1
|
Irnaten M, O’Brien CJ. Calcium-Signalling in Human Glaucoma Lamina Cribrosa Myofibroblasts. Int J Mol Sci 2023; 24:ijms24021287. [PMID: 36674805 PMCID: PMC9862249 DOI: 10.3390/ijms24021287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/20/2022] [Accepted: 01/01/2023] [Indexed: 01/11/2023] Open
Abstract
Glaucoma is one of the most common causes of treatable visual impairment in the developed world, affecting approximately 64 million people worldwide, some of whom will be bilaterally blind from irreversible optic nerve damage. The optic nerve head is a key site of damage in glaucoma where there is fibrosis of the connective tissue in the lamina cribrosa (LC) extracellular matrix. As a ubiquitous second messenger, calcium (Ca2+) can interact with various cellular proteins to regulate multiple physiological processes and contribute to a wide range of diseases, including cancer, fibrosis, and glaucoma. Our research has shown evidence of oxidative stress, mitochondrial dysfunction, an elevated expression of Ca2+ entry channels, Ca2+-dependent pumps and exchangers, and an abnormal rise in cytosolic Ca2+ in human glaucomatous LC fibroblast cells. We have evidence that this increase is dependent on Ca2+ entry channels located in the plasma membrane, and its release is from internal stores in the endoplasmic reticulum (ER), as well as from the mitochondria. Here, we summarize some of the molecular Ca2+-dependent mechanisms related to this abnormal Ca2+-signalling in human glaucoma LC cells, with a view toward identifying potential therapeutic targets for ongoing optic neuropathy.
Collapse
|
2
|
Samanta K, Bakowski D, Amin N, Parekh AB. The whole-cell Ca 2+ release-activated Ca 2+ current, I CRAC , is regulated by the mitochondrial Ca 2+ uniporter channel and is independent of extracellular and cytosolic Na . J Physiol 2019; 598:1753-1773. [PMID: 30582626 PMCID: PMC7318671 DOI: 10.1113/jp276551] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/05/2018] [Indexed: 12/12/2022] Open
Abstract
Key points Ca2+ entry through Ca2+ release‐activated Ca2+ channels activates numerous cellular responses. Under physiological conditions of weak intracellular Ca2+ buffering, mitochondrial Ca2+ uptake regulates CRAC channel activity. Knockdown of the mitochondrial Ca2+ uniporter channel prevented the development of ICRAC in weak buffer but not when strong buffer was used instead. Removal of either extracellular or intra‐pipette Na+ had no effect on the selectivity, kinetics, amplitude, rectification or reversal potential of whole‐cell CRAC current. Knockdown of the mitochondrial Na+–Ca2+ exchanger did not prevent the development of ICRAC in strong or weak Ca2+ buffer. Whole cell CRAC current is Ca2+‐selective. Mitochondrial Ca2+ channels, and not Na+‐dependent transport, regulate CRAC channels under physiological conditions.
Abstract Ca2+ entry through store‐operated Ca2+ release‐activated Ca2+ (CRAC) channels plays a central role in activation of a range of cellular responses over broad spatial and temporal bandwidths. Mitochondria, through their ability to take up cytosolic Ca2+, are important regulators of CRAC channel activity under physiological conditions of weak intracellular Ca2+ buffering. The mitochondrial Ca2+ transporter(s) that regulates CRAC channels is unclear and could involve the 40 kDa mitochondrial Ca2+ uniporter (MCU) channel or the Na+–Ca2+–Li+ exchanger (NCLX). Here, we have investigated the involvement of these mitochondrial Ca2+ transporters in supporting the CRAC current (ICRAC) under a range of conditions in RBL mast cells. Knockdown of the MCU channel impaired the activation of ICRAC under physiological conditions of weak intracellular Ca2+ buffering. In strong Ca2+ buffer, knockdown of the MCU channel did not inhibit ICRAC development demonstrating that mitochondria regulate CRAC channels under physiological conditions by buffering of cytosolic Ca2+ via the MCU channel. Surprisingly, manipulations that altered extracellular Na+, cytosolic Na+ or both failed to inhibit the development of ICRAC in either strong or weak intracellular Ca2+ buffer. Knockdown of NCLX also did not affect ICRAC. Prolonged removal of external Na+ also had no significant effect on store‐operated Ca2+ entry, on cytosolic Ca2+ oscillations generated by receptor stimulation or on CRAC channel‐driven gene expression. In the RBL mast cell, Ca2+ flux through the MCU but not NCLX is indispensable for activation of ICRAC. Ca2+ entry through Ca2+ release‐activated Ca2+ channels activates numerous cellular responses. Under physiological conditions of weak intracellular Ca2+ buffering, mitochondrial Ca2+ uptake regulates CRAC channel activity. Knockdown of the mitochondrial Ca2+ uniporter channel prevented the development of ICRAC in weak buffer but not when strong buffer was used instead. Removal of either extracellular or intra‐pipette Na+ had no effect on the selectivity, kinetics, amplitude, rectification or reversal potential of whole‐cell CRAC current. Knockdown of the mitochondrial Na+–Ca2+ exchanger did not prevent the development of ICRAC in strong or weak Ca2+ buffer. Whole cell CRAC current is Ca2+‐selective. Mitochondrial Ca2+ channels, and not Na+‐dependent transport, regulate CRAC channels under physiological conditions.
Collapse
Affiliation(s)
- Krishna Samanta
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Daniel Bakowski
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Nader Amin
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Anant B Parekh
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| |
Collapse
|
3
|
Smani T, Domínguez-Rodriguez A, Callejo-García P, Rosado JA, Avila-Medina J. Phospholipase A2 as a Molecular Determinant of Store-Operated Calcium Entry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:111-31. [PMID: 27161227 DOI: 10.1007/978-3-319-26974-0_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Activation of phospholipases A2 (PLA2) leads to the generation of biologically active lipid products that can affect numerous cellular events. Ca(2+)-independent PLA2 (iPLA2), also called group VI phospholipase A2, is one of the main types forming the superfamily of PLA2. Beside of its role in phospholipid remodeling, iPLA2 has been involved in intracellular Ca(2+) homeostasis regulation. Several studies proposed iPLA2 as an essential molecular player of store operated Ca(2+) entry (SOCE) in a large number of excitable and non-excitable cells. iPLA2 activation releases lysophosphatidyl products, which were suggested as agonists of store operated calcium channels (SOCC) and other TRP channels. Herein, we will review the important role of iPLA2 on the intracellular Ca(2+) handling focusing on its role in SOCE regulation and its implication in physiological and/or pathological processes.
Collapse
Affiliation(s)
- Tarik Smani
- Department of Medical Physiology and Biophysic, Institute of Biomedicine of Seville (IBiS), University Hospital of Virgen del Rocío/CSIC/University of Seville, Sevilla, 41013, Spain.
| | - Alejandro Domínguez-Rodriguez
- Department of Medical Physiology and Biophysic, Institute of Biomedicine of Seville (IBiS), University Hospital of Virgen del Rocío/CSIC/University of Seville, Sevilla, 41013, Spain
| | - Paula Callejo-García
- Department of Medical Physiology and Biophysic, Institute of Biomedicine of Seville (IBiS), University Hospital of Virgen del Rocío/CSIC/University of Seville, Sevilla, 41013, Spain
| | - Juan A Rosado
- Departamento de Fisiología, University of Extremadura, Cáceres, Spain
| | - Javier Avila-Medina
- Department of Medical Physiology and Biophysic, Institute of Biomedicine of Seville (IBiS), University Hospital of Virgen del Rocío/CSIC/University of Seville, Sevilla, 41013, Spain
| |
Collapse
|
4
|
Albarran L, Lopez JJ, Salido GM, Rosado JA. Historical Overview of Store-Operated Ca(2+) Entry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:3-24. [PMID: 27161222 DOI: 10.1007/978-3-319-26974-0_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Calcium influx is an essential mechanism for the activation of cellular functions both in excitable and non-excitable cells. In non-excitable cells, activation of phospholipase C by occupation of G protein-coupled receptors leads to the generation of inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG), which, in turn, initiate two Ca(2+) entry pathways: Ca(2+) release from intracellular Ca(2+) stores, signaled by IP3, leads to the activation of store-operated Ca(2+) entry (SOCE); on the other hand, DAG activates a distinct second messenger-operated pathway. SOCE is regulated by the filling state of the intracellular calcium stores. The search for the molecular components of SOCE has identified the stromal interaction molecule 1 (STIM1) as the Ca(2+) sensor in the endoplasmic reticulum and Orai1 as a store-operated channel (SOC) subunit. Furthermore, a number of reports have revealed that several members of the TRPC family of channels also take part of the SOC macromolecular complex. This introductory chapter summarizes the early pieces of evidence that led to the concept of SOCE and the components of the store-operated signaling pathway.
Collapse
Affiliation(s)
- Letizia Albarran
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, Av. Universidad s/n, 10003, Cáceres, Spain
| | - Jose J Lopez
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, Av. Universidad s/n, 10003, Cáceres, Spain
| | - Ginés M Salido
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, Av. Universidad s/n, 10003, Cáceres, Spain
| | - Juan A Rosado
- Departamento de Fisiología, University of Extremadura, Cáceres, Spain.
| |
Collapse
|
5
|
Redondo PC, Rosado JA. Store-operated calcium entry: unveiling the calcium handling signalplex. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 316:183-226. [PMID: 25805125 DOI: 10.1016/bs.ircmb.2015.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Store-operated Ca(2+) entry (SOCE) is an important mechanism for Ca(2+) influx in non-excitable cells, also present in excitable cells. The activation of store-operated channels (SOCs) is finely regulated by the filling state of the intracellular agonist-sensitive Ca(2+) compartments, and both, the mechanism of sensing the Ca(2+) stores and the nature and functional properties of the SOCs, have been a matter of intense investigation and debate. The identification of STIM1 as the endoplasmic reticulum Ca(2+) sensor and both Orai1, as the pore-forming subunit of the channels mediating the Ca(2+)-selective store-operated current, and the members of the TRPC subfamily of proteins, as the channels mediating the cation-permeable SOCs, has shed new light on the underlying events. This review summarizes the initial hypothesis and the current advances on the mechanism of activation of SOCE.
Collapse
Affiliation(s)
- Pedro C Redondo
- Department of Physiology, University of Extremadura, Cáceres, Spain
| | - Juan A Rosado
- Department of Physiology, University of Extremadura, Cáceres, Spain
| |
Collapse
|
6
|
Abstract
Reviewed are new concepts and models of Ca(2+) signalling originating from work with various animal cells, as well as the applicability of these models to the signalling systems used by blood platelets. The following processes and mechanisms are discussed: Ca(2+) oscillations and waves; Ca(2+) -induced Ca(2+) release; involvement of InsP(3)-receptors and quanta1 release of Ca(2+); different pathways of phospholipase C activation; heterogeneity in the intracellular Ca(2+) stores; store-and receptor-regulated Ca(2+) entry. Additionally, some typical aspects of Ca(2+) signalling in platelets are reviewed: involvement of protein serine/threonine and tyrosine kinases in the regulation of signal transduction; possible functions of platelet glycoproteins; and the importance of Ca(2+) for the exocytotic and procoagulant responses.
