1
|
Ianiro G, Niro A, Rosa L, Valenti P, Musci G, Cutone A. To Boost or to Reset: The Role of Lactoferrin in Energy Metabolism. Int J Mol Sci 2023; 24:15925. [PMID: 37958908 PMCID: PMC10650157 DOI: 10.3390/ijms242115925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Many pathological conditions, including obesity, diabetes, hypertension, heart disease, and cancer, are associated with abnormal metabolic states. The progressive loss of metabolic control is commonly characterized by insulin resistance, atherogenic dyslipidemia, inflammation, central obesity, and hypertension, a cluster of metabolic dysregulations usually referred to as the "metabolic syndrome". Recently, nutraceuticals have gained attention for the generalized perception that natural substances may be synonymous with health and balance, thus becoming favorable candidates for the adjuvant treatment of metabolic dysregulations. Among nutraceutical proteins, lactoferrin (Lf), an iron-binding glycoprotein of the innate immune system, has been widely recognized for its multifaceted activities and high tolerance. As this review shows, Lf can exert a dual role in human metabolism, either boosting or resetting it under physiological and pathological conditions, respectively. Lf consumption is safe and is associated with several benefits for human health, including the promotion of oral and gastrointestinal homeostasis, control of glucose and lipid metabolism, reduction of systemic inflammation, and regulation of iron absorption and balance. Overall, Lf can be recommended as a promising natural, completely non-toxic adjuvant for application as a long-term prophylaxis in the therapy for metabolic disorders, such as insulin resistance/type II diabetes and the metabolic syndrome.
Collapse
Affiliation(s)
- Giusi Ianiro
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (G.I.); (A.N.); (G.M.)
| | - Antonella Niro
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (G.I.); (A.N.); (G.M.)
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (L.R.); (P.V.)
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (L.R.); (P.V.)
| | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (G.I.); (A.N.); (G.M.)
| | - Antimo Cutone
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (G.I.); (A.N.); (G.M.)
| |
Collapse
|
2
|
Dijk W, Di Filippo M, Kooijman S, van Eenige R, Rimbert A, Caillaud A, Thedrez A, Arnaud L, Pronk A, Garçon D, Sotin T, Lindenbaum P, Ozcariz Garcia E, Pais de Barros JP, Duvillard L, Si-Tayeb K, Amigo N, Le Questel JY, Rensen PC, Le May C, Moulin P, Cariou B. Identification of a Gain-of-Function LIPC Variant as a Novel Cause of Familial Combined Hypocholesterolemia. Circulation 2022; 146:724-739. [PMID: 35899625 PMCID: PMC9439636 DOI: 10.1161/circulationaha.121.057978] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Atherosclerotic cardiovascular disease is the main cause of mortality worldwide and is strongly influenced by circulating low-density lipoprotein (LDL) cholesterol levels. Only a few genes causally related to plasma LDL cholesterol levels have been identified so far, and only 1 gene, ANGPTL3, has been causally related to combined hypocholesterolemia. Here, our aim was to elucidate the genetic origin of an unexplained combined hypocholesterolemia inherited in 4 generations of a French family. METHODS Using next-generation sequencing, we identified a novel dominant rare variant in the LIPC gene, encoding for hepatic lipase, which cosegregates with the phenotype. We characterized the impact of this LIPC-E97G variant on circulating lipid and lipoprotein levels in family members using nuclear magnetic resonance-based lipoprotein profiling and lipidomics. To uncover the mechanisms underlying the combined hypocholesterolemia, we used protein homology modeling, measured triglyceride lipase and phospholipase activities in cell culture, and studied the phenotype of APOE*3.Leiden.CETP mice after LIPC-E97G overexpression. RESULTS Family members carrying the LIPC-E97G variant had very low circulating levels of LDL cholesterol and high-density lipoprotein cholesterol, LDL particle numbers, and phospholipids. The lysophospholipids/phospholipids ratio was increased in plasma of LIPC-E97G carriers, suggestive of an increased lipolytic activity on phospholipids. In vitro and in vivo studies confirmed that the LIPC-E97G variant specifically increases the phospholipase activity of hepatic lipase through modification of an evolutionarily conserved motif that determines substrate access to the hepatic lipase catalytic site. Mice overexpressing human LIPC-E97G recapitulated the combined hypocholesterolemic phenotype of the family and demonstrated that the increased phospholipase activity promotes catabolism of triglyceride-rich lipoproteins by different extrahepatic tissues but not the liver. CONCLUSIONS We identified and characterized a novel rare variant in the LIPC gene in a family who presents with dominant familial combined hypocholesterolemia. This gain-of-function variant makes LIPC the second identified gene, after ANGPTL3, causally involved in familial combined hypocholesterolemia. Our mechanistic data highlight the critical role of hepatic lipase phospholipase activity in LDL cholesterol homeostasis and suggest a new LDL clearance mechanism.
Collapse
Affiliation(s)
- Wieneke Dijk
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, France (W.D., A.R., A.C., A.T., L.A., D.G., T.S., P.L., K.S.-T., C.L.M., B.C.)
| | - Mathilde Di Filippo
- UF Dyslipidémies, Service de Biochimie et de Biologie Moléculaire, Laboratoire de Biologie Médicale MultiStites, Hospices Civils de Lyon, Bron, France (M.D.F.).,CarMen Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, France (M.D.F., P.M.)
| | - Sander Kooijman
- Department of Medicine, Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, the Netherlands (S.K., R.v.E., A.P., P.C.N.R.)
| | - Robin van Eenige
- Department of Medicine, Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, the Netherlands (S.K., R.v.E., A.P., P.C.N.R.)
| | - Antoine Rimbert
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, France (W.D., A.R., A.C., A.T., L.A., D.G., T.S., P.L., K.S.-T., C.L.M., B.C.)
| | - Amandine Caillaud
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, France (W.D., A.R., A.C., A.T., L.A., D.G., T.S., P.L., K.S.-T., C.L.M., B.C.)
| | - Aurélie Thedrez
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, France (W.D., A.R., A.C., A.T., L.A., D.G., T.S., P.L., K.S.-T., C.L.M., B.C.)
| | - Lucie Arnaud
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, France (W.D., A.R., A.C., A.T., L.A., D.G., T.S., P.L., K.S.-T., C.L.M., B.C.)
| | - Amanda Pronk
- Department of Medicine, Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, the Netherlands (S.K., R.v.E., A.P., P.C.N.R.)
| | - Damien Garçon
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, France (W.D., A.R., A.C., A.T., L.A., D.G., T.S., P.L., K.S.-T., C.L.M., B.C.)
| | - Thibaud Sotin
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, France (W.D., A.R., A.C., A.T., L.A., D.G., T.S., P.L., K.S.-T., C.L.M., B.C.)
| | - Pierre Lindenbaum
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, France (W.D., A.R., A.C., A.T., L.A., D.G., T.S., P.L., K.S.-T., C.L.M., B.C.)
| | | | - Jean-Paul Pais de Barros
- Lipidomic Platform, INSERM UMR1231, Université de Bourgogne Franche-Comté, Dijon, France (J.-P.P.d.B.)
| | - Laurence Duvillard
- University of Burgundy, INSERM LNC UMR1231, Dijon, France (L.D.).,CHU Dijon, Department of Biochemistry, Dijon, France (L.D.)
| | - Karim Si-Tayeb
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, France (W.D., A.R., A.C., A.T., L.A., D.G., T.S., P.L., K.S.-T., C.L.M., B.C.)
| | - Nuria Amigo
- Biosfer Teslab, Reus, Spain (E.O.G., N.A.).,Department of Basic Medical Sciences, Rovira I Virgili University, IISPV, CIBERDEM, Reus, Spain (N.A.)
| | | | - Patrick C.N. Rensen
- Department of Medicine, Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, the Netherlands (S.K., R.v.E., A.P., P.C.N.R.)
| | - Cédric Le May
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, France (W.D., A.R., A.C., A.T., L.A., D.G., T.S., P.L., K.S.-T., C.L.M., B.C.)
| | - Philippe Moulin
- CarMen Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, France (M.D.F., P.M.).,Fédération d’endocrinologie, maladies métaboliques, diabète et nutrition, Hôpital Louis Pradel, Hospices Civils de Lyon, Bron, France (P.M.)
