Biomaterials 2005; 26:1837-47. [PMID: 15576158 DOI: 10.1016/j.biomaterials.2004.06.035] [Citation(s) in RCA: 286] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2004] [Accepted: 06/14/2004] [Indexed: 11/25/2022]
Abstract
Microtextured titanium implant surfaces enhance bone formation in vivo and osteoblast phenotypic expression in vitro, but the mechanisms are not understood. To determine the roles of specific microarchitectural features in modulating osteoblast behavior, we used Ti surfaces prepared by electrochemical micromachining as substrates for MG63 osteoblast-like cell culture. Cell response was compared to tissue culture plastic, a sand-blasted with large grit and acid-etched surface with defined mixed microtopography (SLA), polished Ti surfaces, and polished surfaces electrochemically machined through a photoresist pattern to produce cavities with 100, 30 and 10 microm diameters arranged so that the ratio of the microscopic-scale area of the cavities versus the microscopic-scale area of the flat region between the cavities was equal to 1 or 6. Microstructured disks were acid-etched, producing overall sub-micron-scale roughness (Ra=0.7 microm). Cell number, differentiation (alkaline phosphatase; osteocalcin) and local factor levels (TGF-beta1; PGE(2)) varied with microarchitecture. 100 microm cavities favored osteoblast attachment and growth, the sub-micron-scale etch enhanced differentiation and TGF-beta1 production, whereas PGE(2) depended on cavity dimensions but not the sub-micron-scale roughness.
Collapse
Affiliation(s)
- O Zinger
- Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
38
|
Huang WC, Xie Z, Konaka H, Sodek J, Zhau HE, Chung LWK. Human osteocalcin and bone sialoprotein mediating osteomimicry of prostate cancer cells: role of cAMP-dependent protein kinase A signaling pathway. Cancer Res 2005; 65:2303-13. [PMID: 15781644 DOI: 10.1158/0008-5472.can-04-3448] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Osteocalcin and bone sialoprotein are the most abundant noncollagenous bone matrix proteins expressed by osteoblasts. Surprisingly, osteocalcin and bone sialoprotein are also expressed by malignant but not normal prostate epithelial cells. The purpose of this study is to investigate how osteocalcin and bone sialoprotein expression is regulated in prostate cancer cells. Our investigation revealed that (a) human osteocalcin and bone sialoprotein promoter activities in an androgen-independent prostate cancer cell line of LNCaP lineage, C4-2B, were markedly enhanced 7- to 12-fold in a concentration-dependent manner by conditioned medium collected from prostate cancer and bone stromal cells. (b) Deletion analysis of human osteocalcin and bone sialoprotein promoter regions identified cyclic AMP (cAMP)-responsive elements (CRE) as the critical determinants for conditioned medium-mediated osteocalcin and bone sialoprotein gene expression in prostate cancer cells. Consistent with these results, the protein kinase A (PKA) pathway activators forskolin and dibutyryl cAMP and the PKA pathway inhibitor H-89, respectively, increased or repressed human osteocalcin and bone sialoprotein promoter activities. (c) Electrophoretic mobility shift assay showed that conditioned medium-mediated stimulation of human osteocalcin and bone sialoprotein promoter activities occurs through increased interaction between CRE and CRE-binding protein. (d) Conditioned medium was found to induce human osteocalcin and bone sialoprotein promoter activities via increased CRE/CRE-binding protein interaction in a cell background-dependent manner, with marked stimulation in selected prostate cancer but not bone stromal cells. Collectively, these results suggest that osteocalcin and bone sialoprotein expression is coordinated and regulated through cAMP-dependent PKA signaling, which may define the molecular basis of the osteomimicry exhibited by prostate cancer cells.