Collapse
Affiliation(s)
- J W Heemskerk
- Departments of Human Biology/ Biochemistry, University of Limburg, P.O. 616, 6200, MD, Maastricht, The Netherlands
| | | |
Collapse
|
7
|
|
8
|
Chung SC, Limnander A, Kurosaki T, Weiss A, Korenbrot JI. Coupling Ca2+ store release to Icrac channel activation in B lymphocytes requires the activity of Lyn and Syk kinases. ACTA ACUST UNITED AC 2007; 177:317-28. [PMID: 17452533 PMCID: PMC2064139 DOI: 10.1083/jcb.200702050] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Activation of the B cell receptor complex in B lymphocytes causes Ca2+ release from intracellular stores, which, in turn, activates ion channels known as Icrac. We investigated the mechanisms that link Ca2+ store release to channel gating in DT40 B lymphocyte cell lines genetically manipulated to suppress the expression of several tyrosine kinases: Btk, Lyn, Syk, and the Blnk adaptor molecule. The simultaneous but not the independent suppression of Lyn and Syk expression prevents the activation of Icrac without interfering with thapsigargin-sensitive Ca2+ store release. Icrac activation by Ca2+ is reversed in mutant cells by the homologous expression of the missing kinases. Pharmacological inhibition of kinase activity by LavendustinA and PP2 cause the same functional deficit as the genetic suppression of enzyme expression. Biochemical assays demonstrate that kinase activity is required as a tonic signal: targets must be phosphorylated to link Ca2+ store release to Icrac gating. The action of kinases on Icrac activation does not arise from control of the expression level of the stromal interaction molecule 1 and Orai1 proteins.
Collapse
Affiliation(s)
- S Clare Chung
- Department of Physiology, School of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
9
|
Cayouette S, Boulay G. Intracellular trafficking of TRP channels. Cell Calcium 2007; 42:225-32. [PMID: 17368756 DOI: 10.1016/j.ceca.2007.01.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 01/30/2007] [Accepted: 01/31/2007] [Indexed: 11/18/2022]
Abstract
Thirteen years ago, it was suggested that exocytotic insertion of store-operated channels into the plasma membrane lead to increased Ca(2+) entry in non-excitable cells upon G protein-coupled or tyrosine kinase receptor stimulation. Since the discovery of the TRP channel superfamily and their involvement in receptor-induced Ca(2+) entry, many studies have shown that different members of the TRP superfamily translocate into the plasma membrane upon stimulation. While the exact molecular mechanism by which TRP channels insert into the plasma membrane is unknown, TRP-binding proteins have been shown to directly regulate this trafficking. This review summarizes recent advances related to the mechanism of TRP channel trafficking, focusing on the role of TRP-binding proteins.
Collapse
Affiliation(s)
- Sylvie Cayouette
- Department of Pharmacology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | |
Collapse
|
10
|
Woodard GE, Sage SO, Rosado JA. Transient Receptor Potential Channels and Intracellular Signaling. ACTA ACUST UNITED AC 2007; 256:35-67. [PMID: 17241904 DOI: 10.1016/s0074-7696(07)56002-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
The transient receptor potential (TRP) family of ion channels is composed of more than 50 functionally versatile cation-permeant ion channels expressed in most mammalian cell types. Considerable research has been brought to bear on the members of this family, especially with regard to their possible role as store-operated calcium channels, although studies have provided evidence that TRP channels exhibit a number of regulatory and functional aspects. Endogenous and transiently expressed TRP channels can be activated by different mechanisms grouped into four main categories: receptor-operated activation, store depletion-mediated activation, ligand-induced activation, and direct activation. This article reviews the biochemical characteristics of the different members of the TRP family and summarizes their involvement in a number of physiological events ranging from sensory transduction to development, which might help in understanding the relationship between TRP channel dysfunction and the development of several diseases.
Collapse
Affiliation(s)
- Geoffrey E Woodard
- Metabolic Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland, USA
| | | | | |
Collapse
|
11
|
Kuwahara M, Kuwahara M. Store-mediated calcium entry in pleural mesothelial cells. Eur J Pharmacol 2006; 542:16-21. [PMID: 16824512 DOI: 10.1016/j.ejphar.2006.05.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Revised: 05/15/2006] [Accepted: 05/16/2006] [Indexed: 11/18/2022]
Abstract
Store-mediated Ca2+ entry is thought as the main pathway for Ca2+ influx in non-excitable cells. Although a role for the actin cytoskeleton in store-mediated Ca2+ entry has been proposed in some cell types, the role of actin cytoskeleton in store-mediated Ca2+ entry is still a controversy. To address this question, the effects of cytoskeletal modifiers on store-mediated Ca2+ entry in pleural mesothelial cells were examined. Thapsigargin (1 microM) induced a sufficient signal for the activation of store-mediated Ca2+ entry in pleural mesothelial cells. In the absence of extracellular Ca2+, thapsigargin induced only a transient elevation of [Ca2+]i. Moreover, re-addition of Ca2+ increased the elevation of [Ca2+]i. Passive elevations in [Ca2+]i without thapsigargin, which is induced from Ca2+ containing solution switch to Ca2+ free solution and re-add Ca2+ containing solution, were not observed in pleural mesothelial cells. Thapsigargin-induced Ca2+ entry was still present after nifedipine (1 microM) treatment. However, SKF96365 (1 microM) blocked thapsigargin-induced Ca2+ entry. Mycalolide B (1 microM) completely disrupts actin cytoskeleton in pleural mesothelial cells, but thapsigargin-induced store-mediated Ca2+ entry was preserved. Jasplakinolide (3 microM) prevented thapsigargin-induced store-mediated Ca2+ entry. These results suggest that store-mediated Ca2+ entry in pleural mesothelial cells may be mediated by a recently proposed secretion-like coupling model for store-mediated Ca2+ entry.
Collapse
Affiliation(s)
- Masayoshi Kuwahara
- Department of Comparative Pathophysiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | | |
Collapse
|
12
|
Minshall RD, Malik AB. Transport across the endothelium: regulation of endothelial permeability. Handb Exp Pharmacol 2006:107-44. [PMID: 16999218 DOI: 10.1007/3-540-32967-6_4] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
An important function of the endothelium is to regulate the transport of liquid and solutes across the semi-permeable vascular endothelial barrier. Two cellular pathways controlling endothelial barrier function have been identified. The transcellular pathway transports plasma proteins of the size of albumin or greater via the process of transcytosis in vesicle carriers originating from cell surface caveolae. Specific signalling cues are able to induce the internalisation of caveolae and their movement to the basal side of the endothelium. Caveolin-1, the primary structural protein required for the formation of caveolae, is also important in regulating vesicle trafficking through the cell by controlling the activity and localisation of signalling molecules that mediate vesicle fission, endocytosis, fusion and finally exocytosis. An important function of the transcytotic pathways is to regulate the delivery of albumin and immunoglobulins, thereby controlling tissue oncotic pressure and host-defence. The paracellular pathway induced during inflammation is formed by gaps between endothelial cells at the level of adherens and tight junctional complexes. Paracellular permeability is increased by second messenger signalling pathways involving Ca2+ influx via activation of store-operated channels, protein kinase Calpha (PKCalpha), and Rho kinase that together participate in the stimulation of myosin light chain phosphorylation, actin-myosin contraction, and disruption of the junctions. In this review of the field, we discuss the current understanding of the signalling pathways regulating paracellular and transcellular endothelial permeability.
Collapse
Affiliation(s)
- R D Minshall
- Department of Pharmacology (m/c 868), University of Illinois, 835 S. Wolcott Avenue, Chicago, IL 60612, USA
| | | |
Collapse
|
13
|
Ben-Amor N, Redondo PC, Bartegi A, Pariente JA, Salido GM, Rosado JA. A role for 5,6-epoxyeicosatrienoic acid in calcium entry by de novo conformational coupling in human platelets. J Physiol 2005; 570:309-23. [PMID: 16308346 PMCID: PMC1464301 DOI: 10.1113/jphysiol.2005.100800] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A major pathway for Ca(2+) entry in non-excitable cells is activated following depletion of intracellular Ca(2+) stores. A de novo conformational coupling between elements in the plasma membrane (PM) and Ca(2+) stores has been proposed as the most likely mechanism to activate this capacitative Ca(2+) entry (CCE) in several cell types, including platelets. Here we report that a cytochrome P450 metabolite, 5,6-EET, might be a component of the de novo conformational coupling in human platelets. In these cells, 5,6-EET induces divalent cation entry without having any detectable effect on Ca(2+) store depletion. 5,6-EET-induced Ca(2+) entry was sensitive to the CCE blockers 2-APB, lanthanum, SKF-96365 and nickel and impaired by incubation with anti-hTRPC1 antibody. Ca(2+) entry stimulated by low concentrations of thapsigargin, which selectively depletes the dense tubular system and induces EET production, was impaired by the cytochrome P450 inhibitor 17-ODYA, which has no effect on CCE mediated by depletion of the acidic stores using 2,5-di-(tert-butyl)-1,4-hydroquinone. We have found that 5,6-EET-induced Ca(2+) entry requires basal levels of H(2)O(2), which might maintain a redox state favourable for this event. Finally, our results indicate that 5,6-EET induces the activation of tyrosine kinase proteins and the reorganization of the actin cytoskeleton, which might provide a support for the transport of portions of the Ca(2+) store towards the PM to facilitate de novo coupling between IP(3)R type II and hTRPC1 detected by coimmunoprecipitation. We propose that the involvement of 5,6-EET in TG-induced coupling between IP(3)R type II and hTRPC1 and subsequently CCE is compatible with the de novo conformational coupling in human platelets.
