1
|
Bishop CV, Selvaraj V, Townson DH, Pate JL, Wiltbank MC. History, insights, and future perspectives on studies into luteal function in cattle. J Anim Sci 2022; 100:skac143. [PMID: 35772753 PMCID: PMC9246667 DOI: 10.1093/jas/skac143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
The corpus luteum (CL) forms following ovulation from the remnant of the Graafian follicle. This transient tissue produces critical hormones to maintain pregnancy, including the steroid progesterone. In cattle and other ruminants, the presence of an embryo determines if the lifespan of the CL will be prolonged to ensure successful implantation and gestation, or if the tissue will undergo destruction in the process known as luteolysis. Infertility and subfertility in dairy and beef cattle results in substantial economic loss to producers each year. In addition, this has the potential to exacerbate climate change because more animals are needed to produce high-quality protein to feed the growing world population. Successful pregnancies require coordinated regulation of uterine and ovarian function by the developing embryo. These processes are often collectively termed "maternal recognition of pregnancy." Research into the formation, function, and destruction of the bovine CL by the Northeast Multistate Project, one of the oldest continuously funded Hatch projects by the USDA, has produced a large body of evidence increasing our knowledge of the contribution of ovarian processes to fertility in ruminants. This review presents some of the seminal research into the regulation of the ruminant CL, as well as identifying mechanisms that remain to be completely validated in the bovine CL. This review also contains a broad discussion of the roles of prostaglandins, immune cells, as well as mechanisms contributing to steroidogenesis in the ruminant CL. A triadic model of luteolysis is discussed wherein the interactions among immune cells, endothelial cells, and luteal cells dictate the ability of the ruminant CL to respond to a luteolytic stimulus, along with other novel hypotheses for future research.
Collapse
Affiliation(s)
- Cecily V Bishop
- Department of Animal and Rangeland Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Vimal Selvaraj
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - David H Townson
- Department of Animal and Veterinary Sciences, The University of Vermont, Burlington, VT 05405, USA
| | - Joy L Pate
- Department of Animal Science, Center for Reproductive Biology and Health, Pennsylvania State University, State College, PA 16802, USA
| | - Milo C Wiltbank
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
2
|
Abdel-Latif R, Fathy M, Anwar HA, Naseem M, Dandekar T, Othman EM. Cisplatin-Induced Reproductive Toxicity and Oxidative Stress: Ameliorative Effect of Kinetin. Antioxidants (Basel) 2022; 11:antiox11050863. [PMID: 35624727 PMCID: PMC9137797 DOI: 10.3390/antiox11050863] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 12/13/2022] Open
Abstract
Cisplatin is a commonly used chemotherapeutic agent; however, its potential side effects, including gonadotoxicity and infertility, are a critical problem. Oxidative stress has been implicated in the pathogenesis of cisplatin-induced testicular dysfunction. We investigated whether kinetin use at different concentrations could alleviate gonadal injury associated with cisplatin treatment, with an exploration of the involvement of its antioxidant capacity. Kinetin was administered in different doses of 0.25, 0.5, and 1 mg/kg, alone or along with cisplatin for 10 days. Cisplatin toxicity was induced via a single IP dose of 7 mg/kg on day four. In a dose-dependent manner, concomitant administration of kinetin with cisplatin significantly restored testicular oxidative stress parameters, corrected the distorted sperm quality parameters and histopathological changes, enhanced levels of serum testosterone and testicular StAR protein expression, as well as reduced the up-regulation of testicular TNF-α, IL-1β, Il-6, and caspase-3, caused by cisplatin. It is worth noting that the testicular protective effect of the highest kinetin dose was comparable/more potent and significantly higher than the effects of vitamin C and the lowest kinetin dose, respectively. Overall, these data indicate that kinetin may offer a promising approach for alleviating cisplatin-induced reproductive toxicity and organ damage, via ameliorating oxidative stress and reducing inflammation and apoptosis.
Collapse
Affiliation(s)
- Rania Abdel-Latif
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Minia, Minia 61519, Egypt;
| | - Moustafa Fathy
- Department of Biochemistry, Faculty of Pharmacy, University of Minia, Minia 61519, Egypt; (M.F.); (H.A.A.)
| | - Hend Ali Anwar
- Department of Biochemistry, Faculty of Pharmacy, University of Minia, Minia 61519, Egypt; (M.F.); (H.A.A.)
| | - Muhammad Naseem
- Department of Life and Environmental Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates;
- Department of Bioinformatics, Biocenter, Am Hubland University of Wuerzburg, 97074 Wuerzburg, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, Am Hubland University of Wuerzburg, 97074 Wuerzburg, Germany
- Correspondence: (T.D.); (E.M.O.)
| | - Eman M. Othman
- Department of Biochemistry, Faculty of Pharmacy, University of Minia, Minia 61519, Egypt; (M.F.); (H.A.A.)
- Department of Bioinformatics, Biocenter, Am Hubland University of Wuerzburg, 97074 Wuerzburg, Germany
- Correspondence: (T.D.); (E.M.O.)
| |
Collapse
|
3
|
Pereira VM, Reis FM, Casalechi M, Reis AM. Angiotensin-(1-7), Angiotensin-Converting Enzyme 2 and Mas Receptor in Rat Polycystic Ovaries. Protein Pept Lett 2021; 28:249-254. [PMID: 32851948 DOI: 10.2174/0929866527666200826104410] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/28/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Hyperandrogenism is a pivotal mediator in the pathogenesis of the polycystic ovary syndrome (PCOS), but the mechanisms of androgen excess in this condition are not fully understood. Angiotensin (Ang)-(1-7) is an active peptide of the renin-angiotensin system (RAS) that stimulates ovarian follicular growth and testosterone release in vitro. OBJECTIVE To investigate whether Ang-(1-7), its receptor Mas and angiotensin-converting enzyme 2 (ACE2), the enzyme that converts Ang II into Ang-(1-7), are expressed in rat polycystic ovaries (PCO) and thus if this peptide system might be associated with excess androgen production in PCO. METHODS A rat model that shares some features of PCOS such as disruption of folliculogenesis and multiple ovarian cyst formation was used in the study. RESULTS We found reduced levels of Ang-(1-7) and Mas receptor in PCO compared to normal ovaries. Also, ACE2 mRNA expression was reduced in PCO compared to ovaries of control rats (p < 0.05). PCO had high levels of estrogen and testosterone and increased mRNA for upstream enzymes of the steroidogenic cascade, but not of P450 aromatase. CONCLUSION These findings suggest that the ovarian ACE2-Ang-(1-7)-Mas receptor axis is inhibited and therefore may not be a co-factor of excess testosterone production in rat PCO.
Collapse
Affiliation(s)
- Virginia M Pereira
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernando M Reis
- Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maíra Casalechi
- Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Adelina M Reis
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
4
|
Chiang CM, Chiu HY, Chang CS, Chien YY, Jong DS, Wu LS, Chiu CH. Role of kisspeptin on cell proliferation and steroidogenesis in luteal cells in vitro and in vivo. J Chin Med Assoc 2021; 84:389-399. [PMID: 33784266 DOI: 10.1097/jcma.0000000000000508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Kisspeptin (KISS1) and kisspeptin receptor (KISS1R) are essential gatekeepers of the reproductive system. The functions of KISS1 and KISS1R in corpus luteal cells remain ambiguous. The objective was to observe normal physiologic functions of corpus luteal cells in vivo and clarify the functions of KISS1 in vitro. METHODS We conducted an in vivo observation of cellular patterns as well as the levels of steroidogenic enzymes and KISS1/KISS1R in corpus luteal cells obtained from female crossbred Taiwan native goats in the estrous cycle; the observation was performed using hematoxylin and eosin and immunohistochemistry staining. Subsequently, we used kisspeptin-10 (Kp-10) to stimulate temperature sensitive-caprine luteal cell line (ts-CLC-D) cells to investigate the progesterone (P4) levels, steroidogenic messenger RNA (mRNA)/protein levels, cell survival rate, intracellular Ca2+ concentration, and cell proliferation-related mRNA/protein levels in the mitogen-activated protein kinase pathway in vitro by applying immunofluorescence staining, Western blotting, 2,3-bis (2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide assay, and real-time polymerase chain reaction. RESULTS We observed the presence of proteins and mRNAs for STAR, CYP11A1, HSD3B, KISS1, and KISS1R in the corpus luteal cells from goats in vivo. In vitro, the addition of Kp-10 reduced the P4 levels (p < 0.01) and increased cell proliferation (p < 0.05) of the ts-CLC-D cells. Furthermore, we found that the levels of proteins and mRNA for STAR, CYP11A1, and HSD3B decreased significantly when Kp-10 was added (p < 0.05). However, adding Kp-10 did not affect the mRNA levels for PLCG2, DAG1, PRKCA, KRAS, RAF1, MAP2K1, MAP2K2, MAPK3, MAPK1, and MAPK14. CONCLUSION We determined that KISS1 could affect the P4 levels, steroidogenesis, and cell proliferation in luteal cells. However, further research is required to clarify how KISS1 regulates proliferation and steroid production in luteal cells.
Collapse
Affiliation(s)
- Chi-Ming Chiang
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan, ROC
- Department of Orthopedics Surgery, Cardinal Tien Hospital, New Taipei City, Taiwan, ROC
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Hsin-Yi Chiu
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan, ROC
- Division of Thoracic Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei, Taiwan, ROC
- Department of Medical Education, Taipei Medical University Hospital, Taipei, Taiwan, ROC
- Department of Education and Humanities in Medicine, School of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
- Department of Surgery, School of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Chia-Sheng Chang
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan, ROC
| | - Ya-Yun Chien
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan, ROC
| | - De-Shien Jong
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan, ROC
| | - Leang-Shin Wu
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan, ROC
| | - Chih-Hsien Chiu
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan, ROC
| |
Collapse
|
5
|
Selvaraj V, Stocco DM, Clark BJ. Current knowledge on the acute regulation of steroidogenesis. Biol Reprod 2018; 99:13-26. [PMID: 29718098 PMCID: PMC6044331 DOI: 10.1093/biolre/ioy102] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/23/2018] [Accepted: 04/26/2018] [Indexed: 12/31/2022] Open
Abstract
How rapid induction of steroid hormone biosynthesis occurs in response to trophic hormone stimulation of steroidogenic cells has been a subject of intensive investigation for approximately six decades. A key observation made very early was that acute regulation of steroid biosynthesis required swift and timely synthesis of a new protein whose role appeared to be involved in the delivery of the substrate for all steroid hormones, cholesterol, from the outer to the inner mitochondrial membrane where the process of steroidogenesis begins. It was quickly learned that this transfer of cholesterol to the inner mitochondrial membrane was the regulated and rate-limiting step in steroidogenesis. Following this observation, the quest for this putative regulator protein(s) began in earnest in the late 1950s. This review provides a history of this quest, the candidate proteins that arose over the years and facts surrounding their rise or decline. Only two have persisted-translocator protein (TSPO) and the steroidogenic acute regulatory protein (StAR). We present a detailed summary of the work that has been published for each of these two proteins, the specific data that has appeared in support of their role in cholesterol transport and steroidogenesis, and the ensuing observations that have arisen in recent years that have refuted the role of TSPO in this process. We believe that the only viable candidate that has been shown to be indispensable is the StAR protein. Lastly, we provide our view on what may be the most important questions concerning the acute regulation of steroidogenesis that need to be asked in future.