Collapse
Affiliation(s)
- Wen-Chin Huang
- Molecular Urology and Therapeutics Program, Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
39
|
Cho-Chung YS. Antisense and therapeutic oligonucleotides: toward a gene-targeting cancer clinic. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.10.11.1711] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
40
|
Nesterova MV, Cho-Chung YS. Antisense protein kinase A RIalpha inhibits 7,12-dimethylbenz(a)anthracene-induction of mammary cancer: blockade at the initial phase of carcinogenesis. Clin Cancer Res 2005; 10:4568-77. [PMID: 15240549 DOI: 10.1158/1078-0432.ccr-03-0436] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE There are two types of cyclic AMP (cAMP)-dependent protein kinase (PKA), type I (PKA-I) and type II (PKA-II), which share a common catalytic (C) subunit but contain distinct regulatory (R) subunits, RI versus RII, respectively. Evidence suggests that increased expression of PKA-I and its regulatory subunit (RIalpha) correlates with tumorigenesis and tumor growth. We investigated the effect of sequence-specific inhibition of RIalpha gene expression at the initial phase of 7,12-dimethylbenz(alphaa)anthracene (DMBA)-induced mammary carcinogenesis. EXPERIMENTAL DESIGN Antisense RIalpha oligodeoxynucleotide (ODN) targeted against PKA RIalpha was administered (0.1 mg/day/rat, i.p.) 1 day before DMBA intubation and during the first 9 days post-DMBA intubation to determine the anticarcinogenic effects. RESULTS Antisense RIalpha, in a sequence-specific manner, inhibited the tumor production. At 90 days after DMBA intubation, untreated controls and RIalpha-antisense-treated rats exhibited an average mean number of tumors per rat of 4.2 and 1.8, respectively, and 90% of control and 45% of antisense-treated animals had tumors. The antisense also delayed the first tumor appearance. An increase in RIalpha and PKA-I levels in the mammary gland and liver preceded DMBA-induced tumor production, and antisense down-regulation of RIalpha restored normal levels of PKA-I and PKA-II in these tissues. Antisense RIalpha in the liver induced the phase II enzymes, glutathione S-transferase and quinone oxidoreductase, c-fos protein, and activator protein 1 (AP-1)- and cAMP response element (CRE)-directed transcription. In the mammary glands, antisense RIalpha promoted DNA repair processes. In contrast, the CRE transcription-factor decoy could not mimic these effects of antisense RIalpha. CONCLUSIONS The results demonstrate that RIalpha antisense produces dual anticarcinogenic effects: (a) increasing DMBA detoxification in the liver by increasing phase II enzyme activities, increasing CRE-binding-protein phosphorylation and enhancing CRE- and Ap-1-directed transcription; and (b) activating DNA repair processes in the mammary gland by down-regulating PKA-I.
Collapse
MESH Headings
- 9,10-Dimethyl-1,2-benzanthracene/pharmacology
- Animals
- Carcinogens/pharmacology
- Catalytic Domain
- Cyclic AMP/metabolism
- Cyclic AMP-Dependent Protein Kinase RIalpha Subunit
- Cyclic AMP-Dependent Protein Kinase Type II
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Cyclic AMP-Dependent Protein Kinases/physiology
- DNA Repair
- Dose-Response Relationship, Drug
- Down-Regulation
- Ethanolamines/pharmacology
- Female
- Glutathione Transferase/metabolism
- Immunoprecipitation
- Liver/metabolism
- Mammary Glands, Animal/metabolism
- Mammary Neoplasms, Animal/chemically induced
- Mammary Neoplasms, Animal/metabolism
- Mammary Neoplasms, Animal/pathology
- Mice
- NAD(P)H Dehydrogenase (Quinone)/metabolism
- NADPH Dehydrogenase/metabolism
- Oligonucleotides, Antisense/pharmacology
- Phosphorylation
- Protein Binding
- Proto-Oncogene Proteins c-fos/metabolism
- Rats
- Rats, Sprague-Dawley
- Time Factors
- Transcription Factor AP-1/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Maria V Nesterova
- Cellular Biochemistry Section, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | | |
Collapse
|
41
|
Abstract
The inducible nitric oxide synthase (iNOS) is stimulated to produce large quantities of nitric oxide (NO) by proinflammatory stimuli, hemorrhagic shock, and a variety of cytokines. We have previously shown that cAMP profoundly inhibits hepatocyte iNOS expression in vitro. In this study, we tested whether glucagon, a hormone that increases cAMP in hepatocytes, could regulate hepatic iNOS expression and activity in vivo. Rats were injected intraperitoneally with lipopolysaccharide (LPS, 10 mg/kg) and treated with either saline or glucagon (500 microg/kg i.p.). Plasma and liver tissue were obtained 6 and 24 h after LPS. LPS induced increased iNOS mRNA, iNOS protein, and plasma levels of nitrite/nitrate that were all significantly decreased by glucagon treatment. The reduction in iNOS expression produced by glucagon was associated with a reduction in plasma AST and LDH levels, suggesting decreased LPS-induced hepatic injury. These data suggest that glucagon may participate in the in vivo regulation of hepatic iNOS expression after proinflammatory stimuli.