Collapse
Affiliation(s)
- Nidhal Ben-Amor
- Unité de Recherche de Biochimie, Institute Superieur de Biotechnologie, Monastir, Tunisia
| | | | | | | | | | | |
Collapse
|
14
|
Liu Q, Walker SA, Gao D, Taylor JA, Dai YF, Arkell RS, Bootman MD, Roderick HL, Cullen PJ, Lockyer PJ. CAPRI and RASAL impose different modes of information processing on Ras due to contrasting temporal filtering of Ca2+. ACTA ACUST UNITED AC 2005; 170:183-90. [PMID: 16009725 PMCID: PMC1351313 DOI: 10.1083/jcb.200504167] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The versatility of Ca2+ as a second messenger lies in the complex manner in which Ca2+ signals are generated. How information contained within the Ca2+ code is interpreted underlies cell function. Recently, we identified CAPRI and RASAL as related Ca2+-triggered Ras GTPase-activating proteins. RASAL tracks agonist-stimulated Ca2+ oscillations by repetitively associating with the plasma membrane, yet CAPRI displays a long-lasting Ca2+-triggered translocation that is refractory to cytosolic Ca2+ oscillations. CAPRI behavior is Ca2+- and C2 domain–dependent but sustained recruitment is predominantly Ca2+ independent, necessitating integration of Ca2+ by the C2 domains with agonist-evoked plasma membrane interaction sites for the pleckstrin homology domain. Using an assay to monitor Ras activity in real time, we correlate the spatial and temporal translocation of CAPRI with the deactivation of H-Ras. CAPRI seems to low-pass filter the Ca2+ signal, converting different intensities of stimulation into different durations of Ras activity in contrast to the preservation of Ca2+ frequency information by RASAL, suggesting sophisticated modes of Ca2+-regulated Ras deactivation.
Collapse
Affiliation(s)
- Qing Liu
- Laboratory of Molecular Signaling, The Babraham Institute, Babraham Research Campus, Cambridge CB2 4AT, England, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
In electrically nonexcitable cells, Ca2+influx is essential for regulating a host of kinetically distinct processes involving exocytosis, enzyme control, gene regulation, cell growth and proliferation, and apoptosis. The major Ca2+entry pathway in these cells is the store-operated one, in which the emptying of intracellular Ca2+stores activates Ca2+influx (store-operated Ca2+entry, or capacitative Ca2+entry). Several biophysically distinct store-operated currents have been reported, but the best characterized is the Ca2+release-activated Ca2+current, ICRAC. Although it was initially considered to function only in nonexcitable cells, growing evidence now points towards a central role for ICRAC-like currents in excitable cells too. In spite of intense research, the signal that relays the store Ca2+content to CRAC channels in the plasma membrane, as well as the molecular identity of the Ca2+sensor within the stores, remains elusive. Resolution of these issues would be greatly helped by the identification of the CRAC channel gene. In some systems, evidence suggests that store-operated channels might be related to TRP homologs, although no consensus has yet been reached. Better understood are mechanisms that inactivate store-operated entry and hence control the overall duration of Ca2+entry. Recent work has revealed a central role for mitochondria in the regulation of ICRAC, and this is particularly prominent under physiological conditions. ICRACtherefore represents a dynamic interplay between endoplasmic reticulum, mitochondria, and plasma membrane. In this review, we describe the key electrophysiological features of ICRACand other store-operated Ca2+currents and how they are regulated, and we consider recent advances that have shed insight into the molecular mechanisms involved in this ubiquitous and vital Ca2+entry pathway.
Collapse
Affiliation(s)
- Anant B Parekh
- Department of Physiology, University of Oxford, United Kingdom.
| | | |
Collapse
|
16
|
Abstract
The modulation of inositol-1,4,5-trisphosphate (IP3), a product of phospholipase C (PLC) activity, is one of a common signaling mechanism used in many biological systems. B lymphocytes also rely on IP3 and subsequent calcium signaling to ensure appropriate developmental outcomes, as well as antigen-specific responses. In establishing the optimal intensity and duration of the PLC-gamma activity, an important role has emerged for adaptor molecules, which direct the appropriate subcellular localization of PLC-gamma and induce its conformational changes. Generated IP3 binds to IP3 receptors located on the endoplasmic reticulum (ER), which in turn is essential for triggering calcium release from the ER and subsequent entry of extracellular calcium by so-called Ca2+ entry channels. Recent data has begun to shed new light on the connection between the calcium release and the influx of extracellular calcium, and the molecular identity of the Ca2+ entry channels.
Collapse
MESH Headings
- Allosteric Regulation
- Animals
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Calcium/immunology
- Calcium/metabolism
- Calcium Channels/immunology
- Calcium Channels/metabolism
- Endoplasmic Reticulum/immunology
- Endoplasmic Reticulum/metabolism
- Humans
- Inositol 1,4,5-Trisphosphate/immunology
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate Receptors/genetics
- Inositol 1,4,5-Trisphosphate Receptors/immunology
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- NFATC Transcription Factors/genetics
- NFATC Transcription Factors/immunology
- NFATC Transcription Factors/metabolism
- Phospholipase C gamma/genetics
- Phospholipase C gamma/immunology
- Phospholipase C gamma/metabolism
- Protein Transport/immunology
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction/immunology
- Transcriptional Activation/immunology
Collapse
Affiliation(s)
- Masaki Hikida
- Laboratory for Lymphocyte Differentiation, RIKEN Research Center for Allergy and Immunology, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | | |
Collapse
|
17
|
Zagranichnaya TK, Wu X, Danos AM, Villereal ML. Gene expression profiles in HEK-293 cells with low or high store-operated calcium entry: can regulatory as well as regulated genes be identified? Physiol Genomics 2004; 21:14-33. [PMID: 15623568 DOI: 10.1152/physiolgenomics.00099.2004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gene expression profiles were generated using cDNA microarray technology for clones of human embryonic kidney (HEK)-293 cells selected to have either high or low levels of store-operated Ca2+ entry (SOCE). For five high clones, three low clones, and control HEK-293 cells, duplicate Affymetrix U133A human gene arrays were run after extraction of total RNA from cells growing in the presence of serum. Of the approximately 22,000 genes represented on the microarray, 58 genes had readings at least twofold higher, while 32 genes had readings at least twofold lower, in all five high SOCE clones compared with control HEK-293 cells. In the low SOCE clones, 92 genes had readings at least twofold higher, while 58 genes had readings at least twofold lower, than in HEK-293 cells. Microarray results were confirmed for 18 selected genes by real-time RT-PCR analysis; for six of those genes, predicted changes in the low SOCE clone were confirmed by an alternative method, monitoring mRNA levels in HEK-293 with SOCE decreased by expression of small interfering (si)RNA to canonical transient receptor potential protein-1. Genes regulated by SOCE are involved in signal transduction, transcription, apoptosis, metabolism, and membrane transport. These data provide insight into the physiological role of SOCE. In addition, a potential regulator of SOCE, insulin receptor substrate (IRS)-2, has been identified. A reduction of IRS-2 levels by siRNA methods in two high clones dramatically reduced SOCE, whereas overexpression of IRS-2 in a low SOCE clone elevated SOCE.
Collapse
Affiliation(s)
- Tatiana K Zagranichnaya
- Department of Neurobiology, Pharmacology and Physiology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
18
|
Watson EL, Jacobson KL, Singh JC, DiJulio DH. Arachidonic acid regulates two Ca2+ entry pathways via nitric oxide. Cell Signal 2004; 16:157-65. [PMID: 14636886 DOI: 10.1016/s0898-6568(03)00102-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Several regulated Ca2+ entry pathways have been identified, with capacitative Ca2+ entry (CCE) being the most characterized. In the present study, we examined Ca2+ entry pathways regulated by arachidonic acid (AA) in mouse parotid acini. AA induced Ca2+ release from intracellular stores, and increased Ca2+ entry. AA inhibited thapsigargin (Tg)-induced CCE, whereas AA activated Ca2+ entry when CCE was blocked by gadolinium (Gd3+). AA-induced Ca2+ entry was associated with depletion of calcium from ryanodine-sensitive stores; both AA-induced Ca2+ release and Ca2+ entry were inhibited by tetracaine and the nitric oxide synthase (NOS) inhibitor, 7-nitroindazole (7-NI). The nitric oxide (NO) donor, 1,2,3,4-ox-triazolium,5-amino-3-(3,4-dichlorophenyl)-chloride (GEA 3162), but not 8-bromo-cGMP, mimicked the effects of AA in inhibiting CCE. Results suggest that AA acts via nitric acid to inhibit the CCE pathway that is selective for Ca2+, and to activate a second Ca2+ entry pathway that is dependent on depletion of Ca2+ from ryanodine-sensitive stores.
Collapse
Affiliation(s)
- Eileen L Watson
- Department of Oral Biology, University of Washington, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|
19
|
Rosado JA, López JJ, Harper AGS, Harper MT, Redondo PC, Pariente JA, Sage SO, Salido GM. Two Pathways for Store-mediated Calcium Entry Differentially Dependent on the Actin Cytoskeleton in Human Platelets. J Biol Chem 2004; 279:29231-5. [PMID: 15136566 DOI: 10.1074/jbc.m403509200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A major pathway for stimulated Ca(2+) entry in non-excitable cells is activated following depletion of intracellular Ca(2+) stores. Secretion-like coupling between elements in the plasma membrane (PM) and Ca(2+) stores has been proposed as the most likely mechanism to activate this store-mediated Ca(2+) entry (SMCE) in several cell types. Here we identify two mechanisms for SMCE in human platelets activated by depletion of two independent Ca(2+) pools, which are differentially modulated by the actin cytoskeleton. Ca(2+) entry induced by depletion of a 2,5-di-(tert-butyl)-1,4-hydroquinone (TBHQ)-sensitive pool is increased by disassembly of the actin cytoskeleton and that induced by a TBHQ-insensitive pool is reduced. Stabilization of the actin cytoskeleton prevented Ca(2+) entry by both mechanisms. We propose that the membrane-associated actin network prevents constitutive Ca(2+) entry via both pathways. Reorganization of the actin cytoskeleton permits the activation of Ca(2+) entry via both mechanisms, but only SMCE activated by the TBHQ-insensitive pool requires new actin polymerization, which may support membrane trafficking toward the PM.
Collapse
Affiliation(s)
- Juan A Rosado
- Department of Physiology, University of Extremadura, 10071 Cáceres, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Mehta D, Ahmmed GU, Paria BC, Holinstat M, Voyno-Yasenetskaya T, Tiruppathi C, Minshall RD, Malik AB. RhoA interaction with inositol 1,4,5-trisphosphate receptor and transient receptor potential channel-1 regulates Ca2+ entry. Role in signaling increased endothelial permeability. J Biol Chem 2003; 278:33492-500. [PMID: 12766172 DOI: 10.1074/jbc.m302401200] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We tested the hypothesis that RhoA, a monomeric GTP-binding protein, induces association of inositol trisphosphate receptor (IP3R) with transient receptor potential channel (TRPC1), and thereby activates store depletion-induced Ca2+ entry in endothelial cells. We showed that RhoA upon activation with thrombin associated with both IP3R and TRPC1. Thrombin also induced translocation of a complex consisting of Rho, IP3R, and TRPC1 to the plasma membrane. IP3R and TRPC1 translocation and association required Rho activation because the response was not seen in C3 transferase (C3)-treated cells. Rho function inhibition using Rho dominant-negative mutant or C3 dampened Ca2+ entry regardless of whether Ca2+ stores were emptied by thrombin, thapsigargin, or inositol trisphosphate. Rho-induced association of IP3R with TRPC1 was dependent on actin filament polymerization because latrunculin (which inhibits actin polymerization) prevented both the association and Ca2+ entry. We also showed that thrombin produced a sustained Rho-dependent increase in cytosolic Ca2+ concentration [Ca2+]i in endothelial cells overexpressing TRPC1. We further showed that Rho-activated Ca2+ entry via TRPC1 is important in the mechanism of the thrombin-induced increase in endothelial permeability. In summary, Rho activation signals interaction of IP3R with TRPC1 at the plasma membrane of endothelial cells, and triggers Ca2+ entry following store depletion and the resultant increase in endothelial permeability.