Collapse
Affiliation(s)
- Vimal Selvaraj
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| | - Douglas M Stocco
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Barbara J Clark
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
6
|
Miller WL. Disorders in the initial steps of steroid hormone synthesis. J Steroid Biochem Mol Biol 2017; 165:18-37. [PMID: 26960203 DOI: 10.1016/j.jsbmb.2016.03.009] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/01/2016] [Accepted: 03/03/2016] [Indexed: 12/29/2022]
Abstract
Steroidogenesis begins with cellular internalization of low-density lipoprotein particles and subsequent intracellular processing of cholesterol. Disorders in these steps include Adrenoleukodystrophy, Wolman Disease and its milder variant Cholesterol Ester Storage Disease, and Niemann-Pick Type C Disease, all of which may present with adrenal insufficiency. The means by which cholesterol is directed to steroidogenic mitochondria remains incompletely understood. Once cholesterol reaches the outer mitochondrial membrane, its delivery to the inner mitochondrial membrane is regulated by the steroidogenic acute regulatory protein (StAR). Severe StAR mutations cause classic congenital lipoid adrenal hyperplasia, characterized by lipid accumulation in the adrenal, adrenal insufficiency, and disordered sexual development in 46,XY individuals. The lipoid CAH phenotype, including spontaneous puberty in 46,XX females, is explained by a two-hit model. StAR mutations that retain partial function cause a milder, non-classic disease characterized by glucocorticoid deficiency, with lesser disorders of mineralocorticoid and sex steroid synthesis. Once inside the mitochondria, cholesterol is converted to pregnenolone by the cholesterol side-chain cleavage enzyme, P450scc, encoded by the CYP11A1 gene. Rare patients with mutations of P450scc are clinically and hormonally indistinguishable from those with lipoid CAH, and may also present as milder non-classic disease. Patients with P450scc defects do not have the massive adrenal hyperplasia that characterizes lipoid CAH, but adrenal imaging may occasionally fail to distinguish these, necessitating DNA sequencing.
Collapse
Affiliation(s)
- Walter L Miller
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143-0556, United States.
| |
Collapse
|
7
|
Toms D, Pan B, Li J. Endocrine Regulation in the Ovary by MicroRNA during the Estrous Cycle. Front Endocrinol (Lausanne) 2017; 8:378. [PMID: 29403434 PMCID: PMC5786742 DOI: 10.3389/fendo.2017.00378] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/22/2017] [Indexed: 12/19/2022] Open
Abstract
Hormonal control of the estrous cycle that occurs in therian mammals is essential for the production of a functional egg. Supporting somatic cell types found within the ovary, such as granulosa and theca cells, respond to endocrine signals to support oocyte maturation and ovulation. Following the release of the egg, now available for fertilization, coordinated hormonal signaling between the mother and putative embryo are required for the establishment of pregnancy. If no conception occurs, both the ovary and uterus are "reset" in preparation for another cycle. The complex molecular changes that occur within cells in response to hormone signaling include a network of non-coding microRNAs (miRNAs) that posttranscriptionally regulate gene expression. They are thus able to fine-tune cellular responses to hormones and confer robustness in gene regulation. In this review, we outline the important roles established for miRNAs in regulating female reproductive hormone signaling during estrus, with a particular focus on signaling pathways in the ovary. Understanding this miRNA network can provide important insights to improving assisted reproductive technologies and may be useful in the diagnosis of female reproductive disorders.
Collapse
Affiliation(s)
- Derek Toms
- Faculty of Veterinary Medicine, Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - Bo Pan
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Julang Li
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
- College of Life Science and Engineering, Foshan University, Foshan, China
- *Correspondence: Julang Li,
| |
Collapse
|
8
|
Abstract
Adrenocorticotropin hormone (ACTH) produced by the anterior pituitary stimulates glucocorticoid synthesis by the adrenal cortex. The first step in glucocorticoid synthesis is the delivery of cholesterol to the mitochondrial matrix where the first enzymatic reaction in the steroid hormone biosynthetic pathway occurs. A key response of adrenal cells to ACTH is activation of the cAMP-protein kinase A (PKA) signaling pathway. PKA activation results in an acute increase in expression and function of the Steroidogenic Acute Regulatory protein (StAR). StAR plays an essential role in steroidogenesis- it controls the hormone-dependent movement of cholesterol across the mitochondrial membranes. Currently StAR's mechanism of action remains a major unanswered question in the field. However, some insight may be gained from understanding the mechanism(s) controlling the PKA-dependent phosphorylation of StAR at S194/195 (mouse/human StAR), a modification that is required for function. This mini-review provides a background on StAR's biology with a focus on StAR phosphorylation. The model for StAR translation and phosphorylation at the outer mitochondrial membrane, the location for StAR function, is presented to highlight a unifying theme emerging from diverse studies.
Collapse
Affiliation(s)
- Barbara J Clark
- Department of Biochemistry and Molecular Genetics, University of Louisville Louisville, KY, USA
| |
Collapse
|
9
|
Midzak A, Papadopoulos V. Adrenal Mitochondria and Steroidogenesis: From Individual Proteins to Functional Protein Assemblies. Front Endocrinol (Lausanne) 2016; 7:106. [PMID: 27524977 PMCID: PMC4965458 DOI: 10.3389/fendo.2016.00106] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/18/2016] [Indexed: 12/13/2022] Open
Abstract
The adrenal cortex is critical for physiological function as the central site of glucocorticoid and mineralocorticoid synthesis. It possesses a great degree of specialized compartmentalization at multiple hierarchical levels, ranging from the tissue down to the molecular levels. In this paper, we discuss this functionalization, beginning with the tissue zonation of the adrenal cortex and how this impacts steroidogenic output. We then discuss the cellular biology of steroidogenesis, placing special emphasis on the mitochondria. Mitochondria are classically known as the "powerhouses of the cell" for their central role in respiratory adenosine triphosphate synthesis, and attention is given to mitochondrial electron transport, in both the context of mitochondrial respiration and mitochondrial steroid metabolism. Building on work demonstrating functional assembly of large protein complexes in respiration, we further review research demonstrating a role for multimeric protein complexes in mitochondrial cholesterol transport, steroidogenesis, and mitochondria-endoplasmic reticulum contact. We aim to highlight with this review the shift in steroidogenic cell biology from a focus on the actions of individual proteins in isolation to the actions of protein assemblies working together to execute cellular functions.
Collapse
Affiliation(s)
- Andrew Midzak
- Research Institute of the McGill University, Montreal, QC, Canada
- *Correspondence: Andrew Midzak, ; Vassilios Papadopoulos,
| | - Vassilios Papadopoulos
- Research Institute of the McGill University, Montreal, QC, Canada
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
- *Correspondence: Andrew Midzak, ; Vassilios Papadopoulos,
| |
Collapse
|
10
|
Aghazadeh Y, Zirkin BR, Papadopoulos V. Pharmacological regulation of the cholesterol transport machinery in steroidogenic cells of the testis. VITAMINS AND HORMONES 2015; 98:189-227. [PMID: 25817870 DOI: 10.1016/bs.vh.2014.12.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Reduced serum testosterone (T), or hypogonadism, is estimated to affect about 5 million American men, including both aging and young men. Low serum T has been linked to mood changes, worsening cognition, fatigue, depression, decreased lean body mass and bone mineral density, increased visceral fat, metabolic syndrome, decreased libido, and sexual dysfunction. Administering exogenous T, known as T-replacement therapy (TRT), reverses many of the symptoms of low T levels. However, this treatment can result in luteinizing hormone suppression which, in turn, can lead to reduced sperm numbers and infertility, making TRT inappropriate for men who wish to father children. Additionally, TRT may result in supraphysiologic T levels, skin irritation, and T transfer to others upon contact; and there may be increased risk of prostate cancer and cardiovascular disease, particularly in aging men. Therefore, the development of alternate therapies for treating hypogonadism would be highly desirable. To do so requires greater understanding of the series of steps leading to T formation and how they are regulated, and the identification of key steps that are amenable to pharmacological modulation so as to induce T production. We review herein our current understanding of mechanisms underlying the pharmacological induction of T formation in hypogonadal testis.
Collapse
Affiliation(s)
- Yasaman Aghazadeh
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Barry R Zirkin
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Vassilios Papadopoulos
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada; Department of Biochemistry, McGill University, Montreal, Quebec, Canada; Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
11
|
Midzak A, Papadopoulos V. Binding domain-driven intracellular trafficking of sterols for synthesis of steroid hormones, bile acids and oxysterols. Traffic 2014; 15:895-914. [PMID: 24890942 DOI: 10.1111/tra.12177] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 05/28/2014] [Accepted: 05/28/2014] [Indexed: 12/16/2022]
Abstract
Steroid hormones, bioactive oxysterols and bile acids are all derived from the biological metabolism of lipid cholesterol. The enzymatic pathways generating these compounds have been an area of intense research for almost a century, as cholesterol and its metabolites have substantial impacts on human health. Owing to its high degree of hydrophobicity and the chemical properties that it confers to biological membranes, the distribution of cholesterol in cells is tightly controlled, with subcellular organelles exhibiting highly divergent levels of cholesterol. The manners in which cells maintain such sterol distributions are of great interest in the study of steroid and bile acid synthesis, as limiting cholesterol substrate to the enzymatic pathways is the principal mechanism by which production of steroids and bile acids is regulated. The mechanisms by which cholesterol moves within cells, however, remain poorly understood. In this review, we examine the subcellular machinery involved in cholesterol metabolism to steroid hormones and bile acid, relating it to both lipid- and protein-based mechanisms facilitating intracellular and intraorganellar cholesterol movement and delivery to these pathways. In particular, we examine evidence for the involvement of specific protein domains involved in cholesterol binding, which impact cholesterol movement and metabolism in steroidogenesis and bile acid synthesis. A better understanding of the physical mechanisms by which these protein- and lipid-based systems function is of fundamental importance to understanding physiological homeostasis and its perturbation.
Collapse
Affiliation(s)
- Andrew Midzak
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
12
|
Miller WL. Steroid hormone synthesis in mitochondria. Mol Cell Endocrinol 2013; 379:62-73. [PMID: 23628605 DOI: 10.1016/j.mce.2013.04.014] [Citation(s) in RCA: 289] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 04/18/2013] [Accepted: 04/19/2013] [Indexed: 11/17/2022]
Abstract
Mitochondria are essential sites for steroid hormone biosynthesis. Mitochondria in the steroidogenic cells of the adrenal, gonad, placenta and brain contain the cholesterol side-chain cleavage enzyme, P450scc, and its two electron-transfer partners, ferredoxin reductase and ferredoxin. This enzyme system converts cholesterol to pregnenolone and determines net steroidogenic capacity, so that it serves as the chronic regulator of steroidogenesis. Several other steroidogenic enzymes, including 3β-hydroxysteroid dehydrogenase, 11β-hydroxylase and aldosterone synthase also reside in mitochondria. Similarly, the mitochondria of renal tubular cells contain two key enzymes participating in the activation and degradation of vitamin D. The access of cholesterol to the mitochondria is regulated by the steroidogenic acute regulatory protein, StAR, serving as the acute regulator of steroidogenesis. StAR action requires a complex multi-component molecular machine on the outer mitochondrial membrane (OMM). Components of this machine include the 18 kDa translocator protein (TSPO), the voltage-dependent anion chanel (VDAC-1), TSPO-associated protein 7 (PAP7, ACBD3), and protein kinase A regulatory subunit 1α (PKAR1A). The precise fashion in which these proteins interact and move cholesterol from the OMM to P450scc, and the means by which cholesterol is loaded into the OMM, remain unclear. Human deficiency diseases have been described for StAR and for all the mitochondrial steroidogenic enzymes, but not for the electron transfer proteins or for the components of the cholesterol import machine.
Collapse
Affiliation(s)
- Walter L Miller
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143-1346, USA; Division of Endocrinology, University of California San Francisco, San Francisco, CA 94143-1346, USA.
| |
Collapse
|
13
|
Issop L, Rone MB, Papadopoulos V. Organelle plasticity and interactions in cholesterol transport and steroid biosynthesis. Mol Cell Endocrinol 2013; 371:34-46. [PMID: 23246788 DOI: 10.1016/j.mce.2012.12.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 12/04/2012] [Accepted: 12/04/2012] [Indexed: 12/20/2022]
Abstract
Steroid biosynthesis is a multi-step process controlled by pituitary hormones, which, via cAMP-dependent signaling pathways, drive tissue-specific steroid formation. Steroidogenesis begins with the transport of the substrate, cholesterol, from intracellular stores into the inner mitochondrial membrane, where the steroidogenic enzyme CYP11A1 converts cholesterol to pregnenolone. This process is accelerated by hormones and involves a number of proteins and protein-protein interactions. Indeed, cholesterol, stored in lipid droplets and membranes, is transferred through a hormone-induced complex of proteins derived from the cytosol, mitochondria, and other organelles termed the transduceosome to the outer mitochondrial membrane. From there, cholesterol reaches CYP11A1 through outer/inner membrane contact sites. Thus, cholesterol transfer is likely achieved through a hormone-dependent reorganization of organelles and protein distribution and interactions. The findings reviewed herein suggest the presence of a hormone-dependent organelle communication network mediated by protein-protein interactions and inter-organelle trafficking, resulting in the efficient and timely delivery of cholesterol into mitochondria for steroid synthesis.