Collapse
Affiliation(s)
- Brian G Harbrecht
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | |
Collapse
|
42
|
Chung WH, Kim KD, Cho YJ, Roe JH. Differential expression and role of two dithiol glutaredoxins Grx1 and Grx2 in Schizosaccharomyces pombe. Biochem Biophys Res Commun 2004; 321:922-9. [PMID: 15358115 DOI: 10.1016/j.bbrc.2004.07.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Indexed: 11/28/2022]
Abstract
Glutaredoxins are glutathione-specific thiol oxidoreductases. The regulation and the role of grx1(+) and grx2(+) genes encoding dithiol glutaredoxins were analyzed in Schizosaccharomyces pombe. When tested in the same genetic background including mating type, the grx1 null mutant became sensitive to hydrogen peroxide, whereas grx2 mutant became highly sensitive to paraquat, a superoxide generator. The grx1grx2 double mutant showed additive phenotype of each single mutant. The grx1(+) gene expression was induced by various stresses such as oxidants, salts, and heat, and increased in the stationary phase, whereas grx2(+) stayed constitutive. The induction was mediated via Spc1 MAP kinase path involving both Atf1 and Pap1 transcription factors. Sub-cellular fractionation as well as fluorescence microscopy revealed that Grx1 resides mainly in the cytosol, whereas Grx2 is in mitochondria. These results suggest distinct roles for Grx1 and Grx2 in S. pombe in mediating glutathione-dependent redox homeostasis.
Collapse
Affiliation(s)
- Woo-Hyun Chung
- Laboratory of Molecular Microbiology, Institute of Microbiology, School of Biological Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | |
Collapse
|
43
|
Liu W, Sun M, Jiang J, Shen X, Sun Q, Liu W, Shen H, Gu J. Cyclin D3 interacts with human activating transcription factor 5 and potentiates its transcription activity. Biochem Biophys Res Commun 2004; 321:954-60. [PMID: 15358120 DOI: 10.1016/j.bbrc.2004.07.053] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2004] [Indexed: 11/17/2022]
Abstract
The Cyclin D3 protein is a member of the D-type cyclins. Besides serving as cell cycle regulators, D-type cyclins have been reported to be able to interact with several transcription factors and modulate their transcriptional activations. Here we report that human activating transcription factor 5 (hATF5) is a new interacting partner of Cyclin D3. The interaction was confirmed by in vivo coimmunoprecipitation and in vitro binding analysis. Neither interaction between Cyclin D1 and hATF5 nor interaction between Cyclin D2 and hATF5 was observed. Confocal microscopy analysis showed that Cyclin D3 could colocalize with hATF5 in the nuclear region. Cyclin D3 could potentiate hATF5 transcriptional activity independently of its Cdk4 partner. But Cyclin D1 and Cyclin D2 had no effect on hATF5 transcriptional activity. These data provide a new clue to understand the new role of Cyclin D3 as a transcriptional regulator.