Collapse
MESH Headings
- ADP Ribose Transferases/pharmacology
- Actins/chemistry
- Botulinum Toxins/pharmacology
- Calcium/metabolism
- Calcium Channels/chemistry
- Calcium Channels/metabolism
- Calcium Channels/physiology
- Cells, Cultured
- Electrophoresis, Polyacrylamide Gel
- Electrophysiology
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Genes, Dominant
- Humans
- Inositol 1,4,5-Trisphosphate Receptors
- Microscopy, Confocal
- Models, Biological
- Patch-Clamp Techniques
- Precipitin Tests
- Protein Binding
- Protein Transport
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Cytoplasmic and Nuclear/metabolism
- Signal Transduction
- TRPC Cation Channels
- Thapsigargin/chemistry
- Thapsigargin/pharmacology
- Thrombin/chemistry
- Time Factors
- Transfection
- rho GTP-Binding Proteins/metabolism
- rhoA GTP-Binding Protein/chemistry
- rhoA GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
- Dolly Mehta
- Department of Pharmacology, College of Medicine, The University of Illinois, Chicago, Illinois 60612, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Venkatachalam K, van Rossum DB, Patterson RL, Ma HT, Gill DL. The cellular and molecular basis of store-operated calcium entry. Nat Cell Biol 2002; 4:E263-72. [PMID: 12415286 DOI: 10.1038/ncb1102-e263] [Citation(s) in RCA: 294] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The impact of calcium signalling on so many areas of cell biology reflects the crucial role of calcium signals in the control of diverse cellular functions. Despite the precision with which spatial and temporal details of calcium signals have been resolved, a fundamental aspect of the generation of calcium signals -- the activation of 'store-operated channels' (SOCs) -- remains a molecular and mechanistic mystery. Here we review new insights into the exchange of signals between the endoplasmic reticulum (ER) and plasma membrane that result in activation of calcium entry channels mediating crucial long-term calcium signals.
Collapse
Affiliation(s)
- Kartik Venkatachalam
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
22
|
Harriman JF, Liu XL, Aleo MD, Machaca K, Schnellmann RG. Endoplasmic reticulum Ca(2+) signaling and calpains mediate renal cell death. Cell Death Differ 2002; 9:734-41. [PMID: 12058278 DOI: 10.1038/sj.cdd.4401029] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2001] [Revised: 01/08/2002] [Accepted: 01/16/2002] [Indexed: 11/09/2022] Open
Abstract
The goal of the current study was to determine the roles of ATP content, endoplasmic reticulum (ER) Ca(2+) stores, cytosolic free Ca(2+) (Ca(2+)(f)) and calpain activity in the signaling of rabbit renal proximal tubular (RPT) cell death (oncosis). Increasing concentrations (0.3-10 microM) of the mitochondrial inhibitor antimycin A produced rapid ATP depletion that correlated to a rapid and sustained increase in Ca(2+)(f), but not phospholipase C activation. The ER Ca(2+)-ATPase inhibitors thapsigargin (5 microM) or cyclopiazonic acid (100 microM) alone produced similar but transient increases in Ca(2+)(f). Pretreatment with thapsigargin prevented antimycin A-induced increases in Ca(2+)(f) and antimycin A pretreatment prevented thapsigargin-induced increases in Ca(2+)(f). Calpain activity increased in conjunction with ER Ca(2+) release. Pretreatment, but not post-treatment, with thapsigargin or cyclopiazonic acid prevented antimycin A-induced cell death. These data demonstrate that extensive ATP depletion signals oncosis through ER Ca(2+) release, a sustained increase in Ca(2+)(f) and calpain activation. Depletion of ER Ca(2+) stores prior to toxicant exposure prevents increases in Ca(2+)(f) and oncosis.
Collapse
Affiliation(s)
- J F Harriman
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Slot 638, Little Rock, Arkansas 72205-7199, USA
| | | | | | | | | |
Collapse
|
23
|
Zitt C, Halaszovich CR, Lückhoff A. The TRP family of cation channels: probing and advancing the concepts on receptor-activated calcium entry. Prog Neurobiol 2002; 66:243-64. [PMID: 11960680 DOI: 10.1016/s0301-0082(02)00002-3] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Stimulation of membrane receptors linked to a phospholipase C and the subsequent production of the second messengers diacylglycerol and inositol-1,4,5-trisphosphate (InsP(3)) is a signaling pathway of fundamental importance in eukaryotic cells. Signaling downstream of these initial steps involves mobilization of Ca(2+) from intracellular stores and Ca(2+) influx through the plasma membrane. For this influx, several contrasting mechanisms may be responsible but particular relevance is attributed to the induction of Ca(2+) influx as consequence of depletion of intracellular calcium stores. This phenomenon (frequently named store-operated calcium entry, SOCE), in turn, may be brought about by various signals, including soluble cytosolic factors, interaction of proteins of the endoplasmic reticulum with ion channels in the plasma membrane, and a secretion-like coupling involving translocation of channels to the plasma membrane. Experimental approaches to analyze these mechanisms have been considerably advanced by the discovery of mammalian homologs of the Drosophila cation channel transient receptor potential (TRP). Some members of the TRP family can be expressed to Ca(2+)-permeable channels that enable SOCE; other members form channels activated independently of stores. TRP proteins may be an essential part of endogenous Ca(2+) entry channels but so far expression of most TRP cDNAs has not resulted in restitution of channels found in any mammalian cells, suggesting the requirement for further unknown subunits. A major exception is CaT1, a TRP channel demonstrated to provide Ca(2+)-selective, store-operated currents identical to those characterized in several cell types. Ongoing and future research on TRP channels will be crucial to understand the molecular basis of receptor-mediated Ca(2+) entry, with respect to the structure of the entry channels as well as to the mechanisms of its activation and regulation.
Collapse
Affiliation(s)
- Christof Zitt
- Institut für Physiologie, Universitätsklinikum der RWTH Aachen, Pauwelsstrasse 30, D-52074, Aachen, Germany
| | | | | |
Collapse
|
24
|
Zivadinovic D, Tomić M, Yuan D, Stojilkovic SS. Cell-type specific messenger functions of extracellular calcium in the anterior pituitary. Endocrinology 2002; 143:445-55. [PMID: 11796497 DOI: 10.1210/endo.143.2.8637] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Calcium can serve not only as an intracellular messenger, but also as an extracellular messenger controlling the gating properties of plasma membrane channels and acting as an agonist for G protein-coupled Ca(2+)-sensing receptors. Here we studied the potential extracellular messenger functions of this ion in anterior pituitary cells. Depletion and repletion of the extracellular Ca(2+) concentration ([Ca(2+)]e) induced transient elevations in the intracellular Ca(2+) concentration ([Ca(2+)]i), and elevations in [Ca(2+)]e above physiological levels decreased [Ca(2+)]i in somatotrophs and lactotrophs, but not in gonadotrophs. The amplitudes and duration of [Ca(2+)]i responses depended on the [Ca(2+)]e and its rate of change, which resulted exclusively from modulation of spontaneous voltage-gated Ca(2+) influx. Changes in [Ca(2+)]e also affected GH and PRL secretion. The PRL secretory profiles paralleled the [Ca(2+)]i profiles in lactotrophs, whereas GH secretion was also stimulated by [Ca(2+)]e independently of the status of voltage-gated Ca(2+) influx. [Ca(2+)]e modulated GH secretion in a dose-dependent manner, with EC(50) values of 0.75 and 2.25 mM and minimum secretion at about 1.5 mM. In a parallel experiment, cAMP accumulation progressively increased with elevation of [Ca(2+)]e, whereas inositol phosphate levels were not affected. These results indicate the cell type-specific role of [Ca(2+)]e in the control of Ca(2+) signaling and secretion.
Collapse
Affiliation(s)
- Dragoslava Zivadinovic
- Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-4510, USA
| | | | | | | |
Collapse
|
25
|
Wu S, Sangerman J, Li M, Brough GH, Goodman SR, Stevens T. Essential control of an endothelial cell ISOC by the spectrin membrane skeleton. J Cell Biol 2001; 154:1225-33. [PMID: 11564759 PMCID: PMC2150809 DOI: 10.1083/jcb.200106156] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mechanism(s) underlying activation of store-operated Ca2+ entry currents, ISOC, remain incompletely understood. F-actin configuration is an important determinant of channel function, although the nature of interaction between the cytoskeleton and ISOC channels is unknown. We examined whether the spectrin membrane skeleton couples Ca2+ store depletion to Ca2+ entry. Thapsigargin activated an endothelial cell ISOC (-45 pA at -80 mV) that reversed at +40 mV, was inwardly rectifying when Ca2+ was the charge carrier, and was inhibited by La3+ (50 microM). Disruption of the spectrin-protein 4.1 interaction at residues A207-V445 of betaSpIISigma1 decreased the thapsigargin-induced global cytosolic Ca2+ response by 50% and selectively abolished the endothelial cell ISOC, without altering activation of a nonselective current through cyclic nucleotide-gated channels. In contrast, disruption of the spectrin-actin interaction at residues A47-K186 of betaSpIISigma1 did not decrease the thapsigargin-induced global cytosolic Ca2+ response or inhibit ISOC. Results indicate that the spectrin-protein 4.1 interaction selectively controls ISOC, indicating that physical coupling between calcium release and calcium entry is reliant upon the spectrin membrane skeleton.