| | - Bertrand Cariou
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, France (W.D., A.R., A.C., A.T., L.A., D.G., T.S., P.L., K.S.-T., C.L.M., B.C.)
| |
Collapse
|
3
|
The role of lactoferrin in atherosclerosis. Biometals 2022; 36:509-519. [PMID: 36053470 DOI: 10.1007/s10534-022-00441-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/24/2022] [Indexed: 11/02/2022]
Abstract
Atherosclerosis (AS) is a common pathological basis for many cardiovascular diseases (CVDs) and result in high mortality and immense health and economic burdens worldwide. Early prevention, diagnosis, and treatment are promising approaches for stemming the development and progression of AS. Lactoferrin (Lf) is an iron-binding glycoprotein belonging to the transferrin family. It is widely found in body fluids such as digestive tract fluids, tears, and milk. Lf possesses anti-inflammatory, antibacterial, immunoregulatory, antioxidant and many other physiological functions. The serum Lf level is reportedly associated with the risk of AS and AS-related CVDs. Lf administration is closely involved in several mechanisms, including cholesterol metabolism, foam cell formation, ICAM-1 expression, homocysteine and leptin levels, anti-inflammatory and antioxidant function. Moreover, Lf has also been applied in the sythesis of magnetic resonance imaging (MRI) contrast agents to detect AS. Lf plays an important role in AS and may therefore be used in its diagnosis and treatment. Thus, this article aims to review the association between Lf and the risk of AS and AS-related CVDs, the mechanisms of Lf administration on AS, and its potential application in AS diagnosis.
Collapse
|
4
|
Botha J, Handberg A, Simonsen JB. Lipid-based strategies used to identify extracellular vesicles in flow cytometry can be confounded by lipoproteins: Evaluations of annexin V, lactadherin, and detergent lysis. J Extracell Vesicles 2022; 11:e12200. [PMID: 35362259 PMCID: PMC8971177 DOI: 10.1002/jev2.12200] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/18/2022] [Accepted: 02/21/2022] [Indexed: 11/12/2022] Open
Abstract
Flow cytometry (FCM) is a popular method used in characterisation of extracellular vesicles (EVs). Circulating EVs are often identified by FCM by exploiting the lipid nature of EVs by staining with Annexin V (Anx5) or lactadherin against the membrane phospholipid phosphatidylserine (PS) and evaluating the specificity of the labels by detergent lysis of EVs. Here, we investigate whether PS labelling and detergent lysis approaches are confounded by lipoproteins, another family of lipid-based nanoparticles found in blood, in both frozen and fresh blood plasma. We demonstrated that Anx5 and lactadherin in addition to EVs stained ApoB-containing lipoproteins, identified by the use of fluorophore-labelled polyclonal ApoB-antibody, and that Anx5 had a significantly larger tendency for labelling lipoprotein-bound PS than lactadherin. Furthermore, detergent lysis resulted in a decrease in both EV and lipoprotein events and especially lipoproteins positive for either Anx5 or lactadherin. Taken together, our findings pose concerns to the use of lipid-based strategies in identifying EVs by FCM and support the use of transmembrane proteins such as tetraspannins to distinguish EVs from lipoproteins.
Collapse
Affiliation(s)
- Jaco Botha
- Department of Clinical BiochemistryAalborg University Hospital, North Denmark RegionAalborgDenmark
- Department of Clinical MedicineAalborg UniversityAalborgDenmark
- Department of Health TechnologyTechnical University of DenmarkKongens LyngbyDenmark
| | - Aase Handberg
- Department of Clinical BiochemistryAalborg University Hospital, North Denmark RegionAalborgDenmark
- Department of Clinical MedicineAalborg UniversityAalborgDenmark
| | - Jens B. Simonsen
- Department of Health TechnologyTechnical University of DenmarkKongens LyngbyDenmark
| |
Collapse
|
5
|
Cabodevilla AG, Tang S, Lee S, Mullick AE, Aleman JO, Hussain MM, Sessa WC, Abumrad NA, Goldberg IJ. Eruptive xanthoma model reveals endothelial cells internalize and metabolize chylomicrons, leading to extravascular triglyceride accumulation. J Clin Invest 2021; 131:e145800. [PMID: 34128469 PMCID: PMC8203467 DOI: 10.1172/jci145800] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/28/2021] [Indexed: 12/13/2022] Open
Abstract
Although tissue uptake of fatty acids from chylomicrons is primarily via lipoprotein lipase (LpL) hydrolysis of triglycerides (TGs), studies of patients with genetic LpL deficiency suggest additional pathways deliver dietary lipids to tissues. Despite an intact endothelial cell (EC) barrier, hyperchylomicronemic patients accumulate chylomicron-derived lipids within skin macrophages, leading to the clinical finding eruptive xanthomas. We explored whether an LpL-independent pathway exists for transfer of circulating lipids across the EC barrier. We found that LpL-deficient mice had a marked increase in aortic EC lipid droplets before and after a fat gavage. Cultured ECs internalized chylomicrons, which were hydrolyzed within lysosomes. The products of this hydrolysis fueled lipid droplet biogenesis in ECs and triggered lipid accumulation in cocultured macrophages. EC chylomicron uptake was inhibited by competition with HDL and knockdown of the scavenger receptor-BI (SR-BI). In vivo, SR-BI knockdown reduced TG accumulation in aortic ECs and skin macrophages of LpL-deficient mice. Thus, ECs internalize chylomicrons, metabolize them in lysosomes, and either store or release their lipids. This latter process may allow accumulation of TGs within skin macrophages and illustrates a pathway that might be responsible for creation of eruptive xanthomas.
Collapse
Affiliation(s)
- Ainara G Cabodevilla
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Songtao Tang
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Sungwoon Lee
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Jose O Aleman
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - M Mahmood Hussain
- Diabetes and Obesity Center, NYU-Long Island School of Medicine, Mineola, New York, USA
| | - William C Sessa
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Nada A Abumrad
- Nutritional Sciences, Department of Medicine and Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Ira J Goldberg
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
6
|
An early-life diet containing large phospholipid-coated lipid globules programmes later-life postabsorptive lipid trafficking in high-fat diet- but not in low-fat diet-fed mice. Br J Nutr 2020; 125:961-971. [PMID: 32616081 DOI: 10.1017/s0007114520002421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Feeding mice in early life a diet containing an experimental infant milk formula (Nuturis®; eIMF), with a lipid structure similar to human milk, transiently lowered body weight (BW) and fat mass gain upon Western-style diet later in life, when compared with mice fed diets based on control IMF (cIMF). We tested the hypothesis that early-life eIMF feeding alters the absorption or the postabsorptive trafficking of dietary lipids in later life. Male C57BL/6JOlaHsd mice were fed eIMF/cIMF from postnatal day 16-42, followed by low- (LFD, American Institute of Nutrition (AIN)-93 G, 7 wt% fat) or high-fat diet (HFD, D12451, 24 wt% fat) until day 63-70. Lipid absorption rate and tissue concentrations were determined after intragastric administration of stable isotope (2H or 13C) labelled lipids in separate groups. Lipid enrichments in plasma and tissues were analysed using GC-MS. The rate of triolein absorption was similar between eIMF and cIMF fed LFD: 3·2 (sd 1·8) and 3·9 (sd 2·1) and HFD: 2·6 (sd 1·7) and 3·8 (sd 3·0) % dose/ml per h. Postabsorptive lipid trafficking, that is, concentrations of absorbed lipids in tissues, was similar in the eIMF and cIMF groups after LFD. Tissue levels of absorbed TAG after HFD feeding were lower in heart (-42 %) and liver (-46 %), and higher in muscle (+81 %, all P < 0·05) in eIMF-fed mice. In conclusion, early-life IMF diet affected postabsorptive trafficking of absorbed lipids after HFD, but not LFD. Changes in postabsorptive lipid trafficking could underlie the observed lower BW and body fat accumulation in later life upon a persistent long-term obesogenic challenge.