Collapse
Affiliation(s)
- Leeyah Issop
- Research Institute of the McGill University Health Centre, Department of Medicine, McGill University, Montreal, Quebec, Canada H3G 1A4
| | | | | |
Collapse
|
14
|
Eiden-Plach A, Nguyen HH, Schneider U, Hartmann MF, Bernhardt R, Hannemann F, Wudy SA. Alu Sx repeat-induced homozygous deletion of the StAR gene causes lipoid congenital adrenal hyperplasia. J Steroid Biochem Mol Biol 2012; 130:1-6. [PMID: 22249004 DOI: 10.1016/j.jsbmb.2011.12.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 12/21/2011] [Accepted: 12/22/2011] [Indexed: 11/24/2022]
Abstract
Lipoid congenital adrenal hyperplasia (Lipoid CAH) is the most severe form of the autosomal recessive disorder CAH. A general loss of the steroid biosynthetic activity caused by defects in the StAR gene manifests as life-threatening primary adrenal insufficiency. We report a case of Lipoid CAH caused by a so far not described homozygous deletion of the complete StAR gene and provide diagnostic results based on a GC-MS steroid metabolomics and molecular genetic analysis. The patient presented with postnatal hypoglycemia, vomiting, adynamia, increasing pigmentation and hyponatremia. The constellation of urinary steroid metabolites suggested Lipoid CAH and ruled out all other forms of CAH or defects of aldosterone biosynthesis. After treatment with sodium supplementation, hydrocortisone and fludrocortisone the child fully recovered. Molecular genetic analysis demonstrated a homozygous 12.1 kb deletion in the StAR gene locus. The breakpoints of the deletion are embedded into two typical genomic repetitive Alu Sx elements upstream and downstream of the gene leading to the loss of all exons and regulatory elements. We established deletion-specific and intact allele-specific PCR methods and determined the StAR gene status of all available family members over three generations. This analysis revealed that one of the siblings, who died a few weeks after birth, carried the same genetic defect. Since several Alu repeats at the StAR gene locus increase the probability of deletions, patients with typical symptoms of lipoid CAH lacking evidence for the presence of both StAR alleles should be analyzed carefully for this kind of disorder.
Collapse
Affiliation(s)
- Antje Eiden-Plach
- Department of Biochemistry, Saarland University, Saarbrücken, Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
Hattangady N, Olala L, Bollag WB, Rainey WE. Acute and chronic regulation of aldosterone production. Mol Cell Endocrinol 2012; 350:151-62. [PMID: 21839803 PMCID: PMC3253327 DOI: 10.1016/j.mce.2011.07.034] [Citation(s) in RCA: 209] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 07/11/2011] [Accepted: 07/17/2011] [Indexed: 11/28/2022]
Abstract
Aldosterone is the major mineralocorticoid synthesized by the adrenal and plays an important role in the regulation of systemic blood pressure through the absorption of sodium and water. Aldosterone production is regulated tightly by selective expression of aldosterone synthase (CYP11B2) in the adrenal outermost zone, the zona glomerulosa. Angiotensin II (Ang II), potassium (K(+)) and adrenocorticotropin (ACTH) are the main physiological agonists which regulate aldosterone secretion. Aldosterone production is regulated within minutes of stimulation (acutely) through increased expression and phosphorylation of the steroidogenic acute regulatory (StAR) protein and over hours to days (chronically) by increased expression of the enzymes involved in the synthesis of aldosterone, particularly CYP11B2. Imbalance in any of these processes may lead to several disorders of aldosterone excess. In this review we attempt to summarize the key molecular events involved in the acute and chronic phases of aldosterone secretion.
Collapse
Affiliation(s)
- Namita Hattangady
- Department of Physiology, Georgia Health Sciences University (formerly the Medical College of Georgia), 1120 15 Street, Augusta, GA 30912
| | - Lawrence Olala
- Department of Physiology, Georgia Health Sciences University (formerly the Medical College of Georgia), 1120 15 Street, Augusta, GA 30912
| | - Wendy B. Bollag
- Department of Physiology, Georgia Health Sciences University (formerly the Medical College of Georgia), 1120 15 Street, Augusta, GA 30912
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA 30904
| | - William E. Rainey
- Department of Physiology, Georgia Health Sciences University (formerly the Medical College of Georgia), 1120 15 Street, Augusta, GA 30912
- To whom correspondence should be addressed: William E. Rainey, Department of Physiology, Georgia Health Sciences University, 1120 15 Street, Augusta, GA 30912, , Tel: (706) 721-7665, Fax: (706) 721-7299
| |
Collapse
|
16
|
Aghazadeh Y, Rone MB, Blonder J, Ye X, Veenstra TD, Hales DB, Culty M, Papadopoulos V. Hormone-induced 14-3-3γ adaptor protein regulates steroidogenic acute regulatory protein activity and steroid biosynthesis in MA-10 Leydig cells. J Biol Chem 2012; 287:15380-94. [PMID: 22427666 DOI: 10.1074/jbc.m112.339580] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cholesterol is the sole precursor of steroid hormones in the body. The import of cholesterol to the inner mitochondrial membrane, the rate-limiting step in steroid biosynthesis, relies on the formation of a protein complex that assembles at the outer mitochondrial membrane called the transduceosome. The transduceosome contains several mitochondrial and cytosolic components, including the steroidogenic acute regulatory protein (STAR). Human chorionic gonadotropin (hCG) induces de novo synthesis of STAR, a process shown to parallel maximal steroid production. In the hCG-dependent steroidogenic MA-10 mouse Leydig cell line, the 14-3-3γ protein was identified in native mitochondrial complexes by mass spectrometry and immunoblotting, and its levels increased in response to hCG treatment. The 14-3-3 proteins bind and regulate the activity of many proteins, acting via target protein activation, modification and localization. In MA-10 cells, cAMP induces 14-3-3γ expression parallel to STAR expression. Silencing of 14-3-3γ expression potentiates hormone-induced steroidogenesis. Binding motifs of 14-3-3γ were identified in components of the transduceosome, including STAR. Immunoprecipitation studies demonstrate a hormone-dependent interaction between 14-3-3γ and STAR that coincides with reduced 14-3-3γ homodimerization. The binding site of 14-3-3γ on STAR was identified to be Ser-194 in the STAR-related sterol binding lipid transfer (START) domain, the site phosphorylated in response to hCG. Taken together, these results demonstrate that 14-3-3γ negatively regulates steroidogenesis by binding to Ser-194 of STAR, thus keeping STAR in an unfolded state, unable to induce maximal steroidogenesis. Over time 14-3-3γ homodimerizes and dissociates from STAR, allowing this protein to induce maximal mitochondrial steroid formation.
Collapse
Affiliation(s)
- Yasaman Aghazadeh
- The Research Institute of the McGill University Health Centre and the Department of Medicine, McGill University, Montreal, Quebec H3G 1A4, Canada
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Yu PL, Lin HW, Wang SW, Wang PS. Effects of nonylphenol on the production of progesterone on the rats granulosa cells. J Cell Biochem 2011; 112:2627-36. [PMID: 21598305 DOI: 10.1002/jcb.23189] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We investigated the effects of nonylphenol (NP) on release of progesterone (PG) by granulosa cells (GCs) of rats in vitro and in vivo. First, GCs were treated with different doses of NP for 2-24 h alone or with human chorionic gonadotropin (hCG). Maximal PG secretion at 8 h noted, GCs were treated for 2 h with hCG, 8-bromo-adenosine 3':5'-cyclic monophosphate (8-Br-cAMP), forskolin, A23187, nifedipine, and pregnelonone to evaluate the NP effects on PG steroidogenesis. Results indicated that all of chemicals except nifedipine stimulated the PG release compared to vehicle, but the stimulatory effects could not be enhanced by different doses of NP. Second, GCs were isolated to react with hCG, 8-Br-cAMP and PD98059 after the immature female rats gavaged with different doses of NP (ONP) for 7 days. PG released significantly when rats treated with oral NP 100 compared to 0 µg/kg/day. Third, GCs collected from the female offspring of mother rats which gavaged with NP 100 µg/kg/day for 21 days during pregnancy (MONP) reacted with different doses of chemicals. The results showed that PG release in the presence of chemicals was significantly higher in ONP and MONP groups; however, this stimulation was not noted by dose-dependent. The plasma concentration of PG was higher in ONP (100 µg/kg/day) and the offspring of MONP groups. The steroidogenic acute regulatory (StAR) protein expressed higher in all three groups by Western blotting. This study results indicated that low dose of NP stimulated PG release in rat GCs by activation of StAR protein.
Collapse
Affiliation(s)
- Po-Ling Yu
- Department of Surgery, Taipei City Hospital, Taipei 10431, Taiwan, Republic of China
| | | | | | | |
Collapse
|
18
|
Miller WL, Bose HS. Early steps in steroidogenesis: intracellular cholesterol trafficking. J Lipid Res 2011; 52:2111-2135. [PMID: 21976778 DOI: 10.1194/jlr.r016675] [Citation(s) in RCA: 368] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Steroid hormones are made from cholesterol, primarily derived from lipoproteins that enter cells via receptor-mediated endocytosis. In endo-lysosomes, cholesterol is released from cholesterol esters by lysosomal acid lipase (LAL; disordered in Wolman disease) and exported via Niemann-Pick type C (NPC) proteins (disordered in NPC disease). These diseases are characterized by accumulated cholesterol and cholesterol esters in most cell types. Mechanisms for trans-cytoplasmic cholesterol transport, membrane insertion, and retrieval from membranes are less clear. Cholesterol esters and "free" cholesterol are enzymatically interconverted in lipid droplets. Cholesterol transport to the cholesterol-poor outer mitochondrial membrane (OMM) appears to involve cholesterol transport proteins. Cytochrome P450scc (CYP11A1) then initiates steroidogenesis by converting cholesterol to pregnenolone on the inner mitochondrial membrane (IMM). Acute steroidogenic responses are regulated by cholesterol delivery from OMM to IMM, triggered by the steroidogenic acute regulatory protein (StAR). Chronic steroidogenic capacity is determined by CYP11A1 gene transcription. StAR mutations cause congenital lipoid adrenal hyperplasia, with absent steroidogenesis, potentially lethal salt loss, and 46,XY sex reversal. StAR mutations initially destroy most, but not all steroidogenesis; low levels of StAR-independent steroidogenesis are lost later due to cellular damage, explaining the clinical findings. Rare P450scc mutations cause a similar syndrome. This review addresses these early steps in steroid biosynthesis.
Collapse
Affiliation(s)
- Walter L Miller
- Department of Pediatrics, School of Medicine, University of California, San Francisco, CA 94143; UCSF Benioff Children's Hospital, San Francisco, CA 94143.
| | - Himangshu S Bose
- Department of Biochemistry, Mercer University School of Medicine, Savannah, GA 31404; and; Memorial University Medical Center, Savannah, GA 31404
| |
Collapse
|
19
|
Pawlak KJ, Prasad M, McKenzie KA, Wiebe JP, Gairola CG, Whittal RM, Bose HS. Decreased cytochrome c oxidase IV expression reduces steroidogenesis. J Pharmacol Exp Ther 2011; 338:598-604. [PMID: 21558439 DOI: 10.1124/jpet.111.182634] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Steroidogenic acute regulatory protein facilitates the translocation of cholesterol to the inner mitochondrial membrane, thereby initiating steroidogenesis. At the inner mitochondrial membrane, cytochrome P450 side-chain cleavage enzyme converts cholesterol to pregnenolone, an oxidative process requiring electrons from NADPH. Pregnenolone then serves as the substrate for the formation of progesterone or dehydroepiandrosterone by downstream enzymes. Studies have shown that cigarette smoke (CS) influences steroid hormone levels. To better understand the underlying mechanisms, we used a mouse model to study the effects of chronic CS exposure on steroidogenesis. Through radioimmunoassay and metabolic conversion assays, we found that CS reduced progesterone and dehydroepiandrosterone without affecting cytochrome P450 side-chain cleavage enzyme or 3β-hydroxysteroid dehydrogenase 2 expression. However, CS did reduce expression of cytochrome c oxidase IV (COX IV), a component of the mitochondrial complex that serves as the last enzyme in the electron transport chain. Small interfering RNA-mediated COX IV knockdown indeed decreased progesterone synthesis in steroidogenic cells. In summary, COX IV likely plays a role in steroidogenesis, and passive smoking may negatively affect steroidogenesis by disrupting the electron transport chain.
