1
|
Lamontagne-Kam DM, Davari S, Aristizabal-Henao JJ, Cho S, Chalil D, Mielke JG, Stark KD. Sex differences in hippocampal-dependent memory and the hippocampal lipidome in adolescent rats raised on diets with or without DHA. Prostaglandins Leukot Essent Fatty Acids 2023; 192:102569. [PMID: 36966673 DOI: 10.1016/j.plefa.2023.102569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023]
Abstract
Recent studies suggest the effects of DHA supplementation on human memory may differ between females and males during infancy, adolescence, and early adulthood, but the underlying mechanisms are not clear. As a result, this study sought to examine the spatial memory and brain lipidomic profiles in female and male adolescent rats with or without a DHA-enriched diet that began perinatally with the supplementation of dams. Spatial learning and memory were examined in adolescent rats using the Morris Water Maze beginning at 6 weeks of age and animals were sacrificed at 7 weeks of age to permit isolation of brain tissue and blood samples. Behavioral testing showed that there was a significant diet x sex interaction for two key measures of spatial memory (distance to zone and time spent in the correct quadrant during the probe test), with female rats benefiting the most from DHA supplementation. Lipidomic analyses suggest levels of arachidonic acid (ARA) and n-6 docosapentaenoic acid (DPA) containing phospholipid species were lower in the hippocampus of DHA supplemented compared with control animals, and principal component analyses revealed a potential dietary treatment effect for hippocampal PUFA. Females fed DHA had slightly more PE P-18:0_22:6 and maintained levels of PE 18:0_20:4 in the hippocampus in contrast with males fed DHA. Understanding how DHA supplementation during the perinatal and adolescent periods changes cognitive function in a sex-specific manner has important implications for determining the dietary requirements of DHA. This study adds to previous work highlighting the importance of DHA for spatial memory and provides evidence that further research needs to consider how DHA supplementation can cause sex-specific changes.
Collapse
Affiliation(s)
- Daniel M Lamontagne-Kam
- Department of Kinesiology and Health Sciences, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Saeideh Davari
- School of Public Health Sciences, University of Waterloo, 200 University Avenue, Waterloo, ON, N2L 3G1, Canada
| | - Juan J Aristizabal-Henao
- Department of Kinesiology and Health Sciences, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada; BPGbio Inc., 500 Old Connecticut Path Building B, Framingham, MA, 01701, USA
| | - Seungjae Cho
- Department of Kinesiology and Health Sciences, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Dan Chalil
- Department of Kinesiology and Health Sciences, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - John G Mielke
- School of Public Health Sciences, University of Waterloo, 200 University Avenue, Waterloo, ON, N2L 3G1, Canada
| | - Ken D Stark
- Department of Kinesiology and Health Sciences, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
2
|
Ganeshalingam M, Enstad S, Sen S, Cheema S, Esposito F, Thomas R. Role of lipidomics in assessing the functional lipid composition in breast milk. Front Nutr 2022; 9:899401. [PMID: 36118752 PMCID: PMC9478754 DOI: 10.3389/fnut.2022.899401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Breast milk is the ideal source of nutrients for infants in early life. Lipids represent 2–5% of the total breast milk composition and are a major energy source providing 50% of an infant’s energy intake. Functional lipids are an emerging class of lipids in breast milk mediating several different biological functions, health, and developmental outcome. Lipidomics is an emerging field that studies the structure and function of lipidome. It provides the ability to identify new signaling molecules, mechanisms underlying physiological activities, and possible biomarkers for early diagnosis and prognosis of diseases, thus laying the foundation for individualized, targeted, and precise nutritional management strategies. This emerging technique can be useful to study the major role of functional lipids in breast milk in several dimensions. Functional lipids are consumed with daily food intake; however, they have physiological benefits reported to reduce the risk of disease. Functional lipids are a new area of interest in lipidomics, but very little is known of the functional lipidome in human breast milk. In this review, we focus on the role of lipidomics in assessing functional lipid composition in breast milk and how lipid bioinformatics, a newly emerging branch in this field, can help to determine the mechanisms by which breast milk affects newborn health.
Collapse
Affiliation(s)
- Moganatharsa Ganeshalingam
- School of Science and the Environment/Boreal Ecosystems Research Initiative, Memorial University of Newfoundland, Corner Brook, NL, Canada
- *Correspondence: Moganatharsa Ganeshalingam,
| | - Samantha Enstad
- Neonatal Intensive Care Unit, Orlando Health Winne Palmer Hospital for Women and Babies, Orlando, FL, United States
| | - Sarbattama Sen
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Sukhinder Cheema
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Flavia Esposito
- Department of Mathematics, University of Bari Aldo Moro, Bari, Italy
| | - Raymond Thomas
- School of Science and the Environment/Boreal Ecosystems Research Initiative, Memorial University of Newfoundland, Corner Brook, NL, Canada
- Raymond Thomas,
| |
Collapse
|
3
|
Niinistö S, Miettinen ME, Cuthbertson D, Honkanen J, Hakola L, Autio R, Erlund I, Arohonka P, Vuorela A, Härkönen T, Hyöty H, Krischer JP, Vaarala O, Knip M, Virtanen SM. Associations Between Serum Fatty Acids and Immunological Markers in Children Developing Islet Autoimmunity-The TRIGR Nested Case-Control Study. Front Immunol 2022; 13:858875. [PMID: 35693790 PMCID: PMC9175567 DOI: 10.3389/fimmu.2022.858875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/27/2022] [Indexed: 12/03/2022] Open
Abstract
Aims Altered immune functions as well as fatty acid intake and status have been associated with the development of type 1 diabetes. We aimed to study the relationship between fatty acids and immunological markers in young children with increased genetic risk for type 1 diabetes in order to define putative mechanisms related to development of islet autoimmunity. Methods Serum samples for fatty acid and immunological marker measurements were obtained in the Trial to Reduce IDDM in the Genetically at Risk (TRIGR) ancillary study (Divia) from children born between 2002 and 2007 in 15 countries. Case children (n = 95) were defined as having repeated positivity for at least two out of four diabetes-associated autoantibodies. For each case child, control children were selected matched for country and date of birth (n = 173). Serum fatty acids and immunological markers were measured from cord serum and at the age of 6 and 12 months. Spearman correlation coefficients were calculated between fatty acids and immunological markers. Results Correlations between circulating fatty acids and immunological markers were different in case children who developed islet autoimmunity than in control children already at birth continuing across the first year of life. In case children, saturated fatty acids (SFAs) showed stronger correlations with immunological markers, while in controls, polyunsaturated fatty acids (PUFAs) showed stronger correlations. Conclusions In cases, SFAs were associated with several immunological markers (CXCL10, IL-6, IL-9, IL-17, and CM-CSF) previously linked to the type 1 diabetes disease process. Findings indicate that fatty acids could have immunomodulatory potential in the early phase of the disease development, although causality between fatty acids and the immunological pathways remains to be explored. Trial registry number NCT00179777.
Collapse
Affiliation(s)
- Sari Niinistö
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Maija E. Miettinen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - David Cuthbertson
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Jarno Honkanen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Leena Hakola
- Unit of Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland
- Tampere University Hospital, Research, Development and Innovation Center, Tampere, Finland
| | - Reija Autio
- Unit of Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Iris Erlund
- Department of Government Services, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Petra Arohonka
- Department of Government Services, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Arja Vuorela
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Taina Härkönen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| | - Jeffrey P. Krischer
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Outi Vaarala
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikael Knip
- Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
- Center for Child Health Research, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Suvi M. Virtanen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Unit of Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland
- Tampere University Hospital, Research, Development and Innovation Center, Tampere, Finland
- Center for Child Health Research, Tampere University and Tampere University Hospital, Tampere, Finland
| | | |
Collapse
|
4
|
Schooneveldt YL, Giles C, Keating MF, Mellett NA, Jurrjens AW, Paul S, Calkin AC, Meikle PJ. The Impact of Simvastatin on Lipidomic Markers of Cardiovascular Risk in Human Liver Cells Is Secondary to the Modulation of Intracellular Cholesterol. Metabolites 2021; 11:metabo11060340. [PMID: 34070445 PMCID: PMC8228384 DOI: 10.3390/metabo11060340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/03/2022] Open
Abstract
Statins are the first-line lipid-lowering therapy for reducing cardiovascular disease (CVD) risk. A plasma lipid ratio of two phospholipids, PI(36:2) and PC(18:0_20:4), was previously identified to explain 58% of the relative CVD risk reduction associated with pravastatin, independent of a change in low-density lipoprotein-cholesterol. This ratio may be a potential biomarker for the treatment effect of statins; however, the underlying mechanisms linking this ratio to CVD risk remain unclear. In this study, we investigated the effect of altered cholesterol conditions on the lipidome of cultured human liver cells (Hep3B). Hep3B cells were treated with simvastatin (5 μM), cyclodextrin (20 mg/mL) or cholesterol-loaded cyclodextrin (20 mg/mL) for 48 h and their lipidomes were examined. Induction of a low-cholesterol environment via simvastatin or cyclodextrin was associated with elevated levels of lipids containing arachidonic acid and decreases in phosphatidylinositol species and the PI(36:2)/PC(18:0_20:4) ratio. Conversely, increasing cholesterol levels via cholesterol-loaded cyclodextrin resulted in reciprocal regulation of these lipid parameters. Expression of genes involved in cholesterol and fatty acid synthesis supported the lipidomics data. These findings demonstrate that the PI(36:2)/PC(18:0_20:4) ratio responds to changes in intracellular cholesterol abundance per se, likely through a flux of the n-6 fatty acid pathway and altered phosphatidylinositol synthesis. These findings support this ratio as a potential marker for CVD risk reduction and may be useful in monitoring treatment response.
Collapse
Affiliation(s)
- Yvette L. Schooneveldt
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (Y.L.S.); (C.G.); (N.A.M.); (A.W.J.); (S.P.)
- Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC 3004, Australia
- Lipid Metabolism & Cardiometabolic Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia;
| | - Corey Giles
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (Y.L.S.); (C.G.); (N.A.M.); (A.W.J.); (S.P.)
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael F. Keating
- Lipid Metabolism & Cardiometabolic Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia;
| | - Natalie A. Mellett
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (Y.L.S.); (C.G.); (N.A.M.); (A.W.J.); (S.P.)
| | - Aaron W. Jurrjens
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (Y.L.S.); (C.G.); (N.A.M.); (A.W.J.); (S.P.)
- Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC 3004, Australia
- Lipid Metabolism & Cardiometabolic Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia;
| | - Sudip Paul
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (Y.L.S.); (C.G.); (N.A.M.); (A.W.J.); (S.P.)
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Anna C. Calkin
- Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC 3004, Australia
- Lipid Metabolism & Cardiometabolic Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia;
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC 3010, Australia
- Correspondence: (A.C.C.); (P.J.M.)
| | - Peter J. Meikle
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (Y.L.S.); (C.G.); (N.A.M.); (A.W.J.); (S.P.)
- Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC 3010, Australia
- Correspondence: (A.C.C.); (P.J.M.)
| |
Collapse
|
5
|
Sultanov R, Ermolenko E, Poleschuk T, Denisenko Y, Kasyanov S. Action of alkyl glycerol ethers and n-3 polyunsaturated fatty acids diet on hematological parameters of blood and liver plasmalogen level in aged rats. J Food Sci 2021; 86:2727-2735. [PMID: 34002853 DOI: 10.1111/1750-3841.15756] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/01/2021] [Accepted: 04/01/2021] [Indexed: 10/21/2022]
Abstract
One of the ways to reduce age-related changes can be a diet correction by adding biologically active substances. We studied the effect of a diet including alkyl glycerol ethers (AGs) and n-3 polyunsaturated fatty acid (PUFA) concentrate isolated from the hepatopancreas of Berrytheuthis magister squid on hematological parameters and plasmalogens level in the liver of elderly rats. The senile animals showed decrease in hemoglobin, a three-fold decrease in leukocytes, a three-fold increase in platelet count, and a double decrease of blood coagulation time in the peripheral blood. Age-related changes in rats were characterized by the development of anemia, hypercoagulation, and a decrease in the number of immunocompetent cells. AGs, both separately and in combination with n-3 PUFAs, induced an increase in the number of red blood cells and hemoglobin, a decrease in the number of platelets, and an immunostimulating activity. Under the action of AGs and n-3 PUFAs, the concentration of plasmalogens and docosahexaenoic acid in the rat liver increased 2- and 1.5 folds, respectively. PRACTICAL APPLICATION: This study showed that the combined use of AGs and n-3 PUFAs improves the rheological properties of the blood and the state of the immune system during aging. The enrichment of diet with dietary supplements, whose structure contains AGs and n-3 PUFAs can increase the content of plasmalogens in the body.
Collapse
Affiliation(s)
- Ruslan Sultanov
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far East Branch, Russian Academy of Sciences, 17 Palchevskogo Str., Vladivostok, Russia
| | - Ekaterina Ermolenko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far East Branch, Russian Academy of Sciences, 17 Palchevskogo Str., Vladivostok, Russia
| | - Tatiana Poleschuk
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far East Branch, Russian Academy of Sciences, 17 Palchevskogo Str., Vladivostok, Russia.,Pacific State Medical University, 2 Ostryakova Ave., Vladivostok, Russia
| | - Yulia Denisenko
- Vladivostok Branch of the Far Eastern Scientific Centre of Physiology and Pathology of Respiration, Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok, Russia
| | - Sergey Kasyanov
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far East Branch, Russian Academy of Sciences, 17 Palchevskogo Str., Vladivostok, Russia
| |
Collapse
|
6
|
Lipidomics in Nonalcoholic Fatty Liver Disease: Exploring Serum Lipids as Biomarkers for Pediatric Nonalcoholic Fatty Liver Disease. J Pediatr Gastroenterol Nutr 2020; 71:433-439. [PMID: 32947564 DOI: 10.1097/mpg.0000000000002875] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Disturbances in lipid metabolism play an important role in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Using lipidomics, an analytical technique that is used to broadly survey lipid metabolism, we searched for biomarkers in plasma that are correlated with the presence of hepatic steatosis in children with obesity. METHODS Lipidomics was performed in plasma samples of 21 children with obesity in whom steatosis was detected using proton magnetic resonance spectroscopy (H-MRS) and were compared with the lipidome of 21 samples of nonsteatotic subjects with obesity. RESULTS Forty-two samples were analyzed (57% boys; median age 15 years). A total of 18 lipid classes constituting 839 different lipid species were identified. A statistically significant increase in alkyldiacylglycerol (TG[O]) and phosphatidylethanolamine (PE) species and a significant decrease in alkyl/alkenyl-phosphatidylethanolamine (PE[O]), alkyl/alkenyl-lysophosphatidylethanolamine (LPE[O]) and alkyl/alkenyl-phosphatidylcholine (PC[O]) was observed in children with hepatic steatosis compared with controls. Twelve individual lipid species of 3 lipid classes were significantly increased in steatotic subjects compared with controls. CONCLUSIONS In this pilot study, we found statistically significant alterations in 5 major lipid classes and 12 individual lipid species in children with steatosis. These might be potential biomarkers for pediatric NAFLD. Lipidomic studies in larger cohorts of children are needed to determine the diagnostic value of these lipids and determine whether results can be generalized for different age groups and ethnic backgrounds.
Collapse
|
7
|
Bestard-Escalas J, Maimó-Barceló A, Lopez DH, Reigada R, Guardiola-Serrano F, Ramos-Vivas J, Hornemann T, Okazaki T, Barceló-Coblijn G. Common and Differential Traits of the Membrane Lipidome of Colon Cancer Cell Lines and their Secreted Vesicles: Impact on Studies Using Cell Lines. Cancers (Basel) 2020; 12:E1293. [PMID: 32443825 PMCID: PMC7281030 DOI: 10.3390/cancers12051293] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 12/21/2022] Open
Abstract
Colorectal cancer (CRC) is the fourth leading cause of cancer death in the world. Despite the screening programs, its incidence in the population below the 50s is increasing. Therefore, new stratification protocols based on multiparametric approaches are highly needed. In this scenario, the lipidome is emerging as a powerful tool to classify tumors, including CRC, wherein it has proven to be highly sensitive to cell malignization. Hence, the possibility to describe the lipidome at the level of lipid species has renewed the interest to investigate the role of specific lipid species in pathologic mechanisms, being commercial cell lines, a model still heavily used for this purpose. Herein, we characterize the membrane lipidome of five commercial colon cell lines and their extracellular vesicles (EVs). The results demonstrate that both cell and EVs lipidome was able to segregate cells according to their malignancy. Furthermore, all CRC lines shared a specific and strikingly homogenous impact on ether lipid species. Finally, this study also cautions about the need of being aware of the singularities of each cell line at the level of lipid species. Altogether, this study firmly lays the groundwork of using the lipidome as a solid source of tumor biomarkers.
Collapse
Affiliation(s)
- Joan Bestard-Escalas
- Lipids in Human Pathology, Health Research Institute of the Balearic Islands (IdISBa), Research Unit, University Hospital Son Espases, 07120 Palma, Spain; (J.B.-E.); (A.M.-B.); (D.H.L.); (R.R.)
| | - Albert Maimó-Barceló
- Lipids in Human Pathology, Health Research Institute of the Balearic Islands (IdISBa), Research Unit, University Hospital Son Espases, 07120 Palma, Spain; (J.B.-E.); (A.M.-B.); (D.H.L.); (R.R.)
| | - Daniel H. Lopez
- Lipids in Human Pathology, Health Research Institute of the Balearic Islands (IdISBa), Research Unit, University Hospital Son Espases, 07120 Palma, Spain; (J.B.-E.); (A.M.-B.); (D.H.L.); (R.R.)
| | - Rebeca Reigada
- Lipids in Human Pathology, Health Research Institute of the Balearic Islands (IdISBa), Research Unit, University Hospital Son Espases, 07120 Palma, Spain; (J.B.-E.); (A.M.-B.); (D.H.L.); (R.R.)
| | | | - José Ramos-Vivas
- Valdecilla Research Institute (IDIVAL ), 39011 Santander, Spain;
- Microbiology Unit, University Hospital Marqués de Valdecilla, 39008 Santander, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Thorsten Hornemann
- Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland;
| | - Toshiro Okazaki
- Department of Hematology/Immunity, Kanazawa Medical University, Uchinada-machi, Kahoku-gun, Ishikawa 920-0293, Japan;
| | - Gwendolyn Barceló-Coblijn
- Lipids in Human Pathology, Health Research Institute of the Balearic Islands (IdISBa), Research Unit, University Hospital Son Espases, 07120 Palma, Spain; (J.B.-E.); (A.M.-B.); (D.H.L.); (R.R.)
| |
Collapse
|
8
|
Cellular Plasmalogen Content Does Not Influence Arachidonic Acid Levels or Distribution in Macrophages: A Role for Cytosolic Phospholipase A 2γ in Phospholipid Remodeling. Cells 2019; 8:cells8080799. [PMID: 31370188 PMCID: PMC6721556 DOI: 10.3390/cells8080799] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 12/12/2022] Open
Abstract
Availability of free arachidonic acid (AA) constitutes a rate limiting factor for cellular eicosanoid synthesis. AA distributes differentially across membrane phospholipids, which is largely due to the action of coenzyme A-independent transacylase (CoA-IT), an enzyme that moves the fatty acid primarily from diacyl phospholipid species to ether-containing species, particularly the ethanolamine plasmalogens. In this work, we examined the dependence of AA remodeling on plasmalogen content using the murine macrophage cell line RAW264.7 and its plasmalogen-deficient variants RAW.12 and RAW.108. All three strains remodeled AA between phospholipids with similar magnitude and kinetics, thus demonstrating that cellular plasmalogen content does not influence the process. Cell stimulation with yeast-derived zymosan also had no effect on AA remodeling, but incubating the cells in AA-rich media markedly slowed down the process. Further, knockdown of cytosolic-group IVC phospholipase A2γ (cPLA2γ) by RNA silencing significantly reduced AA remodeling, while inhibition of other major phospholipase A2 forms such as cytosolic phospholipase A2α, calcium-independent phospholipase A2β, or secreted phospholipase A2 had no effect. These results uncover new regulatory features of CoA-IT-mediated transacylation reactions in cellular AA homeostasis and suggest a hitherto unrecognized role for cPLA2γ in maintaining membrane phospholipid composition via regulation of AA remodeling.
Collapse
|
9
|
Lopez DH, Bestard-Escalas J, Garate J, Maimó-Barceló A, Fernández R, Reigada R, Khorrami S, Ginard D, Okazaki T, Fernández JA, Barceló-Coblijn G. Tissue-selective alteration of ethanolamine plasmalogen metabolism in dedifferentiated colon mucosa. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:928-938. [PMID: 29709709 DOI: 10.1016/j.bbalip.2018.04.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 04/12/2018] [Accepted: 04/21/2018] [Indexed: 01/09/2023]
Abstract
Human colon lipid analysis by imaging mass spectrometry (IMS) demonstrates that the lipid fingerprint is highly sensitive to a cell's pathophysiological state. Along the colon crypt axis, and concomitant to the differentiation process, certain lipid species tightly linked to signaling (phosphatidylinositols and arachidonic acid (AA)-containing diacylglycerophospholipids), change following a rather simple mathematical expression. We extend here our observations to ethanolamine plasmalogens (PlsEtn), a unique type of glycerophospholipid presenting a vinyl ether linkage at sn-1 position. PlsEtn distribution was studied in healthy, adenomatous, and carcinomatous colon mucosa sections by IMS. In epithelium, 75% of PlsEtn changed in a highly regular manner along the crypt axis, in clear contrast with diacyl species (67% of which remained constant). Consistently, AA-containing PlsEtn species were more abundant at the base, where stem cells reside, and decreased while ascending the crypt. In turn, mono-/diunsaturated species experienced the opposite change. These gradients were accompanied by a gradual expression of ether lipid synthesis enzymes. In lamina propria, 90% of stromal PlsEtn remained unchanged despite the high content of AA and the gradient in AA-containing diacylglycerophospholipids. Finally, both lipid and protein gradients were severely affected in polyps and carcinoma. These results link PlsEtn species regulation to cell differentiation for the first time and confirm that diacyl and ether species are differently regulated. Furthermore, they reaffirm the observations on cell lipid fingerprint image sensitivity to predict cell pathophysiological status, reinforcing the translational impact both lipidome and IMS might have in clinical research.