Collapse
|
7
|
Gewehr MCF, Silverio R, Rosa-Neto JC, Lira FS, Reckziegel P, Ferro ES. Peptides from Natural or Rationally Designed Sources Can Be Used in Overweight, Obesity, and Type 2 Diabetes Therapies. Molecules 2020; 25:E1093. [PMID: 32121443 PMCID: PMC7179135 DOI: 10.3390/molecules25051093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/18/2022] Open
Abstract
Overweight and obesity are among the most prominent health problems in the modern world, mostly because they are either associated with or increase the risk of other diseases such as type 2 diabetes, hypertension, and/or cancer. Most professional organizations define overweight and obesity according to individual body-mass index (BMI, weight in kilograms divided by height squared in meters). Overweight is defined as individuals with BMI from 25 to 29, and obesity as individuals with BMI ≥30. Obesity is the result of genetic, behavioral, environmental, physiological, social, and cultural factors that result in energy imbalance and promote excessive fat deposition. Despite all the knowledge concerning the pathophysiology of obesity, which is considered a disease, none of the existing treatments alone or in combination can normalize blood glucose concentration and prevent debilitating complications from obesity. This review discusses some new perspectives for overweight and obesity treatments, including the use of the new orally active cannabinoid peptide Pep19, the advantage of which is the absence of undesired central nervous system effects usually experienced with other cannabinoids.
Collapse
Affiliation(s)
- Mayara C. F. Gewehr
- Department of Pharmacology, Biomedical Sciences Institute, University of São Paulo (USP), São Paulo 05508-000, Brazil;
| | - Renata Silverio
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis 88040-900, Brazil;
| | - José Cesar Rosa-Neto
- Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo (USP), São Paulo 05508-000, Brazil;
| | - Fabio S. Lira
- Department of Physical Education, São Paulo State University (UNESP), Presidente Prudente 19060-900, Brazil;
| | - Patrícia Reckziegel
- Department of Pharmacology, National Institute of Pharmacology and Molecular Biology (INFAR), Federal University of São Paulo (UNIFESP), São Paulo 05508-000, Brazil;
| | - Emer S. Ferro
- Department of Pharmacology, Biomedical Sciences Institute, University of São Paulo (USP), São Paulo 05508-000, Brazil;
| |
Collapse
|
8
|
Schott MB, Weller SG, Schulze RJ, Krueger EW, Drizyte-Miller K, Casey CA, McNiven MA. Lipid droplet size directs lipolysis and lipophagy catabolism in hepatocytes. J Cell Biol 2019; 218:3320-3335. [PMID: 31391210 PMCID: PMC6781454 DOI: 10.1083/jcb.201803153] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 09/18/2018] [Accepted: 07/17/2019] [Indexed: 12/20/2022] Open
Abstract
Lipid droplet (LD) catabolism in hepatocytes is mediated by a combination of lipolysis and a selective autophagic mechanism called lipophagy, but the relative contributions of these seemingly distinct pathways remain unclear. We find that inhibition of lipolysis, lipophagy, or both resulted in similar overall LD content but dramatic differences in LD morphology. Inhibition of the lipolysis enzyme adipose triglyceride lipase (ATGL) resulted in large cytoplasmic LDs, whereas lysosomal inhibition caused the accumulation of numerous small LDs within the cytoplasm and degradative acidic vesicles. Combined inhibition of ATGL and LAL resulted in large LDs, suggesting that lipolysis targets these LDs upstream of lipophagy. Consistent with this, ATGL was enriched in larger-sized LDs, whereas lipophagic vesicles were restricted to small LDs as revealed by immunofluorescence, electron microscopy, and Western blot of size-separated LDs. These findings provide new evidence indicating a synergistic relationship whereby lipolysis targets larger-sized LDs to produce both size-reduced and nascently synthesized small LDs that are amenable for lipophagic internalization.
Collapse
Affiliation(s)
- Micah B Schott
- Department of Biochemistry and Molecular Biology, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Shaun G Weller
- Department of Biochemistry and Molecular Biology, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Ryan J Schulze
- Department of Biochemistry and Molecular Biology, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Eugene W Krueger
- Department of Biochemistry and Molecular Biology, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Kristina Drizyte-Miller
- Department of Biochemistry and Molecular Biology, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Carol A Casey
- Department of Internal Medicine and Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE.,Research Service, Department of Veterans Affairs, Nebraska-Western Iowa Health Care System, Omaha, NE
| | - Mark A McNiven
- Department of Biochemistry and Molecular Biology, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| |
Collapse
|
9
|
Pireddu R, Pibiri M, Valenti D, Sinico C, Fadda AM, Simbula G, Lai F. A novel lactoferrin-modified stealth liposome for hepatoma-delivery of triiodothyronine. Int J Pharm 2018; 537:257-267. [PMID: 29294323 DOI: 10.1016/j.ijpharm.2017.12.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/29/2017] [Accepted: 12/30/2017] [Indexed: 01/10/2023]
Abstract
Triiodothyronine (T3), a thyroid hormone synthesized and secreted by the thyroid gland, plays an essential role in morphogenesis and differentiation through interaction with its nuclear receptors (TRs). However, there are increasing evidences for its role in hepatocellular carcinoma (HCC) suppression. The aim of this work was to develop an effective hepatocellular carcinoma targeting drug delivery system to improve T3 delivery to hepatic cancer cells as well as to reduce toxic side effects. Three different liposomal systems, such as unmodified, Stealth (PEGylated) and Lactoferrin (Lf)-modified-Stealth liposomes were successfully prepared by the film hydration method, and fully characterized. Liposome cell interactions and cellular uptake were evaluated in three different HCC target cells (FaO, HepG2 and SKHep) by confocal microscopy. Finally, in vitro cytotoxicity studies were carried out by using MTT assay to evaluate toxicity of the liposome delivery system and to test the effect of T3 when incorporated into liposomes. Internalization studies, performed using Lf-modified-liposomes labeled with the lipophilic marker Rho-PE and loaded with the hydrophilic probe CF, clearly demonstrated the effective internalization of both hydrophilic and lipophilic markers. Lf-liposomes might markedly enhance the specific cell binding and cellular uptake in hepatoma cells due to the mediating of Lf that could bind with high affinity to multiple receptors on cell surface, such as ASGP-R. Results obtained from this study highlight that the Lf- modified-liposomal delivery system may ensure a specific and sustained T3 delivery, thus, allowing reduced therapeutic doses and deleterious side effects of T3.
Collapse
Affiliation(s)
- Rosa Pireddu
- Università degli Studi di Cagliari, Dept. Scienze della Vita e dell'Ambiente, University of Cagliari, via Ospedale 72, 09124, Cagliari, Italy
| | - Monica Pibiri
- Università degli Studi di Cagliari, Dept. of Biomedical Sciences, University of Cagliari, via Porcell 4, Cagliari, 09124, Italy
| | - Donatella Valenti
- Università degli Studi di Cagliari, Dept. Scienze della Vita e dell'Ambiente, University of Cagliari, via Ospedale 72, 09124, Cagliari, Italy
| | - Chiara Sinico
- Università degli Studi di Cagliari, Dept. Scienze della Vita e dell'Ambiente, University of Cagliari, via Ospedale 72, 09124, Cagliari, Italy
| | - Anna Maria Fadda
- Università degli Studi di Cagliari, Dept. Scienze della Vita e dell'Ambiente, University of Cagliari, via Ospedale 72, 09124, Cagliari, Italy
| | - Gabriella Simbula
- Università degli Studi di Cagliari, Dept. of Biomedical Sciences, University of Cagliari, via Porcell 4, Cagliari, 09124, Italy
| | - Francesco Lai
- Università degli Studi di Cagliari, Dept. Scienze della Vita e dell'Ambiente, University of Cagliari, via Ospedale 72, 09124, Cagliari, Italy.
| |
Collapse
|
10
|
Walter E, McKinlay J, Corbett J, Kirk-Bayley J. Review of management in cardiotoxic overdose and efficacy of delayed intralipid use. J Intensive Care Soc 2017; 19:50-55. [PMID: 29456602 DOI: 10.1177/1751143717705802] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We present the case of a 51-year-old woman admitted to our intensive care unit following an intentional overdose of a calcium channel antagonist and a beta blocker. The resultant hypotension was reversed with glucagon, noradrenaline, calcium and high-dose insulin. Despite these interventions, she remained vasoplegic and received a delayed, standard dose of intralipid. Subsequently, the vasoplegia resolved rapidly, and the vasopressor was stopped. Here, we review the management of overdose of calcium channel and beta-adrenergic receptor blockers, concentrating on the pharmacology of lipid emulsion therapy. There remain some unanswered questions about lipid emulsion therapy: treatment with lipid therapy is usually advocated as soon as possible; this case report suggests that it remains efficacious even if its administration were delayed.