Collapse
Affiliation(s)
- Kevin J Pawlak
- Department of Biochemistry, Mercer University School of Medicine and Memorial University Medical Center, Hoskins Research Building, 4700 Waters Ave., Savannah, GA 31404, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Midzak A, Rone M, Aghazadeh Y, Culty M, Papadopoulos V. Mitochondrial protein import and the genesis of steroidogenic mitochondria. Mol Cell Endocrinol 2011; 336:70-9. [PMID: 21147195 PMCID: PMC3057322 DOI: 10.1016/j.mce.2010.12.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Revised: 12/03/2010] [Accepted: 12/05/2010] [Indexed: 11/23/2022]
Abstract
The principal site of regulation of steroid hormone biosynthesis is the transfer of cholesterol from the outer to inner mitochondrial membrane. Hormonal stimulation of steroidogenic cells promotes this mitochondrial lipid import through a multi-protein complex, termed the transduceosome, spanning the two membranes. The transduceosome complex is assembled from multiple proteins, such as the steroidogenic acute regulatory (STAR) protein and translocator protein (TSPO), and requires their targeting to the mitochondria for transduceosome function. The vast majority of mitochondrial proteins, including those participating in cholesterol import, are encoded in the nucleus. Their subsequent mitochondrial incorporation is performed through a series of protein import machineries located in the outer and inner mitochondrial membranes. Here we review our current knowledge of the mitochondrial cholesterol import machinery of the transduceosome. This is complemented with descriptions of mitochondrial protein import machineries and mechanisms by which these machineries assemble the transduceosome in steroidogenic mitochondria.
Collapse
Affiliation(s)
- Andrew Midzak
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, H3G 1A4, Canada
- Department of Medicine, McGill University, Montreal, Quebec, H3G 1A4, Canada
| | - Malena Rone
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, H3G 1A4, Canada
- Department of Medicine, McGill University, Montreal, Quebec, H3G 1A4, Canada
| | - Yassaman Aghazadeh
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, H3G 1A4, Canada
- Department of Medicine, McGill University, Montreal, Quebec, H3G 1A4, Canada
| | - Martine Culty
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, H3G 1A4, Canada
- Department of Medicine, McGill University, Montreal, Quebec, H3G 1A4, Canada
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, H3G 1A4, Canada
| | - Vassilios Papadopoulos
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, H3G 1A4, Canada
- Department of Medicine, McGill University, Montreal, Quebec, H3G 1A4, Canada
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, H3G 1A4, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, H3G 1A4, Canada
- Correspondence at The Research Institute of the McGill University Health Center, Montreal General Hospital, 1650 Cedar Avenue, C10-148, Montreal, Quebec H3G 1A4, Canada. Tel: 514-934-1934 ext. 44580; Fax: 514-934-8261;
| |
Collapse
|
21
|
Miller WL, Auchus RJ. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev 2011; 32:81-151. [PMID: 21051590 PMCID: PMC3365799 DOI: 10.1210/er.2010-0013] [Citation(s) in RCA: 1469] [Impact Index Per Article: 104.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 08/20/2010] [Indexed: 02/08/2023]
Abstract
Steroidogenesis entails processes by which cholesterol is converted to biologically active steroid hormones. Whereas most endocrine texts discuss adrenal, ovarian, testicular, placental, and other steroidogenic processes in a gland-specific fashion, steroidogenesis is better understood as a single process that is repeated in each gland with cell-type-specific variations on a single theme. Thus, understanding steroidogenesis is rooted in an understanding of the biochemistry of the various steroidogenic enzymes and cofactors and the genes that encode them. The first and rate-limiting step in steroidogenesis is the conversion of cholesterol to pregnenolone by a single enzyme, P450scc (CYP11A1), but this enzymatically complex step is subject to multiple regulatory mechanisms, yielding finely tuned quantitative regulation. Qualitative regulation determining the type of steroid to be produced is mediated by many enzymes and cofactors. Steroidogenic enzymes fall into two groups: cytochrome P450 enzymes and hydroxysteroid dehydrogenases. A cytochrome P450 may be either type 1 (in mitochondria) or type 2 (in endoplasmic reticulum), and a hydroxysteroid dehydrogenase may belong to either the aldo-keto reductase or short-chain dehydrogenase/reductase families. The activities of these enzymes are modulated by posttranslational modifications and by cofactors, especially electron-donating redox partners. The elucidation of the precise roles of these various enzymes and cofactors has been greatly facilitated by identifying the genetic bases of rare disorders of steroidogenesis. Some enzymes not principally involved in steroidogenesis may also catalyze extraglandular steroidogenesis, modulating the phenotype expected to result from some mutations. Understanding steroidogenesis is of fundamental importance to understanding disorders of sexual differentiation, reproduction, fertility, hypertension, obesity, and physiological homeostasis.
Collapse
Affiliation(s)
- Walter L Miller
- Distinguished Professor of Pediatrics, University of California San Francisco, San Francisco, California 94143-0978, USA.
| | | |
Collapse
|
22
|
Midzak A, Akula N, Lecanu L, Papadopoulos V. Novel androstenetriol interacts with the mitochondrial translocator protein and controls steroidogenesis. J Biol Chem 2011; 286:9875-87. [PMID: 21209087 DOI: 10.1074/jbc.m110.203216] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Steroid hormones are metabolically derived from multiple enzymatic transformations of cholesterol. The controlling step in steroid hormone biogenesis is the delivery of cholesterol from intracellular stores to the cytochrome P450 enzyme CYP11A1 in the mitochondrial matrix. The 18-kDa translocator protein (TSPO) plays an integral part in this mitochondrial cholesterol transport. Consistent with its role in intracellular cholesterol movement, TSPO possesses a cholesterol recognition/interaction amino acid consensus (CRAC) motif that has been demonstrated to bind cholesterol. To further investigate the TSPO CRAC motif, we performed molecular modeling studies and identified a novel ligand, 3,17,19-androsten-5-triol (19-Atriol) that inhibits cholesterol binding at the CRAC motif. 19-Atriol could bind a synthetic CRAC peptide and rapidly inhibited hormonally induced steroidogenesis in MA-10 mouse Leydig tumor cells and constitutive steroidogenesis in R2C rat Leydig tumor cells at low micromolar concentrations. Inhibition at these concentrations was not due to toxicity or inhibition of the CYP11A1 enzyme and was reversed upon removal of the compound. In addition, 19-Atriol was an even more potent inhibitor of PK 11195-stimulated steroidogenesis, with activity in the high nanomolar range. This was accomplished without affecting PK 11195 binding or basal steroidogenesis. Finally, 19-Atriol inhibited mitochondrial import and processing of the steroidogenic acute regulatory protein without any effect on TSPO protein levels. In conclusion, we have identified a novel androstenetriol that can interact with the CRAC domain of TSPO, can control hormonal and constitutive steroidogenesis, and may prove to be a useful tool in the therapeutic control of diseases of excessive steroid formation.
Collapse
Affiliation(s)
- Andrew Midzak
- Research Institute of the McGill University Health Centre, Montreal, Quebec H3G 1A4, Canada
| | | | | | | |
Collapse
|
23
|
Cellular cholesterol delivery, intracellular processing and utilization for biosynthesis of steroid hormones. Nutr Metab (Lond) 2010; 7:47. [PMID: 20515451 PMCID: PMC2890697 DOI: 10.1186/1743-7075-7-47] [Citation(s) in RCA: 316] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 06/01/2010] [Indexed: 11/28/2022] Open
Abstract
Steroid hormones regulate diverse physiological functions such as reproduction, blood salt balance, maintenance of secondary sexual characteristics, response to stress, neuronal function and various metabolic processes. They are synthesized from cholesterol mainly in the adrenal gland and gonads in response to tissue-specific tropic hormones. These steroidogenic tissues are unique in that they require cholesterol not only for membrane biogenesis, maintenance of membrane fluidity and cell signaling, but also as the starting material for the biosynthesis of steroid hormones. It is not surprising, then, that cells of steroidogenic tissues have evolved with multiple pathways to assure the constant supply of cholesterol needed to maintain optimum steroid synthesis. The cholesterol utilized for steroidogenesis is derived from a combination of sources: 1) de novo synthesis in the endoplasmic reticulum (ER); 2) the mobilization of cholesteryl esters (CEs) stored in lipid droplets through cholesteryl ester hydrolase; 3) plasma lipoprotein-derived CEs obtained by either LDL receptor-mediated endocytic and/or SR-BI-mediated selective uptake; and 4) in some cultured cell systems from plasma membrane-associated free cholesterol. Here, we focus on recent insights into the molecules and cellular processes that mediate the uptake of plasma lipoprotein-derived cholesterol, events connected with the intracellular cholesterol processing and the role of crucial proteins that mediate cholesterol transport to mitochondria for its utilization for steroid hormone production. In particular, we discuss the structure and function of SR-BI, the importance of the selective cholesterol transport pathway in providing cholesterol substrate for steroid biosynthesis and the role of two key proteins, StAR and PBR/TSO in facilitating cholesterol delivery to inner mitochondrial membrane sites, where P450scc (CYP11A) is localized and where the conversion of cholesterol to pregnenolone (the common steroid precursor) takes place.
Collapse
|
24
|
Yu PL, Chao HL, Wang SW, Wang PS. Effects of evodiamine and rutaecarpine on the secretion of corticosterone by zona fasciculata-reticularis cells in male rats. J Cell Biochem 2009; 108:469-75. [PMID: 19639602 DOI: 10.1002/jcb.22276] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Evodiamine (EVO) and rutaecarpine (RUT) are two bioactive alkaloid isolated from Chinese herb named Wu-Chu-Yu. Previous studies have shown that EVO and RUT possess thermoregulation, vascular regulation, anti-allergic, anti-nociceptive and anti-inflammatory activities. The mechanisms of EVO and RUT effect on steroidogenesis are not clear. The goal of this study was to characterize the mechanism by which EVO and RUT affect corticosterone production in rat zona fasciculata-reticularis (ZFR) cells. ZFR cells were isolated from adrenal glands of male rats and incubated with adrenalcorticotropin (ACTH, 10(-9) M), forskolin (an adenylyl cyclase activator, 10(-5) M), 8-bromo-adenosine 3':5'-cyclic monophosphate (8-Br-cAMP, a permeable cAMP analog, 10(-4) M), or steroidogenic precursors including 25-hydroxycholesterol, pregnenolone, progesterone, and deoxycorticosterone, 10(-5) M each, in the presence or absence of EVO and RUT respectively (0-10(-3) M) at 37 degrees C for 1 h. The concentrations of corticosterone, pregnenolone and progesterone in the media were measured by radioimmunoassay. After administration of ZFR cells with EVO or RUT (10(-4) M) for 60 and 120 min, Western blot analysis was employed to explore the influence of EVO and RUT on the expression of cytochrome P450 side chain cleavage enzyme (P450scc) and steroidogenic acute regulatory protein (StAR). EVO and RUT reduced both basal and ACTH-, forskolin-, as well as 8-Br-cAMP-stimulated corticosterone production in rat ZFR cells. The enhanced corticosterone production caused by the administration of four steroidogenic precursors was decreased following EVO or RUT challenge. These results suggest that EVO and RUT inhibit corticosterone production in rat ZFR cells via a mechanism involving: (1) a decreased activity of cAMP-related pathways; (2) a decreased activity of the steroidogenic enzymes, that is, 3beta-hydroxysteroid dehydrogenase (3beta-HSD) and 11beta-hydroxylase (P450c11), during steroidogenesis; and (3) an inhibition of StAR protein expression.