Collapse
Affiliation(s)
- Daniel H Lopez
- Institut d'Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain.
| | - Joan Bestard-Escalas
- Institut d'Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain.
| | - Jone Garate
- Dep. of Physical Chemistry, University of the Basque Country (UPV/EHU), Leioa, Biscay, Spain.
| | - Albert Maimó-Barceló
- Institut d'Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain.
| | - Roberto Fernández
- Dep. of Physical Chemistry, University of the Basque Country (UPV/EHU), Leioa, Biscay, Spain.
| | - Rebeca Reigada
- Institut d'Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain.
| | - Sam Khorrami
- Institut d'Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain; Gastroenterology Unit, Hospital Universitari Son Espases, Palma, Balearic Islands, Spain.
| | - Daniel Ginard
- Institut d'Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain; Gastroenterology Unit, Hospital Universitari Son Espases, Palma, Balearic Islands, Spain.
| | - Toshiro Okazaki
- Department of Hematology/Immunity, Kanazawa Medical University, Uchinada-machi, Kahoku-gun, Ishikawa 920-0293, Japan.
| | - José A Fernández
- Dep. of Physical Chemistry, University of the Basque Country (UPV/EHU), Leioa, Biscay, Spain.
| | - Gwendolyn Barceló-Coblijn
- Institut d'Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain.
| |
Collapse
|
10
|
Cardoso C, Afonso C, Bandarra NM. Dietary DHA, bioaccessibility, and neurobehavioral development in children. Crit Rev Food Sci Nutr 2017; 58:2617-2631. [PMID: 28665691 DOI: 10.1080/10408398.2017.1338245] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Docosahexaenoic acid (DHA) is a key nutritional n-3 polyunsaturated fatty acid and needs to be supplied by the human diet. High levels of DHA intake appear to reduce the risk of depression, bipolar disorder, and mood disorders. On the basis of these connections between DHA and neurological health, this paper reviews what is currently known about DHA and children neurodevelopment as well as the benefits of DHA intake to prevention of autism and behavior disorders through a selective and representative revision of different papers ranging from pure observational studies to randomized controlled trials (RCTs). This review also highlights the issue of DHA bioaccessibility and its implications to the performance of studies. As main conclusions, it can be mentioned that high DHA intake may prevent autism disorder. However, more studies are required to strengthen the connection between autism and dietary DHA. Regarding behavioral disorders, the evidence is also contradictory, thereby raising the need of further studies. From all screened studies on autism, attention deficit/hyperactivity disorder, and other disorders, it can be concluded that study samples should be larger for greater statistical significance and RCTs should be more carefully designed.
Collapse
Affiliation(s)
- Carlos Cardoso
- a Department of Sea and Marine Resources , Portuguese Institute for the Sea and Atmosphere (IPMA, IP) , Rua Alfredo Magalhães Ramalho, Lisbon , Portugal.,b CIIMAR, Interdisciplinary Centre of Marine and Environmental Research , University of Porto , Rua dos Bragas 289, Porto , Portugal
| | - Cláudia Afonso
- a Department of Sea and Marine Resources , Portuguese Institute for the Sea and Atmosphere (IPMA, IP) , Rua Alfredo Magalhães Ramalho, Lisbon , Portugal.,b CIIMAR, Interdisciplinary Centre of Marine and Environmental Research , University of Porto , Rua dos Bragas 289, Porto , Portugal
| | - Narcisa M Bandarra
- a Department of Sea and Marine Resources , Portuguese Institute for the Sea and Atmosphere (IPMA, IP) , Rua Alfredo Magalhães Ramalho, Lisbon , Portugal.,b CIIMAR, Interdisciplinary Centre of Marine and Environmental Research , University of Porto , Rua dos Bragas 289, Porto , Portugal
| |
Collapse
|
11
|
Brien M, Berthiaume L, Rudkowska I, Julien P, Bilodeau JF. Placental dimethyl acetal fatty acid derivatives are elevated in preeclampsia. Placenta 2017; 51:82-88. [PMID: 28292473 DOI: 10.1016/j.placenta.2017.01.129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/13/2017] [Accepted: 01/31/2017] [Indexed: 12/31/2022]
Abstract
Preeclampsia (PE) was shown to affect the placental content and the transfer of polyunsaturated fatty acids (PUFA) to the fetus. Plasmalogens, a type of phospholipids with a vinyl-ether link at the sn-1 position, play an antioxidant role and are specifically enriched in PUFA at the sn-2 position. In this study, we characterized plasmalogen-derived dimethyl acetal (DMA) fatty acid derivatives, 16:0 DMA, 18:0 DMA, 9c-/11c-18:1 DMA and PUFA in the placenta of normotensive (n = 20) and PE (n = 20) pregnancies, according to the sampling site: peri-insertion or periphery. Phospholipid fatty acids from the placenta and maternal erythrocytes were identified by gas chromatography mass spectrometry and quantified by flame ionization detection. We found elevated total DMA in the PE placenta by 18% when compared to normotensive controls (p = 0.026). Moreover, the 16:0 DMA account for more than 55% of DMA fatty acids measured in the placenta, and its level is significantly higher in PE than controls (p = 0.018). Also, we found elevated placental PUFA, 20:5(n-3), 22:5(n-3) and a low level of 20:4(n-3) in PE compared to controls. Placental DMA was highly correlated with n-6 and n-3 PUFA in both, normotensive and PE pregnancies. In sum, elevated DMA fatty acids in the PE placenta could be an indirect defensive mechanism against oxidative stress and poor placental fatty acid transfer in PE.
Collapse
Affiliation(s)
- M Brien
- Axe endocrinologie et néphrologie, Centre de recherche du CHU de Québec-Université Laval, et Centre de recherche en endocrinologie, métabolisme et inflammation (CREMI), Université Laval, Québec G1V 4G2, Canada
| | - L Berthiaume
- Axe endocrinologie et néphrologie, Centre de recherche du CHU de Québec-Université Laval, et Centre de recherche en endocrinologie, métabolisme et inflammation (CREMI), Université Laval, Québec G1V 4G2, Canada
| | - I Rudkowska
- Axe endocrinologie et néphrologie, Centre de recherche du CHU de Québec-Université Laval, et Centre de recherche en endocrinologie, métabolisme et inflammation (CREMI), Université Laval, Québec G1V 4G2, Canada; Département de Kinésiologie, Faculté de médecine, Université Laval, Québec G1K 7P4, Canada
| | - P Julien
- Axe endocrinologie et néphrologie, Centre de recherche du CHU de Québec-Université Laval, et Centre de recherche en endocrinologie, métabolisme et inflammation (CREMI), Université Laval, Québec G1V 4G2, Canada; Département de médecine, Faculté de médecine, Université Laval, Québec G1K 7P4, Canada
| | - J F Bilodeau
- Axe endocrinologie et néphrologie, Centre de recherche du CHU de Québec-Université Laval, et Centre de recherche en endocrinologie, métabolisme et inflammation (CREMI), Université Laval, Québec G1V 4G2, Canada; Département de médecine, Faculté de médecine, Université Laval, Québec G1K 7P4, Canada.
| |
Collapse
|
12
|
Senanayake VK, Jin W, Mochizuki A, Chitou B, Goodenowe DB. Metabolic dysfunctions in multiple sclerosis: implications as to causation, early detection, and treatment, a case control study. BMC Neurol 2015; 15:154. [PMID: 26311235 PMCID: PMC4549881 DOI: 10.1186/s12883-015-0411-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 08/18/2015] [Indexed: 12/20/2022] Open
Abstract
Background Biochemical changes associated with multiple sclerosis (MS), and its various clinical forms have not been characterized well. Therefore, we investigated the biochemistry of MS in relation to its natural history using targeted lipidomics platforms. Methods Cross-sectional serum samples from 24 secondary progressive (SPMS), 100 relapsing remitting (RRMS), 19 primary progressive MS (PPMS), and 55 age-matched control subjects were analyzed by flow injection tandem mass spectrometry for very long chain fatty acid (VLCFA) containing phosphatidyl ethanolamines (PtdEtn), plasmalogen ethanolamines (PlsEtn) and for novel anti-inflammatory gastrointestinal tract acids (GTAs). Changes in analyte levels relative to healthy controls were correlated with the disease stage and disease duration. Results RRMS subjects having <13 years disease duration had elevated levels (p < 0.05) of anti-inflammatory metabolites (GTAs) and normal levels (p > 0.05) of mitochondrial stress biomarkers (VLCFA-PtdEtn), compared to controls. SPMS subjects had statistically similar levels of anti-inflammatory metabolites (GTAs), elevated mitochondrial stress metabolites (VLCFA-PtdEtn) and elevated peroxisomal metabolites (PlsEtn) compared to controls (p < 0.05). RRMS subjects with > = 13 years disease duration exhibited metabolic profiles intermediate between short-duration RRMS and SPMS, based on statistical significance. Therefore, RRMS cohort appear to comprise of two metabolically distinct subpopulations. The key clinical discriminator of these two groups was disease duration. PPMS patients exhibited metabolic profiles distinct from RRMS and SPMS. Conclusions These data indicate that inflammation and mitochondrial stress are intricately involved in the etiology of MS and that progression in MS can potentially be monitored using serum metabolic biomarkers.
Collapse
Affiliation(s)
- Vijitha K Senanayake
- Phenomenome Discoveries Inc, 204-407 Downey Road, Saskatoon, SK, S7N 4L8, Canada
| | - Wei Jin
- Phenomenome Discoveries Inc, 204-407 Downey Road, Saskatoon, SK, S7N 4L8, Canada
| | - Asuka Mochizuki
- Phenomenome Discoveries Inc, 204-407 Downey Road, Saskatoon, SK, S7N 4L8, Canada
| | - Bassirou Chitou
- Phenomenome Discoveries Inc, 204-407 Downey Road, Saskatoon, SK, S7N 4L8, Canada
| | - Dayan B Goodenowe
- Phenomenome Discoveries Inc, 204-407 Downey Road, Saskatoon, SK, S7N 4L8, Canada.
| |
Collapse
|
13
|
Abe Y, Honsho M, Nakanishi H, Taguchi R, Fujiki Y. Very-long-chain polyunsaturated fatty acids accumulate in phosphatidylcholine of fibroblasts from patients with Zellweger syndrome and acyl-CoA oxidase1 deficiency. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:610-9. [PMID: 24418004 DOI: 10.1016/j.bbalip.2014.01.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 12/19/2013] [Accepted: 01/02/2014] [Indexed: 10/25/2022]
Abstract
Peroxisomes are subcellular organelles that function in multiple anabolic and catabolic processes, including β-oxidation of very-long-chain fatty acids (VLCFA) and biosynthesis of ether phospholipids. Peroxisomal disorders caused by defects in peroxisome biogenesis or peroxisomal β-oxidation manifest as severe neural disorders of the central nervous system. Abnormal peroxisomal metabolism is thought to be responsible for the clinical symptoms of these diseases, but their molecular pathogenesis remains to be elucidated. We performed lipidomic analysis to identify aberrant metabolites in fibroblasts from patients with Zellweger syndrome (ZS), acyl-CoA oxidase1 (AOx) deficiency, D-bifunctional protein (D-BP) and X-linked adrenoleukodystrophy (X-ALD), as well as in peroxisome-deficient Chinese hamster ovary cell mutants. In cells deficient in peroxisomal biogenesis, plasmenylethanolamine was remarkably reduced and phosphatidylethanolamine was increased. Marked accumulation of very-long-chain saturated fatty acid and monounsaturated fatty acids in phosphatidylcholine was observed in all mutant cells. Very-long-chain polyunsaturated fatty acid (VLC-PUFA) levels were significantly elevated, whilst phospholipids containing docosahexaenoic acid (DHA, C22:6n-3) were reduced in fibroblasts from patients with ZS, AOx deficiency, and D-BP deficiency, but not in fibroblasts from an X-ALD patient. Because patients with AOx deficiency suffer from more severe symptoms than those with X-ALD, accumulation of VLC-PUFA and/or reduction of DHA may be associated with the severity of peroxisomal diseases.