Collapse
Affiliation(s)
- Edward Walter
- Department of Intensive Care, Royal Surrey County Hospital, Guildford, UK
| | - James McKinlay
- Department of Intensive Care, Royal Surrey County Hospital, Guildford, UK
| | - Jade Corbett
- Department of Intensive Care, Royal Surrey County Hospital, Guildford, UK
| | - Justin Kirk-Bayley
- Department of Intensive Care, Royal Surrey County Hospital, Guildford, UK
| |
Collapse
|
11
|
Mohamed NK, Hamad MA, Hafez MZ, Wooley KL, Elsabahy M. Nanomedicine in management of hepatocellular carcinoma: Challenges and opportunities. Int J Cancer 2016; 140:1475-1484. [DOI: 10.1002/ijc.30517] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/30/2016] [Accepted: 11/08/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Nourhan K. Mohamed
- Assiut International Center of Nanomedicine, Al-Rajhy Liver Hospital, Assiut University; Egypt
| | - Mostafa A. Hamad
- Department of Surgery; Faculty of Medicine, Assiut University; Egypt
| | - Mohamed Z.E. Hafez
- Department of Internal Medicine; Faculty of Medicine, Aswan University; Egypt
| | - Karen L. Wooley
- Departments of Chemistry; Chemical Engineering and Materials Science and Engineering, Texas A&M University; College Station TX
- Laboratory for Synthetic-Biologic Interactions; Department of Chemistry, Texas A&M University; College Station TX
| | - Mahmoud Elsabahy
- Assiut International Center of Nanomedicine, Al-Rajhy Liver Hospital, Assiut University; Egypt
- Laboratory for Synthetic-Biologic Interactions; Department of Chemistry, Texas A&M University; College Station TX
- Department of Pharmaceutics; Faculty of Pharmacy, Assiut University; Egypt
- Misr University for Science and Technology; 6th of October City Egypt
| |
Collapse
|
12
|
Mayeur S, Spahis S, Pouliot Y, Levy E. Lactoferrin, a Pleiotropic Protein in Health and Disease. Antioxid Redox Signal 2016; 24:813-36. [PMID: 26981846 DOI: 10.1089/ars.2015.6458] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
SIGNIFICANCE Lactoferrin (Lf) is a nonheme iron-binding glycoprotein strongly expressed in human and bovine milk and it plays many functions during infancy such as iron homeostasis and defense against microorganisms. In humans, Lf is mainly expressed in mucosal epithelial and immune cells. Growing evidence suggests multiple physiological roles for Lf after weaning. RECENT ADVANCES The aim of this review is to highlight the recent advances concerning multifunctional Lf activities. CRITICAL ISSUES First, we will provide an overview of the mechanisms related to Lf intrinsic synthesis or intestinal absorption as well as its interaction with a wide spectrum of mammalian receptors and distribution in organs and cell types. Second, we will discuss the large variety of its physiological functions such as iron homeostasis, transportation, immune regulation, oxidative stress, inflammation, and apoptosis while specifying the mechanisms of action. Third, we will focus on its recent physiopathology implication in metabolic disorders, including obesity, type 2 diabetes, and cardiovascular diseases. Additional efforts are necessary before suggesting the potential use of Lf as a diagnostic marker or as a therapeutic tool. FUTURE DIRECTIONS The main sources of Lf in human cardiometabolic disorders should be clarified to identify new perspectives for future research and develop new strategies using Lf in therapeutics. Antioxid. Redox Signal. 24, 813-836.
Collapse
Affiliation(s)
- Sylvain Mayeur
- 1 Research Centre, CHU Ste-Justine, Université de Montréal , Montreal, Canada .,2 Institute of Nutraceuticals and Functional Foods (INAF) , Université Laval, Quebec, Canada
| | - Schohraya Spahis
- 1 Research Centre, CHU Ste-Justine, Université de Montréal , Montreal, Canada .,2 Institute of Nutraceuticals and Functional Foods (INAF) , Université Laval, Quebec, Canada .,3 Department of Nutrition, Université de Montréal , Montreal, Canada
| | - Yves Pouliot
- 3 Department of Nutrition, Université de Montréal , Montreal, Canada
| | - Emile Levy
- 1 Research Centre, CHU Ste-Justine, Université de Montréal , Montreal, Canada .,2 Institute of Nutraceuticals and Functional Foods (INAF) , Université Laval, Quebec, Canada .,3 Department of Nutrition, Université de Montréal , Montreal, Canada
| |
Collapse
|
13
|
Wei M, Xu Y, Zou Q, Tu L, Tang C, Xu T, Deng L, Wu C. Hepatocellular carcinoma targeting effect of PEGylated liposomes modified with lactoferrin. Eur J Pharm Sci 2012; 46:131-41. [PMID: 22369856 DOI: 10.1016/j.ejps.2012.02.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Revised: 01/19/2012] [Accepted: 02/12/2012] [Indexed: 10/28/2022]
Abstract
A hepatocellular carcinoma targeting lactoferrin (Lf) modified PEGylated liposome system was developed for improving drug efficacies to hepatic cancer cells. In this present work, PEGylated liposomes (PLS) were successfully prepared by the thin film hydration method combined with peglipid post insertion. Lf was covalently conjugated to the distal end of DSPE-PEG2000-COOH lipid by amide bound and loaded onto PEGylated liposomes surface as the targeting ligand. To confirm the targeting efficacies to hepatic cancer, coumarin-6 and DiR were encapsulated as fluorescent probes. The confocal microscopy and flow cytometry demonstrated that Lf conjugated PEGylated liposomes (Lf-PLS) were efficiently associated by HepG2 cells, while limited interaction was found for liposomes modified with a negative control protein. A similar pharmacokinetic behavior was observed in pharmacokinetics study of the liposomal formulations. Meanwhile, the in vivo imaging of liposomes in HepG2 tumor bearing mice indicated that Lf-PLS achieved more accumulation in tumor compared with PLS without Lf conjugated. The significant in vitro and in vivo results suggested that Lf-PLS might be a promising drug delivery system for hepatocellular carcinoma therapy with low toxicity.
Collapse
Affiliation(s)
- Minyan Wei
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Schreiber R, Taschler U, Preiss-Landl K, Wongsiriroj N, Zimmermann R, Lass A. Retinyl ester hydrolases and their roles in vitamin A homeostasis. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:113-23. [PMID: 21586336 PMCID: PMC3242165 DOI: 10.1016/j.bbalip.2011.05.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 04/28/2011] [Accepted: 05/02/2011] [Indexed: 12/16/2022]
Abstract
In mammals, dietary vitamin A intake is essential for the maintenance of adequate retinoid (vitamin A and metabolites) supply of tissues and organs. Retinoids are taken up from animal or plant sources and subsequently stored in form of hydrophobic, biologically inactive retinyl esters (REs). Accessibility of these REs in the intestine, the circulation, and their mobilization from intracellular lipid droplets depends on the hydrolytic action of RE hydrolases (REHs). In particular, the mobilization of hepatic RE stores requires REHs to maintain steady plasma retinol levels thereby assuring constant vitamin A supply in times of food deprivation or inadequate vitamin A intake. In this review, we focus on the roles of extracellular and intracellular REHs in vitamin A metabolism. Furthermore, we will discuss the tissue-specific function of REHs and highlight major gaps in the understanding of RE catabolism. This article is part of a Special Issue entitled Retinoid and Lipid Metabolism.
Collapse
|
15
|
D'Ambrosio DN, Clugston RD, Blaner WS. Vitamin A metabolism: an update. Nutrients 2011; 3:63-103. [PMID: 21350678 PMCID: PMC3042718 DOI: 10.3390/nu3010063] [Citation(s) in RCA: 360] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 12/24/2010] [Accepted: 01/11/2011] [Indexed: 12/18/2022] Open
Abstract
Retinoids are required for maintaining many essential physiological processes in the body, including normal growth and development, normal vision, a healthy immune system, normal reproduction, and healthy skin and barrier functions. In excess of 500 genes are thought to be regulated by retinoic acid. 11-cis-retinal serves as the visual chromophore in vision. The body must acquire retinoid from the diet in order to maintain these essential physiological processes. Retinoid metabolism is complex and involves many different retinoid forms, including retinyl esters, retinol, retinal, retinoic acid and oxidized and conjugated metabolites of both retinol and retinoic acid. In addition, retinoid metabolism involves many carrier proteins and enzymes that are specific to retinoid metabolism, as well as other proteins which may be involved in mediating also triglyceride and/or cholesterol metabolism. This review will focus on recent advances for understanding retinoid metabolism that have taken place in the last ten to fifteen years.