Collapse
Affiliation(s)
- Po-Ling Yu
- Department of Surgery, Taipei City Hospital, Taipei 10431, Taiwan, Republic of China
| | | | | | | |
Collapse
|
25
|
Rone MB, Fan J, Papadopoulos V. Cholesterol transport in steroid biosynthesis: role of protein-protein interactions and implications in disease states. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:646-58. [PMID: 19286473 DOI: 10.1016/j.bbalip.2009.03.001] [Citation(s) in RCA: 273] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 02/28/2009] [Accepted: 03/03/2009] [Indexed: 12/20/2022]
Abstract
The transfer of cholesterol from the outer to the inner mitochondrial membrane is the rate-limiting step in hormone-induced steroid formation. To ensure that this step is achieved efficiently, free cholesterol must accumulate in excess at the outer mitochondrial membrane and then be transferred to the inner membrane. This is accomplished through a series of steps that involve various intracellular organelles, including lysosomes and lipid droplets, and proteins such as the translocator protein (18 kDa, TSPO) and steroidogenic acute regulatory (StAR) proteins. TSPO, previously known as the peripheral-type benzodiazepine receptor, is a high-affinity drug- and cholesterol-binding mitochondrial protein. StAR is a hormone-induced mitochondria-targeted protein that has been shown to initiate cholesterol transfer into mitochondria. Through the assistance of proteins such as the cAMP-dependent protein kinase regulatory subunit Ialpha (PKA-RIalpha) and the PKA-RIalpha- and TSPO-associated acyl-coenzyme A binding domain containing 3 (ACBD3) protein, PAP7, cholesterol is transferred to and docked at the outer mitochondrial membrane. The TSPO-dependent import of StAR into mitochondria, and the association of TSPO with the outer/inner mitochondrial membrane contact sites, drives the intramitochondrial cholesterol transfer and subsequent steroid formation. The focus of this review is on (i) the intracellular pathways and protein-protein interactions involved in cholesterol transport and steroid biosynthesis and (ii) the roles and interactions of these proteins in endocrine pathologies and neurological diseases where steroid synthesis plays a critical role.
Collapse
Affiliation(s)
- Malena B Rone
- The Research Institute of the McGill University Health Centre and Department of Medicine, McGill University, 1650 Cedar Avenue, Montreal, Quebec, Canada H3G 1A4
| | | | | |
Collapse
|
26
|
Dyson MT, Kowalewski MP, Manna PR, Stocco DM. The differential regulation of steroidogenic acute regulatory protein-mediated steroidogenesis by type I and type II PKA in MA-10 cells. Mol Cell Endocrinol 2009; 300:94-103. [PMID: 19111595 PMCID: PMC2692359 DOI: 10.1016/j.mce.2008.11.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 11/19/2008] [Accepted: 11/24/2008] [Indexed: 10/21/2022]
Abstract
Following tropic hormone challenge, steroidogenic tissues utilize PKA to phosphorylate unique subsets of proteins necessary to facilitate steroidogenesis. This includes the PKA-dependent expression and activation of the steroidogenic acute regulatory protein (STAR), which mediates the rate-limiting step of steroidogenesis by inducing the transfer of cholesterol from the outer to the inner mitochondrial membrane. Since both type I and type II PKA are present in steroidogenic tissues, we have utilized cAMP analog pairs that preferentially activate each PKA subtype in order to examine their impact on STAR synthesis and activity. In MA-10 mouse Leydig tumor cells Star gene expression is more dependent upon type I PKA, while the post-transcriptional regulation of STAR appears subject to type II PKA. These experiments delineate the discrete effects that type I and type II PKA exert on STAR-mediated steroidogenesis, and suggest complimentary roles for each subtype in coordinating steroidogenesis.
Collapse
Affiliation(s)
| | | | | | - Douglas M. Stocco
- To whom correspondence should be addressed: Dr. Douglas Stocco, Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center. 3601 4th Street, Lubbock, TX 79430, Phone: (806)-743-2505, Fax: (806) 743-2990, E-mail:
| |
Collapse
|
27
|
Miller WL. Steroidogenic acute regulatory protein (StAR), a novel mitochondrial cholesterol transporter. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771:663-76. [PMID: 17433772 DOI: 10.1016/j.bbalip.2007.02.012] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 02/23/2007] [Accepted: 02/26/2007] [Indexed: 10/23/2022]
Abstract
Cholesterol is a vital component of cellular membranes, and is the substrate for biosynthesis of steroids, oxysterols and bile acids. The mechanisms directing the intracellular trafficking of this nearly insoluble molecule have received increased attention through the discovery of the steroidogenic acute regulatory protein (StAR) and similar proteins containing StAR-related lipid transfer (START) domains. StAR can transfer cholesterol between synthetic liposomes in vitro, an activity which appears to correspond to the trans-cytoplasmic transport of cholesterol to mitochondria. However, trans-cytoplasmic cholesterol transport in vivo appears to involve the recently-described protein StarD4, which is expressed in most cells. Steroidogenic cells must also move large amounts of cholesterol from the outer mitochondrial membrane to the first steroidogenic enzyme, which lies on the matrix side of the inner membrane; this action requires StAR. Congenital lipoid adrenal hyperplasia, a rare and severe disorder of human steroidogenesis, results from mutations in StAR, providing a StAR knockout of nature that has provided key insights into its activity. Cell biology experiments show that StAR moves large amounts of cholesterol from the outer to inner mitochondrial membrane, but acts exclusively on the outer membrane. Biophysical data show that only the carboxyl-terminal alpha-helix of StAR interacts with the outer membrane. Spectroscopic data and molecular dynamics simulations show that StAR's interactions with protonated phospholipid head groups on the outer mitochondrial membrane induce a conformational change (molten globule transition) needed for StAR's activity. StAR appears to act in concert with the peripheral benzodiazepine receptor, but the precise itinerary of a cholesterol molecule entering the mitochondrion remains unclear.
Collapse
Affiliation(s)
- Walter L Miller
- Department of Pediatrics, Box 0978, University of California, San Francisco, CA 94122-0978, USA.
| |
Collapse
|
28
|
Papadopoulos V, Liu J, Culty M. Is there a mitochondrial signaling complex facilitating cholesterol import? Mol Cell Endocrinol 2007; 265-266:59-64. [PMID: 17280776 DOI: 10.1016/j.mce.2006.12.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cholesterol transport into mitochondria is the rate-determining and hormone-sensitive step in steroid biosynthesis. During the last few years two proteins were shown to be critical for this process: the mitochondrial translocator protein, previously known as peripheral-type benzodiazepine receptor, and the steroidogenic acute regulatory protein. In this manuscript we review evidence suggesting that these two proteins functionally interact to facilitate cholesterol transport and may be part of a larger multimeric mitochondrial complex of proteins assembled to facilitate the hormone-induced cholesterol transfer into mitochondria. This complex might include proteins such as the mitochondrial voltage-dependent anion channel, the translocator protein-associated protein PAP7 which also functions as an A kinase anchor protein that binds and brings into the complex the regulatory subunit Ialpha of the cAMP-dependent protein kinase.
Collapse
Affiliation(s)
- Vassilios Papadopoulos
- Department of Biochemistry & Molecular and Cellular Biology, Georgetown University Medical Center, 3900 Reservoir Road, NW, Washington, DC 20057, USA.
| | | | | |
Collapse
|
29
|
Nishimura R, Sakumoto R, Tatsukawa Y, Acosta TJ, Okuda K. Oxygen concentration is an important factor for modulating progesterone synthesis in bovine corpus luteum. Endocrinology 2006; 147:4273-80. [PMID: 16740971 DOI: 10.1210/en.2005-1611] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Oxygen deficiency caused by a decrease in the blood supply is known to induce various responses of cells. Because luteal blood flow has been shown to decrease during luteolysis, a low-oxygen condition seems to be an integral part of the environment during luteolysis. To determine whether a low-oxygen condition is associated with functional luteolysis, we examined the influence of reduced oxygen tension on the luteal progesterone (P4) generating system in cultured bovine midluteal cells. Luteal cells obtained from midcycle corpus luteum (d 8-12) were incubated under different O2 concentrations (20, 10, 5, 3% O2) with or without LH for 24 h. P4 production decreased with decreasing O2 concentration but was significantly stimulated by LH regardless of O2 concentration. After 8 h of culture, both basal and LH-stimulated P4 production was significantly lower under 3% O2 than under 20% O2. Low-oxygen condition also inhibited pregnenolone production. Cytochrome P450 side-chain cleavage enzyme (P450scc) mRNA expression, measured by quantitative PCR, decreased under low-oxygen condition in both non-LH-treated and LH-treated cells. Low-oxygen condition did not affect the expressions of steroidogenic acute regulatory protein mRNA or protein, whereas steroidogenic acute regulatory protein mRNA expression was stimulated by LH during 4 h of culture. Low-oxygen condition also did not affect 3 beta-hydroxysteroid dehydrogenase/Delta 5-Delta 4 isomerase mRNA expression or the activity of the enzyme in the cells, regardless of the incubation period. The overall results indicate that a low-oxygen condition decreases P4 synthesis by attenuating P450scc production and P450scc activity in bovine luteal cells and suggest that oxygen deficiency is an essential condition for the progression of luteolysis in cattle.
Collapse
Affiliation(s)
- Ryo Nishimura
- Laboratory of Reproductive Endocrinology, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | | | | | | | | |
Collapse
|
30
|
Pepperell JR, Nemeth G, Yamada Y, Naftolin F, Merino M. Localized accumulation of angiotensin II and production of angiotensin-(1-7) in rat luteal cells and effects on steroidogenesis. Am J Physiol Endocrinol Metab 2006; 291:E221-33. [PMID: 16478781 DOI: 10.1152/ajpendo.00205.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
These studies aim to investigate subcellular distribution of angiotensin II (ANG II) in rat luteal cells, identify other bioactive angiotensin peptides, and investigate a role for angiotensin peptides in luteal steroidogenesis. Confocal microscopy showed ANG II distributed within the cytoplasm and nuclei of luteal cells. HPLC analysis showed peaks that eluted with the same retention times as ANG-(1-7), ANG II, and ANG III. Their relative concentrations were ANG II >or= ANG-(1-7) > ANG III, and accumulation was modulated by quinapril, an inhibitor of angiotensin-converting enzyme (ACE), Z-proprolinal (ZPP), an inhibitor of prolyl endopeptidase (PEP), and parachloromercurylsulfonic acid (PCMS), an inhibitor of sulfhydryl protease. Phenylmethylsulfonyl fluoride (PMSF), a serine protease inhibitor, did not affect peptide accumulation. Quinapril, ZPP, PCMS, and PMSF, as well as losartan and PD-123319, the angiotensin receptor type 1 (AT1) and type 2 (AT2) receptor antagonists, were used in progesterone production studies. ZPP significantly reduced luteinizing hormone (LH)-dependent progesterone production (P < 0.05). Quinapril plus ZPP had a greater inhibitory effect on LH-stimulated progesterone than either inhibitor alone, but this was not reversed by exogenous ANG II or ANG-(1-7). Both PCMS and PMSF acutely blocked LH-stimulated progesterone, and PCMS blocked LH-sensitive cAMP accumulation. Losartan inhibited progesterone production in permeabilized but not intact luteal cells and was reversed by ANG II. PD-123319 had no significant effect on luteal progesterone production in either intact or permeabilized cells. These data suggest that steroidogenesis may be modulated by angiotensin peptides that act in part through intracellular AT1 receptors.
Collapse
Affiliation(s)
- John R Pepperell
- Department of Obstetrics and Gynecology, Yale University Medical School, New Haven, CT, USA.
| | | | | | | | | |
Collapse
|
31
|
Miller WL. Disorders of androgen synthesis--from cholesterol to dehydroepiandrosterone. Med Princ Pract 2005; 14 Suppl 1:58-68. [PMID: 16103714 DOI: 10.1159/000086185] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Accepted: 08/14/2004] [Indexed: 01/29/2023] Open
Abstract
Androgens and estrogens are primarily made from dehydroepiandrosterone (DHEA), which is made from cholesterol via four steps. First, cholesterol enters the mitochondria with the assistance of the steroidogenic acute regulatory protein (StAR). Mutations in the StAR gene cause congenital lipoid adrenal hyperplasia (lipoid CAH), a potentially lethal disease in which virtually no steroids are made. Lipoid CAH is common among Palestinian Arabs and people from eastern Arabia, and among Korean and Japanese people. Second, within the mitochondria, cholesterol is converted to pregnenolone by the cholesterol side chain cleavage enzyme, P450scc; disorder of this enzyme is very rare, probably due to embryonic lethality. Third, pregnenolone undergoes 17alpha-hydroxylation by microsomal P450c17. 17alpha-Hydroxylase deficiency, manifesting as female sexual infantilism and hypertension, is rare except in Brazil. Finally, 17-OH pregnenolone is converted to DHEA by the 17,20 lyase activity of P450c17. The ratio of the 17,20 lyase to 17alpha-hydroxylase activity of P450c17 determines the ratio of C21 to C19 steroids produced. This ratio is regulated posttranslationally by at least three factors: the abundance of the electron-donating protein P450 oxidoreductase (POR), the presence of cytochrome b5 and the serine phosphorylation of P450c17. Mutations of POR are a new, recently described disorder manifesting as the Antley-Bixler skeletal dysplasia syndrome, and a form of polycystic ovary syndrome.