Collapse
Affiliation(s)
- Wenjin Liu
- State Key Laboratory of Genetic Engineering and Gene Research Center, Shanghai Medical College of Fudan University, Shanghai 200032, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Xu X, Zhang W, Kone BC. CREB trans-activates the murine H(+)-K(+)-ATPase alpha(2)-subunit gene. Am J Physiol Cell Physiol 2004; 287:C903-11. [PMID: 15163620 DOI: 10.1152/ajpcell.00065.2004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Despite its key role in potassium homeostasis, transcriptional control of the H(+)-K(+)-ATPase alpha(2)-subunit (HKalpha(2)) gene in the collecting duct remains poorly characterized. cAMP increases H(+)-K(+)-ATPase activity in the collecting duct, but its role in activating HKalpha(2) transcription has not been explored. Previously, we demonstrated that the proximal 177 bp of the HKalpha(2) promoter confers basal collecting duct-selective expression. This region contains several potential cAMP/Ca(2+)-responsive elements (CRE). Accordingly, we examined the participation of CRE-binding protein (CREB) in HKalpha(2) transcriptional control in murine inner medullary collecting duct (mIMCD)-3 cells. Forskolin and vasopressin induced HKalpha(2) mRNA levels, and CREB overexpression stimulated the activity of HKalpha(2) promoter-luciferase constructs. Serial deletion analysis revealed that CREB inducibility was retained in a construct containing the proximal 100 bp of the HKalpha(2) promoter. In contrast, expression of a dominant negative inhibitor (A-CREB) resulted in 60% lower HKalpha(2) promoter-luciferase activity, suggesting that constitutive CREB participates in basal HKalpha(2) transcriptional activity. A constitutively active CREB mutant (CREB-VP16) strongly induced HKalpha(2) promoter-luciferase activity, whereas overexpression of CREBdLZ-VP16, which lacks the CREB DNA-binding domain, abolished this activation. In vitro DNase I footprinting and gel shift/supershift analysis of the proximal promoter with recombinant glutathione S-transferase (GST)-CREB-1 and mIMCD-3 cell nuclear extracts revealed sequence-specific DNA-CREB-1 complexes at -86/-60. Mutation at three CRE-like sequences within this region abolished CREB-1 DNA-binding activity and abrogated CREB-VP16 trans-activation of the HKalpha(2) promoter. In contrast, mutation of the neighboring -104/-94 kappabeta element did not alter CREB-VP16 trans-activation of the HKalpha(2) promoter. Thus CREB-1, binding to one or more CRE-like elements in the -86/-60 region, trans-activates the HKalpha(2) gene and may represent an important link between rapid and delayed effects of cAMP on HKalpha(2) activity.
Collapse
Affiliation(s)
- Xiangyang Xu
- Department of Internal Medicine, University of Texas Medical School at Houston, 6431 Fannin Ave., MSB 1.150, Houston, TX 77030, USA
| | | | | |
Collapse
|
45
|
Hjerrild M, Stensballe A, Jensen ON, Gammeltoft S, Rasmussen TE. Protein kinase A phosphorylates serine 267 in the homeodomain of engrailed-2 leading to decreased DNA binding. FEBS Lett 2004; 568:55-9. [PMID: 15196920 DOI: 10.1016/j.febslet.2004.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Revised: 05/10/2004] [Accepted: 05/10/2004] [Indexed: 11/30/2022]
Abstract
Engrailed-2 (En-2) belongs to an evolutionarily conserved family of DNA binding homeodomain-containing proteins that are expressed in mammalian brain during development. Here, we demonstrate that serine 267 in the homeodomain of En-2 is phosphorylated by protein kinase A (PKA) in forskolin-treated COS-7 cells. Furthermore, we analyze the physiological function of En-2 phosphorylation by PKA. The nuclear localization of En-2 is not influenced by the phosphorylation of serine 267. However, substitution of serine 267 with alanine resulted in increased binding of En-2 to DNA, while replacing serine 267 with glutamic acid resulted in decreased En-2 DNA binding. These results suggest that the transcriptional activity of En-2 is regulated by PKA.