Collapse
Affiliation(s)
- Yuichi Abe
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Fukuoka 812-8581, Japan
| | - Masanori Honsho
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Fukuoka 812-8581, Japan
| | - Hiroki Nakanishi
- Department of Medical Biology, Akita University Graduate School of Medicine, Akita 010-8502, Japan
| | - Ryo Taguchi
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Aichi 487-8501, Japan
| | - Yukio Fujiki
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Fukuoka 812-8581, Japan.
| |
Collapse
|
14
|
Kaddurah-Daouk R, McEvoy J, Baillie R, Zhu H, K Yao J, Nimgaonkar VL, Buckley PF, Keshavan MS, Georgiades A, Nasrallah HA. Impaired plasmalogens in patients with schizophrenia. Psychiatry Res 2012; 198:347-52. [PMID: 22513041 DOI: 10.1016/j.psychres.2012.02.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 02/16/2012] [Accepted: 02/20/2012] [Indexed: 12/24/2022]
Abstract
Plasmalogens are a subclass of glycerophospholipids and ubiquitous constituents of cellular membranes and serum lipoproteins. Several neurological disorders show decreased level of plasmogens. An earlier study found differences in plasma phospholipids between unmedicated patients with schizophrenia and matched healthy control subjects. We here report a comparison of plasma plasmalogen levels across 20 drug-naïve patients experiencing first psychotic episodes, 20 recently unmedicated patients experiencing psychotic relapses after failing to comply with prescribed medications, and 17 matched healthy control subjects. Multiple plasma phosphatidylcholine and phosphatidylethanolamine plasmalogen levels were significantly lower in first episode patients and patients with recurrent disease compared to healthy controls. Reduced plasmalogen levels appear to be a trait evident at the onset of psychotic illness and after multiple psychotic relapses. It is implied that reductions in plasmalogen levels are not related to antipsychotic treatment but due to the illness itself. Reduced plasmalogen levels suggest impairments in membrane structure and function in patients with schizophrenia that might happen early in development. This may serve as a clue to the neurobiology of schizophrenia and should be studied as a potential biomarker for individuals at risk for schizophrenia.
Collapse
Affiliation(s)
- Rima Kaddurah-Daouk
- Duke University Medical Center, Department of Psychiatry and Behavioral Sciences, DUMC Box 3950 Durham, NC 27710, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Brites P, Ferreira AS, da Silva TF, Sousa VF, Malheiro AR, Duran M, Waterham HR, Baes M, Wanders RJA. Alkyl-glycerol rescues plasmalogen levels and pathology of ether-phospholipid deficient mice. PLoS One 2011; 6:e28539. [PMID: 22163031 PMCID: PMC3232224 DOI: 10.1371/journal.pone.0028539] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 11/10/2011] [Indexed: 11/18/2022] Open
Abstract
A deficiency of plasmalogens, caused by impaired peroxisomal metabolism affects normal development and multiple organs in adulthood. Treatment options aimed at restoring plasmalogen levels may be relevant for the therapy of peroxisomal and non-peroxisomal disorders. In this study we determined the in vivo efficacy of an alkyl glycerol (AG), namely, 1-O-octadecyl-rac-glycerol, as a therapeutic agent for defects in plasmalogen synthesis. To achieve this, Pex7 knockout mice, a mouse model for Rhizomelic Chondrodysplasia Punctata type 1 characterized by the absence of plasmalogens, and WT mice were fed a control diet or a diet containing 2% alkyl-glycerol. Plasmalogen levels were measured in target organs and the biochemical data were correlated with the histological analysis of affected organs. Plasmalogen levels in all peripheral tissues of Pex7 KO mice fed the AG diet for 2 months normalized to the levels of AG fed WT mice. In nervous tissues of Pex7 KO mice fed the AG-diet, plasmalogen levels were significantly increased compared to control fed KO mice. Histological analysis of target organs revealed that the AG-diet was able to stop the progression of the pathology in testis, adipose tissue and the Harderian gland. Interestingly, the latter tissues are characterized by the presence of lipid droplets which were absent or reduced in size and number when ether-phospholipids are lacking, but which can be restored with the AAG treatment. Furthermore, nerve conduction in peripheral nerves was improved. When given prior to the occurrence of major pathological changes, the AG-diet prevented or ameliorated the pathology observed in Pex7 KO mice depending on the degree of plasmalogen restoration. This study provides evidence of the beneficial effects of treating a plasmalogen deficiency with alkyl-glycerol.
Collapse
Affiliation(s)
- Pedro Brites
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular, Porto, Portugal.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Plasmalogens the neglected regulatory and scavenging lipid species. Chem Phys Lipids 2011; 164:573-89. [PMID: 21723266 DOI: 10.1016/j.chemphyslip.2011.06.008] [Citation(s) in RCA: 232] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 06/08/2011] [Accepted: 06/14/2011] [Indexed: 12/17/2022]
Abstract
Plasmalogens are a class of phospholipids carrying a vinyl ether bond in sn-1 and an ester bond in sn-2 position of the glycerol backbone. Although they are widespread in all tissues and represent up to 18% of the total phospholipid mass in humans, their physiological function is still poorly understood. The aim of this review is to give an overview over the current knowledge in plasmalogen biology and pathology with an emphasis on neglected aspects of their involvement in neurological and metabolic diseases. Furthermore a better understanding of plasmalogen biology in health and disease could also lead to the development of better diagnostic and prognostic biomarkers for vascular and metabolic diseases such as obesity and diabetes mellitus, inflammation, neuro-degeneration and cancer.
Collapse
|
17
|
Moser AB, Steinberg SJ, Watkins PA, Moser HW, Ramaswamy K, Siegmund KD, Lee DR, Ely JJ, Ryder OA, Hacia JG. Human and great ape red blood cells differ in plasmalogen levels and composition. Lipids Health Dis 2011; 10:101. [PMID: 21679470 PMCID: PMC3129581 DOI: 10.1186/1476-511x-10-101] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 06/17/2011] [Indexed: 02/06/2023] Open
Abstract
Background Plasmalogens are ether phospholipids required for normal mammalian developmental, physiological, and cognitive functions. They have been proposed to act as membrane antioxidants and reservoirs of polyunsaturated fatty acids as well as influence intracellular signaling and membrane dynamics. Plasmalogens are particularly enriched in cells and tissues of the human nervous, immune, and cardiovascular systems. Humans with severely reduced plasmalogen levels have reduced life spans, abnormal neurological development, skeletal dysplasia, impaired respiration, and cataracts. Plasmalogen deficiency is also found in the brain tissue of individuals with Alzheimer disease. Results In a human and great ape cohort, we measured the red blood cell (RBC) levels of the most abundant types of plasmalogens. Total RBC plasmalogen levels were lower in humans than bonobos, chimpanzees, and gorillas, but higher than orangutans. There were especially pronounced cross-species differences in the levels of plasmalogens with a C16:0 moiety at the sn-1 position. Humans on Western or vegan diets had comparable total RBC plasmalogen levels, but the latter group showed moderately higher levels of plasmalogens with a C18:1 moiety at the sn-1 position. We did not find robust sex-specific differences in human or chimpanzee RBC plasmalogen levels or composition. Furthermore, human and great ape skin fibroblasts showed only modest differences in peroxisomal plasmalogen biosynthetic activity. Human and chimpanzee microarray data indicated that genes involved in plasmalogen biosynthesis show cross-species differential expression in multiple tissues. Conclusion We propose that the observed differences in human and great ape RBC plasmalogens are primarily caused by their rates of biosynthesis and/or turnover. Gene expression data raise the possibility that other human and great ape cells and tissues differ in plasmalogen levels. Based on the phenotypes of humans and rodents with plasmalogen disorders, we propose that cross-species differences in tissue plasmalogen levels could influence organ functions and processes ranging from cognition to reproduction to aging.
Collapse
Affiliation(s)
- Ann B Moser
- Hugo W. Moser Research Institute at Kennedy Krieger, and Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Pietiläinen KH, Róg T, Seppänen-Laakso T, Virtue S, Gopalacharyulu P, Tang J, Rodriguez-Cuenca S, Maciejewski A, Naukkarinen J, Ruskeepää AL, Niemelä PS, Yetukuri L, Tan CY, Velagapudi V, Castillo S, Nygren H, Hyötyläinen T, Rissanen A, Kaprio J, Yki-Järvinen H, Vattulainen I, Vidal-Puig A, Orešič M. Association of lipidome remodeling in the adipocyte membrane with acquired obesity in humans. PLoS Biol 2011; 9:e1000623. [PMID: 21666801 PMCID: PMC3110175 DOI: 10.1371/journal.pbio.1000623] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 04/26/2011] [Indexed: 02/05/2023] Open
Abstract
The authors describe a new approach to studying cellular lipid profiles and
propose a compensatory mechanism that may help maintain the normal membrane
function of adipocytes in the context of obesity. Identification of early mechanisms that may lead from obesity towards
complications such as metabolic syndrome is of great interest. Here we performed
lipidomic analyses of adipose tissue in twin pairs discordant for obesity but
still metabolically compensated. In parallel we studied more evolved states of
obesity by investigating a separated set of individuals considered to be
morbidly obese. Despite lower dietary polyunsaturated fatty acid intake, the
obese twin individuals had increased proportions of palmitoleic and arachidonic
acids in their adipose tissue, including increased levels of ethanolamine
plasmalogens containing arachidonic acid. Information gathered from these
experimental groups was used for molecular dynamics simulations of lipid
bilayers combined with dependency network analysis of combined clinical,
lipidomics, and gene expression data. The simulations suggested that the
observed lipid remodeling maintains the biophysical properties of lipid
membranes, at the price, however, of increasing their vulnerability to
inflammation. Conversely, in morbidly obese subjects, the proportion of
plasmalogens containing arachidonic acid in the adipose tissue was markedly
decreased. We also show by in vitro Elovl6 knockdown that the lipid network
regulating the observed remodeling may be amenable to genetic modulation.