Collapse
Affiliation(s)
- Diana N D'Ambrosio
- Department of Medicine and Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | | | | |
Collapse
|
16
|
Effects of pepsin and trypsin on the anti-adipogenic action of lactoferrin against pre-adipocytes derived from rat mesenteric fat. Br J Nutr 2010; 105:200-11. [PMID: 20854698 DOI: 10.1017/s0007114510003259] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Lactoferrin (LF) is a multifunctional glycoprotein in mammalian milk. In a previous report, we showed that enteric-coated bovine LF tablets can decrease visceral fat accumulation, hypothesising that the enteric coating is critical to the functional peptides reaching the visceral fat tissue and exerting their anti-adipogenic activity. The aim of the present study was to assess whether ingested LF can retain its anti-adipogenic activity. We therefore investigated the effects of LF and LF treated with digestive enzymes (the stomach enzyme pepsin and the small intestine enzyme trypsin) on lipid accumulation in pre-adipocytes derived from the mesenteric fat tissue of male Sprague-Dawley rats. Lipid accumulation in pre-adipocytes was significantly reduced by LF in a dose-dependent manner and was associated with reduction in gene expression of CCAAT/enhancer binding protein delta, CCAAT/enhancer binding protein alpha and PPARγ as revealed by DNA microarray analysis. Trypsin-treated LF continued to show anti-adipogenic action, whereas pepsin-treated LF abrogated the activity. When an LF solution (1000 mg bovine LF) was administered by gastric intubation to Sprague-Dawley rats, immunoreactive LF determined by ELISA could be detected in mesenteric fat tissue at a concentration of 14·4 μg/g fat after 15 min. The overall results point to the importance of enteric coating for action of LF as a visceral fat-reducing agent when administered in oral form.
Collapse
|
17
|
Potent anti-obesity effect of enteric-coated lactoferrin: decrease in visceral fat accumulation in Japanese men and women with abdominal obesity after 8-week administration of enteric-coated lactoferrin tablets. Br J Nutr 2010; 104:1688-95. [PMID: 20691130 DOI: 10.1017/s0007114510002734] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Lactoferrin (LF), a multifunctional glycoprotein in mammalian milk, is reported to exert a modulatory effect on lipid metabolism. The aim of the present study was to elucidate whether enteric-coated LF (eLF) might improve visceral fat-type obesity, an underlying cause of the metabolic syndrome. Using a double-blind, placebo-controlled design, Japanese men and women (n 26; aged 22-60 years) with abdominal obesity (BMI>25 kg/m2, and visceral fat area (VFA)>100 cm2) consumed eLF (300 mg/d as bovine LF) or placebo tablets for 8 weeks. Measurement of the total fat area, VFA and subcutaneous fat area from computed tomography images revealed a significant reduction in VFA ( - 14.6 cm2) in the eLF group, as compared with the placebo controls ( - 1.8 cm2; P = 0.009 by ANCOVA). Decreases in body weight, BMI and hip circumference in the eLF group ( - 1.5 kg, - 0.6 kg/m2, - 2.6 cm) were also found to be significantly greater than with the placebo (+1.0 kg, +0.3 kg/m2, - 0.2 cm; P = 0.032, 0.013, 0.041, respectively). There was also a tendency for a reduction in waist circumference in the eLF group ( - 4.4 cm) as compared with the placebo group ( - 0.9 cm; P = 0.073). No adverse effects of the eLF treatment were found with regard to blood lipid or biochemical parameters. From these results, eLF appears to be a promising agent for the control of visceral fat accumulation.
Collapse
|
18
|
Fernández-Real JM, García-Fuentes E, Moreno-Navarrete JM, Murri-Pierri M, Garrido-Sánchez L, Ricart W, Tinahones F. Fat overload induces changes in circulating lactoferrin that are associated with postprandial lipemia and oxidative stress in severely obese subjects. Obesity (Silver Spring) 2010; 18:482-8. [PMID: 19696758 DOI: 10.1038/oby.2009.266] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lactoferrin is an innate immune system protein with anti-inflammatory and antioxidant activities. We aimed to evaluate circulating lactoferrin levels in association with lipid concentrations, and parameters of oxidative stress and inflammation in subjects with morbid obesity after an acute fat intake. The effects of a 60 g fat overload on circulating lactoferrin and antioxidant activities were evaluated in 45 severely obese patients (15 men and 30 women, BMI 53.4 +/- 7.2 kg/m(2)). The change in circulating lactoferrin after fat overload was significantly and inversely associated with the free fatty acid (FFA) change. In those subjects with the highest increase in lactoferrin (in the highest quartile), high-density lipoprotein (HDL)-cholesterol decreased after fat overload to a lesser extent (P = 0.03). In parallel to lipid changes, circulating lactoferrin concentrations were inversely linked to the variations in catalase (CAT) and glutathione reductase (GSH-Rd). Baseline circulating lactoferrin concentration was also inversely associated with the absolute change in antioxidant activity after fat overload, and with the change in C-reactive protein (CRP). Furthermore, those subjects with higher than the median value of homeostasis model assessment of insulin secretion (HOMA(IS)) had significantly increased lactoferrin concentration after fat load (885 +/- 262 vs. 700 +/- 286 ng/ml, P = 0.03). Finally, we further explored the action of lactoferrin in vitro. Lactoferrin (10 micromol/l) led to significantly lower triglyceride (TG) concentrations and lactate dehydrogenase activity (as expression of cell viability) in the media from adipose explants obtained from severely obese subjects. In conclusion, circulating lactoferrin concentrations, both at baseline and fat-stimulated, were inversely associated with postprandial lipemia, and parameters of oxidative stress and fat-induced inflammation in severely obese subjects.
Collapse
Affiliation(s)
- José M Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomédica de Girona, Girona, Spain.
| | | | | | | | | | | | | |
Collapse
|
19
|
Yu DH, Wu JM, Niu AJ. Health-promoting effect of LBP and healthy Qigong exercise on physiological functions in old subjects. Carbohydr Polym 2009. [DOI: 10.1016/j.carbpol.2008.07.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Moreno-Navarrete JM, Ortega FJ, Bassols J, Castro A, Ricart W, Fernández-Real JM. Association of circulating lactoferrin concentration and 2 nonsynonymous LTF gene polymorphisms with dyslipidemia in men depends on glucose-tolerance status. Clin Chem 2007; 54:301-9. [PMID: 18156281 DOI: 10.1373/clinchem.2007.095943] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Lactoferrin, an innate immune protein with antiinflammatory properties, shows considerable antiatherosclerosis activity in animal studies. We investigated the relationship between circulating lactoferrin, lactoferrin gene (LTF, lactotransferrin) polymorphisms, dyslipidemia, and vascular reactivity in the context of glucose-tolerance status in men. METHODS We evaluated 2 nonsynonymous LTF polymorphisms (rs1126477 and rs1126478) and measured circulating lactoferrin concentrations by ELISA under nonstressed conditions in healthy Caucasian men (n = 188) and male patients with an altered glucose tolerance (n = 202). We also studied the association of lactoferrin concentration with vascular reactivity via high-resolution ultrasound analysis of the brachial artery in a subsample of study participants. RESULTS Circulating lactoferrin concentration was inversely associated with fasting triglyceride concentration (r = -0.24; P = 0.001), body mass index (BMI) (r = -0.20; P = 0.007), waist-to-hip ratio (r = -0.35; P <0.001), and fasting glucose concentration (r = -0.18; P = 0.01), and directly correlated with HDL cholesterol concentration (r = 0.21; P = 0.004). Control AG heterozygotes for rs1126477 had significantly decreased fasting triglyceride concentrations (P = 0.001). Similarly, control individuals who were G carriers for rs1126478 had significantly lower fasting triglyceride concentrations (P = 0.044) and significantly higher HDL cholesterol concentrations (P = 0.028) than AA homozygotes. These associations remained significant after controlling for age, BMI, waist-to-hip ratio, fasting glucose concentration, smoking status, and alcohol intake. Circulating lactoferrin concentration was not significantly associated with endothelium-dependent vasodilatation (EDVD) in the individuals studied (n = 95); however, lactoferrin was positively associated with EDVD in obese participants with an altered glucose tolerance (r = 0.54; P = 0.04). CONCLUSIONS We have identified associations among LTF polymorphisms, circulating lactoferrin concentration, fasting triglyceride concentration, and vascular reactivity in humans.