Collapse
Affiliation(s)
- S Wu
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | | | | | | | | | | |
Collapse
|
26
|
Kukkonen JP, Lund PE, Akerman KE. 2-aminoethoxydiphenyl borate reveals heterogeneity in receptor-activated Ca(2+) discharge and store-operated Ca(2+) influx. Cell Calcium 2001; 30:117-29. [PMID: 11440469 DOI: 10.1054/ceca.2001.0219] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have investigated Ca(2+) release and receptor- and store-operated Ca(2+) influxes in Chinese hamster ovary-K1 (CHO) cells, SH-SY5Y human neuroblastoma cells and RBL-1 rat basophilic leukemia cells using Fura-2 and patch-clamp measurements. Ca(2+) release and subsequent Ni(2+)-sensitive, store-operated influx were induced by thapsigargin and stimulation of G protein-coupled receptors. The alleged noncompetitive IP3 receptor inhibitor,2-aminoethoxydiphenyl borate (2-APB) rapidly blocked a major part of the secondary influx response in CHO cells in a reversible manner. It also reduced Mn(2+) influx in response to thapsigargin. Inhibition of Ca(2+) release was also seen but this was less complete, slower in onset, less reversible, and required higher concentration of 2-APB. In RBL-1 cells, I(CRAC) activity was rapidly blocked by extracellular 2-APB whereas intracellular 2-APB was less effective. Store-operated Ca(2+) influxes were only partially blocked by 2-APB. In SH-SY5Y cells, Ca(2+) influxes were insensitive to 2-APB. Ca(2+) release in RBL-1 cells was partially sensitive but in SH-SY5Y cells the release was totally resistant to 2-APB. The results suggest, that 2-APB (1) may inhibit distinct subtypes of IP3 receptors with different sensitivity, and (2) that independently of this, it also inhibits some store-operated Ca(2+) channels via a direct, extracellular action.
Collapse
Affiliation(s)
- J P Kukkonen
- Department of Physiology, Division of Cell Physiology, Uppsala University, Uppsala, Sweden.
| | | | | |
Collapse
|
27
|
Rosado JA, Rosenzweig I, Harding S, Sage SO. Tumor necrosis factor-alpha inhibits store-mediated Ca2+ entry in the human hepatocellular carcinoma cell line HepG2. Am J Physiol Cell Physiol 2001; 280:C1636-44. [PMID: 11350760 DOI: 10.1152/ajpcell.2001.280.6.c1636] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tumor necrosis factor-alpha (TNF-alpha) is an important component of the early signaling pathways leading to liver regeneration and proliferation, but it is also responsible for several hepatotoxic effects. We have investigated the effect of TNF-alpha on thapsigargin (TG)-induced store-mediated Ca2+ entry (SMCE) in the human hepatocellular carcinoma cell line HepG2. In these cells, short-term (10 min) exposure to TNF-alpha slightly increased SMCE. In contrast, long-term (12 h) exposure to TNF-alpha significantly reduced SMCE. This effect was reversed by coincubation with atrial natriuretic peptide (ANP), which itself had no effect on SMCE. Cytochalasin D and latrunculin A, inhibitors of actin polymerization, abolished SMCE. Long-term exposure of HepG2 cells to TNF-alpha abolished TG-induced actin polymerization and membrane association of Ras proteins. When TNF-alpha was added in combination with ANP, these effects were reduced. These findings suggest that in HepG2 cells, TNF-alpha inhibits SMCE by affecting reorganization of the actin cytoskeleton, probably by interfering with the activation of Ras proteins, and that ANP protects against these inhibitory effects of TNF-alpha.
Collapse
Affiliation(s)
- J A Rosado
- Department of Physiology, University of Cambridge, Cambridge CB2 3EG, United Kingdom
| | | | | | | |
Collapse
|
28
|
Rosado JA, Sage SO. Role of the ERK pathway in the activation of store-mediated calcium entry in human platelets. J Biol Chem 2001; 276:15659-65. [PMID: 11278479 DOI: 10.1074/jbc.m009218200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Extracellular signal-regulated kinases (ERKs), are common participants in a broad variety of signal transduction pathways. Several studies have demonstrated the presence of ERKs in human platelets and their activation by the physiological agonist thrombin. Here we report the involvement of the ERK cascade in store-mediated Ca(2+) entry in human platelets. Treatment of dimethyl-bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid-loaded platelets with thapsigargin to deplete the intracellular Ca(2+) stores resulted in a time- and concentration-dependent activation of ERK1 and ERK2. Incubation with either U0126 or PD 184352, specific inhibitors of mitogen-activated protein kinase kinase (MEK), prevented thapsigargin-induced ERK activation. Furthermore, U0126 and PD 184352 reduced Ca(2+) entry stimulated by thapsigargin or thrombin, in a concentration-dependent manner. The role of ERK in store-mediated Ca(2+) entry was found to be independent of phosphatidylinositol 3- and 4-kinases, the tyrosine kinase pathway, and actin polymerization but sensitive to treatment with inhibitors of Ras, suggesting that the ERK pathway might be a downstream effector of Ras in mediating store-mediated Ca(2+) entry in human platelets. In addition, we have found that store depletion stimulated ERK activation does not require PKC activity. This study demonstrates for the first time a novel mechanism for regulation of store-mediated Ca(2+) entry in human platelets involving the ERK cascade.
Collapse
Affiliation(s)
- J A Rosado
- Department of Physiology, University of Cambridge, Downing Street, Cambridge CB2 3EG, United Kingdom
| | | |
Collapse
|
29
|
Rosado JA, Porras T, Conde M, Sage SO. Cyclic nucleotides modulate store-mediated calcium entry through the activation of protein-tyrosine phosphatases and altered actin polymerization in human platelets. J Biol Chem 2001; 276:15666-75. [PMID: 11278478 DOI: 10.1074/jbc.m009217200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Agonists elevate the cytosolic calcium concentration in human platelets via a receptor-operated mechanism, involving both Ca(2+) release from intracellular stores and subsequent Ca(2+) entry, which can be inhibited by platelet inhibitors, such as prostaglandin E(1) and nitroprusside which elevate cAMP and cGMP, respectively. In the present study we investigated the mechanisms by which cAMP and cGMP modulate store-mediated Ca(2+) entry. Both prostaglandin E(1) and sodium nitroprusside inhibited thapsigargin-evoked store-mediated Ca(2+) entry and actin polymerization. However, addition of these agents after induction of store-mediated Ca(2+) entry did not affect either Ca(2+) entry or actin polymerization. Furthermore, prostaglandin E(1) and sodium nitroprusside dramatically inhibited the tyrosine phosphorylation induced by depletion of the internal Ca(2+) stores or agonist stimulation without affecting the activation of Ras or the Ras-activated phosphatidylinositol 3-kinase or extracellular signal-related kinase (ERK) pathways. Inhibition of cyclic nucleotide-dependent protein kinases prevented inhibition of agonist-evoked Ca(2+) release but it did not have any effect on the inhibition of Ca(2+) entry or actin polymerization. Phenylarsine oxide and vanadate, inhibitors of protein-tyrosine phosphatases prevented the inhibitory effects of the cGMP and cAMP elevating agents on Ca(2+) entry and actin polymerization. These results suggest that Ca(2+) entry in human platelets is directly down-regulated by cGMP and cAMP by a mechanism involving the inhibition of cytoskeletal reorganization via the activation of protein tyrosine phosphatases.
Collapse
Affiliation(s)
- J A Rosado
- Department of Physiology, University of Cambridge, Downing Street, Cambridge CB2 3EG, United Kingdom
| | | | | | | |
Collapse
|
30
|
Alvarez de Sotomayor M, Pérez-Guerrero C, Herrera MD, Marhuenda E. Effect of simvastatin on vascular smooth muscle responsiveness: involvement of Ca(2+) homeostasis. Eur J Pharmacol 2001; 415:217-24. [PMID: 11275002 DOI: 10.1016/s0014-2999(01)00819-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This report is focused on the study of simvastatin-induced relaxation of rat aorta through its effects on vascular smooth muscle and Ca(2+) signalling. The presence of endothelium affected only the simvastatin-induced relaxation of aortic rings precontracted with noradrenaline, but not by depolarization with KCl 80 mM. Blockade of Ca(2+) entry through voltage-operated Ca(2+) channels (VOCCs) by diltiazem abolished the endothelium-dependent and direct relaxation, whereas Ca(2+)-ATPase inhibition by cyclopiazonic acid (3 x 10(-5) M) only affected the endothelium-dependent relaxation. In KCl-depolarised arteries concentration-response curves for CaCl(2) were shifted to the right in the presence of simvastatin (3 x 10(-6) and 3 x 10(-5) M) or diltiazem (10(-6) and 10(-7) M). The transient contraction caused by noradrenaline in Ca(2+)-free medium, which is mainly due to intracellular Ca(2+) release, was inhibited by simvastatin (3 x 10(-5) M) or cyclopiazonic acid (3 x 10(-5) M) and the contraction induced by CaCl(2) (2 x 10(-3) M) added after noradrenaline was inhibited by diltiazem and simvastatin. All the reported effects of simvastatin were inhibited by the product of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, mevalonate (10(-3) M). These findings demonstrate that the vascular effects of simvastatin may involve both Ca(2+) release from intracellular stores, which could promote activation of endothelial factors, and blockade of extracellular Ca(2+) entry, which promote relaxations independent of the presence of endothelium. This action on Ca(2+) could be related to the inhibition of isoprenoid synthesis, which subsequently affects the function of G-proteins involved in communication among intracellular Ca(2+) pools and capacitative Ca(2+) entry.
Collapse
Affiliation(s)
- M Alvarez de Sotomayor
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, C/Profesor Garcia-Gonzalez s/n, 41012, Seville, Spain.
| | | | | | | |
Collapse
|
31
|
Abstract
Sixty years after its initial discovery, the octapeptide hormone angiotensin II (AngII) has proved to play numerous physiological roles that reach far beyond its initial description as a hypertensive factor. In spite of the host of target tissues that have been identified, only two major receptor subtypes, AT1 and AT2, are currently fully identified. The specificity of the effects of AngII relies upon numerous and complex intracellular signaling pathways that often mobilize calcium ions from intracellular stores or from the extracellular medium. Various types of calcium channels (store- or voltage-operated channels) endowed with distinct functional properties play a crucial role in these processes. The activity of these channels can be modulated by AngII in a positive and/or negative fashion, depending on the cell type under observation. This chapter reviews the main characteristics of AngII receptor subtypes and of the various calcium channels as well as the involvement of the multiple signal transduction mechanisms triggered by the hormone in the cell-specific modulation of the activity of these channels.
Collapse
Affiliation(s)
- M F Rossier
- Department of Internal Medicine, University Hospital, Geneva, Switzerland
| | | |
Collapse
|
32
|
Alvarez de Sotomayor M, Andriantsitohaina R. Simvastatin and Ca(2+) signaling in endothelial cells: involvement of rho protein. Biochem Biophys Res Commun 2001; 280:486-90. [PMID: 11162544 DOI: 10.1006/bbrc.2000.4144] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor simvastatin is able to produce endothelium-dependent relaxation in addition to its lipid-lowering properties. The underlying mechanisms were investigated in bovine aortic endothelial cells (BAEC). Simvastatin induced an increase in cytosolic calcium ([Ca(2+)](i)) in BAEC, by releasing Ca(2+) from intracellular stores sensitive to thapsigargin and ryanodine, and increasing Ca(2+) entry. Simvastatin response was not altered by the phospholipase A(2) inhibitor ONO-RS-082, or the combination of superoxide dismutase plus catalase. However, the response to simvastatin was reduced by the product of HMG-CoA reductase, mevalonate or by the inhibitor of small G proteins of the Rho family, Clostridium botulinum C3 toxin. Thus, increase in [Ca(2+)](i) involving the activation of Rho protein through mevalonate-dependent pathway is essential for the action of simvastatin and might contribute to its beneficial effects against vascular diseases. This study helps elucidate the mechanisms of endothelial factor generation by simvastatin in BAEC.