Together, our novel approach suggests a physiological mechanism by which
adaptation of adipocyte membranes to adipose tissue expansion associates with
positive energy balance, potentially leading to higher vulnerability to
inflammation in acquired obesity. Further studies will be needed to determine
the cause of this effect. Obesity is characterized by excess body fat, which is predominantly stored in the
adipose tissue. When adipose tissue expands too much it stops storing lipid
appropriately. The excess lipid accumulates in organs such as muscle, liver, and
pancreas, causing metabolic disease. In this study, we aim to identify factors
that cause adipose tissue to malfunction when it reaches its limit of expansion.
We performed lipidomic analyses of human adipose tissue in twin pairs discordant
for obesity—that is, one of the twins was lean and one was obese—but
still metabolically healthy. We identified multiple changes in membrane
phospholipids. Using computer modeling, we show that “lean” and
“obese” membrane lipid compositions have the same physical
properties despite their different compositions. We hypothesize that this
represents allostasis—changes in lipid membrane composition in obesity
occur to protect the physical properties of the membranes. However, protective
changes cannot occur without a cost, and accordingly we demonstrate that
switching to the “obese” lipid composition is associated with higher
levels of adipose tissue inflammation. In a separate group of metabolically
unhealthy obese individuals we investigated how the processes that regulate the
“lean” and “obese” lipid profiles are changed. To
determine how these lipid membrane changes are regulated we constructed an
in silico network model that identified key control points
and potential molecular players. We validated this network by performing genetic
manipulations in cell models. Therapeutic targeting of this network may open new
opportunities for the prevention or treatment of obesity-related metabolic
complications.
Collapse
Affiliation(s)
- Kirsi H. Pietiläinen
- Department of Medicine, Division of Internal
Medicine, and Department of Psychiatry, Obesity Research Unit, Helsinki
University Central Hospital, Helsinki, Finland
- Department of Public Health, Hjelt Institute,
University of Helsinki, Helsinki, Finland
- Institute for Molecular Medicine Finland,
Helsinki, Finland
| | - Tomasz Róg
- Department of Physics, Tampere University of
Technology, Tampere, Finland
| | | | - Sam Virtue
- Institute of Metabolic Science, Metabolic
Research Laboratories, University of Cambridge, Addenbrooke's Hospital,
Cambridge, United Kingdom
| | | | - Jing Tang
- VTT Technical Research Centre of Finland,
Espoo, Finland
| | - Sergio Rodriguez-Cuenca
- Institute of Metabolic Science, Metabolic
Research Laboratories, University of Cambridge, Addenbrooke's Hospital,
Cambridge, United Kingdom
| | - Arkadiusz Maciejewski
- Department of Physics, Tampere University of
Technology, Tampere, Finland
- Department of Computational Biophysics and
Bioinformatics, Jagiellonian University, Kraków, Poland
| | - Jussi Naukkarinen
- Department of Medical Genetics, University of
Helsinki, Helsinki, Finland
- Department of Mental Health and Substance
Abuse Services, National Institute for Health and Welfare, Helsinki,
Finland
| | | | | | | | - Chong Yew Tan
- Institute of Metabolic Science, Metabolic
Research Laboratories, University of Cambridge, Addenbrooke's Hospital,
Cambridge, United Kingdom
| | | | | | - Heli Nygren
- VTT Technical Research Centre of Finland,
Espoo, Finland
| | | | - Aila Rissanen
- Department of Medicine, Division of Internal
Medicine, and Department of Psychiatry, Obesity Research Unit, Helsinki
University Central Hospital, Helsinki, Finland
| | - Jaakko Kaprio
- Department of Public Health, Hjelt Institute,
University of Helsinki, Helsinki, Finland
- Institute for Molecular Medicine Finland,
Helsinki, Finland
- Department of Mental Health and Substance
Abuse Services, National Institute for Health and Welfare, Helsinki,
Finland
| | - Hannele Yki-Järvinen
- Division of Diabetes, Department of
Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | - Ilpo Vattulainen
- Department of Physics, Tampere University of
Technology, Tampere, Finland
- Department of Applied Physics, School of
Science and Technology, Aalto University, Espoo, Finland
- MEMPHYS—Center for Biomembrane
Physics, University of Southern Denmark, Odense, Denmark
| | - Antonio Vidal-Puig
- Institute of Metabolic Science, Metabolic
Research Laboratories, University of Cambridge, Addenbrooke's Hospital,
Cambridge, United Kingdom
| | - Matej Orešič
- Institute for Molecular Medicine Finland,
Helsinki, Finland
- VTT Technical Research Centre of Finland,
Espoo, Finland
- * E-mail:
| |
Collapse
|
19
|
Wu LC, Pfeiffer DR, Calhoon EA, Madiai F, Marcucci G, Liu S, Jurkowitz MS. Purification, identification, and cloning of lysoplasmalogenase, the enzyme that catalyzes hydrolysis of the vinyl ether bond of lysoplasmalogen. J Biol Chem 2011; 286:24916-30. [PMID: 21515882 PMCID: PMC3137066 DOI: 10.1074/jbc.m111.247163] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Lysoplasmalogenase (EC 3.3.2.2 and EC 3.3.2.5) is an enzyme that catalyzes hydrolytic cleavage of the vinyl ether bond of lysoplasmalogen, forming fatty aldehyde and glycerophosphoethanolamine or glycerophosphocholine and is specific for the sn-2-deacylated form of plasmalogen. Here we report the purification, characterization, identification, and cloning of lysoplasmalogenase. Rat liver microsomal lysoplasmalogenase was solubilized with octyl glucoside and purified 500-fold to near homogeneity using four chromatography steps. The purified enzyme has apparent K(m) values of ∼50 μm for both lysoplasmenylcholine and lysoplasmenylethanolamine and apparent V(m) values of 24.5 and 17.5 μmol/min/mg protein for the two substrates, respectively. The pH optimum was 7.0. Lysoplasmalogenase was competitively inhibited by lysophosphatidic acid (K(i) ∼20 μm). The predominant band on a gel at ∼19 kDa was subjected to trypsinolysis, and the peptides were identified by mass spectrometry as Tmem86b, a protein of unknown function. Transient transfection of human embryonic kidney (HEK) 293T cells showed that TMEM86b cDNA yielded lysoplasmalogenase activity, and Western blot analyses confirmed the synthesis of TMEM86b protein. The protein was localized in the membrane fractions. The TMEM86b gene was also transformed into Escherichia coli, and its expression was verified by Western blot and activity analyses. Tmem86b is a hydrophobic transmembrane protein of the YhhN family. Northern blot analyses demonstrated that liver expressed the highest level of Tmem86b, which agreed with tissue distribution of activity. Overexpression of TMEM86b in HEK 293T cells resulted in decreased levels of plasmalogens, suggesting that the enzyme may be important in regulating plasmalogen levels in animal cells.
Collapse
Affiliation(s)
- Lai-Chu Wu
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Braverman N, Zhang R, Chen L, Nimmo G, Scheper S, Tran T, Chaudhury R, Moser A, Steinberg S. A Pex7 hypomorphic mouse model for plasmalogen deficiency affecting the lens and skeleton. Mol Genet Metab 2010; 99:408-16. [PMID: 20060764 PMCID: PMC2839039 DOI: 10.1016/j.ymgme.2009.12.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 12/04/2009] [Accepted: 12/04/2009] [Indexed: 02/01/2023]
Abstract
Rhizomelic chondrodysplasia punctata type 1 is a peroxisome biogenesis disorder with the clinical features of rhizomelia, abnormal epiphyseal calcifications, congenital cataracts, and profound growth and developmental delays. It is a rare autosomal recessive disorder, caused by defects in the peroxisome receptor, PEX7. The pathology results from a deficiency of plasmalogens, a critical class of ether phospholipids whose functions are largely unknown. To study plasmalogens in an animal model, avoid early mortality and facilitate therapeutic investigations in this disease, we engineered a hypomorphic mouse model in which Pex7 transcript levels are reduced to less than 5% of wild type. These mice are born in expected ratios, are fertile and have a normal life span. However, they are petite and develop early cataracts. Further investigations showed delayed endochondral ossification and abnormalities in lens fibers. The biochemical features of reduced Pex7 function were reproduced in this model, including tissue plasmalogen deficiency, phytanic acid accumulation, reduced import of Pex7 ligands and consequent defects in plasmalogen biosynthesis and phytanic acid oxidation. Dietary supplementation with batyl alcohol, a plasmalogen precursor, recovered ether phospholipids in blood, but did not alter the clinical phenotype. The relatively mild phenotype of these mice mimics patients with milder PEX7 defects, and highlights the skeleton and lens as sensitive markers of plasmalogen deficiency. The role of plasmalogens in the normal function of these tissues at various ages can now be studied and additional therapeutic interventions tested in this model.
Collapse
Affiliation(s)
- Nancy Braverman
- Department of Human Genetics and Pediatrics, Montreal Children's Hospital Research Institute, McGill University, Montreal, QC, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ivanova PT, Milne SB, Brown HA. Identification of atypical ether-linked glycerophospholipid species in macrophages by mass spectrometry. J Lipid Res 2009; 51:1581-90. [PMID: 19965583 DOI: 10.1194/jlr.d003715] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
A large scale profiling and analysis of glycerophospholipid species in macrophages has facilitated the identification of several rare and atypical glycerophospholipid species. By using liquid chromatography tandem mass spectrometry and comparison of the elution and fragmentation properties of the rare lipids to synthetic standards, we were able to identify an array of ether-linked phosphatidylinositols (PIs), phosphatidic acids, phosphatidylserines (PSs), very long chain phosphatidylethanolamines (PEs), and phosphatidylcholines (PCs) as well as phosphatidylthreonines (PTs) and a wide collection of odd carbon fatty acid-containing phospholipids in macrophages. A comprehensive qualitative analysis of glycerophospholipids from different macrophage cells was conducted. During the phospholipid profiling of the macrophage-like RAW 264.7 cells, we identified dozens of rare or previously uncharacterized phospholipids, including ether-linked PIs, PSs, and glycerophosphatidic acids, PTs, and PCs and PTs containing very long polyunsaturated fatty acids. Additionally, large numbers of phospholipids containing at least one odd carbon fatty acid were identified. Using the same methodology, we also identified many of the same species of glycerophospholipids in resident peritoneal macrophages, foam cells, and murine bone marrow derived macrophages.