Collapse
Affiliation(s)
- Majbrit Hjerrild
- Department of Clinical Biochemistry, Glostrup Hospital, Nordre Ringvej, DK-2600 Glostrup, Denmark.
| | | | | | | | | |
Collapse
|
46
|
Stewen P, Outi S, Tuulikki N, Frej F. Cyclic AMP increases bradykinin receptor binding affinity in human endothelial cells. Life Sci 2004; 74:2839-52. [PMID: 15050422 DOI: 10.1016/j.lfs.2003.09.071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2003] [Accepted: 09/30/2003] [Indexed: 11/28/2022]
Abstract
We demonstrated bradykinin receptors in human endothelial cells and studied whether bradykinin receptors might be regulated by cyclic AMP. Messenger RNA for bradykinin B(1) and B(2) receptors was detected with real-time PCR and B(2) receptor protein was confirmed by immunoblotting. Saturation binding experiments with increasing concentrations of (125)I-[Tyr(8)]-bradykinin (25-700 pM) were made to determine maximal binding capacity and dissociation constant. However, saturation binding experiments suggested one class of binding sites, maximal binding capacity of 39.3 +/- 1.3 fmol/mg protein and dissociation constant of 352 +/- 27 pM. Competition studies with bradykinin B(1) and B(2) receptor antagonists showed that binding was competed by a B(1) antagonist, and when internalization was inhibited with hypertonic buffer, by both B(1) and B(2) antagonists. Stimulating cells with dibutyryl-cAMP, cholera toxin and forskolin for 24 h increased (125)I-[Tyr(8)]-bradykinin (90 pM) binding with approximately 50%. Saturation binding experiments with dibutyryl-cAMP stimulated cells showed, that the dissociation constant was altered from 352 +/- 27 pM in non-stimulated cells, to 203 +/- 18 pM (P < 0.001) in stimulated cells, while maximal binding capacity remained unchanged. Binding was competed similarly by the B(1) antagonist in stimulated and control cells. These results suggest, that the dibutyryl-cAMP stimulated increase in (125)I-[Tyr(8)]-bradykinin binding is probably due to increased B(1) receptor affinity with no change in receptor capacity. In conclusion, bradykinin B(1) and B(2) receptor mRNA was shown in human endothelial cells. Binding studies suggest that bradykinin receptors are competable with bradykinin antagonists. Adenylate cyclase activators probably increase bradykinin B(1) receptor affinity, without changing capacity, and thus increase bradykinin binding.
Collapse
MESH Headings
- Binding, Competitive
- Blotting, Western
- Bradykinin/analogs & derivatives
- Bradykinin/antagonists & inhibitors
- Bradykinin/metabolism
- Bradykinin B1 Receptor Antagonists
- Bradykinin B2 Receptor Antagonists
- Bucladesine/pharmacology
- Cells, Cultured
- Cholera Toxin/pharmacology
- Colforsin/pharmacology
- Dose-Response Relationship, Drug
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Humans
- RNA, Messenger/metabolism
- Receptor, Bradykinin B1/genetics
- Receptor, Bradykinin B1/metabolism
- Receptor, Bradykinin B2/genetics
- Receptor, Bradykinin B2/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Umbilical Veins/cytology
Collapse
Affiliation(s)
- Pia Stewen
- Minerva Institute for Medical Research, Helsinki, Finland.