Collapse
Affiliation(s)
- José Maria Moreno-Navarrete
- Unit of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomédica de Girona, and CIBER Fisiopatologia Obesidad y Nutricion (CB06/03/010), Instituto de Salud Carlos III, Girona, Spain
| | | | | | | | | | | |
Collapse
|
21
|
Lambert MS, Avella MA, Berhane Y, Shervill E, Botham KM. The differential hepatic uptake of chylomicron remnants of different fatty acid composition is not mediated by hepatic lipase. Br J Nutr 2007; 85:575-82. [PMID: 11348572 DOI: 10.1079/bjn2000328] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The hypothesis that hepatic lipase mediates the differential hepatic uptake of chylomicron remnants of different fatty acid composition, demonstrated in previous work from our laboratory, was tested by investigating the effect of antibodies to the enzyme on the uptake of remnants enriched with saturated orn-3 polyunsaturated fatty acids by the perfused rat liver. After perfusion of rat livers with polyclonal antibodies to rat hepatic lipase raised in rabbits or with rabbit non-immune serum for 15 min, [3H]oleate-labelled chylomicron remnants, derived from chylomicrons of rats given a bolus of either palm (rich in saturated fatty acids) oil or fish (rich inn-3 polyunsaturated fatty acids) oil, were added. The disappearance of radioactivity from the perfusate during 120 min and its recovery in the liver at the end of the experiments were then measured. Although the rabbit anti-rat hepatic lipase antiserum was shown to inhibit hepatic lipase activity by up to 90 %, and to bind extensively to hepatic sinusoidal surfaces when added to the perfusate, radioactivity from remnants of chylomicrons from rats given a bolus of fish oil as compared with palm oil disappeared from the perfusate and appeared in the liver more rapidly in the presence both the antiserum and the non-immune serum, and the differences between the uptake of the two types of remnants were similar. We conclude, therefore, that differential interaction with hepatic lipase is not responsible for the differences in the rate of removal of chylomicron remnants of different fatty acid composition from the blood.
Collapse
Affiliation(s)
- M S Lambert
- Department of Veterinary Basic Sciences, The Royal Veterinary College, Royal College St, London NW1 0TU, UK
| | | | | | | | | |
Collapse
|
22
|
Takeuchi T, Shimizu H, Ando K, Harada E. Bovine lactoferrin reduces plasma triacylglycerol and NEFA accompanied by decreased hepatic cholesterol and triacylglycerol contents in rodents. Br J Nutr 2007; 91:533-8. [PMID: 15035680 DOI: 10.1079/bjn20041090] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In the present study we examined whether oral administration of bovine lactoferrin (bLF) reduces plasma or hepatic triacylglycerol and cholesterol in mice. When bLF mixed with a standard commercial diet (10g/kg) was given to mice for 4 weeks, plasma triacylglycerol and NEFA decreased, while plasma HDL-cholesterol levels increased (P<0·01). These changes in plasma lipid profiles were accompanied by significant decreases in hepatic cholesterol and triacylglycerol contents. When mice were fed a high-fat diet containing 300·0g lard, 10·0g cholesterol and 2·5g bovine bile powder/kg for 4 weeks, bovine LF did not have any significant effects on plasma or hepatic cholesterol and triacylglycerol concentrations. Furthermore, bLF had no significant effects on faecal excretion of total bile acids in mice. Interestingly, bLF showed a suppressive effect on the lymphatic triacylglycerol absorption in chronically treated rats. We conclude that bLF has a beneficial effect on plasma cholesterol levels and retards hepatic lipid accumulation in mice fed a standard diet.
Collapse
Affiliation(s)
- Takashi Takeuchi
- Department of Veterinary Physiology, Faculty of Agriculture, Tottori University, Tottori 680-0945, Japan
| | | | | | | |
Collapse
|
23
|
Perona JS, Avella M, Botham KM, Ruiz-Gutierrez V. Uptake of triacylglycerol-rich lipoproteins of differing triacylglycerol molecular species and unsaponifiable content by liver cells. Br J Nutr 2007; 95:889-97. [PMID: 16611378 DOI: 10.1079/bjn20061730] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The fatty acid composition of dietary oils can modulate the incorporation of triacylglycerol-rich lipoproteins (TRL) into hepatocytes, thus affecting the atherogenicity of these particles. However, nothing is known about the effect of the unsaponifiable fraction of the oils. In the present study, we evaluated the influence of these components on the uptake of TRL by rat primary hepatocytes. TRL were isolated from human serum after the intake of meals enriched in high-oleic sunflower oil (HOSO), virgin olive oil (VOO) or VOO enriched in its own unsaponifiable fraction (EVO). HOSO and HOSO-TRL differed from VOO and EVO and their corresponding TRL in the composition of triacylglycerol molecular species and of the unsaponifiable fraction. Furthermore, the increase in the unsaponifiable fraction of VOO led to changes in the triacylglycerol molecular species in the EVO-TRL. On incubation with hepatocytes, HOSO-TRL were taken up at a faster rate than VOO-TRL or EVO-TRL. In addition, in comparison to VOO-TRL, HOSO-TRL increased the expression of mRNA for the LDL receptor-related protein receptor, which plays an important role in the internalisation of remnant lipoproteins. EVO-TRL also increased LDL receptor-related protein mRNA expression in comparison with VOO-TRL, but this change was not accompanied by a rise in the uptake rate, suggesting that the unsaponifiable fraction of VOO may inhibit LDL receptor-related protein expression or activity post-transcriptionally. In conclusion, TRL from dietary oils with differing triacylglycerol molecular species and unsaponifiable fraction content are taken up by liver cells at different rates, and this may be important in the atherogenicity of these particles.
Collapse
Affiliation(s)
- Javier S Perona
- Instituto de la Grasa (CSIC), Av. Padre Garcia Tejero, 4.41012 Seville, Spain
| | | | | | | |
Collapse
|
24
|
Komoriya K, Kato Y, Hayashi Y, Ohsuye K, Nishigaki R, Sugiyama Y. Characterization of the hepatic disposition of lanoteplase, a rationally designed variant of tissue plasminogen activator in rodents. Drug Metab Dispos 2006; 35:469-75. [PMID: 17178768 DOI: 10.1124/dmd.106.012518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lanoteplase is a recombinant mutant of tissue-type plasminogen activator (t-PA) that was developed with an aim to overcome the drawback of rapid systemic elimination of t-PA. In this study, we examined the disposition profile of lanoteplase in vivo and the kinetics of receptor-mediated endocytosis (RME) of this recombinant t-PA in vitro to kinetically characterize the mechanism(s) underlying its tissue distribution and elimination. Integration plot analysis of the initial-phase tissue distribution in rats revealed a much lower uptake clearance (CL(uptake)) of lanoteplase in the liver than that of t-PA. Rate constants for cell surface binding, internalization, and degradation of lanoteplase were also lower than those for t-PA in primary cultured rat hepatocytes. These results suggest that the improved stability of lanoteplase in vivo could be accounted for by the delay in the RME of this recombinant protein. The CL(uptake) in the liver decreased with coadministration of lactoferrin, a ligand for the low-density lipoprotein receptor-related protein (LRP) and the asialoglycoprotein (ASGP) receptors in normal mice, and in lrpap1((-/-)) mice, which have a hereditary deficiency of LRP; In contrast, CL(uptake) was not affected by mannose, whereas that of t-PA decreased with both ligands and in the lrpap1((-/-)) mice. Thus, the hepatic disposition of lanoteplase seems to be mediated by common specific receptors for t-PA, including LRP and the ASGP receptors, whereas the mannose receptor seems to be only minimally involved in the disposition of lanoteplase.