Collapse
Affiliation(s)
- Walter L Miller
- Department of Pediatrics, University of California, San Francisco, California 94142-0978, USA.
| |
Collapse
|
32
|
Fleury A, Mathieu AP, Ducharme L, Hales DB, LeHoux JG. Phosphorylation and function of the hamster adrenal steroidogenic acute regulatory protein (StAR). J Steroid Biochem Mol Biol 2004; 91:259-71. [PMID: 15336703 DOI: 10.1016/j.jsbmb.2004.04.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2003] [Accepted: 04/30/2004] [Indexed: 10/26/2022]
Abstract
In order to study the effect of phosphorylation on the function of the steroidogenic acute regulatory protein (StAR), 10 putative phosphorylation sites were mutated in the hamster StAR. In pcDNA3.1-StAR transfected COS-1 cells, decreases in basal activity were found for the mutants S55A, S185A and S194A. Substitution of S185 by D or E to mimic phosphorylation resulted in decreased activity for all mutants; we concluded that S185 was not a phosphorylation site and we hypothesized that mutations on S185 created StAR conformational changes resulting in a decrease in its binding affinity for cholesterol. In contrast, the mutation S194D resulted in an increase in StAR activity. We have calculated the relative rate of pregnenolone formation (App. V(max)) in transfected COS-1 cells with wild type (WT) and mutant StAR-pcDNA3.1 under control and (Bu)(2)-cAMP stimulation. The App. V(max) values refer to the rate of cholesterol transported and metabolized by the cytochrome P450scc enzyme present in the inner mitochondrial membrane. The App. V(max) was 1.61 +/- 0.28 for control (Ctr) WT StAR and this value was significantly increased to 4.72 +/- 0.09 for (Bu)(2)-cAMP stimulated preparations. App. V(max) of 5.53 (Ctr) and 4.82 ((Bu)(2)-cAMP) found for S194D StAR preparations were similar to that of the WT StAR stimulated preparations. At equal StAR quantity, an anti-phospho-(S/T) PKA substrate antibody revealed four times more phospho-(S/T) in (Bu)(2)-cAMP than in control preparations. The intensity of phosphorylated bands was decreased for the S55A, S56A and S194A mutants and it was completely abolished for the S55A/S56A/S194A mutant. StAR activity of control and stimulated preparations were diminished by 73 and 72% for the mutant S194A compared to 77 and 83% for the mutant S55A/S56A/S194A. The remaining activity appears to be independent of phosphorylation at PKA sites and could be due to the intrinsic activity of non-phosphorylated StAR or to an artefact due to the pharmacological quantity of StAR expressed in COS-1. In conclusion we have shown that (Bu)(2)-cAMP provokes an augmentation of both the quantity and activity of StAR, and that an enhancement in StAR phosphorylation increases its activity. The increased quantity of StAR upon (Bu)(2)-cAMP stimulation could be due to an augmentation of its mRNA or protein synthesis stability, or both; this is yet to be determined.
Collapse
Affiliation(s)
- Alain Fleury
- Department of Biochemistry, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
| | | | | | | | | |
Collapse
|
33
|
Lehoux JG, Mathieu A, Lavigne P, Fleury A. Adrenocorticotropin regulation of steroidogenic acute regulatory protein. Microsc Res Tech 2003; 61:288-99. [PMID: 12768544 DOI: 10.1002/jemt.10338] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We studied the effect of the adrenocorticotropin hormone (ACTH) on the expression of the steroidogenic acute regulatory protein (StAR) in vivo in rat and hamster adrenals and also in transfection experiments using COS-1 cells. In vivo, ACTH increased the level of StAR mRNA within 30-60 minutes and also increased the quantity of StAR, but with a 2-3-hour delay. ACTH induced the formation of many acidic StAR species as analyzed by two-dimensional gel electrophoresis and immunoblotting. In the transfection experiments, (Bu)(2)-cAMP also induced the formation of many acidic species for the hamster StAR; in COS-1 cells, StAR is phosphorylated mainly on serine (S) residue(s). When alanine (A) was substituted for serine, S13A, S185A, and S194A mutants had decreased StAR activity compared to wildtype, thus determining the importance of these amino acid residues in StAR action. The full-length WT, N46-truncated StAR lacking its mitochondrial import sequence, and N46-S194A had similar activities, whereas N46-S185A had completely lost its activity. Our results suggest that S194, but not S185, functions in association with the mitochondrial import sequence for the initiation of StAR activation. Further studies showed that S185 is implicated in salt bridge stability, not in StAR phosphorylation, suggesting its importance for StAR folding. Thermodynamic calculations of the hamster StAR homology model based on MLN64 show that StAR can partially unfold to bind cholesterol and serve as a rapid transfer mechanism for eventual translocation into mitochondria. This is supportive of a StAR functioning either outside the mitochondria or in the mitochondrial intermembrane space.
Collapse
Affiliation(s)
- Jean-Guy Lehoux
- Department of Biochemistry, Faculty of Medicine, University of Sherbrooke, 3001 12th Avenue North, Sherbrooke, Quebec, Canada J1H 5N4.
| | | | | | | |
Collapse
|
34
|
Abstract
Androgens and estrogens are made from dehydroepiandrosterone (DHEA), which is made from cholesterol via four steps. First, cholesterol enters the mitochondria with the assistance of the steroidogenic acute regulatory protein (StAR). Mutations in the StAR gene cause congenital lipoid adrenal hyperplasia. Second, within the mitochondria, cholesterol is converted to pregnenolone by the cholesterol side chain cleavage enzyme, P450scc. Third, pregnenolone undergoes 17alpha-hydroxylation by microsomal P450c17. Finally, 17-OH pregnenolone is converted to DHEA by the 17,20 lyase activity of P450c17. The ratio of the 17,20 lyase to 17alpha-hydroxylase activity of P450c17 determines the ratio of C21 to C19 steroids produced. This ratio is regulated post-translationally by at least three factors: the abundance of the electron-donating protein P450 oxidoreductase, the presence of cytochrome b(5), and the serine phosphorylation of P450c17. Study of these and related factors may yield important information about the pathophysiology of adrenarche and the polycystic ovary syndrome (PCOS).
Collapse
Affiliation(s)
- Walter L Miller
- Department of Pediatrics, University of California, Bldg MR IV, Room 209, San Francisco 94142-0978, CA, USA.
| |
Collapse
|
35
|
Stocco DM. Clinical disorders associated with abnormal cholesterol transport: mutations in the steroidogenic acute regulatory protein. Mol Cell Endocrinol 2002; 191:19-25. [PMID: 12044915 DOI: 10.1016/s0303-7207(02)00048-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The transport of cholesterol to the inner mitochondrial membrane of steroidogenic cells constitutes the rate-limiting step in trophic hormone regulated steroid biosynthesis and requires de novo protein synthesis. Several years ago a candidate regulator protein was purified and its cDNA cloned from MA-10 mouse Leydig tumor cells. Expression of this protein resulted in an increase in steroidogenesis in unstimulated cells and it was named the Steroidogenic Acute Regulatory protein or StAR. Mutations in the StAR gene were found to be the cause of the potentially lethal disease in humans known as congenital lipoid adrenal hyperplasia (lipoid CAH), a condition characterized by an almost complete inability of the newborn to synthesize steroids. The defect in steroid synthesis in lipoid CAH is caused by the failure of affected individuals to transport cholesterol to the inner mitochondria membrane, thus proving the essential role of StAR in cholesterol transport. StAR null mice display a phenotype that is essentially identical to the human condition. In summary, both naturally occurring disorders in humans and genetic manipulation in mice have demonstrated that the StAR protein is an absolute requirement in the rate-limiting step in steroidogenesis, the transfer of cholesterol into the mitochondria.
Collapse
Affiliation(s)
- Douglas M Stocco
- Texas Technological University Health Sciences Center, 3601 4th Street, Department of Cell Biology and Biochemistry, Lubbock, TX 79430, USA.
| |
Collapse
|
36
|
Gianazza E, Eberini I, Villa P, Fratelli M, Pinna C, Wait R, Gemeiner M, Miller I. Monitoring the effects of drug treatment in rat models of disease by serum protein analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 771:107-30. [PMID: 12015995 DOI: 10.1016/s0378-4347(01)00562-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In this review we list from literature investigations on rat serum proteins using electrophoretic techniques in connection with drug testing. From our own research work, we provide annotated two-dimensional maps of rat serum proteins under control and experimental conditions. Emphasis is on species-specific components and on the effects of acute and chronic inflammation. We discuss our project of structural proteomics on rat serum as a minimally invasive approach to pharmacological investigation, and we outline a typical experimental plan for drug testing according to the above guidelines. We then report in detail on the results of our trials of anti-inflammatory drugs on adjuvant arthritis, an animal model of disease resembling in many aspects human rheumatoid arthritis. We demonstrate a correlation between biochemical parameters and therapeutic findings and outline the advantages of the chosen methodological approach, which proved also sensitive in revealing "side effects" of the test drugs. In an appendix we describe our experimental protocol when performing two-dimensional electrophoresis of rat serum.
Collapse
Affiliation(s)
- Elisabetta Gianazza
- Dipartimento di Scienze Farmacologiche, Università degli Studi di Milano via Balzaretti 9, I-20133 Milan, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Steroid hormone biosynthesis is acutely regulated by pituitary trophic hormones and other steroidogenic stimuli. This regulation requires the synthesis of a protein whose function is to translocate cholesterol from the outer to the inner mitochondrial membrane in steroidogenic cells, the rate-limiting step in steroid hormone formation. The steroidogenic acute regulatory (StAR) protein is an indispensable component in this process and is the best candidate to fill the role of the putative regulator. StAR is expressed in steroidogenic tissues in response to agents that stimulate steroid production, and mutations in the StAR gene result in the disease congenital lipoid adrenal hyperplasia, in which steroid hormone biosynthesis is severely compromised. The StAR null mouse has a phenotype that is essentially identical to the human disease. The positive and negative expression of StAR is sensitive to agents that increase and inhibit steroid biosynthesis respectively. The mechanism by which StAR mediates cholesterol transfer in the mitochondria has not been fully characterized. However, the tertiary structure of the START domain of a StAR homolog has been solved, and identification of a cholesterol-binding hydrophobic tunnel within this domain raises the possibility that StAR acts as a cholesterol-shuttling protein.
Collapse
Affiliation(s)
- D M Stocco
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA.
| |
Collapse
|
38
|
Christenson LK, Strauss JF. Steroidogenic acute regulatory protein (StAR) and the intramitochondrial translocation of cholesterol. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1529:175-87. [PMID: 11111087 DOI: 10.1016/s1388-1981(00)00147-5] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The steroidogenic acute regulatory (StAR) protein regulates the rate limiting step in steroidogenesis, the transport of cholesterol from the outer to the inner mitochondrial membrane. Insight into the structure and function of StAR was attained through molecular genetic studies of congenital lipoid adrenal hyperplasia, a rare disease caused by mutations in the StAR gene. Subsequent functional analysis defined two major domains within the StAR protein, the N-terminal mitochondrial targeting sequence and the C-terminus, which promotes the translocation of cholesterol between the two mitochondrial membranes. Two models of StAR's mechanism of action, (1) stimulation of cholesterol desorption from the outer mitochondrial membrane and (2) an intermembrane shuttle hypothesis, are discussed with respect to the known biochemical and biophysical events associated with the process of steroidogenesis and the structure of StAR. StAR gene expression is regulated primarily at the transcriptional level, and the roles of transcription factors that govern basal and cAMP-dependent StAR expression including SF-1, C/EBP beta, Sp1 and GATA-4 are reviewed.