Collapse
Affiliation(s)
- M Alvarez de Sotomayor
- Departamento de Farmacología, Facultad of Farmacia, Universidad de Sevilla, Seville, 41012, Spain
| | | |
Collapse
|
33
|
Lund PE, Shariatmadari R, Uustare A, Detheux M, Parmentier M, Kukkonen JP, Akerman KE. The orexin OX1 receptor activates a novel Ca2+ influx pathway necessary for coupling to phospholipase C. J Biol Chem 2000; 275:30806-12. [PMID: 10880509 DOI: 10.1074/jbc.m002603200] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ca(2+) elevations in Chinese hamster ovary cells stably expressing OX(1) receptors were measured using fluorescent Ca(2+) indicators fura-2 and fluo-3. Stimulation with orexin-A led to pronounced Ca(2+) elevations with an EC(50) around 1 nm. When the extracellular [Ca(2+)] was reduced to a submicromolar concentration, the EC(50) was increased 100-fold. Similarly, the inositol 1,4,5-trisphosphate production in the presence of 1 mm external Ca(2+) was about 2 orders of magnitude more sensitive to orexin-A stimulation than in low extracellular Ca(2+). The shift in the potency was not caused by depletion of intracellular Ca(2+) but by a requirement of extracellular Ca(2+) for production of inositol 1,4,5-trisphosphate. Fura-2 experiments with the "Mn(2+)-quench technique" indicated a direct activation of a cation influx pathway by OX(1) receptor independent of Ca(2+) release or pool depletion. Furthermore, depolarization of the cells to +60 mV, which almost nullifies the driving force for Ca(2+) entry, abolished the Ca(2+) response to low concentrations of orexin-A. The results thus suggest that OX(1) receptor activation leads to two responses, (i) a Ca(2+) influx and (ii) a direct stimulation of phospholipase C, and that these two responses converge at the level of phospholipase C where the former markedly enhances the potency of the latter.
Collapse
Affiliation(s)
- P E Lund
- Department of Physiology, Division of Cell Physiology, Uppsala University, Biomedical Centre (BMC), P.O. Box 572, S-75123 Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
34
|
Kuroiwa-Matsumoto M, Hirano K, Ahmed A, Kawasaki J, Nishimura J, Kanaide H. Mechanisms of the thapsigargin-induced Ca(2+) entry in in situ endothelial cells of the porcine aortic valve and the endothelium-dependent relaxation in the porcine coronary artery. Br J Pharmacol 2000; 131:115-23. [PMID: 10960077 PMCID: PMC1572304 DOI: 10.1038/sj.bjp.0703548] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The mechanisms of the thapsigargin (TG)-induced capacitative Ca(2+) entry in in situ endothelial cells and its role in the regulation of arterial tone were investigated using front-surface fluorimetry and fura-2-loaded strips of porcine aortic valve and coronary artery. In the presence of extracellular Ca(2+), TG induced an initial rapid and a subsequent sustained elevation of cytosolic Ca(2+) concentration ([Ca(2+)](i)) in valvular strips. In the absence of extracellular Ca(2+), TG induced only a transient increase in [Ca(2+)](i). The TG-induced sustained elevation of [Ca(2+)](i) in endothelial cells was inhibited completely by 1 mM Ni(2+) and partly by 10 microM econazole and 30 microM ML-9, but not by 900 ng ml(-1) pertussis toxin or 100 microM wortmannin. Therefore, cytochrome P450 and protein phosphorylation are suggested to be involved in the TG-induced Ca(2+) influx in in situ endothelial cells. TG induced an endothelium-dependent large relaxation consisting of an initial and a late sustained relaxation in coronary arterial strip precontracted with U46619 (a thromboxane A2 analogue). Indomethacin alone had no effect, while indomethacin plus N(omega)-nitro-L-arginine (L-NOARG) markedly inhibited the sustained phase and slightly inhibited the initial phase of the TG-induced relaxation. TG induced a smaller but sustained relaxation during the 40 mM K(+)-induced precontraction than that seen during the U46619-induced precontraction. This relaxation was completely abolished by the pretreatment with indomethacin plus L-NOARG. In conclusion, both nitric oxide (NO) and endothelium-derived hyperpolarizing factor were suggested to mediate the TG-induced relaxation, while NO plays a major role in the sustained relaxation. The TG-induced sustained [Ca(2+)](i) elevation in endothelial cells was thus suggested to be mainly linked to the sustained production of NO.
Collapse
Affiliation(s)
- Mari Kuroiwa-Matsumoto
- Department of Molecular Cardiology, Research Institute of Angiocardiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Katsuya Hirano
- Department of Molecular Cardiology, Research Institute of Angiocardiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Abu Ahmed
- Department of Molecular Cardiology, Research Institute of Angiocardiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Junya Kawasaki
- Department of Molecular Cardiology, Research Institute of Angiocardiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Junji Nishimura
- Department of Molecular Cardiology, Research Institute of Angiocardiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Hideo Kanaide
- Department of Molecular Cardiology, Research Institute of Angiocardiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Author for correspondence:
| |
Collapse
|
35
|
Walter M, Tepel M, Nofer JR, Neusser M, Assmann G, Zidek W. Involvement of phospholipase D in store-operated calcium influx in vascular smooth muscle cells. FEBS Lett 2000; 479:51-6. [PMID: 10940387 DOI: 10.1016/s0014-5793(00)01880-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In non-excitable cells, sustained intracellular Ca2+ increase critically depends on influx of extracellular Ca2+. Such Ca2+ influx is thought to occur by a 'store-operated' mechanism, i.e. the signal for Ca2+ entry is believed to result from the initial release of Ca2+ from inositol 1,4,5-trisphosphate-sensitive intracellular stores. Here we show that the depletion of cellular Ca2+ stores by thapsigargin or bradykinin is functionally linked to a phosphoinositide-specific phospholipase D (PLD) activity in cultured vascular smooth muscle cells (VSMC), and that phosphatidic acid formed via PLD enhances sustained calcium entry in this cell type. These results suggest a regulatory role for PLD in store-operated Ca2+ entry in VSMC.
Collapse
Affiliation(s)
- M Walter
- Institut für Arterioskleroseforschung, Universität Münster, Germany.
| | | | | | | | | | | |
Collapse
|
36
|
Källström H, Hansson-Palo P, Jonsson AB. Cholera toxin and extracellular Ca2+ induce adherence of non-piliated Neisseria: evidence for an important role of G-proteins and Rho in the bacteria-cell interaction. Cell Microbiol 2000; 2:341-51. [PMID: 11207590 DOI: 10.1046/j.1462-5822.2000.00063.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this study, we characterize the interaction between non-piliated (P-) Neisseria gonorrhoeae and human epithelial cells. P- mutants lacking the pilus subunit protein PilE attach at low levels to cells. Although the binding may not lead to heavy inflammatory responses, the interaction between P- Neisseria and host cells most probably play a role in colonization and asymptomatic carriage of the pathogen. Here we show that the adherence of P N. gonorrhoeae is blocked by GDP-beta-S [guanosine 5'-O(thio)diphosphate], a non-hydrolyzable GTP analogue, and by C3 exotoxin, an inhibitor of the small G-protein Rho. G-protein activators such as cholera toxin, that activates Gs, and fluoroaluminate, a general G-protein activator, induced bacterial adherence. Furthermore, increase of the extracellular free [Ca2+] dramatically enhanced adherence of non-piliated Neisseria. The pharynx and the urogenital tract are natural entry sites of the pathogenic Neisseria species, and at both sites the epithelial cells can be exposed to wide variations in Ca2+ concentration. Taken together, these data show the importance of extracellular Ca2+ in the pathogenic Neisseria-host interaction, and reveal a novel function of cholera toxin, namely induction of bacterial adherence.
Collapse
Affiliation(s)
- H Källström
- Microbiology and Tumorbiology Center, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
37
|
Abstract
Store-mediated Ca2+ entry is the main pathway for Ca2+ influx in platelets and many other cells. Several hypotheses have considered both direct and indirect coupling mechanisms between the endoplasmic reticulum and the plasma membrane. Here we pay particular attention to new insights into the regulation of store-mediated Ca2+ entry: the role of the cytoskeleton in a secretion-like coupling model. In this model, Ca2+ entry may be mediated by a reversible trafficking and coupling of the endoplasmic reticulum with the plasma membrane, that shows close parallels to the events mediating secretion. As with secretion, the actin cytoskeleton plays an inhibitory role in the activation of Ca2+ entry by preventing the approach and coupling of the endoplasmic reticulum with the plasma membrane, making cytoskeletal remodelling a key event in the activation of Ca2+ entry. We also review recent advances investigating the regulation of store-mediated Ca2+ entry by small GTPases and phosphoinositides, which might be involved in the store-mediated Ca2+ entry pathway through roles in the remodelling of the cytoskeleton.
Collapse
Affiliation(s)
- J A Rosado
- Department of Physiology, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | | |
Collapse
|
38
|
Rosado JA, Sage SO. Regulation of plasma membrane Ca2+-ATPase by small GTPases and phosphoinositides in human platelets. J Biol Chem 2000; 275:19529-35. [PMID: 10748016 DOI: 10.1074/jbc.m001319200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have investigated the restoration of [Ca(2+)](i) in human platelets following the discharge of the intracellular Ca(2+) stores. We found that the plasma membrane Ca(2+)-ATPase is the main mechanism involved in Ca(2+) extrusion in human platelets. Treatment of platelets with the farnesylcysteine analogs, farnesylthioacetic acid and N-acetyl-S-geranylgeranyl-l-cysteine, inhibitors of activation of Ras proteins, accelerated the rate of decay of [Ca(2+)](i) to basal levels after activation with thapsigargin combined with a low concentration of ionomycin, indicating that Ras proteins are involved in the negative regulation of Ca(2+) extrusion. Rho A, which is involved in actin polymerization, was not responsible for this effect. Consistent with this, the actin polymerization inhibitors, cytochalasin D and latrunculin A, did not alter the recovery of [Ca(2+)](i). Activation of human platelets with thapsigargin and ionomycin stimulated the tyrosine phosphorylation of the plasma membrane Ca(2+)-ATPase, a mechanism that was inhibited by farnesylcysteine analogs, suggesting that Ras proteins could regulate Ca(2+) extrusion by mediating tyrosine phosphorylation of the plasma membrane Ca(2+)-ATPase. Treatment of platelets with LY294002, a specific inhibitor of phosphatidylinositol 3- and phosphatidylinositol 4-kinase, resulted in a reduction in the rate of recovery of [Ca(2+)](i) to basal levels, suggesting that the products of these kinases are involved in stimulating Ca(2+) extrusion in human platelets.