Collapse
Affiliation(s)
- Kazumi Komoriya
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Fu T, Kozarsky KF, Borensztajn J. Overexpression of SR-BI by adenoviral vector reverses the fibrateinduced hypercholesterolemia of apolipoprotein E-deficient mice. J Biol Chem 2003; 278:52559-63. [PMID: 14570884 DOI: 10.1074/jbc.m310892200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hypercholesterolemia characteristic of apolipoprotein (apoE)-deficient mice fed on a regular chow diet is caused by the abnormal accumulation of apoB-48-carrying remnants of chylomicrons and very low density lipoproteins in the plasma. Treatment of apoE-deficient mice with ciprofibrate or other peroxisome proliferator-activated receptor alpha agonists severely aggravates their hypercholesterolemia by interfering with one or more mechanisms of remnant removal from the circulation that do not require mediation by apoE (Fu, T., Kashireddy, P., and Borensztajn, J. (2003) Biochem. J. 373, 941-947). In the present investigation we report that ciprofibrate treatment causes the down-regulation of hepatic scavenger receptor class B, type I (SR-BI) protein expression in the livers of apoE-deficient mice. On cessation of the treatment SR-BI expression returns to its pretreatment levels, coinciding with a reversal of the hypercholesterolemia to base-line concentrations. Restoration of SR-BI expression in ciprofibrate-treated apoE-deficient mice by recombinant adenoviral gene transfer abolishes the ciprofibrate-induced over accumulation of apoB-48-carrying remnants in the plasma. We also report that remnants isolated from the plasma of ciprofibrate-treated apoE-deficient mice bind to murine SR-BI expressed in stably transfected cultured cells. These observations suggest that, in addition to its well established role as high density lipoprotein receptor, SR-BI can also function as a remnant receptor responsible for the clearance of remnants from the circulation of apoE-deficient mice.
Collapse
Affiliation(s)
- Tao Fu
- Department of Pathology, Northwestern University, the Feinberg School of Medicine, Chicago, Illinois 60611-3008, USA
| | | | | |
Collapse
|
26
|
Shimada Y, Morita T, Sugiyama K. Eritadenine-induced alterations of plasma lipoprotein lipid concentrations and phosphatidylcholine molecular species profile in rats fed cholesterol-free and cholesterol-enriched diets. Biosci Biotechnol Biochem 2003; 67:996-1006. [PMID: 12834276 DOI: 10.1271/bbb.67.996] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The effects of dietary eritadenine on the concentration of plasma lipoprotein lipids and the molecular species profile of plasma lipoprotein phosphatidylcholine (PC) were investigated in rats fed cholesterol-free and cholesterol-enriched diets to obtain insights into the relationship between the changes in PC molecular species profile and the hypocholesterolemic action of eritadenine. The effect of eritadenine on the secretion rate of very low density lipoprotein (VLDL) from the liver was also estimated. Rats were fed the control or eritadenine-supplemented (50 mg/kg) diets with or without exogenous cholesterol for 14 d. Eritadenine supplementation significantly decreased the cholesterol of major plasma lipoproteins, high density lipoprotein and VLDL, in rats fed cholesterol-free and cholesterol-enriched diets, respectively. The ratio of PC to phosphatidylethanolamine, delta6-desaturase activity, and the ratio of arachidonic acid to linoleic acid in liver microsomes were markedly decreased by eritadenine irrespective of the presence or absence of exogenous cholesterol. Dietary eritadenine increased the proportion of 16:0-18:2 molecular species with a decrease in 18:0-20:4 in plasma lipoprotein PC in both rats fed cholesterol-free and cholesterol-enriched diets. Eritadenine did not depress the secretion rate of VLDL in rats fed a cholesterol-free diet containing a high level of choline. The results indicate that dietary eritadenine elicits its hypocholesterolemic action with modulations of the fatty acid and molecular species profiles of PC irrespective of the presence or absence of exogenous cholesterol. The eritadenine-induced alteration of PC molecular species profile is discussed in relation to the hypocholesterolemic action of eritadenine.
Collapse
Affiliation(s)
- Yasuhiko Shimada
- Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, Shizuoka 422-8529, Japan
| | | | | |
Collapse
|
27
|
Abia R, Pacheco YM, Montero E, Ruiz-Gutierrez V, Muriana FJG. Distribution of fatty acids from dietary oils into phospholipid classes of triacylglycerol-rich lipoproteins in healthy subjects. Life Sci 2003; 72:1643-54. [PMID: 12551753 DOI: 10.1016/s0024-3205(02)02440-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Several studies have suggested that lipoprotein metabolism can be affected by lipoprotein phospholipid composition. We investigated the effect of virgin olive oil (VOO) and high-oleic sunflower oil (HOSO) intake on the distribution of fatty acids in triacylglycerols (TG), cholesteryl esters (CE) and phospholipid (PL) classes of triacylglycerol-rich lipoproteins (TRL) from normolipidemic males throughout a 7 h postprandial metabolism. Particularly, changes in oleic acid (18:1n-9) concentration of PL were used as a marker of in vivo hydrolysis of TRL external monolayer. Both oils equally promoted the incorporation of oleic acid into the TG and CE of postprandial TRL. However, PL was enriched in oleic acid (18:1n-9) and n-3 polyunsaturated fatty acids (PUFA) after VOO meal, whereas in stearic (18:0) and linoleic (18:2n-6) acids after HOSO meal. We also found that VOO produced TRL which PL 18:1n-9 content was dramatically reduced along the postprandial period. We conclude that the fatty acid composition of PL can be a crucial determinant for the clearance of TRL during the postprandial metabolism of fats.
Collapse
Affiliation(s)
- Rocio Abia
- Instituto de la Grasa, Consejo Superior de Investigaciones Cientificas (CSIC), 41012, Sevilla, Spain.
| | | | | | | | | |
Collapse
|
28
|
Conde-Knape K, Bensadoun A, Sobel JH, Cohn JS, Shachter NS. Overexpression of apoC-I in apoE-null mice: severe hypertriglyceridemia due to inhibition of hepatic lipase. J Lipid Res 2002; 43:2136-45. [PMID: 12454276 DOI: 10.1194/jlr.m200210-jlr200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apolipoprotein C-I (apoC-I) has been proposed to act primarily via interference with apoE-mediated lipoprotein uptake. To define actions of apoC-I that are independent of apoE, we crossed a moderately overexpressing human apoC-I transgenic, which possesses a minimal phenotype in the WT background, with the apoE-null mouse. Surprisingly, apoE-null/C-I mice showed much more severe hyperlipidemia than apoE-null littermates in both the fasting and non-fasting states, with an almost doubling of cholesterol, primarily in IDL+LDL, and a marked increase in triglycerides; 3-fold in females to 260 +/- 80 mg/dl and 14-fold in males to 1409 +/- 594 mg/dl. HDL lipids were not significantly altered but HDL were apoC-I-enriched and apoA-II-depleted. Production rates of VLDL triglyceride were unchanged as was the clearance of post-lipolysis remnant particles. Plasma post-heparin hepatic lipase and lipoprotein lipase levels were undiminished as was the in vitro hydrolysis of apoC-I transgenic VLDL. However, HDL from apoC-I transgenic mice had a marked inhibitory effect on hepatic lipase activity, as did purified apoC-I. LPL activity was minimally affected. Atherosclerosis assay revealed significantly increased atherosclerosis in apoE-null/C-I mice assessed via the en face assay. Inhibition of hepatic lipase may be an important mechanism of the decrease in lipoprotein clearance mediated by apoC-I.