Collapse
Affiliation(s)
- L K Christenson
- Center for Research on Reproduction and Women's Health, University of Pennsylvania Medical Center, 1355 BRB II/III, 421 Curie Blvd, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
39
|
Abstract
Cholesterol serves as the initial substrate for all steroid hormones synthesized in the body regardless of the steroidogenic tissue or final steroid produced. The first steroid formed in the steroidogenic pathway is pregnenolone which is formed by the excision of a six carbon unit from cholesterol by the cytochrome P450 side chain cleavage enzyme system which is located in the inner mitochondrial membrane. It has long been known that the regulated biosynthesis of steroids is controlled by a cycloheximide sensitive factor whose function is to transfer cholesterol from the outer to the inner mitochondrial membrane, thus, the identity of this factor is of great importance. A candidate for the regulatory factor is the mitochondrial protein, the steroidogenic acute regulatory (StAR) protein. Cloning and sequencing of the StAR cDNA indicated that it was a novel protein, and transient transfections with the cDNA for the StAR protein resulted in increased steroid production in the absence of stimulation. Mutations in the StAR gene cause the potentially lethal disease congenital lipoid adrenal hyperplasia, a condition in which cholesterol transfer to the cytochrome P450 side chain cleavage enzyme, P450scc, is blocked, filling the cell with cholesterol and cholesterol esters. StAR knockout mice have a phenotype which is essentially identical to the human condition. The cholesterol transferring activity of StAR has been shown to reside in the C-terminal part of the molecule and a protein sharing homology with a region in the C-terminus of StAR has been shown to display cholesterol transferring capacity. Recent evidence has indicated that StAR can act as a sterol transfer protein and it is perhaps this characteristic which allows it to mobilize cholesterol to the inner mitochondrial membrane. However, while it appears that StAR is the acute regulator of steroid biosynthesis via its cholesterol transferring activity, its mechanism of action remains unknown.
Collapse
Affiliation(s)
- D M Stocco
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock 79430, USA.
| |
Collapse
|
40
|
Sekar N, Garmey JC, Veldhuis JD. Mechanisms underlying the steroidogenic synergy of insulin and luteinizing hormone in porcine granulosa cells: joint amplification of pivotal sterol-regulatory genes encoding the low-density lipoprotein (LDL) receptor, steroidogenic acute regulatory (stAR) protein and cytochrome P450 side-chain cleavage (P450scc) enzyme. Mol Cell Endocrinol 2000; 159:25-35. [PMID: 10687849 DOI: 10.1016/s0303-7207(99)00203-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Growth of ovarian Graafian follicles and cytodifferentiation of granulosa and theca cells are regulated by gonadotropins, sex steroids and peptidyl growth factors. For example insulin and intraovarian insulin-like growth factor type I (IGF-I) may amplify the actions of both follicle stimulating hormone (FSH) and luteinizing hormone (LH) in promoting biochemical luteinization and enhancing steroidogenesis. To explore further the notion of interactions between insulinomimetic peptides and LH and to examine the associated mechanisms, we have established porcine granulosa cells in monolayer culture for 48 h in 3% serum with insulin (1 microg/ml), estradiol (0.5 microg/ml), and follicle stimulating hormone (FSH, 5 ng/ml) to allow cell anchorage, facilitate in vitro cytodifferentiation and confer LH responsiveness. To limit any carry-over effects of serum, granulosa cells were stabilized overnight in serum-free medium. Studies were then initiated to assess the impact of insulin on the dose-responsive actions of LH. A maximally effective concentration of insulin (1 microg/ml) synergistically augmented LH's dose-dependent ampilification of progesterone and cAMP accumulation; viz. by approximately twofold (progesterone) and approximately 2.5-fold (cAMP) above that observed in maximally LH-stimulated cultures (P < 0.001). Mechanistically, insulin significantly enhanced the sensitivity of granulosa cells to LH's drive of cAMP accumulation [ED50 for LH 61 +/- 14 ng/ml (control) vs. 10 +/- 1.0 ng/ml (insulin) (P < 0.01)]. Insulin also augmented the maximal stimulatory effect of LH; i.e. LH efficacy rose from 6.5 +/- 0.4 to 17 +/- 1.4 (pmole cAMP/microg DNA/48 h; P < 0.001). Insulin dose-response analysis showed that insulin alone minimally elevated basal, but significantly heightened LH's stimulation of progesterone and cAMP accumulation at (insulin) concentrations as low as 3-10 ng/ml. The molecular mechanisms underlying insulin and LH's synergy were assessed by RNase protection assays with (porcine) cRNA probes encoding the low density lipoprotein receptor (LDL-R), Steroidogenic Acute Regulatory Protein (StAR), P450 cholesterol sidechain cleavage enzyme (P450scc) and (as a possible negative control) Sterol Carrier Protein 2 (SCP-2) [data normalized to constitutive 18S rRNA]. Non linear least-squares analysis was applied to confirm or refute an hypothesis of interactive synergy between LH and insulin on gene expression. LH and insulin alone exerted no effect on StAR message accumulation, and LH alone minimally stimulated P450scc and LDL-R mRNA's accumulation at 48 h. In contrast, insulin in combination with LH augmented StAR mRNA concentrations by approximately 5-10-fold and stimulated LDL-R message levels by threefold above the respective maximally LH-driven values (P < 0.01). Maximal P450scc mRNA expression was enhanced twofold by cotreatment with LH and insulin compared with maximal LH-treated cultures. In contrast SCP-2 mRNA accumulation remained unaffected by any treatment. In summary, we have used a serum-free, in vitro differentiated porcine granulosa cell culture system to assess regulatory interactions between the disparate first messengers, LH and insulin. We observe marked LH-insulin steroidogenic synergy after 48 h of joint hormonal stimulation, and further clarify that the mechanism(s) of synergy include augmentation of cAMP production and increased steady-state concentrations of transcripts of key sterol-regulatory genes; namely, LDL-R, StAR, and P450scc, but not SCP-2. Since the encoded products of these genes variously control sterol substrate uptake, delivery to and utilization in mitochondrial steroidogenesis, we speculate that the concerted actions of insulin-like peptides and LH may contribute to steroidogenic differentiation during the later stages of follicular maturation and the granulosa-luteal cell transition.
Collapse
Affiliation(s)
- N Sekar
- Department of Internal Medicine, NIH Specialized Cooperative Center in Reproductive Research, University of Virginia Health Sciences Center, Charlottesville 22908, USA
| | | | | |
Collapse
|
41
|
Niswender GD, Juengel JL, Silva PJ, Rollyson MK, McIntush EW. Mechanisms controlling the function and life span of the corpus luteum. Physiol Rev 2000; 80:1-29. [PMID: 10617764 DOI: 10.1152/physrev.2000.80.1.1] [Citation(s) in RCA: 637] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The primary function of the corpus luteum is secretion of the hormone progesterone, which is required for maintenance of normal pregnancy in mammals. The corpus luteum develops from residual follicular granulosal and thecal cells after ovulation. Luteinizing hormone (LH) from the anterior pituitary is important for normal development and function of the corpus luteum in most mammals, although growth hormone, prolactin, and estradiol also play a role in several species. The mature corpus luteum is composed of at least two steroidogenic cell types based on morphological and biochemical criteria and on the follicular source of origin. Small luteal cells appear to be of thecal cell origin and respond to LH with increased secretion of progesterone. LH directly stimulates the secretion of progesterone from small luteal cells via activation of the protein kinase A second messenger pathway. Large luteal cells are of granulosal cell origin and contain receptors for PGF(2alpha) and appear to mediate the luteolytic actions of this hormone. If pregnancy does not occur, the corpus luteum must regress to allow follicular growth and ovulation and the reproductive cycle begins again. Luteal regression is initiated by PGF(2alpha) of uterine origin in most subprimate species. The role played by PGF(2alpha) in primates remains controversial. In primates, if PGF(2alpha) plays a role in luteolysis, it appears to be of ovarian origin. The antisteroidogenic effects of PGF(2alpha) appear to be mediated by the protein kinase C second messenger pathway, whereas loss of luteal cells appears to follow an influx of calcium, activation of endonucleases, and an apoptotic form of cell death. If the female becomes pregnant, continued secretion of progesterone from the corpus luteum is required to provide an appropriate uterine environment for maintenance of pregnancy. The mechanisms whereby the pregnant uterus signals the corpus luteum that a conceptus is present varies from secretion of a chorionic gonadotropin (primates and equids), to secretion of an antiluteolytic factor (domestic ruminants), and to a neuroendocrine reflex arc that modifies the secretory patterns of hormones from the anterior pituitary (most rodents).
Collapse
Affiliation(s)
- G D Niswender
- Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado, USA
| | | | | | | | | |
Collapse
|
42
|
Abstract
In response to trophic hormone stimulation of steroidogenic adrenal and gonadal cells, the acute biosynthesis of steroid hormones occurs in the order of minutes to tens of minutes and can be contrasted to chronic regulation, which occurs on the order of hours. The steroidogenic acute regulatory (StAR) protein is an indispensable component in the acute regulatory phase and functions by rapidly mediating the transfer of the substrate for all steroid hormones, cholesterol, from the outer to the inner mitochondrial membrane where it is cleaved to pregnenolone, the first steroid formed. This transfer of cholesterol constitutes the rate-limiting step in steroidogenesis. To underscore its importance, mutations in the StAR gene have been shown to be the only cause of the potentially fatal disease lipoid congenital adrenal hyperplasia, in which affected individuals synthesize virtually no steroids. Since the cloning of the murine cDNA in 1994, many observations have substantiated the critical role of StAR in regulated steroidogenesis. The purpose of this review will be to summarize briefly some background material on StAR and then attempt to update several recent and interesting findings on the StAR protein.
Collapse
Affiliation(s)
- D M Stocco
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA.
| |
Collapse
|
43
|
Abstract
The steroidogenic acute regulatory (StAR) protein regulates the rate-limiting step of steroidogenesis. In steroidogenic tissues, the StAR gene is regulated acutely by trophic hormone through a cAMP second messenger pathway. Thus, the gene encoding StAR must be finely regulated so that it is expressed in steroidogenic tissues at the proper time in development, and must be rapidly induced in response to cAMP stimulation. We have summarized the available information concerning the regulation of StAR mRNA levels including promoter mapping and transactivation studies. We also discuss the various transcription factors which have been implicated in the regulation of the StAR gene thus far, and propose models of how StAR transcription may be regulated.
Collapse
Affiliation(s)
- A J Reinhart
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock 79430, USA
| | | | | |
Collapse
|
44
|
Miller WL, Strauss JF. Molecular pathology and mechanism of action of the steroidogenic acute regulatory protein, StAR. J Steroid Biochem Mol Biol 1999; 69:131-41. [PMID: 10418987 DOI: 10.1016/s0960-0760(98)00153-8] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The first and rate-limiting step in the synthesis of all steroid hormones is the conversion of cholesterol to pregnenolone by the mitochondrial enzyme, P450scc. Tropic hormones such ACTH and gonadotropins induce steroidogenesis via cAMP by elaborating intracellular cAMP which stimulates P450scc activity in two distinct ways. Chronic stimulation (h to days) occurs through the induction of P450scc gene transcription leading to increased P450scc protein and consequent increased steroidogenic capacity. Acute regulation, over minutes, occurs through the phosphorylation of preexisting StAR and the rapid synthesis of new StAR protein. StAR, the steroidogenic acute regulatory protein, increases the flow of cholesterol into mitochondria, thus regulating substrate availability to whatever amount of P450scc is available. In the absence of StAR, up to 14% of maximal StAR-induced level of steroidogenesis persists as StAR-independent steroidogenesis. Congenital lipoid adrenal hyperplasia, an autosomal recessive disorder in which conversion of cholesterol to pregnenolone is severely impaired, results in female genitalia in 46,XY genetic males, variable onset of a severe salt-losing crisis in the first months of life, but normal feminization and cyclical vaginal bleeding in 46,XX females. Lipoid CAH was once thought to be due to P450scc mutations, but in fact homozygous P450scc mutations cannot exist in human beings as they would prohibit placental progesterone production, causing spontaneous abortion of the affected fetus. Lipoid CAH is caused by StAR mutations, which result in tropic hormone-induced intracellular accumulation of cholesterol in the adrenals and gonads. Our two-hit model, which considers the persistence of StAR-independent steroidogenesis and the differences in the fetal and postnatal ages at which the testis, adrenal zona glomerulosa, adrenal zona fasciculata and ovary are stimulated, predicts and explains all of the various clinical manifestations of lipoid CAH. Structure function studies of StAR show that the critical domains for biological activity reside in the protein's carboxy-terminus. When the N-terminal mitochondrial targeting sequences are deleted and the resulting N-62 StAR remains in the cytoplasm, it retains the ability to stimulate steroidogenesis both in intact cells or when added to isolated mitochondria in vitro. These observations suggest that StAR acts on the outer mitochondrial membrane to promote sterol translocation to P450scc, and that the importation of StAR into mitochondria terminates its action. Data from circular dichroism and Fourier-transform infrared spectroscopy show that the mutant StAR proteins in lipoid CAH are misfolded, suggesting disrupted interaction with another protein. Preliminary data suggest that StAR facilitates cholesterol desorption from membranes, stimulating transfer from the outer mitochondrial (donor) membrane to the inner mitochondrial (acceptor) membrane.