Collapse
Affiliation(s)
- J A Rosado
- Department of Physiology, University of Cambridge, Downing Street, Cambridge CB2 3EG, United Kingdom
| | | |
Collapse
|
39
|
Hernández M, Nieto ML, Sánchez Crespo M. Cytosolic phospholipase A2 and the distinct transcriptional programs of astrocytoma cells. Trends Neurosci 2000; 23:259-64. [PMID: 10838595 DOI: 10.1016/s0166-2236(00)01563-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Astrocytes constitute the most abundant cell type in the nervous system. Under physiological conditions, they respond to the stimuli to which neurons are also responsive. The use of astrocytoma cell lines with well-defined morphological and functional markers has been helpful for addressing the mechanisms of signal transduction that operate in the nervous system. On the basis of the effects produced by agonists of different types of receptor (muscarinic ACh receptors, thrombin receptors, phospholipases A2 receptors and tumor necrosis factor alpha receptors), several different transcriptional programs that involve the MAP kinase-cytosolic phospholipase A2 system and the transcription factor NF-kappaB have been described.
Collapse
Affiliation(s)
- M Hernández
- Instituto de Biolog a y Genética Molecular, CSIC-Universidad de Valladolid, 47005 Valladolid, Spain
| | | | | |
Collapse
|
40
|
Distinct localization and function of1,4,5IP3 receptor subtypes and the1,3,4,5IP4 receptor GAP1IP4BP in highly purified human platelet membranes. Blood 2000. [DOI: 10.1182/blood.v95.11.3412] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractPlatelet activation is associated with an increase of cytosolic Ca++ levels. The 1,4,5IP3receptors [1,4,5IP3R] are known to mediate Ca++ release from intracellular stores of many cell types. Currently there are at least 3 distinct subtypes of1,4,5IP3R—type I, type II, and type III—with suggestions of distinct roles in Ca++ elevation. Specific receptors for 1,3,4,5IP4 belonging to the GAP1 family have also been described though their involvement with Ca++ regulation is controversial. In this study we report that platelets contain all 3 subtypes of1,4,5IP3R but in different amounts. Type I and type II receptors are predominant. In studies using highly purified platelet plasma (PM) and intracellular membranes (IM) we report a distinct localization of these receptors. The PM fractions were found to contain the type III 1,4,5IP3R and GAP1IP4BP in contrast to IM, which contained type I1,4,5IP3R. The type II receptor exhibited a dual distribution. In studies examining the labeling of surface proteins with biotin in intact platelets only the type III1,4,5IP3R was significantly labeled. Immunogold studies of ultracryosections of human platelets showed significantly more labeling of the PM with the type III receptor antibodies than with type I receptor antibodies. Ca++ flux studies were carried out with the PM to demonstrate in vitro function of inositol phosphate receptors. Ca++ release activities were present with both 1,4,5IP3 and1,3,4,5IP4 (EC50 = 1.3 and 0.8 μmol/L, respectively). Discrimination of the Ca++-releasing activities was demonstrated with cyclic adenosine monophosphate (cAMP)-dependent protein kinase (cAMP-PK) specifically inhibiting 1,4,5IP3 but not1,3,4,5IP4-induced Ca++ flux. In experiments with both PM and intact platelets, the1,4,5IP3Rs but not GAP1IP4BP were found to be substrates of cAMP-PK and cGMP-PK. Thus the Ca++ flux property of1,3,4,5IP4 is insensitive to cAMP-PK. These studies suggest distinct roles for the1,4,5IP3R subtypes in Ca++movements, with the type III receptor and GAP1IP4BPassociated with cation entry in human platelets and the type I receptor involved with Ca++ release from intracellular stores.
Collapse
|
41
|
Distinct localization and function of1,4,5IP3 receptor subtypes and the1,3,4,5IP4 receptor GAP1IP4BP in highly purified human platelet membranes. Blood 2000. [DOI: 10.1182/blood.v95.11.3412.011k03_3412_3422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Platelet activation is associated with an increase of cytosolic Ca++ levels. The 1,4,5IP3receptors [1,4,5IP3R] are known to mediate Ca++ release from intracellular stores of many cell types. Currently there are at least 3 distinct subtypes of1,4,5IP3R—type I, type II, and type III—with suggestions of distinct roles in Ca++ elevation. Specific receptors for 1,3,4,5IP4 belonging to the GAP1 family have also been described though their involvement with Ca++ regulation is controversial. In this study we report that platelets contain all 3 subtypes of1,4,5IP3R but in different amounts. Type I and type II receptors are predominant. In studies using highly purified platelet plasma (PM) and intracellular membranes (IM) we report a distinct localization of these receptors. The PM fractions were found to contain the type III 1,4,5IP3R and GAP1IP4BP in contrast to IM, which contained type I1,4,5IP3R. The type II receptor exhibited a dual distribution. In studies examining the labeling of surface proteins with biotin in intact platelets only the type III1,4,5IP3R was significantly labeled. Immunogold studies of ultracryosections of human platelets showed significantly more labeling of the PM with the type III receptor antibodies than with type I receptor antibodies. Ca++ flux studies were carried out with the PM to demonstrate in vitro function of inositol phosphate receptors. Ca++ release activities were present with both 1,4,5IP3 and1,3,4,5IP4 (EC50 = 1.3 and 0.8 μmol/L, respectively). Discrimination of the Ca++-releasing activities was demonstrated with cyclic adenosine monophosphate (cAMP)-dependent protein kinase (cAMP-PK) specifically inhibiting 1,4,5IP3 but not1,3,4,5IP4-induced Ca++ flux. In experiments with both PM and intact platelets, the1,4,5IP3Rs but not GAP1IP4BP were found to be substrates of cAMP-PK and cGMP-PK. Thus the Ca++ flux property of1,3,4,5IP4 is insensitive to cAMP-PK. These studies suggest distinct roles for the1,4,5IP3R subtypes in Ca++movements, with the type III receptor and GAP1IP4BPassociated with cation entry in human platelets and the type I receptor involved with Ca++ release from intracellular stores.
Collapse
|
42
|
Rosado JA, Sage SO. Phosphoinositides are required for store-mediated calcium entry in human platelets. J Biol Chem 2000; 275:9110-3. [PMID: 10734043 DOI: 10.1074/jbc.275.13.9110] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have recently observed that small GTP-binding proteins are important for mediation of store-mediated Ca(2+) entry in human platelets through the reorganization of the actin cytoskeleton. Because it has been shown in platelets and other cells that small GTP-binding proteins regulate the activity of phosphatidylinositol 3-kinase and phosphatidylinositol 4-kinase, whose products, phosphoinositides, play a key role in the reorganization of the actin cytoskeleton, we have investigated the role of these lipid kinases in store-mediated Ca(2+) entry. Treatment of platelets with LY294002, an inhibitor of phosphatidylinositol 3- and phosphatidylinositol 4-kinases, resulted in a concentration-dependent inhibition of Ca(2+) entry stimulated by thapsigargin or the physiological agonist, thrombin. In addition, wortmannin, another inhibitor of these kinases, which is structurally unrelated to LY294002, significantly reduced store-mediated Ca(2+) entry. The inhibitory effect of LY294002 was not mediated either by blockage of Ca(2+) channels or by modification of membrane potential. LY294002 inhibited actin polymerization stimulated by thrombin or thapsigargin. These results indicate that both phosphatidylinositol 3-kinase and phosphatidylinositol 4-kinase are required for activation of store-mediated Ca(2+) entry in human platelets and that the mechanism could involve the reorganization of the actin cytoskeleton.
Collapse
Affiliation(s)
- J A Rosado
- Department of Physiology, University of Cambridge, Downing St., Cambridge CB2 3EG, United Kingdom
| | | |
Collapse
|
43
|
Rosado JA, Jenner S, Sage SO. A role for the actin cytoskeleton in the initiation and maintenance of store-mediated calcium entry in human platelets. Evidence for conformational coupling. J Biol Chem 2000; 275:7527-33. [PMID: 10713057 DOI: 10.1074/jbc.275.11.7527] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nature of the mechanism underlying store-mediated Ca(2+) entry has been investigated in human platelets through a combination of cytoskeletal modifications. Inhibition of actin polymerization by cytochalasin D or latrunculin A had a biphasic time-dependent effect on Ca(2+) entry, showing an initial potentiation followed by inhibition of Ca(2+) entry. Moreover, addition of these agents after induction of store-mediated Ca(2+) entry inhibited the Ca(2+) influx mechanism. Jasplakinolide, which reorganizes actin filaments into a tight cortical layer adjacent to the plasma membrane, prevented activation of store-mediated Ca(2+) entry but did not modify this process after its activation. In addition, jasplakinolide prevented cytochalasin D-induced inhibition of store-mediated Ca(2+) entry. Calyculin A, an inhibitor of protein serine/threonine phosphatases 1 and 2 which activates translocation of existing F-actin to the cell periphery without inducing actin polymerization, also prevented activation of store-mediated Ca(2+) entry. Finally, inhibition of vesicular transport with brefeldin A inhibited activation of store-mediated Ca(2+) entry but did not alter this mechanism once initiated. These data suggest that store-mediated Ca(2+) entry in platelets may be mediated by a reversible trafficking and coupling of the endoplasmic reticulum with the plasma membrane, which shows close parallels to the events mediating secretion.
Collapse
Affiliation(s)
- J A Rosado
- Department of Physiology, University of Cambridge, Downing Street, Cambridge CB2 3EG, United Kingdom
| | | | | |
Collapse
|
44
|
Kwan HY, Huang Y, Yao X. Store-operated calcium entry in vascular endothelial cells is inhibited by cGMP via a protein kinase G-dependent mechanism. J Biol Chem 2000; 275:6758-63. [PMID: 10702231 DOI: 10.1074/jbc.275.10.6758] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Store-operated Ca(2+) entry in vascular endothelial cells not only serves to refill the intracellular Ca(2+) stores, but also acts to stimulate the synthesis of nitric oxide, a key vasodilatory factor. In this study, we examined the role of cGMP in regulating the store-operated Ca(2+) entry in aortic endothelial cells. Cyclopiazonic acid (CPA) and thapsigargin, two selective inhibitors of endoplasmic reticulum Ca(2+)-ATPase, were used to induce store-operated Ca(2+) entry. 8-Bromo-cGMP, an activator of protein kinase G, inhibited the CPA- or thapsigargin-induced Ca(2+) entry in a concentration-dependent manner. An inhibitor of protein kinase G, KT5823 (1 microM) or H-8 (10 microM), abolished the inhibitory action of 8-bromo-cGMP and resumed Ca(2+) entry. Addition of S-nitroso-N-acetylpenicillamine (a nitric oxide donor) or dipyridamole (a cGMP phosphodiesterase inhibitor) during CPA treatment elevated cellular cGMP levels, stimulated protein kinase G activity, and at the same time reduced Ca(2+) influx due to CPA. Patch clamp study confirmed the existence of a CPA-activated Ca(2+)-permeable channel sensitive to cGMP inhibition. These results suggest that cGMP via a protein kinase G-dependent mechanism may play a key role in the regulation of the store-operated Ca(2+) entry in vascular endothelial cells.