Collapse
Affiliation(s)
- Pavlina T Ivanova
- Department of Pharmacology and Chemistry, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | |
Collapse
|
22
|
Pastural E, Ritchie S, Lu Y, Jin W, Kavianpour A, Khine Su-Myat K, Heath D, Wood PL, Fisk M, Goodenowe DB. Novel plasma phospholipid biomarkers of autism: mitochondrial dysfunction as a putative causative mechanism. Prostaglandins Leukot Essent Fatty Acids 2009; 81:253-64. [PMID: 19608392 DOI: 10.1016/j.plefa.2009.06.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 06/12/2009] [Accepted: 06/15/2009] [Indexed: 12/30/2022]
Abstract
Autism is a neurological disorder that manifests as noticeable behavioral and developmental abnormalities predominantly in males between the ages of 2 and 10. Although the genetics, biochemistry and neuropathology of this disease have been extensively studied, underlying causal factors to this disease have remained elusive. Using a longitudinal trial design in which three plasma samples were collected from 15 autistic and 12 non-autistic age-matched controls over the course of 1 year, universal and unambiguous alterations in lipid metabolism were observed. Biomarkers of fatty acid elongation and desaturation (poly-unsaturated long chain fatty acids (PUFA) and/or saturated very long chain fatty acids (VLCFA)-containing ethanolamine phospholipids) were statistically elevated in all autistic subjects. In all 8 of the affected/non-affected sibling pairs, the affected sibling had higher levels of these biomarkers than the unaffected sibling. Exposure of neurons, astrocytes and hepatocytes in vitro to elevated extracellular glutamate levels resulted in lipid biomarker changes indistinguishable from those observed in autistic subjects. Glutamate stress also resulted in in vitro decreased levels of reduced glutathione (GSH), methionine and cysteine, in a similar way to the decreases we observed in autism plasma. Impaired mitochondrial fatty acid oxidation, elevated plasma VLCFAs, and glutamate toxicity as putative causal factors in the biochemistry, neuropathology, and gender bias in autism are discussed.
Collapse
Affiliation(s)
- Elodie Pastural
- Phenomenome Discoveries Inc., 204-407 Downey Road, Saskatoon, Saskatchewan, Canada S7N 4L8
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lankinen M, Schwab U, Erkkilä A, Seppänen-Laakso T, Hannila ML, Mussalo H, Lehto S, Uusitupa M, Gylling H, Orešič M. Fatty fish intake decreases lipids related to inflammation and insulin signaling--a lipidomics approach. PLoS One 2009; 4:e5258. [PMID: 19390588 PMCID: PMC2669180 DOI: 10.1371/journal.pone.0005258] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 03/20/2009] [Indexed: 11/18/2022] Open
Abstract
Background The evidence of the multiple beneficial health effects of fish consumption is strong, but physiological mechanisms behind these effects are not completely known. Little information is available on the effects of consumption of different type of fish. The aim of this study was to investigate how fatty fish or lean fish in a diet affect serum lipidomic profiles in subjects with coronary heart disease. Methodology and Principal Findings A pilot study was designed which included altogether 33 subjects with myocardial infarction or unstable ischemic attack in an 8-week parallel controlled intervention. The subjects were randomized to either fatty fish (n = 11), lean fish (n = 12) or control (n = 10) groups. Subjects in the fish groups had 4 fish meals per week and subjects in the control group consumed lean beef, pork and chicken. A fish meal was allowed once a week maximum. Lipidomics analyses were performed using ultra performance liquid chromatography coupled to electrospray ionization mass spectrometry and gas chromatography. Multiple bioactive lipid species, including ceramides, lysophosphatidylcholines and diacylglycerols, decreased significantly in the fatty fish group, whereas in the lean fish group cholesterol esters and specific long-chain triacylglycerols increased significantly (False Discovery Rate q-value <0.05). Conclusions/Significance The 8-week consumption of fatty fish decreased lipids which are potential mediators of lipid-induced insulin resistance and inflammation, and may be related to the protective effects of fatty fish on the progression of atherosclerotic vascular diseases or insulin resistance. Trial Registration ClinicalTrials.gov NCT00720655
Collapse
Affiliation(s)
- Maria Lankinen
- VTT Technical Research Centre of Finland, Espoo, Finland
- Department of Clinical Nutrition, School of Public Health and Clinical Nutrition, University of Kuopio, Kuopio, Finland
| | - Ursula Schwab
- Department of Clinical Nutrition, School of Public Health and Clinical Nutrition, University of Kuopio, Kuopio, Finland
- Department of Internal Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Arja Erkkilä
- Department of Public Health, School of Public Health and Clinical Nutrition, University of Kuopio, Kuopio, Finland
| | | | | | - Hanna Mussalo
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Seppo Lehto
- Department of Internal Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Matti Uusitupa
- Department of Clinical Nutrition, School of Public Health and Clinical Nutrition, University of Kuopio, Kuopio, Finland
| | - Helena Gylling
- Department of Clinical Nutrition, School of Public Health and Clinical Nutrition, University of Kuopio, Kuopio, Finland
- Department of Internal Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Matej Orešič
- VTT Technical Research Centre of Finland, Espoo, Finland
- * E-mail:
| |
Collapse
|
24
|
Labadaridis I, Moraitou M, Theodoraki M, Triantafyllidis G, Sarafidou J, Michelakakis H. Plasmalogen levels in full-term neonates. Acta Paediatr 2009; 98:640-2. [PMID: 19290965 DOI: 10.1111/j.1651-2227.2008.01205.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIM Plasmalogens are phospholipids characterized by the presence of a vinyl ether bond at the sn-1 position of the glycerol backbone. They are particularly abundant in the nervous system, the heart and striated muscle. Peroxisomes are essential for their biosynthesis and red blood cell (RBC) plasmalogen levels are a reliable test in the investigation of patients suspect for a peroxisomal defect. The functions attributed to them include protection against oxidative stress, myelin formation and signal transduction. The aim of the present study was the investigation of RBC plasmalogen levels in neonates. METHODS A total of 25 healthy full-term, appropriate for gestational age neonates were studied. RBC plasmalogens were estimated using gas chromatography within the first five days of life. Fifteen healthy children 1-8-year olds served as controls. RESULTS Statistically significant lower plasmalogen levels were found in neonates compared to older children. CONCLUSION Our results indicate that a different range of normal values for plasmalogen levels should be used in the investigation of peroxisomal diseases in neonates. The lower levels of plasmalogens in neonates found in our study could render them more vulnerable to oxidative stress.
Collapse
Affiliation(s)
- I Labadaridis
- NICU, General Hospital Nikea, Piraeus, Athens, Greece
| | | | | | | | | | | |
Collapse
|
25
|
Wiest MM, German JB, Harvey DJ, Watkins SM, Hertz-Picciotto I. Plasma fatty acid profiles in autism: a case-control study. Prostaglandins Leukot Essent Fatty Acids 2009; 80:221-7. [PMID: 19307110 DOI: 10.1016/j.plefa.2009.01.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 01/09/2009] [Accepted: 01/25/2009] [Indexed: 12/01/2022]
Abstract
Increasing evidence is mounting in support of fatty acid metabolism playing a role in neurodevelopmental disorders such as autism. In order to definitely determine whether fatty acid concentrations were associated with autism, we quantitatively measured 30 fatty acids from seven lipid classes in plasma from a large subset of subjects enrolled in the Childhood Autism Risk from Genetics and the Environment (CHARGE) study. The CHARGE study is a large, population-based case-control study on children aged 2-5 born in California. Our subset consisted of 153 children with autism and 97 developmentally normal controls. Results showed that docosahexaenoic acid (DHA, 22:6n-3) was significantly decreased in phosphatidylethanolamine. Dimethyl acetals were significantly decreased in phosphatidylethanolamine and phosphatidylcholine as well. These results are consistent with the only other study to measure dimethyl acetals in children with autism, and suggest that the function of peroxisomes and the enzymes of the peroxisome involved with fatty acid metabolism may be affected in autism.
Collapse
Affiliation(s)
- M M Wiest
- Division of Epidemiology, Department of Public Health, University of California, Davis, CA 95616, USA.
| | | | | | | | | |
Collapse
|
26
|
Oresic M, Simell S, Sysi-Aho M, Näntö-Salonen K, Seppänen-Laakso T, Parikka V, Katajamaa M, Hekkala A, Mattila I, Keskinen P, Yetukuri L, Reinikainen A, Lähde J, Suortti T, Hakalax J, Simell T, Hyöty H, Veijola R, Ilonen J, Lahesmaa R, Knip M, Simell O. Dysregulation of lipid and amino acid metabolism precedes islet autoimmunity in children who later progress to type 1 diabetes. ACTA ACUST UNITED AC 2008; 205:2975-84. [PMID: 19075291 PMCID: PMC2605239 DOI: 10.1084/jem.20081800] [Citation(s) in RCA: 335] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The risk determinants of type 1 diabetes, initiators of autoimmune response, mechanisms regulating progress toward β cell failure, and factors determining time of presentation of clinical diabetes are poorly understood. We investigated changes in the serum metabolome prospectively in children who later progressed to type 1 diabetes. Serum metabolite profiles were compared between sample series drawn from 56 children who progressed to type 1 diabetes and 73 controls who remained nondiabetic and permanently autoantibody negative. Individuals who developed diabetes had reduced serum levels of succinic acid and phosphatidylcholine (PC) at birth, reduced levels of triglycerides and antioxidant ether phospholipids throughout the follow up, and increased levels of proinflammatory lysoPCs several months before seroconversion to autoantibody positivity. The lipid changes were not attributable to HLA-associated genetic risk. The appearance of insulin and glutamic acid decarboxylase autoantibodies was preceded by diminished ketoleucine and elevated glutamic acid. The metabolic profile was partially normalized after the seroconversion. Autoimmunity may thus be a relatively late response to the early metabolic disturbances. Recognition of these preautoimmune alterations may aid in studies of disease pathogenesis and may open a time window for novel type 1 diabetes prevention strategies.
Collapse
Affiliation(s)
- Matej Oresic
- VTT Technical Research Centre of Finland, Espoo, Finland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Moraitou M, Dimitriou E, Zafeiriou D, Reppa C, Marinakis T, Sarafidou J, Michelakakis H. Plasmalogen levels in Gaucher disease. Blood Cells Mol Dis 2008; 41:196-9. [DOI: 10.1016/j.bcmd.2008.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 03/14/2008] [Accepted: 03/31/2008] [Indexed: 10/22/2022]
|
28
|
Gaposchkin DP, Farber HW, Zoeller RA. On the importance of plasmalogen status in stimulated arachidonic acid release in the macrophage cell line RAW 264.7. Biochim Biophys Acta Mol Cell Biol Lipids 2008; 1781:213-9. [DOI: 10.1016/j.bbalip.2008.01.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 01/30/2008] [Accepted: 01/31/2008] [Indexed: 11/25/2022]
|
29
|
Rouzer CA, Ivanova PT, Byrne MO, Brown HA, Marnett LJ. Lipid profiling reveals glycerophospholipid remodeling in zymosan-stimulated macrophages. Biochemistry 2007; 46:6026-42. [PMID: 17458939 DOI: 10.1021/bi0621617] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Comprehensive lipid profiling by mass spectrometry provides comparative data on the relative distribution of individual glycerophospholipids within each of the major classes. Application of this method to the analysis of glycerophospholipid remodeling in murine primary resident peritoneal macrophages (RPMs) during zymosan phagocytosis reveals significant decreases in the levels of every major arachidonic acid (20:4)-containing species of phosphatidylcholine (GPCho) and in selected 20:4-containing phosphatidylinositol (GPIns) and phosphatidylglycerol (GPGro) species. No net changes in 20:4-containing phosphatidylethanolamine (GPEtn) species were detected. Pretreatment of RPMs with LPS resulted in subtle changes in the magnitude and kinetics of the response but had no effect on the overall pattern of zymosan-induced glycerophospholipid remodeling. Inhibition of prostaglandin (PG) synthesis with indomethacin reduced the magnitude of the changes in 20:4-containing diacyl but not alkyl acyl species. Blockade of 20:4 reacylation with thimerosal had no effect on the magnitude of the zymosan-induced changes in GPCho, GPIns, or GPGro species but revealed decreases in the level of alkyl acyl GEtn species. RAW264.7 cells contain much lower levels of phospholipid 20:4 than do RPMs and synthesize PGs poorly in response to zymosan. Pretreatment with granulocyte-macrophage colony stimulating factor, lipopolysaccharide, and interferon-gamma substantially increased the extent of 20:4 mobilization and PG synthesis in these cells. However, under conditions of maximal zymosan-dependent PG synthesis, the only glycerophospholipid that exhibited a significant change was a 20:4-containing plasmenyl GPEtn. These results suggest that GPCho is the major ultimate source of 20:4 that is mobilized in zymosan-stimulated RPMs but that 20:4 mobilization may involve the intermediate turnover of alkyl acyl GPEtn species.