Collapse
Affiliation(s)
- W L Miller
- Department of Pediatrics, University of California, San Francisco 94121, USA
| | | |
Collapse
|
45
|
Affiliation(s)
- D M Stocco
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock 79430, USA
| |
Collapse
|
46
|
Cherradi N, Capponi AM. The acute regulation of mineralocorticoid biosynthesis: scenarios for the StAR system. Trends Endocrinol Metab 1998; 9:412-8. [PMID: 18406315 DOI: 10.1016/s1043-2760(98)00099-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The zona glomerulosa cell of the adrenal cortex produces mineralocorticoids in response to physiological stimuli (angiotensin II and extracellular K(+)) activating the Ca(2+) messenger system. The mechanisms underlying the generation of the Ca(2+) signal have been analyzed extensively and recent developments have contributed to bridging the gap between intracellular signals and activation of the biological function. This article summarizes the current knowledge on the intracellular targets of the Ca(2+) messenger, obtained mainly in bovine glomerulosa cells. Ca(2+) appears to exert a dual effect, both at the intramitochondrial level and at the nuclear level, where it activates steroidogenic acute regulatory protein (StAR) gene transcription.
Collapse
Affiliation(s)
- N Cherradi
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Faculty of Medicine, University Hospital, Geneva 14, Switzerland
| | | |
Collapse
|
47
|
Lehoux JG, Fleury A, Ducharme L. The acute and chronic effects of adrenocorticotropin on the levels of messenger ribonucleic acid and protein of steroidogenic enzymes in rat adrenal in vivo. Endocrinology 1998; 139:3913-22. [PMID: 9724047 DOI: 10.1210/endo.139.9.6196] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The purpose of this study was to evaluate the effects of acute (a single injection) and chronic stimulation (twice daily injection for 9 days) by ACTH on changes occurring in the temporal expression of steroidogenic enzymes in the rat adrenal in vivo. Under acute ACTH stimulation, the level of steroidogenic acute regulatory protein (StAR) messenger RNA (mRNA) was increased within 0.5 h in both zona glomerulosa (ZG) and zona fasciculata-reticularis (ZFR), with maximal increases of 220-370% and 300-350% in the ZG and ZFR, respectively. Increases in the levels of StAR protein in homogenates were also found in the ZG (700%) and the ZFR (300%), but were delayed compared with those of their mRNA. Furthermore, the increase in mitochondrial StAR protein was concomitant with that in the homogenate, indicating that the entry of StAR into mitochondria might not be necessary to increase steroidogenesis during the early stimulatory phase. The levels of c-jun, c-fos, junB, and fosB mRNA in ZG and ZFR were also rapidly maximally elevated within 0.5-1 h after ACTH administration and fell to near control levels 5 h posttreatment. The levels of c-jun protein were already increased in both zones at 1 h, reached 200% at 3 h, and remained elevated 5 h post-ACTH treatment. The levels of c-Fos protein were maximally increased by 240% in both zones after 1 h and decreased thereafter to control values at 5 h. Few changes were observed in the adrenal protein contents of cholesterol side-chain cleavage cytochrome P450 (P450scc), cytochrome P450 11beta-hydroxylase (P450C11), cytochrome P450 21-hydroxylase (P450C21), and 3beta-hydroxysteroid dehydrogenase (3betaHSD). Under chronic stimulation by ACTH, we observed elevations in the levels of plasma corticosteroids and changes in the mRNA and protein levels of many adrenal steroidogenic enzymes in both zones. In the ZG, administration of ACTH for 9 days provoked an increase in the level of StAR mRNA (210-270%) and a decrease in the levels of 3betaHSD, cytochrome P450 aldosterone synthase (P450aldo), and AT1 receptor mRNA (by 40%, 70%, and 90%, respectively), whereas the levels of P450scc and P450C21 mRNA did not differ significantly from the control values. Western blotting analysis showed that the adrenal ZG protein levels of StAR and P450scc were increased (150%), 3betaHSD was not changed, and P450C21 was decreased by 70%. In the ZFR, the levels of P450scc and StAR mRNAs were increased (260% and 570-870%, respectively). The levels of 3betaHSD, P450C21, and P450C11 mRNA did not differ from control values in that zone. Western blotting analysis showed that the ZFR protein level of 3betaHSD was not changed, P450scc and P450C21 were decreased by 40% and 60%, respectively, and StAR was increased by 160%. Although c-fos and fosB mRNAs were undetectable after 9 days of chronic ACTH treatment, c-jun mRNA and its protein were still detectable, suggesting a basic role for this protooncogene in maintaining the integrity and function of the adrenal cortex. When dexamethasone was administered to rats for 5 days to inhibit their ACTH secretion, the mRNA levels of many steroidogenic enzymes were decreased, with the exception of StAR, 3betaHSD, and P450aldo. These results confirm the importance of physiological concentrations of ACTH in maintaining normal levels of adrenocortical enzymes and also indicate that in addition to ACTH, other factors are involved in controlling the expression of StAR, 3betaHSD, and P450aldo. In conclusion, we showed that ACTH acutely increases StAR mRNA followed, after a delay, by an increase in the level of StAR protein; this suggests that posttranslational modifications of the StAR precursor occurred during the early stimulatory phase and before the apparent translation of the newly formed mRNA. The rapid induction of protooncogenes suggests their participation in the action of ACTH to stimulate steroidogenesis. (ABSTRACT TRUNCATED)
Collapse
Affiliation(s)
- J G Lehoux
- Department of Biochemistry, Faculty of Medicine, University of Sherbrooke, Québec, Canada
| | | | | |
Collapse
|
48
|
Luo L, Chen H, Stocco DM, Zirkin BR. Leydig cell protein synthesis and steroidogenesis in response to acute stimulation by luteinizing hormone in rats. Biol Reprod 1998; 59:263-70. [PMID: 9687294 DOI: 10.1095/biolreprod59.2.263] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
We examined the temporal relationship between protein synthesis and testosterone production by rat Leydig cells in primary culture. Leydig cells were isolated from adult control Sprague-Dawley rats and from rats that had received LH-suppressive testosterone and estradiol (TE) implants in vivo for 10 days. The cells were incubated for 1-4 h with [35S]methionine in the presence or absence of maximally stimulating ovine LH, and newly synthesized proteins were examined by two-dimensional PAGE autoradiography. Approximately 800-900 newly synthesized polypeptides were readily visible on all autoradiograms, most of which did not differ in the cells from intact control and TE-treated rats. Incubation of cells from the control and treated rats with maximally stimulating LH for 4 h in both cases resulted in significant increases in testosterone production and in three newly synthesized polypeptides. These polypeptides, along with two others that changed little in response to LH, were similar in apparent molecular mass, 30 kDa, but differed in isoelectric point. Time-course studies revealed a temporal relationship between stimulation of the three 30-kDa proteins and of testosterone production. Western blot analysis identified the 30-kDa proteins as steroidogenic acute regulatory protein (StAR). The results of these studies, for the first time utilizing primary cultures of highly purified, testosterone-producing Leydig cells, provide further correlative evidence of a role for StAR protein in the acute regulation of Leydig cell testosterone biosynthesis by LH.
Collapse
Affiliation(s)
- L Luo
- Division of Reproductive Biology, Johns Hopkins University School of Hygiene and Public Health, Baltimore, Maryland 21205, USA.
| | | | | | | |
Collapse
|
49
|
Miller WL. Early steps in androgen biosynthesis: from cholesterol to DHEA. BAILLIERE'S CLINICAL ENDOCRINOLOGY AND METABOLISM 1998; 12:67-81. [PMID: 9890062 DOI: 10.1016/s0950-351x(98)80461-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Sex steroids, both androgens and oestrogens, are made from dehydroepiandrosterone (DHEA). The biosynthesis of DHEA from cholesterol entails four steps. First, cholesterol enters the mitochondria with the assistance of a recently described factor called the steroidogenic acute regulatory protein (StAR). Mutations in the StAR gene cause congenital lipoid adrenal hyperplasia. Next, cholesterol is converted to pregnenolone by the cholesterol side chain cleavage enzyme, P450scc. Mutations in the gene for P450scc and for its electron transfer partners, ferredoxin reductase and ferredoxin, have not been described and are probably incompatible with term gestation. Third, pregnenolone undergoes 17 alpha-hydroxylation by microsomal P450c17. Finally, 17-OH pregnenolone is converted to DHEA by the 17,20 lyase activity of P450c17. Isolated 17,20 lyase deficiency is rare, but the identification of its genetic basis and the study of P450c17 enzymology have recently clarified the mechanisms by which DHEA synthesis may be regulated in adrenarche, and have suggested that the lesion underlying polycystic ovary syndrome might involve a serine kinase.
Collapse
Affiliation(s)
- W L Miller
- Department of Paediatrics, University of California, San Francisco 94143-0978, USA
| |
Collapse
|
50
|
Ariyoshi N, Kim YC, Artemenko I, Bhattacharyya KK, Jefcoate CR. Characterization of the rat Star gene that encodes the predominant 3.5-kilobase pair mRNA. ACTH stimulation of adrenal steroids in vivo precedes elevation of Star mRNA and protein. J Biol Chem 1998; 273:7610-9. [PMID: 9516465 DOI: 10.1074/jbc.273.13.7610] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The steroidogenic acute regulatory protein (STAR) participates in steroidogenesis through the mitochondrial transfer of cholesterol to cytochrome P450scc. The rat adrenal Star gene is transcribed as a 3. 5-kilobase pair (kb) and 1.6-kb mRNA with the larger mRNA predominating ( approximately 85% of total) in vivo. Hypophysectomy (HPX) produced a 3-5-fold decrease in Star mRNA along with a loss of adrenal steroids, whereas P450scc mRNA decreased by less than 2-fold. Adrenocorticotropic hormone (ACTH) treatment of HPX rats maximally stimulated steroidogenesis rates within 5 min with over 10-fold elevation of steady state blood levels occurring within 10 min. For intact rats there was a 5-10-fold larger increase, paralleling previously observed elevations of cholesterol-cytochrome P450scc association and metabolism in subsequently isolated adrenal mitochondria. ACTH did not increase either total STAR protein or a group of modified forms until at least 30 min after completion of acute stimulation, indicating that elevated translation of STAR protein cannot alone mediate this acute stimulation. Parallel slow changes in STAR protein and corticosterone formation after ACTH treatment are consistent with participation of STAR forms as co-regulators of these hormonal responses. ACTH stimulation of HPX rats increased Star mRNA by 2.5-fold within 20 min and by 4.5-fold after 1 h, thus preceding the rise in the STAR protein. A 3.5-kb Star cDNA clone isolated from a rat adrenal cDNA library exhibited a 0.9-kb open reading frame and a 2.5-kb 3'-untranslated region (3'-UTR). The open reading frame sequence differed at only 12 amino acids from that of the mouse Star. The rat Star gene seven exons with exon 7 encoding the entire 2.5 kb of 3'-UTR of the 3.5-kb mRNA. The 3'-UTR sequence suggests that 1.6- and 3.5-kb mRNA are formed by an alternative usage of different polyadenylation signals. Multiple UUAUUUA(U/A)(U/A) motifs also suggest additional regulation through this extended 3'-UTR. Although elevation of STAR protein by ACTH does not cause the acute increase in adrenal cholesterol metabolism, changes in the turnover or distribution of an active STAR subfraction cannot be excluded.
Collapse
Affiliation(s)
- N Ariyoshi
- Department of Pharmacology, University of Wisconsin Medical School, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|