Collapse
Affiliation(s)
- H Y Kwan
- Department of Physiology, Faculty of Medicine, Chinese University of Hong Kong, Shatin, Hong Kong, China
| | | | | |
Collapse
|
45
|
Babnigg G, Heller B, Villereal ML. Cell-to-cell variation in store-operated calcium entry in HEK-293 cells and its impact on the interpretation of data from stable clones expressing exogenous calcium channels. Cell Calcium 2000; 27:61-73. [PMID: 10756973 DOI: 10.1054/ceca.1999.0093] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To investigate the effect of cell-to-cell variation in store-operated calcium entry (SOCE) on the evaluation of data from stable cell clones selected following gene transfection, we measured SOCE in 2700 individual HEK-293 cells from the parent population and in 1900 individual cells from a clonal subpopulation of HEK-293 cells. We applied statistical resampling techniques to model conditions where one would compare the average SOCE in n control clones to the average SOCE in n experimental clones (n = 1-200). For an overexpression experiment with n = 1, there is a 27% chance of observing a 100% or higher difference in SOCE between clones, with n = 10 there is a 34% probability of observing a 20% or greater difference in SOCE, and with n = 100, there is less than a 10% chance of seeing a 10% or greater difference in SOCE, based solely on random selection of clones from the parent HEK-293 cell population. To assure that the degree of cell-to-cell variation was predictive of the degree of clone-to-clone variation, we measured SOCE in 270 clones, each arising from a single cell, and found the variation to be very similar to that observed for individual cells.
Collapse
Affiliation(s)
- G Babnigg
- Department of Pharmacological and Physiological Sciences, University of Chicago, IL 60637, USA
| | | | | |
Collapse
|
46
|
Boulay G, Brown DM, Qin N, Jiang M, Dietrich A, Zhu MX, Chen Z, Birnbaumer M, Mikoshiba K, Birnbaumer L. Modulation of Ca(2+) entry by polypeptides of the inositol 1,4, 5-trisphosphate receptor (IP3R) that bind transient receptor potential (TRP): evidence for roles of TRP and IP3R in store depletion-activated Ca(2+) entry. Proc Natl Acad Sci U S A 1999; 96:14955-60. [PMID: 10611319 PMCID: PMC24754 DOI: 10.1073/pnas.96.26.14955] [Citation(s) in RCA: 314] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Homologues of Drosophilia transient receptor potential (TRP) have been proposed to be unitary subunits of plasma membrane ion channels that are activated as a consequence of active or passive depletion of Ca(2+) stores. In agreement with this hypothesis, cells expressing TRPs display novel Ca(2+)-permeable cation channels that can be activated by the inositol 1,4,5-trisphosphate receptor (IP3R) protein. Expression of TRPs alters cells in many ways, including up-regulation of IP3Rs not coded for by TRP genes, and proof that TRP forms channels of these and other cells is still missing. Here, we document physical interaction of TRP and IP3R by coimmunoprecipitation and glutathione S-transferase-pulldown experiments and identify two regions of IP3R, F2q and F2g, that interact with one region of TRP, C7. These interacting regions were expressed in cells with an unmodified complement of TRPs and IP3Rs to study their effect on agonist- as well as store depletion-induced Ca(2+) entry and to test for a role of their respective binding partners in Ca(2+) entry. C7 and an F2q-containing fragment of IP3R decreased both forms of Ca(2+) entry. In contrast, F2g enhanced the two forms of Ca(2+) entry. We conclude that store depletion-activated Ca(2+) entry occurs through channels that have TRPs as one of their normal structural components, and that these channels are directly activated by IP3Rs. IP3Rs, therefore, have the dual role of releasing Ca(2+) from stores and activating Ca(2+) influx in response to either increasing IP3 or decreasing luminal Ca(2+).
Collapse
Affiliation(s)
- G Boulay
- Department of Anesthesiology, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Nakahari T, Yoshida H, Imai Y, Fujiwara S, Ohnishi A, Shimamoto C, Katsu KI. Inhibition of Ca(2+) entry caused by depolarization in acetylcholine-stimulated antral mucous cells of guinea pig: G protein regulation of Ca(2+) permeable channels. THE JAPANESE JOURNAL OF PHYSIOLOGY 1999; 49:545-50. [PMID: 10603441 DOI: 10.2170/jjphysiol.49.545] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The effects of depolarizing conditions resulting from increasing extracellular K(+) concentration or nystatin treatment on intracellular Ca(2+) concentration ([Ca(2+)](i)) were studied in guinea pig antral mucous cells following acetylcholine (ACh) stimulation. ACh stimulation evoked a biphasic increase in [Ca(2+)](i), that is, an initial transient increase followed by a plateau. Depolarizing conditions reduced the [Ca(2+)](i) in the plateau phase during ACh stimulation. However, pertussis toxin (PTX, a G protein inhibitor) treatment caused [Ca(2+)](i) in the ACh-evoked plateau phase to increase under depolarizing conditions, while it had no effect on [Ca(2+)](i) under hyperpolarized conditions. Based on these observations, Ca(2+) permeable channels are regulated by a G protein which is activated by depolarized conditions and inhibited by hyperpolarized conditions and PTX; activation of the G protein (depolarization) causes Ca(2+) permeable channels to inhibit, and in turn, inhibition of the G protein (hyperpolarization) causes them to activate.
Collapse
Affiliation(s)
- T Nakahari
- Department of Physiology, Osaka Medical College, Takatsuki, 569-8686, Japan.
| | | | | | | | | | | | | |
Collapse
|
48
|
Yao Y, Ferrer-Montiel AV, Montal M, Tsien RY. Activation of store-operated Ca2+ current in Xenopus oocytes requires SNAP-25 but not a diffusible messenger. Cell 1999; 98:475-85. [PMID: 10481912 DOI: 10.1016/s0092-8674(00)81976-5] [Citation(s) in RCA: 201] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Depletion of Ca2+ stores in Xenopus oocytes activated entry of Ca2+ across the plasma membrane, which was measured as a current I(soc) in subsequently formed cell-attached patches. I(soc) survived excision into inside-out configuration. If cell-attached patches were formed before store depletion, I(soc) was activated outside but not inside the patches. I(soc) was potentiated by microinjection of Clostridium C3 transferase, which inhibits Rho GTPase, whereas I(soc) was inhibited by expression of wild-type or constitutively active Rho. Activation of I(soc) was also inhibited by botulinum neurotoxin A and dominant-negative mutants of SNAP-25 but was unaffected by brefeldin A. These results suggest that oocyte I(soc) is dependent not on aqueous diffusible messengers but on SNAP-25, probably via exocytosis of membrane channels or regulatory molecules.
Collapse
Affiliation(s)
- Y Yao
- Department of Pharmacology, University of California, San Diego, La Jolla 92093-0647, USA
| | | | | | | |
Collapse
|
49
|
Abstract
The elusive coupling between endoplasmic reticulum (ER) Ca2+ stores and plasma membrane (PM) "store-operated" Ca2+ entry channels was probed through a novel combination of cytoskeletal modifications. Whereas coupling was unaffected by disassembly of the actin cytoskeleton, in situ redistribution of F-actin into a tight cortical layer subjacent to the PM displaced cortical ER and prevented coupling between ER and PM Ca2+ entry channels, while not affecting inositol 1,4,5-trisphosphate-mediated store release. Importantly, disassembly of the induced cortical actin layer allowed ER to regain access to the PM and reestablish coupling of Ca2+ entry channels to Ca2+ store depletion. Coupling is concluded to be mediated by a physical "secretion-like" mechanism involving close but reversible interactions between the ER and the PM.
Collapse
MESH Headings
- Actins/physiology
- Animals
- Calcium/metabolism
- Calcium Channels/metabolism
- Calcium Signaling/physiology
- Cell Line, Transformed
- Cell Membrane/metabolism
- Cell Membrane/ultrastructure
- Cells, Cultured
- Cytochalasin D/pharmacology
- Cytoskeleton/drug effects
- Cytoskeleton/physiology
- Cytoskeleton/ultrastructure
- Endoplasmic Reticulum/metabolism
- Inositol 1,4,5-Trisphosphate/metabolism
- Ion Channel Gating/physiology
- Ion Transport
- Marine Toxins
- Microscopy, Fluorescence
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/ultrastructure
- Okadaic Acid/pharmacology
- Oxazoles/pharmacology
- Phosphoprotein Phosphatases/antagonists & inhibitors
- Phosphoprotein Phosphatases/physiology
- Rats
Collapse
Affiliation(s)
- R L Patterson
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore 21201, USA
| | | | | |
Collapse
|
50
|
Watson EL, Jacobson KL, Singh JC, Ott SM. Nitric oxide acts independently of cGMP to modulate capacitative Ca(2+) entry in mouse parotid acini. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:C262-70. [PMID: 10444402 DOI: 10.1152/ajpcell.1999.277.2.c262] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Carbachol- and thapsigargin-induced changes in cGMP accumulation were highly dependent on extracellular Ca(2+) in mouse parotid acini. Inhibition of nitric oxide synthase (NOS) and soluble guanylate cyclase (sGC) resulted in complete inhibition of agonist-induced cGMP levels. NOS inhibitors reduced agonist-induced Ca(2+) release and capacitative Ca(2+) entry, whereas the inhibition of sGC had no effect. The effects of NOS inhibition were not reversed by 8-bromo-cGMP. The NO donor GEA-3162 increased cGMP levels blocked by the inhibition of sGC. GEA-3162-induced increases in Ca(2+) release from ryanodine-sensitive stores and enhanced capacitative Ca(2+) entry, both of which were unaffected by inhibitors of sGC but reduced by NOS inhibitors. Results support a role for NO, independent of cGMP, in agonist-mediated Ca(2+) release and Ca(2+) entry. Data suggest that agonist-induced Ca(2+) influx activates a Ca(2+)-dependent NOS, leading to the production of NO and the release of Ca(2+) from ryanodine-sensitive stores, providing a feedback loop by which store-depleted Ca(2+) channels are activated.
Collapse
Affiliation(s)
- E L Watson
- Department of Oral Biology, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | |
Collapse
|