Collapse
Affiliation(s)
- Carol A Rouzer
- Department of Biochemistry, Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA.
| | | | | | | | | |
Collapse
|
30
|
Rouzer CA, Ivanova PT, Byrne MO, Milne SB, Marnett LJ, Brown HA. Lipid profiling reveals arachidonate deficiency in RAW264.7 cells: Structural and functional implications. Biochemistry 2007; 45:14795-808. [PMID: 17144673 PMCID: PMC2443946 DOI: 10.1021/bi061723j] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycerophospholipids containing arachidonic acid (20:4) serve as the precursors for an array of biologically active lipid mediators, most of which are produced by macrophages. We have applied mass spectrometry-based lipid profiling technology to evaluate the glycerophospholipid structure and composition of two macrophage populations, resident peritoneal macrophages and RAW264.7 cells, with regard to their potential for 20:4-based lipid mediator biosynthesis. Fatty acid analysis indicated that RAW264.7 cells were deficient in 20:4 (10 +/- 1 mol %) compared to peritoneal macrophages (26 +/- 1 mol %). Mass spectrometry of total glycerophospholipids demonstrated a marked difference in the distribution of lipid species, including reduced levels of 20:4-containing lipids, in RAW264.7 cells compared to peritoneal macrophages. Enrichment of RAW264.7 cells with 20:4 increased the fatty acid to 20 +/- 1 mol %. However, the distribution of the incorporated 20:4 remained different from that of peritoneal macrophages. RAW264.7 cells pretreated with granulocyte-macrophage colony stimulating factor followed by lipopolysaccharide and interferon-gamma mobilized similar quantities of 20:4 and produced similar amounts of prostaglandins as peritoneal macrophages treated with LPS alone. LPS treatment resulted in detectable changes in specific 20:4-containing glycerophospholipids in peritoneal cells, but not in RAW264.7 cells. 20:4-enriched RAW264.7 cells lost 88% of the incorporated fatty acid during the LPS incubation without additional prostaglandin synthesis. These results illustrate that large differences in glycerophospholipid composition may exist, even in closely related cell populations, and demonstrate the importance of interpreting the potential for lipid-mediator biosynthesis in the context of overall glycerophospholipid composition.
Collapse
Affiliation(s)
- Carol A. Rouzer
- Department of Biochemistry, the Vanderbilt Institute of Chemical Biology, the Vanderbilt Ingram Cancer Center, Center in Molecular Toxicology, Center for Pharmacology and Drug Toxicology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146 USA
| | - Pavlina T. Ivanova
- Department of Pharmacology, the Vanderbilt Institute of Chemical Biology, the Vanderbilt Ingram Cancer Center, Center in Molecular Toxicology, Center for Pharmacology and Drug Toxicology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146 USA
| | - Mark O. Byrne
- Department of Pharmacology, the Vanderbilt Institute of Chemical Biology, the Vanderbilt Ingram Cancer Center, Center in Molecular Toxicology, Center for Pharmacology and Drug Toxicology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146 USA
| | - Stephen B. Milne
- Department of Pharmacology, the Vanderbilt Institute of Chemical Biology, the Vanderbilt Ingram Cancer Center, Center in Molecular Toxicology, Center for Pharmacology and Drug Toxicology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146 USA
| | - Lawrence J. Marnett
- Department of Biochemistry, the Vanderbilt Institute of Chemical Biology, the Vanderbilt Ingram Cancer Center, Center in Molecular Toxicology, Center for Pharmacology and Drug Toxicology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146 USA
- Department of Chemistry, the Vanderbilt Institute of Chemical Biology, the Vanderbilt Ingram Cancer Center, Center in Molecular Toxicology, Center for Pharmacology and Drug Toxicology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146 USA
| | - H. Alex Brown
- Department of Pharmacology, the Vanderbilt Institute of Chemical Biology, the Vanderbilt Ingram Cancer Center, Center in Molecular Toxicology, Center for Pharmacology and Drug Toxicology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146 USA
- Department of Chemistry, the Vanderbilt Institute of Chemical Biology, the Vanderbilt Ingram Cancer Center, Center in Molecular Toxicology, Center for Pharmacology and Drug Toxicology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146 USA
- To whom correspondence should be addressed. Tel: (615) 936-3888. Fax: (615) 936-6833.
| |
Collapse
|
31
|
Servillo L, Balestrieri C, Giovane A, Pari P, Palma D, Giannattasio G, Triggiani M, Balestrieri ML. Lysophospholipid transacetylase in the regulation of PAF levels in human monocytes and macrophages. FASEB J 2006; 20:1015-7. [PMID: 16571775 DOI: 10.1096/fj.05-5059fje] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The transacetylase (TA), reported to be identical to platelet-activating factor (PAF) acetylhydrolase (II), is a multifunctional enzyme with three catalytic activities: lysophospholipid transacetylase (TA(L)), sphingosine transacetylase (TA(S)), and acetylhydrolase (AH). We report that TA(L) activity participates in the control of PAF levels in monocytes and macrophages and that its regulation differs in these two types of cells. In monocytes, LPS or granulocyte-macrophage colony-stimulating factor (GM-CSF) specifically increased the TA(L) activity. Western blot analysis and enzyme assays on immunoprecipitates revealed that the increased activity can be ascribed to PAF-AH (II) and that both translocation from cytosol to membranes and p38/ERKs-mediated phosphorylation regulate the enzyme activation. Instead, in macrophages differentiated in vitro from monocytes by incubation with FCS, an increase of both TA(L) and AH activities was observed. Moreover, activation of ERKs and p38 MAP kinase was not required for the up-regulation of PAF-AH (II) in differentiated macrophages. The differences observed in macrophages as compared to monocytes can be explained by 1) p38/ERKs-independent phosphorylation of PAF-AH (II) and 2) appearance of plasma PAF-AH in the course of macrophage differentiation.
Collapse
Affiliation(s)
- Luigi Servillo
- Department of Biochemistry and Biophysics, Second University of Naples, via L. De Crecchio 7, Naples 80138, Italy
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Sterin M, Cohen JS, Ringel I. Hormone Sensitivity is Reflected in the Phospholipid Profiles of Breast Cancer Cell Lines. Breast Cancer Res Treat 2004; 87:1-11. [PMID: 15377845 DOI: 10.1023/b:brea.0000041572.07837.ec] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have found that the profiles of total phospholipids in malignant breast cancer cell lines change going from hormone sensitive to highly hormone resistant cells lines. In particular, two phospholipid components that were absent or at very low levels in hormone sensitive MCF7 cells and moderately hormone sensitive cell lines (MIII, LCC2) were found in relatively high proportions in highly hormone resistant cell lines (MB435, MB231). These two components were shown to be the alkylacylphosphatidylcholine (AAPtdC) and the unsaturated analog plasmenylphosphatidylethanolamine (plasmenyl-PtdE). Another component phosphatidylethanolamine (PtdE) increased in correlation with the degree of hormone insensitivity. This was shown using 31P NMR spectroscopy of lipid extracts of the cells, and was confirmed using HPLC analysis, as well as other techniques. The significance of these results for the metabolic characteristics of these cell lines is related to the therapeutic responsiveness of breast cancer.
Collapse
Affiliation(s)
- Marina Sterin
- Department of Pharmacology, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | | | | |
Collapse
|
33
|
Brites P, Waterham HR, Wanders RJA. Functions and biosynthesis of plasmalogens in health and disease. Biochim Biophys Acta Mol Cell Biol Lipids 2004; 1636:219-31. [PMID: 15164770 DOI: 10.1016/j.bbalip.2003.12.010] [Citation(s) in RCA: 279] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Accepted: 12/15/2003] [Indexed: 11/29/2022]
Abstract
Plasmalogens (1-O-alk-1'-enyl-2-acyl glycerophospholipids) constitute a special class of phospholipids characterized by the presence of a vinyl-ether bond at the sn-1 position. Although long considered as biological peculiarities, interest in this group of phospholipids has grown in recent years, thanks to the realization that plasmalogens are involved in different human diseases. In this review, we summarize the current state of knowledge with respect to the enzymatic synthesis of plasmalogens, the characteristic topology of the enzymes involved and the biological roles that have been assigned to plasmalogens.
Collapse
Affiliation(s)
- Pedro Brites
- Department of Clinical Chemistry, Academic Medical Center, Lab Genetic Metabolic Diseases, F0-224, Meibergdreef 9, Amsterdam 1105 AZ, Netherlands
| | | | | |
Collapse
|
34
|
Ravandi A, Babaei S, Leung R, Monge JC, Hoppe G, Hoff H, Kamido H, Kuksis A. Phospholipids and oxophospholipids in atherosclerotic plaques at different stages of plaque development. Lipids 2004; 39:97-109. [PMID: 15134136 DOI: 10.1007/s11745-004-1207-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We identified and quantified the hydroperoxides, hydroxides, epoxides, isoprostanes, and core aldehydes of the major phospholipids as the main components of the oxophospholipids (a total of 5-25 pmol/micromol phosphatidylcholine) in a comparative study of human atheroma from selected stages of lesion development. The developmental stages examined included fatty streak, fibrous plaque, necrotic core, and calcified tissue. The lipid analyses were performed by normal-phase HPLC with on-line electrospray MS using conventional total lipid extracts. There was great variability in the proportions of the various oxidation products and a lack of a general trend. Specifically, the early oxidation products (hydroperoxides and epoxides) of the glycerophosphocholines were found at the advanced stages of the plaques in nearly the same relative abundance as the more advanced oxidation products (core aldehydes and acids). The anticipated linear accumulation of the more stable oxidation products with progressive development of the atherosclerotic plaque was not apparent. It is therefore suggested that lipid infiltration and/or local peroxidation is a continuous process characterized by the formation and destruction of both early and advanced products of lipid oxidation at all times. The process of lipid deposition appears to have been subject to both enzymatic and chemical modification of the normal tissue lipids. Clearly, the appearance of new and disproportionate old lipid species excludes randomness in any accumulation of oxidized LDL lipids in atheroma.