| | | | | | | |
Collapse
|
47
|
Abstract
Enhancer DNA decoy oligonucleotides (ODNs) inhibit transcription by competing for transcription factors. A decoy ODN composed of the cAMP response element (CRE) inhibits CRE-directed gene transcription and tumor growth without affecting normal cell growth. We used DNA microarrays to analyze the global gene expression in tumors exposed to the CRE-decoy ODN. The CRE decoy upregulated the AP-2beta transcription factor gene in tumors but not in the livers of host animals. The upregulated expression of AP-2beta was clustered with other upregulated genes involved in development and cell differentiation. Concomitantly, another cluster of genes involved in cell proliferation and transformation was downregulated. The observed alterations indicate that CRE-directed transcription favors tumor growth. Evidence presented here suggests that the CRE-decoy ODN may provide a target-based genetic tool for treating cancer, viral diseases, and other diseases in which CRE-directed transcription is abnormally used.
Collapse
Affiliation(s)
- Yoon S Cho-Chung
- Cellular Biochemistry Section, Basic Research Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-1750, USA.
| |
Collapse
|
48
|
Abstract
The transcription factor cAMP response element binding protein (CREB) has been implicated in the long-term neuronal plasticity associated with addiction. While CREB is expressed in many cells throughout the brain, very little is known about the relative concentrations of CREB protein in various brain regions. Studies in which CREB levels have been altered, either constitutively throughout the brain via gene targeting or transiently in specific brain regions, demonstrate variable roles for this protein in mediating reinforcing properties of drugs of abuse. To investigate the complex nature of CREB function in addiction, we examined the distribution of CREB protein in the nucleus accumbens (NAc) and ventral tegmental area (VTA), two brain regions that are part of the well-defined mesolimbic dopamine pathway involved in reward processing. Our data demonstrate significantly more CRE binding activity and CREB protein in the NAc compared to levels present in the VTA of wild-type mice. Phospho-CREB levels are increased in the NAc of both wild-type and CREBalphaDelta mutant animals after cocaine. However, morphine-induced increases of phospho-CREB levels are seen in the VTA of wild-type mice but not CREBalphaDelta mutant mice. Consequently, the 90% reduction of CREB in CREBalphaDelta mutant mice differentially affects CREB phosphorylation and induction of downstream targets of CREB in the NAc and VTA.
Collapse
Affiliation(s)
- Carrie L Walters
- Department of Pharmacology, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, PA 19104-6084, USA
| | | | | |
Collapse
|
49
|
Chanda SK, White S, Orth AP, Reisdorph R, Miraglia L, Thomas RS, DeJesus P, Mason DE, Huang Q, Vega R, Yu DH, Nelson CG, Smith BM, Terry R, Linford AS, Yu Y, Chirn GW, Song C, Labow MA, Cohen D, King FJ, Peters EC, Schultz PG, Vogt PK, Hogenesch JB, Caldwell JS. Genome-scale functional profiling of the mammalian AP-1 signaling pathway. Proc Natl Acad Sci U S A 2003; 100:12153-8. [PMID: 14514886 PMCID: PMC218728 DOI: 10.1073/pnas.1934839100] [Citation(s) in RCA: 268] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Large-scale functional genomics approaches are fundamental to the characterization of mammalian transcriptomes annotated by genome sequencing projects. Although current high-throughput strategies systematically survey either transcriptional or biochemical networks, analogous genome-scale investigations that analyze gene function in mammalian cells have yet to be fully realized. Through transient overexpression analysis, we describe the parallel interrogation of approximately 20,000 sequence annotated genes in cancer-related signaling pathways. For experimental validation of these genome data, we apply an integrative strategy to characterize previously unreported effectors of activator protein-1 (AP-1) mediated growth and mitogenic response pathways. These studies identify the ADP-ribosylation factor GTPase-activating protein Centaurin alpha1 and a Tudor domain-containing hypothetical protein as putative AP-1 regulatory oncogenes. These results provide insight into the composition of the AP-1 signaling machinery and validate this approach as a tractable platform for genome-wide functional analysis.
Collapse
Affiliation(s)
- Sumit K Chanda
- Genomics Institute, Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
|