Collapse
Affiliation(s)
- Karin Conde-Knape
- Department of Medicine, Columbia University, 630 W. 168th Street, New York, NY, USA
| | | | | | | | | |
Collapse
|
29
|
Wallace AJ, Sutherland WH, Mann JI, Williams SM. The effect of meals rich in thermally stressed olive and safflower oils on postprandial serum paraoxonase activity in patients with diabetes. Eur J Clin Nutr 2001; 55:951-8. [PMID: 11641743 DOI: 10.1038/sj.ejcn.1601250] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2000] [Revised: 04/03/2001] [Accepted: 04/08/2001] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To determine the effects of meals rich in thermally stressed safflower (TSAF) and olive (TSOL) oils on postprandial serum paraoxonase (PON1) arylesterase activity and low density lipoprotein (LDL) oxidation in patients with type 2 diabetes. DESIGN A randomised cross-over study. SETTING Diabetes clinic and general practice. SUBJECTS Fourteen patients (six men and eight women) with type 2 diabetes, aged 48-67 y, glycated haemoglobin <10% and fasting blood glucose <11 mmol/l were recruited. INTERVENTIONS Patients received a milkshake rich in TSAF or TSOL and at least a week later they received the alternate milkshake. These fats contained high levels of lipid oxidation and degradation products. Blood samples were taken fasted and 4 h after consumption of the milkshake. MAIN OUTCOME MEASURES Serum PON1 activity and lag time in LDL oxidation. RESULTS After the meal rich in TSOL, serum PON1 activity increased significantly in women (12 (2.22) micromol/ml/min, mean (95% confidence interval), P=0.03) and not in men (0 (-4.4) micromol/ml/min) during the postprandial period. The increase in PON1 activity after the TSOL meal was significantly (P=0.03) greater in women compared with men. In women, the increase in serum PON1 activity after the TSOL meal was significantly different (13 (1.25) micromol/ml/min, P=0.04) compared with the corresponding change (-1 micromol/ml/min) after the TSAF meal. The lag time in LDL oxidation and indices of oxidative stress and antioxidant capacity did not vary significantly during the meals. CONCLUSIONS Meals rich in TSOL may increase postprandial serum PON1 activity in middle-aged and older diabetic women. This change is potentially anti-atherogenic and may favour the use of olive oil over polyunsaturated fats in the diet of patients with type 2 diabetes. SPONSORSHIP The study was supported by a grant from the National Heart Foundation of New Zealand.
Collapse
Affiliation(s)
- A J Wallace
- Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| | | | | | | |
Collapse
|
30
|
Napolitano M, Rivabene R, Avella M, Amicone L, Tripodi M, Botham KM, Bravo E. Oxidation affects the regulation of hepatic lipid synthesis by chylomicron remnants. Free Radic Biol Med 2001; 30:506-15. [PMID: 11182521 DOI: 10.1016/s0891-5849(00)00493-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effects of native and oxidized chylomicron remnants on lipid synthesis in normal and oxidatively stressed liver cells were investigated using MET murine hepatocytes (MMH cells), a nontransformed mouse hepatocyte cell line that maintains a highly differentiated hepatic phenotype in culture. Lipid synthesis was determined by measuring the incorporation of [(3)H]oleate into cholesteryl ester, triacylglycerol, and phospholipid by the cells. The formation of cholesteryl ester and phospholipid was decreased by chylomicron remnants in a dose-dependent manner, while triacylglycerol synthesis was increased. Exposure of MMH cells to mild oxidative stress by incubation with CuSO(4) (2.5 microM) for 24 h led to significantly increased incorporation of [(3)H]oleate into triacylglycerol and phospholipid, but not cholesteryl ester, in the absence of chylomicron remnants. In the presence of the lipoproteins, however, similar effects to those found in untreated cells were observed. Oxidatively modified chylomicron remnants prepared by incubation with CuSO(4) (10 microM, 18 h, 37 degrees C) did not influence cholesteryl ester or phospholipid synthesis in MMH cells, but had a similar effect to that found with native remnants on triacylglycerol synthesis. These findings show that hepatic lipid metabolism is altered by exposure to mild oxidative stress and by lipids from the diet delivered to the liver in chylomicron remnants, and these effects may play a role in the development of atherosclerosis.
Collapse
Affiliation(s)
- M Napolitano
- Istituto Superiore di Sanitá, Laboratorio di Metabolismo e Biochimica Patologica, Roma, Italy
| | | | | | | | | | | | | |
Collapse
|
31
|
Yu KCW, Jiang Y, Chen W, Cooper AD. Rapid initial removal of chylomicron remnants by the mouse liver does not require hepatically localized apolipoprotein E. J Lipid Res 2000. [DOI: 10.1016/s0022-2275(20)31965-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
32
|
Minihane AM, Khan S, Leigh-Firbank EC, Talmud P, Wright JW, Murphy MC, Griffin BA, Williams CM. ApoE polymorphism and fish oil supplementation in subjects with an atherogenic lipoprotein phenotype. Arterioscler Thromb Vasc Biol 2000; 20:1990-7. [PMID: 10938022 DOI: 10.1161/01.atv.20.8.1990] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The study assessed the efficacy of fish oil supplementation in counteracting the classic dyslipidemia of the atherogenic lipoprotein phenotype (ALP). In addition, the impact of the common apolipoprotein E (apoE) polymorphism on the fasting and postprandial lipid profile and on responsiveness to the dietary intervention was established. Fifty-five ALP males (aged 34 to 69 years, body mass index 22 to 35 kg/m(2), triglyceride [TG] levels 1.5 to 4.0 mmol/L, high density lipoprotein cholesterol [HDL-C] <1.1 mmol/l, and percent low density lipoprotein [LDL]-3 >40% total LDL) completed a randomized placebo-controlled crossover trial of fish oil (3.0 g eicosapentaenoic acid/docosahexaenoic acid per day) and placebo (olive oil) capsules with the 6-week treatment arms separated by a 12-week washout period. In addition to fasting blood samples, at the end of each intervention arm, a postprandial assessment of lipid metabolism was carried out. Fish oil supplementation resulted in a reduction in fasting TG level of 35% (P<0.001), in postprandial TG response of 26% (TG area under the curve, P<0.001), and in percent LDL-3 of 26% (P<0.05). However, no change in HDL-C levels was evident (P=0.752). ANCOVA showed that baseline HDL-C levels were significantly lower in apoE4 carriers (P=0.035). The apoE genotype also had a striking impact on lipid responses to fish oil intervention. Individuals with an apoE2 allele displayed a marked reduction in postprandial incremental TG response (TG incremental area under the curve, P=0.023) and a trend toward an increase in lipoprotein lipase activity relative to non-E2 carriers. In apoE4 individuals, a significant increase in total cholesterol and a trend toward a reduction in HDL-C relative to the common homozygous E3/E3 profile was evident. Our data demonstrate the efficacy of fish oil fatty acids in counteracting the proatherogenic lipid profile of the ALP but also that the apoE genotype influences responsiveness to this dietary treatment.
Collapse
Affiliation(s)
- A M Minihane
- Hugh Sinclair Unit of Human Nutrition, Department of Food Science and Technology, University of Reading, Reading, UK.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Amigo L, Quiñones V, Mardones P, Zanlungo S, Miquel JF, Nervi F, Rigotti A. Impaired biliary cholesterol secretion and decreased gallstone formation in apolipoprotein E-deficient mice fed a high-cholesterol diet. Gastroenterology 2000; 118:772-9. [PMID: 10734029 DOI: 10.1016/s0016-5085(00)70147-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Because apolipoprotein E (apoE) is a key cholesterol transport molecule involved in the hepatic uptake of chylomicron cholesterol, it may play a critical role in controlling bile cholesterol elimination and cholesterol gallstone formation induced by dietary cholesterol. To test this hypothesis, we studied biliary lipid secretion and gallstone formation in apoE-deficient mice fed cholesterol-rich diets. METHODS Bile lipid outputs and gallstone sequence events were analyzed in apoE-deficient mice fed a high-cholesterol diet or a lithogenic diet compared with control animals. RESULTS A high-cholesterol diet increased biliary cholesterol secretion and gallbladder bile cholesterol concentration in wild-type mice; the increase in bile cholesterol secretion was significantly attenuated in apoE-deficient mice. ApoE knockout mice fed a high-cholesterol lithogenic diet had a markedly lower frequency of gallbladder bile cholesterol crystal and gallstone formation than wild-type mice, which was most likely a result of the decreased cholesterol saturation index found in gallbladder bile of apoE-deficient mice. CONCLUSIONS These results show that apoE expression is an important factor for regulating both biliary secretion of diet-derived cholesterol as well as diet-induced cholesterol gallstone formation in mice.
Collapse
Affiliation(s)
- L Amigo
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
34
|
Osada J, Joven J, Maeda N. The value of apolipoprotein E knockout mice for studying the effects of dietary fat and cholesterol on atherogenesis. Curr Opin Lipidol 2000; 11:25-9. [PMID: 10750690 DOI: 10.1097/00041433-200002000-00004] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The ability of the apolipoprotein E-deficient mouse to develop spontaneous atherosclerosis, which resembles the human process, is an excellent model in which to assess the impact of dietary factors. This review discusses the role of several nutrients in the development of atherosclerosis and the mechanisms through which they act.
Collapse
Affiliation(s)
- J Osada
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Universidad de Zaragoza, Spain.
| | | | | |
Collapse
|