Collapse
Affiliation(s)
- Amir Ravandi
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Canada M5G 1L6
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Farooqui AA, Ong WY, Horrocks LA. Plasmalogens, Docosahexaenoic Acid and Neurological Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 544:335-54. [PMID: 14713251 DOI: 10.1007/978-1-4419-9072-3_45] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- Akhlaq A Farooqui
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | | | | |
Collapse
|
36
|
Zoeller RA, Grazia TJ, LaCamera P, Park J, Gaposchkin DP, Farber HW. Increasing plasmalogen levels protects human endothelial cells during hypoxia. Am J Physiol Heart Circ Physiol 2002; 283:H671-9. [PMID: 12124215 DOI: 10.1152/ajpheart.00524.2001] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Supplementation of cultured human pulmonary arterial endothelial cells (PAEC) with sn-1-O-hexadecylglycerol (HG) resulted in an approximately twofold increase in cellular levels of plasmalogens, a subclass of phospholipids known to have antioxidant properties; this was due, primarily, to a fourfold increase in the choline plasmalogens. Exposure of unsupplemented human PAEC to hypoxia (PO(2) = 20-25 mmHg) caused an increase in cellular reactive oxygen species (ROS) over a period of 5 days with a coincident decrease in viability. In contrast, HG-supplemented cells survived for at least 2 wk under these conditions with no evidence of increased ROS. Hypoxia resulted in a selective increase in the turnover of the plasmalogen plasmenylethanolamine. Human PAEC with elevated plasmalogen levels were also more resistant to H(2)O(2), hyperoxia, and the superoxide generator plumbagin. This protection was seemingly specific to cellular stresses in which significant ROS were generated because the sensitivity to lethal heat shock or glucose deprivation was not altered in HG-treated human PAEC. HG, by itself, was not sufficient for protection; HG supplementation of bovine PAEC had no effect upon plasmalogen levels and did not rescue these cells from the cytotoxic effects of hypoxia. This is the initial demonstration that plasmalogen content can be substantially enhanced in a normal cell. These data also demonstrate that HG can protect cells during hypoxia and other ROS-mediated stress, likely due to the resulting increase in these antioxidant phospholipids.
Collapse
Affiliation(s)
- Raphael A Zoeller
- Department of Physiology and Biophysics, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Chapkin RS, Hong MY, Fan YY, Davidson LA, Sanders LM, Henderson CE, Barhoumi R, Burghardt RC, Turner ND, Lupton JR. Dietary n-3 PUFA alter colonocyte mitochondrial membrane composition and function. Lipids 2002; 37:193-9. [PMID: 11908911 DOI: 10.1007/s11745-002-0880-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
There is experimental evidence that dietary fish oil, which contains the n-3 fatty acid family, i.e., EPA and DHA, protects against colon tumor development, in part by increasing apoptosis. Since mitochondria can act as central executioners of apoptosis, we hypothesized that EPA and DHA incorporation into colonocyte mitochondrial membranes, owing to their high degree of unsaturation, would enhance susceptibility to damage by reactive oxygen species (ROS) generated via oxidative phosphorylation. This, in turn, would compromise mitochondrial function, thereby initiating apoptosis. To test this hypothesis, colonic crypts were isolated from rats fed either fish oil, purified n-3 fatty acid ethyl esters, or corn oil (control). Dietary lipid source had no effect on colonic mitochondrial phospholipid class mole percentages, although incorporation of EPA and DHA was associated with a reduction in n-6 fatty acids known to enhance colon tumor development, i.e., linoleic acid LNA) and its metabolic product, arachidonic acid (ARA). Select compositional changes in major phospholipid pools were correlated to alterations in mitochondrial function as assessed by confocal microscopy. The mol% sum of LNA plus ARA in cardiolipin was inversely correlated with ROS (P = 0.024). Ethanolamine glycerophospholipid ARA (P = 0.046) and choline glycerophospholipid LNA (P = 0.033) levels were positively correlated to mitochondrial membrane potential. In contrast, ethanolamine glycerophospholipid EPA (P = 0.042) and DHA (P = 0.024) levels were negatively correlated to mitochondrial membrane potential. Additionally, EPA and DHA levels in choline glycerophospholipids (P = 0.026) were positively correlated with caspase 3 activity. These data provide evidence in vivo indicating that dietary EPA and DHA induce compositional changes in colonic mitochondrial membrane phospholipids that facilitate apoptosis.
Collapse
Affiliation(s)
- Robert S Chapkin
- Department of Veterinary Anatomy and Public Health, Center for Environmental and Rural Health, Texas A&M University, College Station 77843-2471, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Farooqui AA, Horrocks LA. Plasmalogens: workhorse lipids of membranes in normal and injured neurons and glia. Neuroscientist 2001; 7:232-45. [PMID: 11499402 DOI: 10.1177/107385840100700308] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Plasmalogens are unique glycerophospholipids because they have an enol ether double bond at the sn-1 position of the glycerol backbone. They are found in all mammalian tissues, with ethanolamine plasmalogens 10-fold higher than choline plasmalogens except in muscles. The enol ether double bond at the sn-1 position makes plasmalogens more susceptible to oxidative stress than the corresponding ester-bonded glycerophospholipids. Plasmalogens are not only structural membrane components and a reservoir for second messengers but may also be involved in membrane fusion, ion transport, and cholesterol efflux. Plasmalogens may also act as antioxidants, thus protecting cells from oxidative stress. Receptor-mediated degradation of plasmalogens by plasmalogen-selective phospholipase A2 results in the generation of arachidonic acid, eicosanoids, and platelet activating factor. Low levels of these metabolites have trophic effects, but at high concentration they are cytotoxic and may be involved in allergic response, inflammation, and trauma. Levels of plasmalogens are decreased in several neurological disorders including Alzheimer's disease, ischemia, and spinal cord trauma. This may be due to the stimulation of plasmalogen-selective phospholipase A2. A deficiency of plasmalogens in peroxisomal disorders and Niemann-Pick type C disease indicates that this deficiency may be due to the decreased activity of plasmalogen synthesizing enzymes that occur in peroxisomes.
Collapse
Affiliation(s)
- A A Farooqui
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus 43210-1218, USA
| | | |
Collapse
|
40
|
Affiliation(s)
- N Nagan
- Department of Laboratory Medicine and Pathology, Division of Clinical Biochemistry and Immunology, Mayo Foundation Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
41
|
Infante JP, Huszagh VA. Zellweger syndrome knockout mouse models challenge putative peroxisomal beta-oxidation involvement in docosahexaenoic acid (22:6n-3) biosynthesis. Mol Genet Metab 2001; 72:1-7. [PMID: 11161822 DOI: 10.1006/mgme.2000.3101] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The putative involvement of peroxisomal beta-oxidation in the biosynthetic pathway of docosahexaenoic acid (22:6n-3, DHA) synthesis is critically reviewed in light of experiments with two recently developed knockout mouse models for Zellweger syndrome, a peroxisomal disorder affecting brain development. These mice were generated by targeted disruption of the PEX2 and PEX5 peroxisomal assembly genes encoding targeting signal receptor peroxins for the recognition and transport of a set of peroxisomal enzymes, including those of peroxisomal beta-oxidation, to the peroxisomal matrix. Analysis of esterified 22:6n-3 concentrations in PEX2-/- and PEX5-/- mice do not support the hypothesized requirement of peroxisomal beta-oxidation in 22:6n-3 synthesis, as only brain, but not liver or plasma, 22:6n-3 levels were decreased. Supplementation of PEX5+/- dams with 22:6n-3, although restoring the levels of brain 22:6n-3 in total lipids to that of controls, did not normalize the phenotype. These decreased brain 22:6n-3 concentrations appear to be secondary to impaired plasmalogen (sn-1-alkyl-, alkenyl-2-acyl glycerophospholipids) synthesis, probably at the level of the dihydroxyacetonephosphate acyltransferase (DHAP-AT), a peroxisomal enzyme catalyzing the first step in the synthesis of 22:6n-3-rich plasmalogens. To diminish the confounding effects of impaired plasmalogen synthesis in the brains of these Zellweger syndrome mouse models, kinetic experiments with labeled precursors, such as 18:3n-3 or 20:5n-3, in liver or isolated hepatocytes, which have negligible amounts of plasmalogens, are suggested to establish the rates of 22:6n-3 biosynthesis and precursor-product relationships. Similar experiments using brain of the acyl-CoA oxidase knockout mouse model are proposed to confirm the lack of peroxisomal beta-oxidation involvement in 22:6n-3 synthesis, since this mutation would not impair plasmalogen synthesis.
Collapse
Affiliation(s)
- J P Infante
- Institute for Theoretical Biochemistry and Molecular Biology, Ithaca, New York 14852, USA.
| | | |
Collapse
|
42
|
Gaposchkin DP, Zoeller RA, Broitman SA. Incorporation of polyunsaturated fatty acids into CT-26, a transplantable murine colonic adenocarcinoma. Lipids 2000; 35:181-6. [PMID: 10757549 DOI: 10.1007/bf02664768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Previous studies in our laboratory have shown that marine oils, with high levels of eicosapentaenoic (EPA, 20:5n-3) and docosahexaenoic acids (DHA, 22:6n-3), inhibit the growth of CT-26, a murine colon carcinoma cell line, when implanted into the colons of male BALB/c mice. An in vitro model was developed to study the incorporation of polyunsaturated fatty acids (PUFA) into CT-26 cells in culture. PUFA-induced changes in the phospholipid fatty acid composition and the affinity with which different fatty acids enter the various phospholipid species and subspecies were examined. We found that supplementation of cultured CT-26 cells with either 50 microM linoleic acid (LIN, 18:2n-6), arachidonic acid (AA, 20:4n-6), EPA, or DHA significantly alters the fatty acid composition of CT-26 cells. Incorporation of these fatty acids resulted in decreased levels of monounsaturated fatty acids, while EPA and DHA also resulted in lower levels of AA. While significant elongation of both AA and EPA occurred, LIN remained relatively unmodified. Incorporation of radiolabeled fatty acids into different phospholipid species varied significantly. LIN was incorporated predominantly into phosphatidylcholine and had a much lower affinity for the ethanolamine phospholipids. DHA had a higher affinity for plasmenylethanolamine (1-O-alk-1'-enyl-2-acyl-sn-glycero-3-phosphoethanolamine) than the other fatty acids, while EPA had the highest affinity for phosphatidylethanol-amine (1,2-diacyl-sn-glycero-3-phosphoethanolamine). These results demonstrate that, in vitro, significant differences are seen between the various PUFA in CT-26 cells with respect to metabolism and distribution, and these may help to explain differences observed with respect to their effects on tumor growth and metastasis in the transplantable model.
Collapse
Affiliation(s)
- D P Gaposchkin
- The Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Massachusetts 02118, USA
| | | | | |
Collapse
|